惯性导航技术的工作原理

合集下载

60_惯性导航技术

60_惯性导航技术

惯性导航系统智能车辆环境感知技术P PT概述惯性导航(Inertial Navigation )是依据牛顿惯性原理,利用惯性元件(加速度计)来测量运载体本身的加速度,经过积分和运算得到速度和位置,从而达到对运载体导航定位的目的。

组成惯性导航系统的设备都安装在运载体内,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,是一种自主式导航系统。

智能车辆环境感知技术P PT发展历程智能车辆环境感知技术P PT基本原理平面导航的工作原理如图。

取oxy 为定位坐标系,载体的瞬时位置为(x,y)坐标。

如果在载体内用一个导航平台把2个加速度计的测量轴分别稳定在x 和y 轴向,则加速度计分别测量载体x 和y 轴的相对惯性空间的运动加速度,经导航计算机的运算得到载体的航行速度Vx 、Vy 和瞬时位置x 、y 。

00tx x x V V a dt=+⎰00ty y y V V a dt=+⎰00t x x x V d t =+⎰00t y y y V d t=+⎰智能车辆环境感知技术P PT组成惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。

•惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。

3个自由度陀螺仪用来测量运载体的3个转动运动;3个加速度计用来测量运载体的3个平移运动的加速度。

•计算机根据测得的加速度信号计算出运载体的速度和位置数据。

•控制显示器显示各种导航参数。

智能车辆环境感知技术P PT加速度计加速度计由检测质量(也称敏感质量)、支承、电位器、弹簧、阻尼器和壳体组成。

检测质量受支承的约束只能沿一条轴线移动,这个轴常称为输入轴或敏感轴。

当仪表壳体随着运载体沿敏感轴方向作加速运动时,根据牛顿定律,具有一定惯性的检测质量力图保持其原来的运动状态不变。

它与壳体之间将产生相对运动,使弹簧变形,于是检测质量在弹簧力的作用下随之加速运动。

当弹簧力与检测质量加速运动时产生的惯性力相平衡时,检测质量与壳体之间便不再有相对运动,这时弹簧的变形反映被测加速度的大小。

惯导(惯性导航系统).

惯导(惯性导航系统).

北京七维航测科技股份有限公司 Beijing SDi Science&Technology Co.,Ltd.惯导(惯性导航系统)概述惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。

其工作环境不仅包括空中、地面,还可以在水下。

惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。

惯性导航系统(英语:INS)惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。

运用领域现代惯性技术在各国政府雄厚资金的支持下,己经从最初的军事应用渗透到民用领域。

惯性技术在国防装备技术中占有非常重要的地位。

对于惯性制导的中远程导弹,一般说来命中精度70%取决于制导系统的精度。

对于导弹核潜艇,由于潜航时间长,其位置和速度是变化的,而这些数据是发射导弹的初始参数,直接影响导弹的命中精度,因而需要提供高精度位置、速度和垂直对准信号。

目前适用于潜艇的唯一导航设备就是惯性导航系统。

惯性导航完全是依靠运载体自身设备独立自主地进行导航,不依赖外部信息,具有隐蔽性好、工作不受气象条件和人为干扰影响的优点,而且精度高。

对于远程巡航导弹,惯性制导系统加上地图匹配技术或其它制导技术,可保证它飞越几千公里之后仍能以很高的精度击中目标。

惯性技术己经逐步推广到航天、航空、航海、石油开发、大地测量、海洋调查、地质钻控、机器人技术和铁路等领域,随着新型惯性敏感器件的出现,惯性技术在汽车工业、医疗电子设备中都得到了应用。

因此惯性技术不仅在国防现代化中占有十分重要的地位,在国民经济各个领域中也日益显示出它的巨大作用。

北京七维航测科技股份有限公司Beijing SDi Science&Technology Co.,Ltd.导航和惯导从广义上讲从起始点将航行载体引导到目的地的过程统称为导航。

惯性导航的原理

惯性导航的原理

惯性导航的原理惯性导航是一种基于惯性传感器测量的导航技术,它可以独立于外界参考,为导航系统提供必要的位置、速度和姿态信息。

惯性导航系统主要由加速度计和陀螺仪组成,通过测量加速度和角速度来推算出位置、速度和姿态等相关信息。

惯性导航的原理可以分为两个方面:加速度计和陀螺仪。

一、加速度计:加速度计是惯性导航系统中的一个重要传感器,它能够测量物体在三维空间中的加速度。

加速度计的工作原理是基于牛顿第二定律,通过测量物体受到的惯性力大小来推算出物体的加速度。

加速度计通常采用压电效应或微机械系统(MEMS)技术来实现测量。

当一个物体处于静止状态时,加速度计可以测量出物体所受到的地心引力加速度,即9.8米/秒²。

当物体发生运动时,加速度计可以测量出物体除地心引力之外的其他加速度。

通过对加速度的积分,可以得到物体的速度和位置信息。

然而,由于加速度测量中存在累积误差和噪声,积分过程会导致速度和位置信息的漂移。

二、陀螺仪:陀螺仪是另一个重要的惯性导航传感器,它能够测量物体在三维空间中的角速度。

陀螺仪的工作原理是基于陀螺效应,即物体在旋转时会产生角动量。

陀螺仪通过测量角动量的大小和方向来推算出物体的角速度。

陀螺仪通常采用悬挂式陀螺或光纤陀螺等技术来实现测量。

陀螺仪具有高精度和高灵敏度的特点,可以提供准确的角速度信息。

通过对角速度的积分,可以推算出物体的姿态信息,比如俯仰角、滚转角和偏航角等。

综合应用加速度计和陀螺仪的测量结果,惯性导航系统可以实现导航信息的获取。

加速度计提供了物体的加速度,而陀螺仪提供了物体的角速度,通过对加速度和角速度的积分,可以得到物体的速度和位置信息。

此外,陀螺仪还可以提供物体的姿态信息。

然而,惯性导航系统存在一定的问题和挑战。

首先,加速度计和陀螺仪本身存在噪声和漂移问题,这会导致定位和姿态信息的不准确性和不稳定性。

其次,积分过程会导致误差的累积,导致位置和姿态信息的漂移。

为了解决这些问题,通常需要结合其他导航系统,如全球定位系统(GPS)或视觉传感器等,进行信息融合处理,以提高惯性导航系统的精度和稳定性。

惯性导航的工作原理及惯性导航系统分类

惯性导航的工作原理及惯性导航系统分类

惯性导航的工作原理及惯性导航系统分类
惯性导航系统(INS)是一种自主式的导航设备,能连续、实时地提供载体位置、姿态、速度等信息;特点是不依赖外界信息,不受气候条件和外部各种干扰因素。

惯性导航及控制系统最初主要为航空航天、地面及海上军事用户所应用,是现代国防系统的核心技术产品,被广泛应用于飞机、导弹、舰船、潜艇、坦克等国防领域。

随着成本的降低和需求的增长,惯性导航技术已扩展到大地测量、资源勘测、地球物理测量、海洋探测、铁路、隧道等商用领域,甚至在机器人、摄像机、儿童玩具中也被广泛应用。

不同领域使用惯性传感器的目的、方法大致相同,但对器件性能要求的侧重各不相同。

从精度方面来看,航天与航海领域对精度要求高,其连续工作时间也长;从系统寿命来看,卫星、空间站等航天器要求最高,因其发射升空后不可更换或维修;制导武器对系统寿命要求最短,但可能须要满足长时间战备的要求。

涉及到军事应用等领域,对可靠性要求较高。

惯性导航的工作原理
惯性导航系统是一种自主式的导航方法,它完全依靠载体上的设备自主地确定载体的航向、位置、姿态和速度等导航参数,而不需要借助外界任何的光、电、磁等信息。

惯性导航是一门涉及精密机械、计算机技术、微电子、光学、自动控制、材料等多种学科和领域的综合技术。

其基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度、角加速度,将它对时间进行一次积分,求得运动载体的速度、角速度,之后进行二次积分求得运动载体的位置信息,然后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。

百度搜索“乐晴智库”,获得更多行业深度研究报告
惯性导航系统分类。

平台式惯性导航系统原理及应用

平台式惯性导航系统原理及应用

战车定位
在战场上,平台式惯性导 航系统可为战车提供实时 、准确的定位信息,提高 作战效率。
舰艇导航
平台式惯性导航系统可为 舰艇提供稳定的导航服务 ,确保舰艇在复杂海况下 的航行安全。
单兵定位
单兵携带的平台式惯性导 航系统可为其提供实时定 位信息,提高单兵作战能 力。
民用领域应用
自动驾驶
平台式惯性导航系统可为自动驾驶汽车提供准确的定位和导航信 息,提高自动驾驶的安全性和可靠性。
惯性测量元件工作原理
陀螺仪工作原理
陀螺仪基于角动量守恒原理工作,当陀螺仪绕自身轴线旋转 时,其输出轴将指向一个固定方向,即陀螺仪的定轴性。通 过测量输出轴的角速度,可以得到载体相对于惯性空间的角 速度信息。
加速度计工作原理
加速度计基于牛顿第二定律工作,通过测量载体上的加速度 并积分,可以得到载体的速度和位置信息。加速度计的输出 受到重力加速度的影响,因此需要进行相应的补偿和校正。
平台式惯性导航系统 原理及应用演讲人:日期:目录
• 惯性导航基本原理 • 平台式惯性导航系统组成 • 平台式惯性导航系统工作原理 • 平台式惯性导航系统应用领域
目录
• 平台式惯性导航系统性能评估与优化 • 平台式惯性导航系统实验与仿真分析
01
惯性导航基本原理
惯性导航定义及发展历程
惯性导航定义
高精度、高动态性能
满足高精度定位和高动态运动 控制需求,提升系统性能极限

06
平台式惯性导航系统实验 与仿真分析
实验设计思路及实施过程
实验目的
验证平台式惯性导航系统的性能,包 括定位精度、稳定性等。
实验设备
高精度惯性测量单元、转台、控制系 统、数据采集与处理系统等。

惯性导航系统

惯性导航系统

惯性导航系统导航系统在现代社会中扮演着至关重要的角色,无论是在陆地、海上还是空中,人们都依赖于导航系统来确定位置、规划航线和安全导航。

而在导航系统中,惯性导航系统被广泛运用,它以其独特的技术和功能在各个领域中发挥重要作用。

一、惯性导航系统的基本原理惯性导航系统是一种不依赖于外部参考的导航系统,它依靠惯性传感器实现位置和速度的确定。

惯性导航系统由三个基本部分组成:陀螺仪和加速度计以及计算单元。

陀螺仪用于测量角速度,而加速度计用于测量线加速度。

通过对这些测量数据进行积分和计算,惯性导航系统能够提供准确的位置、速度和航向信息。

二、惯性导航系统的优势相比于其他导航系统,惯性导航系统具有许多独特的优势。

首先,惯性导航系统没有对外部环境的依赖,可以在任何环境和天气条件下工作。

这使得它在航空、航海和军事领域中得到广泛应用,尤其是在恶劣的气候和极地环境下。

其次,惯性导航系统具有高精度和快速响应的特点,能够提供准确的位置和速度信息,对导航的实时性要求高的场景非常有优势。

此外,惯性导航系统体积小、质量轻,对设备和空间要求相对较低,便于安装和集成。

三、惯性导航系统的应用领域惯性导航系统在航空、航海和军事领域中得到广泛应用。

在航空领域,飞机上配备了惯性导航系统可以实时获取飞机的位置、速度和姿态信息,为飞行员提供准确的导航指引。

航海领域中,惯性导航系统可以帮助船舶确定位置和航向,提供给船员准确的航行信息。

而在军事领域中,惯性导航系统则被用于导弹、导航、战斗机和潜艇等武器装备中,帮助军事行动实现精确和长程的导航目标。

四、惯性导航系统的未来发展随着科技的不断进步,惯性导航系统也在不断演进和改进。

传统的惯性导航系统依靠陀螺仪和加速度计进行姿态测量,虽然具有高精度和可靠性,但体积较大、制造和维护成本较高。

近年来,光纤陀螺仪和微机电系统(MEMS)等新技术的应用,使得惯性导航系统体积更小、成本更低,且具备相当的准确度。

此外,惯性导航系统与全球定位系统(GPS)等导航系统的融合也越来越广泛,通过多传感器的数据融合,提高导航系统的可用性和鲁棒性。

惯性导航知识点

惯性导航知识点

惯性导航知识点概述惯性导航是一种基于物理原理的导航技术,它利用惯性传感器测量物体的加速度和角速度来推测其位置和方向。

这种导航方式不受外部环境的影响,因此在无法使用地面、天空或卫星信号进行导航的环境中具有很高的适用性。

本文将介绍惯性导航的原理、应用和未来发展方向。

一、惯性导航原理惯性导航基于牛顿第一定律,即物体在没有外力作用时将保持静止或匀速直线运动。

根据这个原理,惯性导航系统利用加速度计和陀螺仪来测量物体的加速度和角速度,并通过积分计算出位置和方向。

加速度计测量物体的加速度,而陀螺仪测量物体的角速度。

结合这两个测量值,我们可以获得物体的运动状态。

二、惯性导航应用惯性导航在许多领域中都有广泛的应用。

一方面,在航空航天领域,惯性导航被广泛用于飞机、导弹和航天器等的导航系统中。

因为这些系统需要长时间在没有卫星信号的空间中运作,而惯性导航正好可以提供稳定准确的导航信息。

另一方面,在汽车和船舶领域,惯性导航也可以用于提供车辆和船只的位置和方向信息。

三、惯性导航的优势和限制与其他导航技术相比,惯性导航具有一些独特的优势。

首先,惯性导航不受外部环境的干扰,能够在恶劣天气条件下工作。

其次,惯性导航系统具有较高的精度和更新速率,可以提供准确的导航信息。

然而,惯性导航也存在一些限制。

由于惯性传感器存在漂移问题,导航的误差会随时间累积,因此需要通过其他导航系统进行校正,如全球卫星定位系统(GPS)。

四、惯性导航的未来发展方向随着技术的不断发展,惯性导航正朝着更加精确和可靠的方向发展。

首先,研究人员正在努力改进惯性传感器的性能,减小测量误差和漂移问题,提高导航的精度。

其次,结合其他导航系统,如GPS和地图数据,可以进一步提高惯性导航的可靠性和准确性。

此外,随着人工智能技术的发展,惯性导航系统可能会与其他智能设备和系统进行集成,实现更多应用场景和功能。

总结惯性导航是一种基于物理原理的导航技术,利用惯性传感器测量物体的加速度和角速度来推测其位置和方向。

惯性导航系统的原理及应用

惯性导航系统的原理及应用

惯性导航系统的原理及应用前言随着技术的不断发展,惯性导航系统在航空航天、海洋测量、地理勘测等领域中得到了广泛应用。

本文将介绍惯性导航系统的原理和应用,并讨论其在现代导航中的重要性。

1. 惯性导航系统的概述惯性导航系统是一种利用加速度计和陀螺仪等惯性传感器进行导航的系统。

它通过测量物体的加速度和旋转率,推算出物体的位置、速度和方向信息。

2. 惯性导航系统的原理惯性导航系统依赖于牛顿运动定律和角动量守恒定律。

具体来说,它利用加速度计测量物体的加速度,并通过积分计算出物体的速度和位移;同时,利用陀螺仪测量物体的旋转速度,并通过积分计算出物体的角位移。

3. 惯性导航系统的组成惯性导航系统由加速度计、陀螺仪和微处理器组成。

加速度计用于测量物体的加速度,陀螺仪用于测量物体的旋转速度,而微处理器则负责处理传感器数据并计算出物体的位置、速度和方向。

4. 惯性导航系统的优点惯性导航系统具有以下优点: - 独立性:惯性导航系统并不依赖于外部信号,可以在无法接收到卫星信号的环境下正常工作。

- 高精度:惯性导航系统采用高精度的传感器,并通过数据处理算法提高导航精度。

- 实时性:惯性导航系统可以实时测量物体的加速度和旋转速度,提供及时的导航信息。

5. 惯性导航系统的应用惯性导航系统在以下领域中得到广泛应用:- 航空航天:惯性导航系统在飞机、卫星等航空航天器中用于导航和姿态控制。

- 海洋测量:惯性导航系统在船舶、潜水器等海洋测量设备中用于测量位置和航向。

- 地理勘测:惯性导航系统在地质勘探、地图制图等领域中用于测量地理位置和方向。

6. 惯性导航系统的发展趋势随着技术的不断进步,惯性导航系统正越来越小型化、集成化,并且性能不断提高。

未来的惯性导航系统有望更加精确、可靠,同时也可以与其他导航技术(如卫星导航系统)相结合,提供更全面的导航解决方案。

结论惯性导航系统是一种重要的导航技术,它能够在无法接收到外部信号的环境下实现导航功能,并且具有高精度和实时性的特点。

惯性导航技术

惯性导航技术

f
i
C
i b
f
b
第二章 惯性导航原理
3.2 惯性坐标系机械编排
第二章 惯性导航原理
3.2 惯性坐标系机械编排
比力 哥氏加速度 向心力加速度 当地质量引力加速度
dve dt
i
f
ωie ve
ωie (ωie r) g
g1 g ie [ie r]
重力矢量
vi f i ωi vi gi
3.捷联惯性导航机械编排
2)哥氏定理 哥氏定理:用于描述矢量的绝对变化率与相对变化率间
的关系。设有矢量 r , m, n 是两个作相对旋转的坐标
系,则哥氏定理可描述为:
dr dt
m
dr dt
n
ωnm
r
根据哥氏定理,有
dr dt
e
dr dt
i
ωie
r
即 ve vi ωie r
第二章 惯性导航原理

xR yR
c11 c21
c12 c22
c13 c23
xr yr
C
R b
yxbb
zR c31 c32 c33 zr
zb
C 称 R 为方向余旋矩阵,或坐标变换矩阵。 b
第二章 惯性导航原理
4.捷联姿态计算
反之则有:
xb yb
c11 c12
c21 c22
c31 c33
第二章 惯性导航原理
1.惯性导航概述
比力的概念: 加速度计 并不能直接测量载体相对惯 性空间的加速度,而测量的 是比力,即惯性空间加速度 与引力加速度之差。量值是 作用在敏感器上的每单位质 量的非万有引力。 陀螺仪测量的是运载体相 对于惯性空间姿态变化或转 动速率。

惯性导航的原理和应用

惯性导航的原理和应用

惯性导航的原理和应用1. 惯性导航的概述惯性导航是一种基于惯性测量单元(Inertial Measurement Unit, IMU)的导航技术。

IMU通常由加速度计和陀螺仪组成,通过测量物体的线性加速度和角速度来估计和预测姿态、位置和速度等导航参数。

2. 惯性导航的原理惯性导航基于牛顿力学定律和旋转运动定律,通过积分测量的加速度和角速度来更新导航参数。

惯性导航系统是一个闭环控制系统,其主要原理如下:•加速度计测量物体的线性加速度,陀螺仪测量物体的角速度。

•加速度计和陀螺仪的测量值在一定时间间隔内采样并进行积分,得到速度和位置的估计值。

•估计值由卡尔曼滤波器或其他滤波算法进行融合和校正,得到更精确的导航参数。

3. 惯性导航的优势惯性导航具有以下几点优势:•实时性高:惯性导航系统不需要外部信号的输入,可以即时获取和更新导航信息。

•精度较高:惯性导航系统通过积分加速度和角速度,可以提供相对较高的姿态、位置和速度测量精度。

•可靠性强:惯性导航独立于外界环境和对地基站的依赖,可以在恶劣条件下正常工作。

•应用范围广:惯性导航可以应用于航空航天、无人驾驶、船舶导航、运动追踪等领域。

4. 惯性导航的应用惯性导航在多个领域有广泛的应用,以下列举几个常见的应用场景:•航空航天:惯性导航在飞机、导弹和卫星等航空航天器中被广泛使用。

它可以提供飞行姿态、速度和位置的实时估计,为导航和姿态控制提供支持。

•无人驾驶:无人驾驶汽车、船舶和飞行器通常使用惯性导航系统进行实时定位和导航。

惯性导航可以为无人驾驶系统提供稳定的位置和姿态信息。

•运动追踪:惯性导航在运动追踪和运动分析领域也有广泛的应用。

例如,运动传感器可以用于定位和跟踪运动员或物体的姿态和运动轨迹。

•船舶导航:惯性导航在船舶导航中也是一种常见的技术。

它可以提供船舶的姿态、速度和位置信息,用于航行控制和航线规划。

5. 惯性导航的挑战和改进惯性导航也存在一些挑战和限制,例如测量误差的累积、漂移、传感器失准等。

惯性导航系统的原理

惯性导航系统的原理

惯性导航系统的原理在现代科技高速发展的时代,惯性导航系统成为了航空、航海、航天等领域中不可缺少的一项技术。

那么,惯性导航系统的原理是什么呢?惯性导航系统是一种基于物体惯性原理的导航技术,通过测量物体的加速度和角速度来确定物体的运动状态和位置。

它不依赖于外部信号,可以在任何没有地面设备或卫星信号的环境中精确导航。

首先,让我们了解惯性导航系统的组成部分。

主要包括加速度计和陀螺仪这两个关键单元。

加速度计用于测量物体的加速度,而陀螺仪则用于测量物体的旋转角速度。

通过这两个单元的协同工作,惯性导航系统可以准确地追踪物体的位置和方向。

加速度计的原理是基于牛顿第二定律。

它利用材料的物理性质,比如压电效应或者测量力的变化来测量物体的加速度。

当物体加速或减速时,加速度计会感应到惯性力的产生,从而测量物体的加速度。

通过积分加速度计的输出,可以得到物体的速度和位移。

陀螺仪则是利用陀螺效应来实现的。

陀螺仪中的陀螺轮保持旋转状态,当物体发生旋转时,陀螺轮会产生一个力矩,与物体的旋转角速度成正比。

通过测量这个力矩,陀螺仪可以确定物体的旋转角速度。

虽然加速度计和陀螺仪可以分别测量物体的加速度和角速度,但是它们都存在一定的误差。

这些误差可以通过复杂的算法和信号处理进行校正和补偿。

常见的校正方法包括零偏补偿、比例补偿、温度补偿等。

通过这些校正方法,可以提高惯性导航系统的精度和可靠性。

惯性导航系统的工作原理可以简单概括为输入、输出和反馈的过程。

输入是物体的加速度和角速度信息,输出是物体的位置和方向信息,反馈则是通过校正和补偿算法实现的。

整个过程实现了对物体运动状态的连续监测和追踪。

然而,惯性导航系统也存在一些局限性。

由于误差累积的问题,惯性导航系统的精度会随时间逐渐降低。

因此,在长时间导航任务中,通常需要与其他导航系统(如GPS)进行组合使用,以提高整体精度和可信度。

总的来说,惯性导航系统是一项基于物体惯性原理的导航技术。

通过测量物体的加速度和角速度信息,惯性导航系统可以准确地追踪物体的位置和方向,不受外部信号的影响。

惯导测量原理

惯导测量原理

惯导测量原理
惯性导航是利用惯性敏感元件(如加速度计)测量载体的角
速度和加速度,从而确定载体的运动状态和位置的导航技术。


是利用一组具有初始位置和初始速度的惯性器件,直接测量载体
相对于某一参考系的角速度和加速度,并通过解算这些信息来确
定载体的位置和运动状态。

惯性导航系统根据测量原理不同,可分为基于陀螺仪的系统(简称陀螺系统)和基于加速度计的系统(简称加速度计系统)
两类。

基于陀螺的惯性导航系统又分为:一是利用陀螺仪进行姿
态角测量的捷联式惯导系统;二是利用加速度计进行速度测量的
无陀螺仪式惯导系统。

捷联式惯性导航系统工作原理如下:将一套由一个或几个具
有固定安装位置(如地面)、与载体有相对运动关系(如飞行器)的陀螺安装在载体上,组成一个具有初始位置和初始速度(即陀
螺仪输出)的陀螺惯性导航系统。

陀螺提供与载体速度成比例、
与载体角速度成正比的初始加速度,使加速度计输出与载体速度
一起组成一个三轴正交陀螺仪,输出一个包含三个轴上信息的惯
性系位置信息。

—— 1 —1 —。

飞机导航系统的工作原理

飞机导航系统的工作原理

飞机导航系统的工作原理导航是飞机飞行中至关重要的环节之一,它涉及到确保飞机按照预定航线准确地到达目的地。

为了实现这一目标,飞机导航系统发挥着关键的作用。

本文将介绍飞机导航系统的工作原理。

一、惯性导航系统(INS)惯性导航系统是最早应用于飞机导航的一种技术。

它基于牛顿第一运动定律,利用陀螺仪和加速度计等惯性传感器,通过测量飞机的加速度和角速度,计算出飞机的位置和速度。

惯性导航系统具有短时间内高精度的优势,但由于误差积累问题,随着时间的推移,其精度可能逐渐下降。

二、全球卫星导航系统(GNSS)全球卫星导航系统是目前飞机导航系统中最常用的一种技术。

其中最著名的是美国的GPS系统。

全球卫星导航系统通过接收来自多颗卫星的导航信号,利用三角测量的原理计算出飞机的位置和速度。

全球卫星导航系统具有全球覆盖、高精度和长时间稳定性等优势,成为现代飞机导航的主流技术。

三、惯导与卫星导航的融合(INS/GNSS)为了充分利用各自的优势,现代飞机导航系统通常采用惯导与卫星导航的融合技术。

在这种系统中,惯导系统提供短时间内高精度的位置和速度信息,而卫星导航系统通过校正惯导系统的误差,提供长时间稳定的导航信息。

这种惯导与卫星导航的融合技术大大提高了飞机导航系统的精度和可靠性。

四、导航显示系统导航显示系统是飞机导航系统中的重要组成部分,它将导航信息以图像形式显示在飞行员的显示屏上。

飞行员可以通过导航显示系统获取飞机的位置、航向、航速等关键信息,帮助其准确地控制飞机的飞行轨迹。

现代导航显示系统通常采用彩色多功能显示屏,具有直观、清晰的特点,方便飞行员查看和理解导航信息。

五、航路管理系统航路管理系统是飞机导航系统的核心部分,它负责计算和规划飞机的飞行航路。

在航路管理系统中,飞行员可以输入目的地的经纬度坐标或者航路点,系统将自动计算出最优的飞行航路,并提供给飞行员进行确认和导航。

航路管理系统的出现极大地提高了飞行员的工作效率和飞行安全性。

惯性导航与惯性测量利用惯性原理进行导航与测量的技术

惯性导航与惯性测量利用惯性原理进行导航与测量的技术

惯性导航与惯性测量利用惯性原理进行导航与测量的技术导航和测量是现代科技中的重要领域,而惯性导航和惯性测量则是其中基于惯性原理的关键技术。

本文将介绍惯性导航与惯性测量的原理、应用和发展前景。

一、惯性导航的原理惯性导航是利用惯性传感器实时测量载体的加速度和角速度,并通过姿态解算,将导航过程分解为短时间段的位移累加,从而得到导航信息的方法。

惯性导航系统最重要的组成部分是惯性传感器,包括加速度计和陀螺仪。

1. 加速度计加速度计用于测量载体的加速度,在导航中起到检测载体运动状态的作用。

加速度计基于牛顿第二定律,通过测量物体所受到的惯性力从而确定加速度。

常见的加速度计有微机电系统(MEMS)加速度计,它通过测量微小的弹性变形或热量效应来测量加速度。

2. 陀螺仪陀螺仪用于测量载体的角速度,通过检测载体的旋转状态来确定导航方向。

陀螺仪基于旋转物体的自旋保持直线动量的特性,通过测量角动量的变化来计算载体的角速度。

目前常见的陀螺仪有MEMS陀螺仪和激光陀螺仪等。

二、惯性导航的应用惯性导航技术在军事、航空航天、无人驾驶等领域广泛应用。

以下是几个典型的应用案例:1. 卫星导航系统卫星导航系统如GPS可以提供非常准确的位置信息,但在某些环境下(如隧道、城市高楼等)信号可能受阻,导致导航信息不准确。

惯性导航技术可以在这些情况下提供较为可靠的导航信息,保证导航的连续性和准确性。

2. 无人驾驶无人驾驶技术需要实时准确的导航信息,以确保无人车在道路上安全行驶。

惯性导航技术能够对车辆的状态进行实时监测和控制,提供精确的位置、速度和姿态信息,为无人车的智能决策和控制提供重要数据支持。

3. 航空航天航空航天领域对导航精度和可靠性要求极高。

惯性导航技术可以独立于地面信号,提供直接可靠的导航信息,用于导航系统的校准和误差补偿,提高导航的准确性和可靠性。

三、惯性测量的原理惯性测量是利用惯性传感器测量目标物体的加速度和角速度等物理量的方法。

惯性测量传感器主要包括加速度计和陀螺仪等。

惯性导航agv

惯性导航agv

惯性导航agv惯性导航AGV是一种基于惯性导航技术实现位置感知和路径规划的自动导航车辆。

AGV是Automatic Guided Vehicle 的缩写,也就是自动引导车辆的意思。

它可以在工业、仓储、物流等领域中广泛应用,帮助提高运输效率、降低劳动强度。

惯性导航技术是一种不依赖于外界参考的定位和导航技术。

它利用车辆自身内部的惯性传感器(如加速度计和陀螺仪)来测量和推算车辆的位置、姿态和运动状态。

通过对惯性传感器数据的处理和分析,AGV可以精确地计算出自身相对于起始点的位置,并根据需要进行路径规划和导航。

与传统的导航方式相比,惯性导航AGV具有以下优势。

首先,它不受环境影响,可以在任何场景下正常运行,不受光照、天气等因素的限制。

其次,惯性导航技术具有高精度和高稳定性,可以实现厘米级甚至更高的定位精度,适用于对位置要求较高的应用场景。

再者,惯性导航AGV无需外部设备或基础设施的支持,减少了系统部署和维护的成本。

惯性导航AGV的工作原理主要包括以下几个步骤。

首先,车辆通过惯性传感器获取自身的加速度和角速度数据。

然后,通过运动学模型和卡尔曼滤波算法对传感器数据进行处理,得到车辆的位置和姿态信息。

接下来,AGV利用内置的地图信息进行路径规划,确定前进方向和导航目标。

最后,AGV根据计算得到的位置和目标信息,通过控制车身的速度和转向角度实现自动导航。

惯性导航AGV的应用领域非常广泛。

在工业中,它可以用于物料搬运、装配线运输等任务,帮助提高生产效率和降低人力成本。

在仓储物流中,AGV可以实现货物的自动化存储、取货和运输,提高仓储管理的效率和准确性。

在医疗领域,AGV可以用于药品的分发和搬运,提高医院的工作效率和服务质量。

此外,惯性导航AGV还可以应用于航天、航空、军事等领域,帮助完成一些特殊任务和工作。

尽管惯性导航AGV具有许多优势和应用前景,但也存在一些挑战和问题需要解决。

首先,惯性导航技术对车辆姿态的估计较为敏感,需要进行精确的姿态补偿和校准。

惯性导航技术的工作原理

惯性导航技术的工作原理

惯性导航系统基本工作原理惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。

设质量m 受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m 处于平衡后,所受到的水平约束力F 与a 的关系满足牛顿第二定律:F a m=。

测量水平约束力F ,求的a ,对a 积分一次,即得水平速度,再积分一次即得水平位移。

以上所述是简单化了的理性情况。

由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。

陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。

加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。

他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。

参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。

而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统提供外来信息,就能在全天候条件下,在全球范围内和所有介质环境里自主、隐蔽的进行三维导航,也可用于外层空间的三维导航。

惯导系统的比力方程惯导系统根据与系统类型相应的数学方程(称之为力学编排)对惯性器件的输出作处理,从而获得导航数据。

尽管各种类型的系统相应的力学编排各不相同,但他们都源自同一个方程:比力方程。

比力方程描述了加速度计输出量与运载体速度之间的解析关系:(2)eT ie eT eT dv f v gdtωω=-+⨯+式中:eT v 为运载体的地速向量;f 为比力向量,是作用在加速度计质量块单位质量上的非引力外力,由加速度计测量;g 为重力加速度;ie ω为地球自转角速度;eT ω为惯性平台所模拟的平台坐标系T 相对地球的旋转角速度;eT dv dt表示在平台坐标系T 内观察到的地速向量的时间变化率。

导航工程技术中的惯性导航系统原理与优化

导航工程技术中的惯性导航系统原理与优化

导航工程技术中的惯性导航系统原理与优化导航工程技术在现代社会的交通、航空、导弹等领域中起着至关重要的作用。

而惯性导航系统作为一种重要的导航技术手段,被广泛应用于各类导航系统中。

本文将介绍惯性导航系统的原理,以及如何优化该系统以提高导航的精度和可靠性。

一、惯性导航系统原理惯性导航系统是基于物体的惯性特性来进行导航的一种技术手段。

其原理基于牛顿第一定律,即一个物体如果不受外力作用,将保持其匀速直线运动或静止状态。

根据这一原理,惯性导航系统利用加速度计和陀螺仪等传感器测量物体的加速度和角速度,通过积分计算物体的位置、速度和姿态。

惯性导航系统主要包括加速度计、陀螺仪和微处理器等组成部分。

加速度计用于测量物体在三个空间坐标轴上的加速度,而陀螺仪则测量物体的角速度。

这些传感器通过微处理器进行数据处理和计算,得出物体的位置、速度和姿态信息。

二、惯性导航系统优化虽然惯性导航系统是一种有效的导航技术,但是其在长时间使用过程中会存在积分漂移等问题,导致导航的误差积累。

为了提高系统的精度和可靠性,需要进行相应的优化。

1. 误差校正惯性导航系统的误差主要包括零偏误差、尺度因子误差和安装误差等。

对于这些误差,可以通过定期进行误差校正来减小其影响。

校正可以通过比较惯性导航系统和其他准确性更高的导航系统的测量结果来进行,通过修正系统的输出来减小误差。

2. 数据融合为了进一步提高导航的精度和可靠性,可以将惯性导航系统与其他类型的导航系统(如全球定位系统)进行数据融合。

通过融合不同类型的导航数据,可以提高导航系统的鲁棒性,减小误差积累的影响。

数据融合可以使用滤波器等技术来实现,例如卡尔曼滤波器、粒子滤波器等。

3. 增加传感器纠正惯性导航系统中的传感器本身可能存在一定的误差和不确定性。

为了减小这些误差的影响,可以通过增加传感器纠正来提高导航系统的性能。

例如,可以使用自适应滤波器来实时纠正传感器的误差,或者使用精密的传感器来替代原有的传感器。

惯导技术介绍(3篇)

惯导技术介绍(3篇)

第1篇一、引言随着科学技术的不断发展,导航技术已成为人类活动的重要支撑。

在军事、航天、航海、地质勘探等领域,导航技术发挥着至关重要的作用。

其中,惯性导航系统(Inertial Navigation System,简称INS)作为一种重要的导航手段,因其独特的优点而被广泛应用于各种场合。

本文将对惯导技术进行详细介绍,包括其基本原理、系统组成、工作原理、应用领域以及发展趋势。

二、基本原理惯导技术基于牛顿第一定律,即物体在没有外力作用下,将保持静止或匀速直线运动状态。

惯性导航系统通过测量载体在三维空间中的加速度,进而计算出载体的速度、位置和姿态等信息。

基本原理如下:1. 加速度测量:利用加速度计测量载体在三个正交轴(x、y、z轴)上的加速度。

2. 速度积分:根据加速度和时间的积分,得到载体在每个轴上的速度。

3. 位置计算:根据速度和时间的积分,得到载体在每个轴上的位移,进而得到载体的位置。

4. 姿态计算:利用陀螺仪测量载体在三个正交轴上的角速度,进而得到载体的姿态。

三、系统组成惯性导航系统主要由以下几部分组成:1. 加速度计:用于测量载体在三个正交轴上的加速度。

2. 陀螺仪:用于测量载体在三个正交轴上的角速度。

3. 微处理器:用于处理加速度计和陀螺仪的测量数据,进行积分运算和姿态计算。

4. 系统软件:实现惯性导航系统的算法和功能。

5. 显示设备:用于显示导航信息,如位置、速度、姿态等。

四、工作原理惯性导航系统的工作原理如下:1. 初始化:在系统启动时,通过外部设备(如GPS)获取初始位置、速度和姿态信息,作为惯性导航系统的初始状态。

2. 数据采集:加速度计和陀螺仪实时测量载体在三个正交轴上的加速度和角速度。

3. 数据处理:微处理器对加速度计和陀螺仪的测量数据进行处理,包括积分运算和姿态计算。

4. 信息输出:根据处理后的数据,输出载体的位置、速度和姿态等信息。

5. 误差修正:通过校正算法,对惯性导航系统的测量数据进行修正,提高导航精度。

基于惯性导航与UWB的联合定位算法

基于惯性导航与UWB的联合定位算法

基于惯性导航与UWB的联合定位算法引言:定位技术是无线通信、物联网、智能家居等应用领域的重要基础技术之一、惯性导航和超宽带(UWB)是目前应用广泛的两种定位技术,通过将两者进行联合使用,可以提高定位的准确性和精度。

本文将介绍基于惯性导航和UWB的联合定位算法的原理与应用。

一、惯性导航技术的原理与特点惯性导航是一种利用加速度计和陀螺仪等传感器测量物体加速度和角速度的技术,通过积分计算物体在空间中的位置和方向。

其原理基于牛顿运动定律,特点是在无需外部参考的情况下进行定位,适用于室内和室外等各种环境。

惯性导航技术的主要问题是误差的累积。

传感器的噪声、漂移和积分过程中的计算误差等都会导致定位误差的累积,从而影响定位精度。

因此,将惯性导航与其他定位技术相结合,可以有效降低定位误差。

二、UWB技术的原理与特点超宽带(UWB)是一种通过发送大带宽、低功率的宽带脉冲信号,在接收端进行时间测量来实现精确距离测量的技术。

UWB技术的原理基于时间差测量(TDOA)或到达时间测量(TOA),可以实现高精度的距离和位置测量。

UWB技术的主要特点是高精度、抗干扰能力强和可穿透墙体。

由于UWB信号的宽带性质,可以提供高精度的距离测量,通常达到厘米级的定位精度。

同时,UWB信号对于多径效应的抗干扰能力较强,且可以穿透墙体等障碍物。

三、基于惯性导航与UWB的联合定位算法原理1.预测-校正步骤:在此步骤中,利用惯性导航技术预测当前位置和方向。

首先,通过加速度计和陀螺仪等传感器测量当前物体的加速度和角速度。

然后,利用物体的质量、姿态和牛顿运动定律计算物体在短时刻内的位移和方向变化。

通过这一步骤,可以得到物体在当前瞬时的位置和方向的预测值。

接下来,利用UWB技术测量物体与参考节点之间的距离。

通过UWB信号的到达时间或时间差测量,可以计算出物体与参考节点之间的距离。

利用这些距离信息,可以校正由于惯性导航引起的位移和方向误差,从而得到更准确的定位结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

惯性导航技术的工作原

Document number:PBGCG-0857-BTDO-0089-PTT1998
惯性导航系统基本工作原理
惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。

设质量m受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m处于平衡后,所受到的水平约束力F与a的关系满足牛顿第
二定律:
F
a
m。

测量水平约束力F,求的a,对a积分一次,即得水平速
度,再积分一次即得水平位移。

以上所述是简单化了的理性情况。

由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。

陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。

加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。

他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。

参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。

而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统
提供外来信息,就能在全天候条件下,在全球范围内和所有介质环境里自主、隐蔽的进行三维导航,也可用于外层空间的三维导航。

惯导系统的比力方程
惯导系统根据与系统类型相应的数学方程(称之为力学编排)对惯性器件的输出作处理,从而获得导航数据。

尽管各种类型的系统相应的力学编排各不相同,但他们都源自同一个方程:比力方程。

比力方程描述了加速度计输出量与运载体速度之间的解析关系:
式中:eT v 为运载体的地速向量;f 为比力向量,是作用在加速度计质量块单位质量上的非引力外力,由加速度计测量;g 为重力加速度;ie ω为地球自转角速度;eT ω为惯性平台所模拟的平台坐标系T 相对地球的旋转角速度;eT
dv dt
表示在平台坐标系T 内观察到的地速向量的时间变化率。

以上比力方程说明用加速度计的比力输出计算地速时,必须对比力输出中的三种有害加速度成分作补偿:
(1)2ie eT v ω⨯,即由地球自转(牵连运动)和运载体相对地球运动(相对运动)引起的哥式加速度;
(2)eT eT v ω⨯,即运载体保持在地球表面运动(绕地球作圆周运动)引起的相对地心的向心加速度;
(3)g ,即重力加速度。

惯导系统的误差方程
1、姿态误差方程和速度误差方程的一般形式
设惯导系统的平台要求模拟的导航坐标系为n ,这就是理想平台坐标系T 。

而实际建立的平台坐标系为P 。

由于计算误差、误差源影响及施距误差,
P 坐标系相对要求的T 坐标系有偏差角ϕ。

显然ϕ是以T 为基准观察到的,所以:
设陀螺的刻度系数误差为Gx K δ,Gy K δ,Gz K δ,漂移为ε,平台的实际指令为
式中in ω∂为偏开理想值n in ω的偏差,它由导航误差引起。

所以平台的实际角
速度为
记 x T y z ϕ ϕ ϕϕ⎛⎫ ⎪= ⎪ ⎪⎝⎭
则 111z y P T z
x y
x C ϕϕϕϕϕϕ⎛⎫- ⎪=- ⎪ ⎪-⎝⎭ 所以 111z y T P
z x y x C -ϕϕϕ-ϕ-ϕϕ⎛⎫ ⎪= ⎪
⎪⎝⎭ 记 0[]00z
y z
x y x
-ϕϕφϕ-ϕ-ϕϕ⎛⎫ ⎪= ⎪ ⎪⎝⎭ 则 []T P C I φ=+
因此姿态误差角满足下述方程:
式中 diag[G Gx K K δ∂=
Gy K δ ]Gz K δ 推导中略去了关于误差的二阶及二阶以上的小量。

将比力方程向导航坐标系n 投影得
设计加速度具有偏执误差p ∇和刻度系数误差Ax K δ,Ay K δ,Az K δ,实际平台坐标系P 具有姿态误差角φ,则加速度计的输出为
用于计算有害加速度的实际角速度为
由于比力输出和补偿有害加速度的计算都有误差,所以按比力方程确定的速度也有误差,设速度误差为v δ,则
略去关于误差的二阶和二阶以上小量,则速度误差方程为
式中 diag[A Ax K K δδ= Ay K δ ]Az K δ
二.GPS 卫星的轨道参数及状态估计
GPS 卫星的六个轨道根数决定卫星的轨迹,GPS 卫星轨迹产生需知道它的轨道根数。

卫星的轨道根数定义
在二体运动情况下,卫星的轨道可以用六个轨道参数来唯一确定,称之为轨道根数,分别是:
(l)长半轴a :卫星轨道椭圆长轴之半,它确定了卫星运动轨道的周期。

(2)轨道离心率e :轨道椭圆两焦点之间的距离与长轴的比值。

(3)轨道倾角i :轨道平面与地球赤道平面之间的夹角,在升交点出赤道而起逆时针方向度量为正,0180i ≤≤。

(4)升交点赤经Ω:春分点与升交点对地心的张角,从升交点起逆时针方向度量为正。

(5)近地点幅角ω:轨道面内出升交点到近地点拱线的夹角,由升交点起顺卫星运动方向度量为正。

(6)卫星过近地点时刻τ。

在卫星的六个轨道根数中,a 、e 确定了卫星轨道的大小和形状,i 和Ω确定了轨道面在惯性空间的位置,ω决定了轨道本身在轨道面内的指向,τ确定了卫星在轨道上的位置。

当0i =或180,或者0e =时,轨道要素存在病态,需要重新定义新的要素以消除病态。

GPS 定位原理
当GPS 接收机观测3颗卫星时,用户可以在指定的方式(手动或自动)进行二维定位,若能观测到4颗以上的卫星,则能进行三维定位。

GPS 系统采用的是测距定位原理,如图所示。

由图知,用户U 和卫星S 之间有如下关系:
式中:
u R —地心到用户的矢径
i R —地心到第i 颗卫星i S 的矢径
i ρ—用户到第i 颗卫星i S 的矢径
图 GPS 的测距定位原理 设i i ρρ=即用户至卫星的距离。

在工程中,由于多种因素的影响,测者无法测出真实距离i ρ,只能测得包含有多种误差因素在内的距离,因此称i ρ为伪距。

接收机测得的距离i D 与i ρ关系式为:
式中 :
i ρ—接收机至第i 颗卫星的伪距
i D —接收机至第i 颗卫星的真实距离
Ai t ∆—为第i 颗星的传播延迟误差
u t ∆—用户相对GPS 系统时间的偏差
Si t ∆—第i 颗星相对GPS 系统的时间偏差
C —电波传播速度
其中:
式中:Si X 、Si Y 、Si Z ——第i 颗卫星的位置坐标
X 、Y 、Z ——用户的位置坐标
将式()带入式()得
其中, X 、Y 、Z 和 u t ∆是未知数,而卫星坐标、卫星时钟偏差和延迟误差
都可在导航电文中获取或计算出。

因此选用四颗GPS 卫星的测量伪距1ρ,2ρ,3ρ, 4ρ联立方程即可解出X 、Y 、Z 和u t ∆。

这就是GPS 的基本工作原理。

相关文档
最新文档