矩形截面梁纯弯曲正应力的电测实验
纯弯梁正应力分布电测实验(精)
实验七 纯弯梁正应力分布电测实验实验内容一 纯弯梁正应力分布电测实验一、实验目的1、用电测法测定矩形截面梁在纯弯曲时的正应力的大小及其分布规律,并与理论值作比较。
2、初步掌握电测方法。
二、实验设备1、弯曲梁实验装置一台(见图7.2)2、YJ-4501A 静态数字电阻应变仪一台3、温度补偿片三、实验原理及方法试件选用矩形截面,荷载及测量点的布置如图7.1。
梁的材料为钢,其弹性模量a G E Ρ=210,转动实验装置上的加载手轮,可使梁受到如图7.1的荷载,梁的中段为纯弯曲段,荷载作用于纵向对称平面内,而且在弹性极限内进行实验,故为弹性范围内平面弯曲问题。
梁的正应力公式为y I M Z=σ式中:M --纯弯曲段梁截面上的弯矩Z I --横截面对中性轴的惯性矩y --截面上测点至中性轴的距离。
为了测量梁纯弯曲时横截面上应力分布规律,在梁的纯弯曲段沿梁的侧面各点沿轴线方向粘贴应变片,其分布如图(图7.1)应变片1#粘贴在中性层上,应变片2#、3#、应变片4#和应变片6#、7#分别粘贴在距离中性层为、和上下表面。
此外,在梁的上表面沿横向粘贴应变片8#,如果测得纯梁弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式4/h 8/3h εσE =,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,可得出测量误差。
式中:ε—各测量点的线应变E —材料的弹性模量 σ--相应各测点正应力若由实验,测得的应变片7#和8#的应变7ε和8ε满足μεε=78,则证明 验采用等增量加载的方法测量应力的实验值及计算理论值,计算时均应以弯矩增量及应变增量的平均值代入。
4#图7.1图中:, mm c 150=mm h 40=mm b 20= , mm l 620= 1#--8#所示应变片粘贴位置及方向。
四、实验步骤1、检查梁是否安放稳妥2、把梁上的应变片接在静态电阻应变仪的A 、B 接线柱上。
公共温度补偿片接在0通道接线柱B 、C 上。
梁的弯曲正应力试验
梁的弯曲正应力试验一、目的1.测定矩形截面梁在纯弯曲时横截面上正应力的大小及其分布规律,并与理论计算结果进行比较,以验证纯弯曲正应力公式zI My =σ的正确性。
2.学习电测法,并熟悉静态电阻应变仪的使用和半桥接线方法。
二、仪器设备1.静态电阻应变仪2.多功能组合实验台三、实验原理与方法实验装置见图3-19。
它由固定立柱1、加载手轮2、旋转臂3、荷载传感器9、压头8、分力梁6、弯曲梁5、简支支座4、图3-19 弯曲正应力实验装置底板7、数字测力仪10、应变仪11等部分组成。
弯曲梁为矩形截面钢梁,其弹性模量E =2.05×105MPa ,几何尺寸见图3-20,CD 段为纯弯曲段,梁上各点为单向应力状态,在正应力不超过比例极限时,只要测出各点的轴向应变实ε,即可按实实εσE =计算正应力。
为此在梁的CD 段某一截面的前后两侧面上,在不同高度沿平行于中性层各贴有五枚电阻应变片。
其中编号3和3′片位于中性层上,编号2和2′片与编号4和4′片分别位于梁的上半部分的中间和梁 图3-20 梁的尺寸、测点布置及加载示意图的下半部分的中间,编号1和1′片位于梁的顶面的中线上,编号5和5′片位于梁的底面的中线上(见图3-20),并把各前后片进行串接。
图3-21半桥接线图温度补偿片贴在一块与试件相同的材料上,实验时放在被测试件的附近。
上面粘贴有各种应变片和应变花,实验时根据工作片的情况自行组合。
为了便于检验测量结果的线性度,实验时采用等量逐级缓慢加载方法,即每次增加等量的荷载ΔP ,测出每级荷载下各点的应变增量εΔ,然后取应变增量的平均值实εΔ,依次求出各点应力增量实实实εσΔ=ΔE 。
实验可采用半桥接法、公共外补偿。
即工作片与不受力的温度补偿片分别接到应变仪的A 、B和B 、C 接线柱上(如图3-21),其中R 1为工作片,R 2为温度补偿片。
对于多个不同的工作片,用同一个温度补偿片进行温度补偿,这种方法叫做“多点公共外补偿法”。
实验2矩形截面梁的纯弯曲
实验二 矩形截面梁的纯弯曲一、实验目的1.测定纯弯曲下矩形截面梁横截面上正应力的分布规律,并与理论值比较。
2.测定泊松比μ。
3.熟悉电测法基本原理和电阻应变仪的使用。
二、实验仪器1.CLDT-C 型材料力学多功能实验台2.DH-3818型静态电阻应变仪3.矩形截面梁实验装置一套(205E GPa =)4.游标卡尺三、实验原理在纯弯曲段,见图2-1,梁横截面上任一点的正应力计算公式为zMyI σ=式中:M 为弯矩;z I 为横截面对中性轴z 的惯性矩;y 为所求应力点至中性轴的距离。
2PaM =312z bh I =图2-1为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁的侧面不同高度,平行于轴线贴有5片电阻应变片,如图2-2所示,其中3#片位于中性层处,2#、4#片分别距中性层上、下/4h 处,1#、5#片分别位于上、下表面。
此外,在梁的上表面沿横向粘贴0#应变片。
组桥方式:半桥单臂接法,如图2-3所示。
加载采用增量法,即每增加等量的载荷P ∆,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值i ε∆均,依次求出各点的应力增量i σ∆实。
将实测应力值i σ∆实与理论应力值i σ∆理进行比较,以验证弯曲正应力公式。
i i E σε∆=∆均实i zMyI σ∆∆=理2PaM ∆∆=利用梁的上表面1#、0#应变片,可测定泊松比μ。
εμε∆=∆均0均1图2-2 布片方式补偿片C D BAU OIU 工作片2R R 14R R 3图2-3 组桥方式四、实验步骤1.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y 。
2.拟定加载方案,见表1。
3.按照组桥方式,将应变片和力传感器接入桥路,并连接好应变仪的电源线。
4.设置力传感器的灵敏系数,并平衡各通道。
5.按照加载方案进行加载测试,记录实验数据。
加载时应缓慢均匀地进行。
实验至少重复两次,如果数据稳定,即可结束。
实验五----纯弯曲梁正应力实验
实验五 纯弯曲梁正应力实验一、试验目的1、熟悉电测法的基本原理。
2、进一步学会静态电阻应变仪的使用。
3、用电测法测定钢梁纯弯曲时危险截面沿高度分布各点的应力值。
二、试验装置1、材料力学多功能实验装置2、CM-1C 型静态数字应变仪三、试验原理本试验装置采用低碳钢矩形截面梁,为防止生锈将钢梁进行电镀。
矩形截面钢梁架在两支座上,加载荷时,钢梁中段产生纯弯曲变形最大,是此钢梁最危险的截面。
为了解中段危险截面纯弯曲梁应力沿高度方向分布情况,采用电测法测出加载时钢梁表面沿高度方向的应变情况,再由σ实=E ε实得到应力的大小。
试验前在钢梁上粘贴5片应变片见图5—1,各应变片的间距为4h,即把钢梁4等分。
在钢梁最外侧不受力处粘贴一片R 6作为温度补偿片。
图5—1 试验装置示意图对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应力不超过比例极限时,可根据虎克定律进行计算:σ实=E ε实E 为刚梁的弹性模量,ε实是通过电测法用电阻应变仪测得的应变值。
四、电测法基本原理1、电阻应变法工作原理电测法即电阻应变测试方法是根据应变应力关系,确定构件表面应力状态的一种实验应力分析法。
将应变片紧紧粘贴在被测构件上,连接导线接到电桥接线端子上 当构件受力 构件产生应变 应变片电阻值随之变化 应变仪内部的惠斯登电桥将电阻值的变化转变成正比的电压信号电阻应变仪内部的放大、相敏、检波电路转换显示器读出应变量。
2、电阻应变片1)电阻应变片的组成由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所示。
敏感栅能把构件表面的应变转换为电阻相对变化。
由于它非常敏感,故称为敏感栅。
它用厚度为0.002~0.005mm的铜合金或铬合金的金属箔,采用刻图、制版、光刻及腐蚀等工艺过程制成,简称箔式应变。
它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表面的变形,使测量精度较高。
在各测量领域得到广泛的应用。
图5—2 电阻应变片构造简图2)电阻应变片种类电阻应变片按敏感栅的结构形状可分为:单轴应变片:单轴应变片一般是指具有一个敏感栅的应变片。
实验四 纯弯曲梁正应力实验参考资料
74实验四 纯弯曲梁正应力实验一、实验目的1、测定矩形截面梁在纯弯曲时的正应力分布规律,并验证弯曲正应力公式的正确性;2、学习多点静态应变测量方法。
二、仪器设备1、纯弯曲梁实验装置;2、YD-88型数字式电阻应变仪;3、游标卡尺。
三、试件制备与实验装置1、试件制备本实验采用金属材料矩形截面梁为实验对象。
为了测量梁横截面上正应力的大小和它沿梁高度的分布规律,在梁的纯弯段某一截面处,中性轴和以其为对称轴的上下1/4点、梁顶、梁底等5个测点沿高度方向均匀粘贴了五片轴向的应变计(如图4-4-1),梁弯曲后,其纵向应变可通过应变仪测定。
图4-4-12、实验装置如图4-4-2和图4-4-3所示,将矩形截面梁安装在纯弯曲梁实验装置上,逆时针转动实验装置前端的加载手轮,梁即产生弯曲变形。
从梁的内力图可以发现:梁的CD 段承受的剪力为0,弯矩为一常数,处于“纯弯曲”状态,且弯矩值M=21P •a ,弯曲正应力公式 σ=z yI ⋅M可变换为σ=y az⋅P ⋅I 2图4-4-2图4-4-37576四、实验原理实验时,通过转动手轮给梁施加载荷,各测点的应变值可由数字式电阻应变仪测量。
根据单向胡克定律即可求得σi 实=E ·εi 实(i=1,2,3,6,7)为了验证弯曲正应力公式σ=z y I ⋅M 或σ=y az⋅P ⋅I 2的正确性,首先要验证两个线性关系,即σ∝y 和σ∝P 是否成立:1、检查每级载荷下实测的应力分布曲线,如果正应力沿梁截面高度的分布是呈直线的,则说明σ∝y 成立;2、由于实验采用增量法加载,且载荷按等量逐级增加。
因此,每增加一级载荷,测量各测点相应的应变一次,并计算其应变增量,如果各测点的应变增量也大致相等,则说明σ∝P 成立。
最后,将实测值与理论值相比较,进一步可验证公式的正确性。
五、实验步骤1、试件准备用游标卡尺测量梁的截面尺寸(一般由实验室老师预先完成),记录其数值大小;将梁正确地放置在实验架上,保证其受力仅发生平面弯曲,注意将传感器下部的加力压杆对准加力点的缺口,然后打开实验架上测力仪背面的电源开关;2、应变仪的准备 a.测量电桥连接:图4-4-4如图4-4-4,为了简化测量电桥的连接,将梁上5个测点的应变计引出导线各取出其中一根并联成一根总的引出导线,并以不同于其他引出导线的颜色区别,所以,测量导线由原来的10根缩减为6根,连接测量电桥时,将颜色相同的具有编号1、2、3、6、7的五根线分别连接在仪器后面板上五个不同通道的A号接线孔内,并将具有特殊颜色的总引出导线连接在仪器后面板上的“公共补偿片BC”位置的B号接线孔内。
纯弯曲梁正应力电测实验指导书
纯弯曲正应力电测实验指导书一.实验作用和目的1.用电测法测定矩形截面简支梁受纯弯曲时横截面上弯曲正应力的大小及其、分布规律,并与理论值进行比较,以验证弯曲正应力公式正确性。
2.熟悉电测实验的基本原理和操作方法,掌握该方法在工程中的应用。
二.实验内容梁受纯弯曲时的正应力计算公式为:y I M Z=σ 式中 M —作用在横截面上的弯矩;I z —横截面对其中性轴Z 的惯性矩;y 一由欲求应力点到中性轴的距离。
本实验采用矩形截面直梁(或铝合金制成的箱形截面直梁),实验装置如图1(a )、图1(b)所示。
施加的砝码重量通过杠杆以一定比例作用于附梁。
通过两个挂杆作用于梁上C 、D 处的载荷各为F /2。
由该梁的内力图可知CD 段上的剪力Q F 等于零,弯矩M =F .a /2。
因此梁上CD 段处于纯弯曲状态。
图1纯弯曲正应力试验台1-试验机活动台;2-支座;3-试样;4-试验机压头;5-加力梁;6-电阻应变片在CD 段内任选的一个截面上,距中性层不同高度处,沿着平行于梁的轴线方向,等距离地粘贴七个电阻应变片,每片相距h /6,在梁不受载荷的自由端贴上温度补偿片。
试验时,采用半桥接法将各测点的工作应变片和温度补偿应变片连接在应变电桥的相邻桥臂上,按照电阻应变仪的操作规程将电桥预调平衡,加载后即可从电阻应变仪上读出实ε。
由于纤维之间不相互挤压,故可根据虎克定律求出弯曲正应力的实验值 实实εσ⋅=E a (1)式中E — 梁所用材料的弹性模量。
本实验采用“增量法”加载,每次增加等量的载荷F ∆并相应地测定各点的应变增量实ε∆。
取应变增量的平均值实ε∆,依次求出各点应力增量实σ∆。
实实εσ∆⋅=∆E (2)将实σ∆实值与理论公式算出的应力增量ZI y ⋅∆=∆M 理σ (3) 进行比较,计算出截面上各测点的应力增量实验值与理论值的误差。
其计算公式为%100⨯∆∆-∆=理实理σσση (4)以验证弯曲正应力公式的正确性。
梁的纯弯曲正应力实验
四、试验步骤
1.测量矩形截面梁的各个尺寸,预热电阻应变仪和载荷显示仪。 测量矩形截面梁的各个尺寸,预热电阻应变仪和载荷显示仪。 测量矩形截面梁的各个尺寸 2.将各种仪器连接好,各应变片按半桥接法接到电阻应变仪的所 将各种仪器连接好, 将各种仪器连接好 选通道上。 选通道上。 3.逐一调节各通道的电桥平衡。 逐一调节各通道的电桥平衡。 逐一调节各通道的电桥平衡 4.摇动多用电测实验台的加载机构,采用等量逐级加载(可取) 摇动多用电测实验台的加载机构,采用等量逐级加载(可取) 摇动多用电测实验台的加载机构 每增加一级载荷,分别读出各电阻应变片的应变值。 ,每增加一级载荷,分别读出各电阻应变片的应变值。 5.记录实验数据。 记录实验数据。 记录实验数据 6.整理仪器,结束实验。 整理仪器,结束实验。 整理仪器
电阻丝(丝栅) 电阻丝(丝栅) 引出线 F
l l+∆l ∆
基底
应变片 F
∆R= K ∆l = Kε R l
K——电阻应变片的灵敏度系数 电阻应变片的灵敏度系数
梁的纯弯曲正应力实验
3、电阻应变仪 、 应变测量原理: 应变测量原理: 利用电桥平衡测量电阻改变, 利用电桥平衡测量电阻改变, 从而进一步得到应变。 从而进一步得到应变。
梁的纯弯曲正应力实验
三、试验原理 1.结构示意图及理论值计算 .
b h y FQ F/2 z a F/2 + − F/2 Fa/2 M + F m m F/2 a m—m截面 m—m截面: 截面:
FQ =0 M=C(常数) ——纯弯曲 纯弯曲
M• y σ理= Iz
梁的纯弯曲正应力实验
2、电阻应变片 、 应变片:将力学量(应变)转换为电量(电阻) 应变片:将力学量(应变)转换为电量(电阻)的传感器 电阻应变片种类:丝式(绕线式)、箔式、半导体式 电阻应变片种类:丝式(绕线式) 箔式、 由试验发现: 由试验发现:
纯弯曲梁的正应力电测实验
纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。
2.初步掌握电测法原理和静态电阻应变仪的使用方法。
二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。
由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。
图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。
当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。
通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。
由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。
实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。
工程力学教学实验梁的弯曲正应力实验
梁的弯曲正应力实验一、实验目的1.测定梁承受纯弯曲时横截面上的正应力的大小及分布规律,并与理论计算结果进行比较,以验证梁的弯曲正应力公式。
2.了解电测法,练习电阻应变仪的使用。
二、实验设备和仪器1.万能材料试验机或梁弯曲实验台2.电阻应变仪,预调平衡箱3.游标卡尺,直尺4.矩形截面钢梁(已贴好电阻应变片)三、实验原理图3--16(a)梁弯曲实验台加载及测量图3—16(b) 万能试验机加载及测量试件选用矩形截面梁,加载方法及测量点的布置如图3—16(a)、(b)所示。
图3--16(a)为弯曲实验台装置示意图。
试件选用矩形截面梁,加载方法测量点的布置如图3-16(a)、(b)所示。
图3—16(b)为将梁放在万能试验机上加载实验情况。
梁受集中载荷P作用后使梁的中段为纯弯曲区域,两端为剪切弯曲区域。
载荷作用于纵向对称平面内,而且在弹性极限内进行实验。
故为弹性范围内的平面弯曲问题。
梁纯弯曲时横截面上的正应力计算公式为上式说明在梁的横截面上的正应力是按直线规律分布的。
以此为依据,在梁的纯弯曲区段内某一横截面处按等分高度布置5~7个测点。
各测点将沿着梁的轴向贴上电阻应变片(一般事先贴好)。
当梁承受变形时,各测点将发生伸长或缩短的线应变。
通过应变仪可依次测出各测点懂得线应变值。
从而确定横截面上应变的分布规律。
由于截面上各点处于单向应力状态下,可由虎克定律求出实验应力为式中,E为梁所用材料的拉压弹性模量。
本实验采用“等间隔分级增量法”加载,每增加等量的载荷△P,测定各测点相应的应变增量一次,取各次应变增量的平均值△,求出各测点的应力增量△为把△与理论公式计算出的应力增量△=△M·y /I Z进行比较,从而验证弯曲正应力公式的正确性。
四、实验方法和步骤1.测量梁的横截面尺寸及各测点距中性轴的距离。
2.正确安装已贴好应变片的钢梁,保证平面弯曲,检查两边力到作用点到支点的距离(即图3—16中的a值)是否相等。
梁弯曲正应力电测实验报告
y1?=15mm;y2?=;y3=0cm;y4????;y5????15mm;E=210Gpa。
2442
23
抗弯曲截面模量WZ=bh/6惯性矩JZ=bh/12
(2)应变?记录:
(3)取各测点?值并计算各点应力:
??1=16×10;??2=7×10;??3= 0;??4=8×10;??5=15×10;??1=E?1=;??2=E??2=;??3=0;
二、实验仪器和设备
1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。4、温度补偿块一块。三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
图4-1
此值与理论公式计算出的各点正应力的增量即
?理?
?MyIZ
?pa2
进行比较,就可验证弯曲正应力公式。这里,弯矩增量?M?。
梁上各点的应变测量,采用1/4桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤
1.记录实验台参数,设计实验方法。
2.准备应变仪:把梁上各测量点的应变片(工作应变片)按编号逐点接到电阻应变仪A、B接线柱上,将温度补偿片接到电阻应变仪接线柱上作公共补偿。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε
式中E是梁所用材料的弹性模量。
实
图3-16
为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε
矩形截面梁纯弯曲实验报告
矩形截面梁纯弯曲实验报告矩形截面梁纯弯曲实验报告一、实验目的本实验旨在通过对矩形截面梁进行纯弯曲试验,了解梁的受力性能及其变形规律,掌握应力-应变关系和荷载-挠度关系,并对实验结果进行分析和讨论。
二、实验原理1. 梁的受力性能当梁受到外力作用时,会引起其产生内部应力和变形。
在纯弯曲状态下,梁的上下表面会产生相反方向的应力,即拉应力和压应力。
根据材料力学原理可知,这两种应力大小相等,且位于中性轴上。
2. 应力-应变关系在材料受到外部载荷作用时,会发生一定程度的变形。
这种变形与材料内部产生的应力之间存在着一定的关系。
通过测量不同载荷下梁上表面纵向位移和中性轴位置,并结合材料截面积及跨度等参数,可以计算出该点处产生的应变值。
将所得数据绘制成载荷与相对应变量(如应变、挠度)之间的图像,则可得到应力-应变关系曲线。
3. 荷载-挠度关系在梁受到外部载荷作用时,会发生一定程度的弯曲变形。
通过测量不同载荷下梁的挠度值,并结合材料截面积、跨度等参数,可以计算出该点处产生的应变值。
将所得数据绘制成载荷与相对应变量(如挠度)之间的图像,则可得到荷载-挠度关系曲线。
三、实验步骤1. 准备工作:清洁实验台面和试验设备,检查试验设备是否正常运转。
2. 安装试件:将矩形截面梁放置在试验设备上,并固定好。
3. 测量中性轴位置:通过调整支承点位置,使得梁在未受力状态下平衡,然后测量中性轴距离上表面的高度。
4. 开始实验:按照预定方案进行荷载施加,并记录每个荷载值下梁上表面纵向位移和中性轴位置。
5. 结束实验:当梁出现明显裂缝或位移超过规定范围时,停止施加荷载并记录最大承载力。
6. 数据处理:根据测得的数据计算应变值和挠度,并绘制应力-应变关系曲线和荷载-挠度关系曲线。
7. 结果分析:对实验结果进行分析和讨论。
四、实验结果1. 应力-应变关系曲线通过实验测量,得到了矩形截面梁在不同载荷下的上表面纵向位移和中性轴位置数据,计算出了相应的应变值,并将其绘制成应力-应变关系曲线。
实验五 纯弯曲梁的正应力实验
实验五 纯弯曲梁的正应力实验一、实验目的1、测定梁在纯弯曲时横截面上正应力大小和分布规律。
2、验证纯弯曲梁的正应力计算公式。
3、测定泊松比μ。
4、测量矩形截面梁在纯弯曲时最大应变值,比较和掌握运用不同组桥方式时提高测量灵敏度的方法。
二、实验设备1、材料力学组合实验台;2、电阻应变测力仪;三、实验原理和方法1、测定弯曲正应力 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力计算公式为M =y zI σ (1)式中:M 为弯矩;I z 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。
由上式可知,在弹性范围内,沿横截面高度,正应力按线性规律变化,其最大正应力产生在上下边缘,为max zMW σ=(2) W z 称为抗弯截面系数。
实验采用1/4桥公共补偿测量方法,加载采用增量法,载荷从100N 开始,每次增加700 N ,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值ε∆实i ,依次求出各点的应力增量σ∆实i =E ε∆实i (3)四、实验步骤1.设计好本实验所需的数据表格;2.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y i.3.拟定加载方案。
根据实验要求适当选取初载0100F N =,然后按照步长700N 分级加载,加到最大的载荷max 3600F N =。
4.根据加载方案,调整好实验加载装置。
5.按照实验要求接线(1/4桥),调整好电阻应变仪,检查整个系统是否处于正常工作状态;5.加载。
用均匀慢速加载至初载荷0100F N =,记下各点电阻应变仪得初读数,然后按照步长700F N ∆=分级加载,依次记录各点电阻应变片的应变度数,直到3600N 为止;6.完成全部试验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,将所有仪器设备复原。
五、实验结果处理1、 基本参数L=670 a=160 y 1=12.5 y 2=25 k=2.18 b=20 h=50 E=206Gpa2、原始数据在不同载荷作用下,六个应变片输出应变读数如表(a )所示。
矩形截面梁的纯弯曲(PDF)
一、实验目的 1.测定纯弯曲下矩形截面梁横截面上正应力、 挠度的分布规律,并与理论值比较;
2.熟悉电测法基本原理和电阻应变仪的使用。
3. 学习多点测量技术。
二、实验仪器 1.多功能试验装臵(50kg
拉压力传感器);
2. 钢尺、千分表;
3.静态电阻应变仪。
返回
矩形截面梁的纯弯曲
三、试验原理
矩形截面梁的纯弯曲
四、装置简图及相关尺寸
矩形截面梁的纯弯曲
五、实验步骤
1、安装千分表 将千分表安装于表座上,然后再将表座安装在梁的正
中间的下表面。 2、打开应变仪电源并按红色按钮使应变仪各通道平衡清零;
3、打开计算机电源,双击桌面“武工大应变仪”图标启动 采集分析软件; 4、选择试验:点击菜单“实验选择”→ “电测梁的弯曲 实验”; 5、电脑联机:点击菜单“测量” → “联机实验”,联机 过程结束后微机显示的数据将与应变仪显示数据同步一致。
七、报告书写要求
1、将试验设备详细内容写在报告第一部分(预习 报告);
2、将梁尺寸参数表与应变片规格参数表及加载结 果记录表写在报告第二部分(实验数据记录);
3、报告第三部分(计算和分析)要求计算出测点1 至测点5以及挠度的所有结果,并算出相应的误 差大小(理论值、实验值、误差百分比) 。
矩形截面梁的纯弯曲
八、报告计算格式
矩形截面梁的纯弯曲
九、千分表读数方法
小表针(每格0.2mm) 的读数加上大表针 (每格0.001mm)的读 数等于该千分表总的 变形量。
然 后 采 用 等 增 量 法 分 5 级 加 载 , 每 级 20N , 每 次 加 载 20N后,点“确认”采集各通道应变数据,并记录下该级 荷载作用下千分表读数。加到100N后,点击“结束”,应 变仪与计算机离线,记录千分表读数,第一次实验结束。 卸载,然后记录下微机采集的纯弯梁五个测点的应变数据。 重复以上方法至少做2次,取数据线性较好者作试验报告。
实验 梁弯曲正应力测定
梁弯曲正应力测定一、实验目的1.用电测法测定直梁纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。
2.了解电阻应变测量的原理,初步掌握静态电阻应变仪的使用方法。
二、实验设备名称及型号1.WSG-80型纯弯曲正应力试验台。
2.YE2538A 程控静态应变仪。
3.应变片、导线、接线端子等。
三、实验原理1.试样的制备:用矩形截面钢梁,在其横截面高度上等距离地沿梁的轴线方向粘贴5枚电阻应变片。
2.弯曲正应力的测量原理:梁纯弯曲时,横截面上的正应力σ在理论上沿梁的高度成线性分布,其计算公式为z I y M ⋅=σ式中,σ的单位为MPa ;M 为梁横截面上的弯矩,单位为N ·mm ;y 为应力σ所在的点到中性轴的距离,单位为mm ; I z 为横截面对中性轴z 的面积二次矩,单位为mm 4。
面积二次矩对于矩形截面按下式计算123bh I z =式中,b 为梁横截面的宽度,单位为mm ;h 为梁横截面的高度,单位为mm 。
令使载荷P 对称地加在矩形截面直梁上(如图4-1所示)。
这时,梁的中段将产生纯弯曲。
若载荷每增加一级p ∆(用增量法),则可由电阻应变仪测出梁中段所贴应变片各点的纵向应变增量ε∆,根据虎克定律求出各点实测正应力增量εσ∆=E 实图4-1此值与理论公式计算出的各点正应力的增量即ZI My∆=理σ 进行比较,就可验证弯曲正应力公式。
这里,弯矩增量2paM ∆=∆。
梁上各点的应变测量,采用1/4桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤1.记录实验台参数,设计实验方法。
2.准备应变仪:把梁上各测量点的应变片(工作应变片)按编号逐点接到电阻应变仪A 、B 接线柱上,将温度补偿片接到电阻应变仪接线柱上作公共补偿。
3.进行实验:把砝码托挂在杠杆上、加初载荷、调节应变仪,使各测量点均为零。
加载,加一次砝码,各测量点读一次数,记下各点的应变值,直到加完砝码读数完毕为止。
纯弯曲正应力的测量实验指导书
实验五纯弯曲梁的正应力测量一、实验目的1、测定梁在纯弯曲时横截面上正应力的大小和分布规律。
2、验证纯弯曲梁的正应力计算公式。
二、实验设备材料力学多功能实验台(见图1)、力/应变综合参数测试仪、游标卡尺、钢板尺图1 材料力学多功能实验台三、试件制备试件是一个横截面为矩形b×h的长条形钢块。
在其顶面、底面和侧面均匀、对称、平行地贴着五个应变片,其中应变片3#应在中性层的位置上(见图2)。
图2 应变片在梁中的位置四、实验原理如图1所示,在材料力学多功能实验台上顺时针转动手轮可对下横梁加力,下横梁再带动其两侧的拉杆机构对实验台的上横梁两侧对称地施加压力。
从而在上横梁的中间段形成一个纯弯曲梁。
在纯弯曲条件下,梁横截面上任一点的正应力的理论计算公式为zI My =σ理式中M 为弯矩,Iz 为横截面对中性轴的惯性矩,y 为所求应力点至中性轴的距离。
弯矩可按公式M = ΔF/2×a 求出,惯性矩可按公式Iz = bh3/12求出。
仍采用1/4桥方法(单臂测量方式)测量各纵向应变ε,其原理图及接线示意图参照实验三的图4、5、6。
加载采用增量法,即每增加等量的载荷ΔF ,测出各点的应变增量Δε,然后分别取各点应变增量的平均值Δε平均,可按以下公式依次求出各点的实测正应力值。
平均实ε∆=σE将实测应力值与理论应力值进行比较,可验证上述的纯弯曲正应力计算公式。
五、实验步骤1、用游标卡尺和钢板尺分别测量梁横截面的宽度b 和高度h 、梁的跨度L 、力作用点位置a 以及各应变片到中性层的距离y 。
2、按1/4桥方法接线。
在接线中应确定所采用的测量应变片在梁上的位置以及所引出的导线的颜色。
另外应确定所采用的通道号。
3、打开力/应变综合参数测试仪电源开关,将加力手柄摇到使试件完全放松的位置。
然后在力的测试面板上清零,再在应变的测试面板上进行所有通道的自动平衡。
4、按下通道按钮选择所采用的通道号,准备开始试验。
实验四 梁弯曲正应力
实验四 梁弯曲正应力一、实验目的1.用电测法测定梁在纯弯曲时横截面上正应力分布规律,将实验值与理论计算结果进行比较以此验证弯曲正应力公式2.熟悉电测的基本原理和静态测量方法以及应变测试仪操作 3.学习误差分析 二 、实验设备1.DH3818静态电阻应变测试仪 2.梁弯曲实验装置 三、实验原理当矩形钢梁在承受四点弯曲时,在纯弯曲范围内任一横截面(远离载荷作用点,否则受力为复杂状态)以中心层为基准,上下对称至少取五层纤维层作为研究对象。
(如图1所示)用纯弯曲公式作为理论计算公式图1 矩形钢梁四点弯曲示意图y z M I σ=式中:yM 测点所在截面上的弯矩;y 测点至中性层的距离;z I 测点至中性轴的距离。
横截面各纤维层表面牢固的粘贴电阻应变片,使其成为一个整体。
当钢梁受力变形时应变片也跟随一起变形,此时粘贴在钢梁上的应变片的电阻值也发生改变,而电阻的改变量ΔR/R 与钢梁纤维(或应变片电阻丝)的变形量ΔL/L 成正比关系。
因此可通过应变测试仪分别测量出各点对应的实际变形量及应变值ε,然后根据单向虎克定律率,计算出相应的应力值。
实验公式E σε=式中:E 为钢梁的弹性模量 接桥方式如图2图2 电桥连接示意图四、实验步骤:1.准备:检查实验用矩形截面梁的加力点位置与支座位置是否正确。
记录有关参数。
2.根据有关参数确定其加载方案,即确定初载荷和最终载荷。
(因测力计原因最大载荷不得超过4KN,设备上显示为4.00)3.接线:根据实验要求,本试验选择1/4桥路形式及AB桥接工作片,BC桥路接温度补尝片。
3.1将被测应变片分别依次接在各工作电桥桥路B点(或vi+ 点)接线柱上。
被测应变片的另一端,一根不同颜色的导线(在引出导线时,已将所有被测应变片另一端引线全并连在一起)接在任一工作电桥桥路的A点(或eg点)接线柱上(因该设备各桥路A点(或eg 点)用一个导线全串在一起)3.2将温度补偿片的两端引线分别接到补偿电桥桥路中B点、C点(或vi+点、或0点)上。
电测纯弯曲梁正应力实验
电测纯弯曲梁正应力实验教学大纲一、学时实验学时:2二、适用专业及年级所有开设工程力学的专业,2年级。
三、实验目的1.学习使用电阻应变仪测量应变以确定应力的基本原理和方法。
2.测定梁承受纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。
四、实验仪器及设备1.纯弯曲梁实验装置一套2.应变片3.电阻应变仪五、实验原理低碳钢的矩形截面梁,在梁的纯弯曲部分,沿梁的侧面不同高度刻划平行于轴线的纵向线1-1、2-2、3-3、4-4、5-5, 3-3线位于梁的中性层上,1-1和5-5位于梁的上下两表面,2-2和4-4位于梁中性层和上下两表面之间,各距3-3线等远,其距离分别为y 1、y 2。
这些线段表示梁的纵向纤维。
梁受纯弯曲时,各层纤维处于单向拉伸或压缩状态,其长度将发生改变。
我们沿刻线方向粘贴电阻应变片,用电阻应变仪测出梁受力后各纤维层的应变ε实,由虎克定律求出实验应力σ实.实实εσ⨯=E (公式1) 式中:E 是梁所用材料的弹性模量。
实验时采用螺旋手柄加载,可以连续加载,载荷大小由拉压传感器通过应变仪读出。
当载荷增加ΔP 时,通过两根加载杆,使得测试梁两端的受力点分别增加ΔP/2,本实验采用“一次增载法”,既对钢梁先加一初载荷P 初,读出应变仪的初读数ε初,然后一次加载至额定载荷总P ,读出对应的应变值ε总,其应变增量△ε实=ε总-ε初。
如此重复三次。
计算出三次应变增量△ε实 的平均值实ε∆后,即可由虎克定律求出应力增量△σ实=E ×实ε∆ (公式2) 采用上式,可依次求出各层纤维的应力。
按纯弯曲理论,计算各层纤维应力增量的理论公式为 ZI y M ⨯∆=∆理σ (公式3) 式中:弯矩△M= △P ×a (△P —载荷增量,a -加力点到支座的距离)y 为各 纤维层至中性层的距离。
I z 为横截面对中性轴Z 的惯性矩,对于矩形截面3121bh I Z =六、实验步骤1.测量矩形截面梁的宽度b和高度h,载荷作用点到梁支点距离a,并推算出各应变计到中性层的距离y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
h 实验四 矩形截面梁纯弯曲正应力的电测实验
一、实验名称
矩形截面梁纯弯曲正应力的电测实验 二、实验目的
1.学习使用电阻应变仪,初步掌握电测方法;
2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。
三、实验设备
1.WSG -80型纯弯曲正应力试验台 2.静态电阻应变仪 四、主要技术指标 1.矩形截面梁试样
图1 试样受力情况
材料:20号钢,E=208×109Pa ; 跨度:L=600mm ,a=200mm ,L 1=200mm ; 横截面尺寸:高度h=28mm ,宽度b=10mm 。
2.载荷增量
载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F 0=26 N 。
3.精度
满足教学实验要求,误差一般在5%左右。
五、实验原理
如图1所示,CD 段为纯弯曲段,其弯矩为Fa 2
1
M =
,则m 6N .2M 0•=,m 20N M •=∆。
根据弯曲理论,梁横截面上各点的正应力增量为:
z
I My ∆=∆理
σ (1)
式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩形截面
12
bh I 3
z = (2)
由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。
只要测出各点沿纵向的应变增量ε∆,即可按胡克定律计算出实际的正应力增量实σ∆。
ε
σ∆=∆E 实 (3)
在CD 段任取一截面,沿不同高度贴五片应变片。
1片、5片距中性轴z 的距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位置上。
测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ∆,并画出正应力实σ∆沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值
理σ∆进行比较。
六、实验步骤及注意事项 1.开电源,使应变仪预热。
2.在CD 段的大致中间截面处贴五片应变片与轴线平行,各片相距h/4,作为工作片;另在一块与试样相同的材料上贴一片补偿片,放到试样被测截面附近。
应变片要采用窄而长的较好,贴片时可把试样取下,贴好片,焊好固定导线,再小心装上。
3.调动蝶形螺母,使杠杆尾端翘起一些。
4.把工作片和补偿片用导线接到预调平衡箱的相应接线柱上,将预调平衡箱与应变仪联接,接通电源,调平应变仪。
5.先挂砝码托,再分四次加砝码,记下每次应变仪测出的各点读数。
注意加砝码时要缓慢放手。
6.取四次测量的平均增量值作为测量的平均应变,代入(3)式计算可得各点的
弯曲正应力,并画出测量的正应力分布图。
7.加载过程中,要注意检查各传力零件是否受到卡、别等,受卡、别等应卸载调整。
8.实验完毕将载荷卸为零,工具复原,经指导老师检查方可关闭应变仪电源。
七、数据处理
1.计算弯曲梁截面各点处的理论正应力增量 (1)记录测点的位置
12
bh I 3
z =
(3)根据公式直接计算各点的理论正应力增量
z
I My ∆=∆理
σ
(1)各测点原始数据记录
(2)各测点应变增量的计算
(3)各测点实际正应力增量的计算
ε
σ∆=∆E 实
3.计算各测点理论与实际正应力的误差e
%100e ⨯∆∆-∆=理
实理σσσ
八、实验作业
1.说明矩形梁纯弯曲正应力电测实验的原理、实验步骤及注意事项等; 2.分别计算各测点的理论和实际弯曲正应力增量,验证弯曲正应力公式的正确性;
3.绘制弯曲正应力沿截面高度的分布规律图。