交通流分配模型综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中科技大学

研究生课程考试答题本

考生菀荣

考生学号M201673159

系、年级交通运输工程系、研一

类别科学硕士

考试科目交通流理论

考试日期2017 年 1 月10 日

交通流分配模型综述

摘要:近些年,交通流分配模型已经广泛应用到了交通运输工程的各个领域,

并且在交通规划中起到了很重要的作用。本文对交通流分配模型研究现状进行了综述,并分别对静态交通流分配模型、动态分配模型以及公交网络进行了阐述和讨论。同时对相关的交通仿真还有网络优化问题研究现状进行了探讨。最后结合自身学习经验做出了一些评价和总结。

关键词:交通流分配;模型;公交网络

0引言

随着经济和科技的发展,城市化进程日益加快,城市也因此被赋予更多的工程,慢慢聚集大量的人口。而人口数量的增加而直接带来的城市出行量增加,不管是机动车出行还是非机动车出行量都相较以前增加了很多,从而引发了一系列的交通问题。因为在城市整体规划中,交通规划已经成为了十分突出的问题。在整个交通规划过程中,交通分配在其中占有很重要的地位,为相关公交路线,具体道路宽度规划等都有很大作用。

1交通流分配及研究进程

1.1交通流分配简介

由于连接OD之间的道路有很多条,如何将OD交通量正确合理的分配到O和D之间的各条路线上,是交通流分配模型要解决的首要问题。交通流分配是城市交通规划的一个重要组成部分也是OD量推算的基础。交通流分配模型分为均衡模型和非均衡模型。

1.2交通流模型研究进程

以往关于交通流分配模型的研究多是基于出行者路径偏好的,主要有以Wardrop第一和第二原则为分配依据建立的交通分配模型,Wardrop第一原则假定所有出行者独立做出令自己出行时间最小的决策,最终达到纳什均衡的状

态,此时的流量为用户最优解,在这种状态下,同一个起始点时间所有有流路径的通行时间相等,并且大于无流路径的通行时间;Wardrop第二原则假定存在一个中央组织者协调所有出行者的路径选择行为,使得所有出行者的总出行时间最小,对应的状态称为系统最优,此时分布的流量称为系统最优流。

交通流分配模型最早要追述到Beckmann等[1]于1956年首先提出了满足Wardrop第一原则的交通流分配非线性规划模型。LeBlanc等[2]用Frank-Wolfe 算法对该模型成功进行了求解,Smith和Dafermos分别提出了更为广义的非线性互余模型和变分不等式模型[3][4][5]

针对城市单一交通方式的交通网络拓扑分析与数学模型已较为成熟,大多以图论为基础,而多方式交通网络模型的研究中比较具有代表性的路网模型有:基于图论的路网模型、基于GIS的路网模型、基于状态转移网络和基于超级网络的路网模型等。菲等[6]将路网抽象为带转向的赋权有向图,通过将节点表示交叉路口和端点,边表示连接这些结点的道路,可以反映现实网络的空间位置关系,但不能反映不同交通方式的关联性。陆峰等[7]建立了基于特征的GIS数据存储模型,将交通区域、交通特征、事件和事件点定为4个基本要素,将路径、路径段、联线与节点设置为四个复合要素,可以完整表达路网交通特征。Lo等[8][9]将网络转为由状态网络和各方式子网络组成的网络模型,通过对每个OD对,将起点和终点之间所有可能路径上的状态用子网连接或换乘连接连在一起,可以完整地描述出行过程。Wu等[10]通过在节点与线段对应实体的基础网络上,通过添加虚拟节点和虚拟路段,表示模式间的换乘关系,既能够表达网络的空间位置关系,又能反映不同交通方式间的关联性。

2静态和动态交通流分配模型

2.1静态交通流分配模型

对于静态交通流分配模型,分为确定性交通流分配模型和随机性交通流分配模型,确定性交通流分配模型又可以分为确定性用户最优模型和确定性系统最优模型,前者遵循Wardrop第一原理,后者遵循Wardrop第二原理。

2.2动态交通流分配模型

至于动态交通流分配模型,其由来是因为静态交通流分配模型不能体现OD 需求矩阵随时间变化的起伏特征,分为数学规划模型、最优控制模型和变分不等式模型。Merchant等[11]首次提出了动态交通流分配的概念,采用数学规划的方法来描述动态交通流分配问题,建立了一个离散时间、非凸的非线性规划模型。Ho[12]推到了M-N模型最优解的充分条件,并提出了该模型的分段线性算法。Carey[13]改进了M-N模型为非线性凸规划,并证明了模型解的唯一性。之后,其又在1992年首次提出了动态交通流分配的FIFO(First-In-First-Out)规则[14],指出当网络扩展为多个终点时,FIFO原则必将导致模型解得可行域为非凸集合,如不满足,则解不合理。Jason[15]最早尝试建立用户最优的动态交通流分配模型,但模型部分假定违背FIFO原则,算法不够合理。Liu[16]在Jason的基础上改进了模型,使其满足FIFO规则,但模型只是一种假想形式。Ziliaskopoulos[17]引入元胞传输模型建立了一个系统最优DTA线性规划模型,按照细胞传播模型处理交通流的传播,而无须将路段出行时间函数作为路段交通流量传播的唯一工具。Ukkusuri等[18]基于元胞传输模型建立了一个用户最优DTA线性规划模型,较Janson模型求解效率更高。最优控制模型假定时间是连续变量,约束条件与数学规划模型类似。Friesz等[19]建立了基于路段的最优控制模型,分析了单终点情况的系统最优(SO)问题和用户平衡(UE)问题,该SO模型可以看作是离散M-N

模型的连续化,UE模型可看作是Beckman模型通过瞬间用户路径费用平衡的动态推广。Dafemos[20]于1980年首先将变分不等式方法引入了静态交通平衡建模领域,变分不等式(VI)理论的基本思路是将动态交通流分配过程分解为网络加载和网络分配两个过程,最终通过求解一系列的线性规划来求解分配问题。Friesz等[21]构造了一个连续时间的用户最优变分不等式模型。

2.3动态交通流分配仿真模型

动态交通流分配仿真模型采用交通仿真软件复现交通流在交通网络中的运行状态。其中,宏观模型以车辆整体流动为研究对象,从宏观上分析整个交通网络的交通流特性,能够描述网络流量、速度、密度之间的关系,如Diakaki等[22]的METACOR模型,适用于城市交通规划。微观模型以个体车辆运动为研究对象,对单个车辆的跟驰行为、间距保持和换道选择等进行仿真,如Yang等[23]的MITSIM模型,能够精确地描述每一时刻每一辆车的驾驶行为和相互作用,适用于中小规模路网的交通模拟。而中观模型介于前两者之间,以车辆群体为研究对象,既能解决宏观模型不能描述排队长度和延误等详细交通状态指标问题,又能避免微观模型不能描述OD对交通系统产生的影响等问题,如Balakrishna等[24]的DynaMIT模型,能够清晰地反映交通运行情况以及时变特征。

3公交网络

3.1公交网络的复杂性研究

关于公交网络的复杂性研究,Watts等[25]于1998年在Nature杂志上发表论文,建立了小世界网络模型,研究表明许多网络尤其是大型网络都具有小世界特性,即较大的聚类系数和较短的平均路径长度。Barabasi等[26]于1999年在Science上发表论文,研究表明很多现实中的大型复杂的度分布属于无标度的

相关文档
最新文档