高考物理圆周运动经典练习题

合集下载

物理圆周运动经典习题(含详细答案)

物理圆周运动经典习题(含详细答案)

1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。

圆周运动高考题(含答案)

圆周运动高考题(含答案)

匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。

高考专题复习:圆周运动(最新整理)

高考专题复习:圆周运动(最新整理)

一端固定在
A,
一个竖直放置的圆锥筒可绕其中心轴

另一端固定
匀速转动
求转盘转动的
2。

处有一个小孔,用细绳穿过小孔,绳两端各细一个小球A
球保持静止状态,
A
O
F N
A.6.0 N拉力 
7、A、B两球质量分别为
相连,置于水平光滑桌面上,
的匀速圆周运动,空气对飞机作用力的大小等于( )
所示.已知小球
的小球,甩动手腕,
后落地,如图所示.已知,忽略手的运动半径和空气阻力.
的小滑块。

当圆盘转动
段斜面倾角为53°,BC段斜
R 1R 2R 3A B
C
D
v
第一圈轨道
第二圈轨道
第三圈轨道
L
L
L 1
在轨道最低处第n 次碰撞刚结束时各自。

高考物理圆周运动经典练习题

高考物理圆周运动经典练习题

圆周运动水平圆周运动【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。

当圆筒的角速度增大以后,下列说法正确的是( D )A 、物体所受弹力增大,摩擦力也增大了B 、物体所受弹力增大,摩擦力减小了C 、物体所受弹力和摩擦力都减小了D 、物体所受弹力增大,摩擦力不变【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上疾驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )A .在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大【例题】长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:(1)线的拉力F ;(2)小球运动的线速度的大小;(3)小球运动的角速度及周期。

★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。

因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。

由平行四边形法则得小球受到的合力大小为mgtanα,线对小球的拉力大小为F=mg/cosα由牛顿其次定律得mgtanα=mv 2/r 由几何关系得r=Lsinα所以,小球做匀速圆周运动线速度的大小为v =小球运动的角速度v rω===小球运动的周期22T π==ω点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不行忽视对解题结果进行动态分析,明确各变量之间的制约关系、改变趋势以及结果涉及物理量的确定因素。

1、竖直平面内:(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的状况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力供应其做圆周运动的向心力,即rmv mg 2临界= ⇒rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度)。

高一物理《圆周运动》六套练习题附答案

高一物理《圆周运动》六套练习题附答案

高一物理《圆周运动》六套练习题附答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN- 2 -匀速圆周运动练习1.一质点做圆周运动,速度处处不为零,则:①任何时刻质点所受的合力一定不为零,②任何时刻质点的加速度一定不为零,③质点速度的大小一定不断变化,④质点速度的方向一定不断变化其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )①当以速度v 通过此弯路时,火车重力与轨道支持力的合力提供向心力 ②当以速度v 通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力 ③当速度大于v 时,轮缘挤压外轨 ④当速度小于v 时,轮缘挤压外轨A.①③B.①④C.②③D.②④3.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( )A .两轮的角速度相等B .两轮边缘的线速度大小相等C .两轮边缘的向心加速度大小相等D .两轮转动的周期相同4.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短越容易断5.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2,则此时轻杆OA 将( ) A .受到6.0N 的拉力 B .受到6.0N 的压力 C .受到24N 的拉力 D .受到24N 的压力6.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( )A .滑块的重力B .盘面对滑块的弹力AB- 3 -C .盘面对滑块的静摩擦力D .以上三个力的合力 7.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( )A.V A >V BB.ωA >ωBC.a A >a BD.压力N A >N B 8.一个电子钟的秒针角速度为( )A .πrad/sB .2πrad/sC .60πrad/s D .30πrad/s9.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则( )A .甲的角速度最大、乙的线速度最小B .丙的角速度最小、甲的线速度最大C .三个物体的角速度、周期和线速度都相等D .三个物体的角速度、周期一样,丙的线速度最小10.如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点。

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆5.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+6.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.7.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。

高中物理生活中的圆周运动真题汇编(含答案)及解析

高中物理生活中的圆周运动真题汇编(含答案)及解析

高中物理生活中的圆周运动真题汇编(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理生活中的圆周运动专项训练100(附答案)

高考物理生活中的圆周运动专项训练100(附答案)

高考物理生活中的圆周运动专项训练100(附答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B点。

现将AB 锁定,让质量为m 的小滑块P (视为质点)从A 点由静止释放沿轨道AB 滑下,最终停在地面上的C 点,C 、B 两点间的距离为2R .已知轨道AB 的质量为2m ,P 与B 点右侧地面间的动摩擦因数恒定,B 点左侧地面光滑,重力加速度大小为g ,空气阻力不计。

(1)求P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 以及P 与B 点右侧地面间的动摩擦因数μ;(2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,求:①当P 刚滑到地面时,轨道AB 的位移大小x 1;②Q 与A 点的高度差h 以及P 离开轨道AB 后到达C 点所用的时间t 。

【答案】(1)P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 为3mg ,P 与B 点右侧地面间的动摩擦因数μ为0.5;(2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,①当P 刚滑到地面时,轨道AB 的位移大小x 1为3R ;②Q 与A 点的高度差h 为2R,P 离开轨道AB 后到达C 点所用的时间t 1326R g【解析】 【详解】(1)滑块从A 到B 过程机械能守恒,应用机械能守恒定律得:mgR =212B mv , 在B 点,由牛顿第二定律得:N -mg =m 2Bv R,解得:v B 2gR N =3mg ,滑块在BC 上滑行过程,由动能定理得:-μmg •2R =0-212B mv , 代入数据解得:μ=0.5;(2)①滑块与轨道组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得: mv 1-2mv 2=0m1R x t --2m 1xt=0, 解得:x 1=3R; ②滑块P 离开轨道AB 时的速度大小为v B ,P 与轨道AB 组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得:mv B -2mv =0, 由机械能守恒定律得:mg (R +h )=2211222B mv mv +⋅, 解得:h =2R; P 向右运动运动的时间:t 1=1Bx v ,P 减速运动的时间为t 2,对滑片,由动量定理得:-μmgt 2=0-mv B , 运动时间:t =t 1+t 2, 解得:t =1326Rg;2.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

高考物理圆周运动专项测试含答案

高考物理圆周运动专项测试含答案

高考物理圆周运动专项测试含答案高考物理圆周运动专项测试一、选择题1.物体以角速度&omega;做匀速圆周运动,下列说法中正确的是( )A.轨道半径越大线速度越大B.轨道半径越大线速度越小C.轨道半径越大周期越大D.轨道半径越大周期越小2.某质点绕圆轨道做匀速圆周运动,下列说法中正确的是( )A.因为它速度大小始终不变,所以它做的是匀速运动B.它速度大小不变,但方向时刻改变,是变速运动C.该质点速度大小不变,因而加速度为零,处于平衡状态D.该质点做的是变速运动,具有加速度,故它受合外力不等于零3.静止在地球上的物体都要随地球一起转动,下列说法正确的是( )A.它们的运动周期都是相同的B.它们的线速度都是相同的C.它们的线速度大小都是相同的D.它们的角速度是不同的4.一皮带传送装置,a、b分别是两轮边缘上的两点,c 处在O1轮上,且有ra=2rb=2rc,则下列关系正确的有( )A.va=vbB.&omega;a=&omega;bC.va=vcD.&omega;a=&omega;c5.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h”上,可估算出该车车轮的转速为( )A.1 000 r/sB.1 000 r/minC.1 000 r/hD.2 000 r/s6.某一皮带传动装置,主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为nD.从动轮的转速为n二、非选择题7.所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系为rA=rC=2rB.若皮带不打滑,求A、B、C轮边缘的a、b、c三质点的角速度之比和线速度之比.8.两轮通过边缘接触,形成摩擦传动装置,设接触处无打滑现象.已知大轮B的半径是小轮A的半径的2倍,设主动轮A转动时其边缘点的角速度为&omega;,线速度为v.求:(1)A、B两轮的转动周期之比;(2)B轮边缘上一点的线速度;(3)B轮转动的角速度.9.小球A在光滑的半径为R的圆形槽内做匀速圆周运动,当它运动到图中a点时,在圆形槽中心O点正上方h处,有一小球B沿Oa方向以某一初速度水平抛出,结果恰好在a 点与A球相碰,求:(1)B球抛出时的水平初速度;(2)A球运动的线速度最小值.高考物理圆周运动专项测试含答案1.A [由v=r&omega;可知,角速度一定,r越大,线速度越大,即选项A正确,B错误,周期T=,角速度一定,周期T一定,故C、D错误.]2.BD [匀速圆周运动是指线速度大小不变的圆周运动,但方向时刻改变,因而是变速运动,加速度不为零,所以B、D正确.]3.A [如图所示,地球绕自转轴转动时,所有地球上各点的周期及角速度都是相同的.地球表面物体做圆周运动的平面是物体所在纬度线平面,其圆心分布在整条自转轴上,不同纬度处的物体圆周运动的半径是不同的,只有同一纬度处物体转动半径相等,线速度的大小才相等.但即使物体的线速度大小相同,方向也各不相同.]4.AD [由于是皮带传动,故两轮边缘上的a、b两点线速度相等,即va=vb,A正确;a、b两点的转动半径不同,则角速度&omega;a&lt;&omega;b,B错误;a、c同轴故其角速度相等,半径不同线速度不相等,C错,D对.]5.B [由v=r&omega;,&omega;=2&pi;n得n== r/s&asymp;17.7 r/s&asymp;1 000 r/min]6.BC [主动轮顺时针转动时,皮带带动从动轮逆时针转动,A项错误,B项正确;由于两轮边缘线速度大小相同,根据v=2&pi;rn,可得两轮转速与半径成反比,所以C项正确,D项错误.]7.1∶2∶21∶1∶2解析A、B两轮通过皮带传动,皮带不打滑,则A、B 两轮边缘的线速度大小相等,即va=vb或va∶vb=1∶1①由v=&omega;r得&omega;a∶&omega;b=rB∶rA=1∶2②B、C两轮固定在一起绕同一轴转动.则B、C两轮的角速度相同,即&omega;b=&omega;c或&omega;b∶&omega;c=1∶1③由v=&omega;r得vb∶vc=rB∶rC=1∶2④由②③得&omega;a∶&omega;b∶&omega;c=1∶2∶2由①④得va∶vb∶vc=1∶1∶2.8.(1)1∶2(2)v (3)&omega;9.(1)R (2)2&pi;R解析(1)小球B做平抛运动,其在水平方向上做匀速直线运动,则R=v0t①在竖直方向上做自由落体运动,则h=gt2②由①②得v0==R .(2)A球的线速度vA===2&pi;Rn当n=1时,其线速度最小,即vmin=2&pi;R .。

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析
(3)P、Q和弹簧组成的系统动量守恒,
则有
mvP=MvQ
解得
vP=1 m/s
对P、Q和弹簧组成的系统,由能量守恒定律有
解得
Ep=3 J
9.如图所示,将一质量m=0.1 kg的小球自水平平台顶端O点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A并沿斜面下滑,斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2 m,斜面高H=15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,求:
F=59.04N
由牛顿第三定律得:粘合体S对轨道的压力F′=59.04N,方向沿OB向下。
8.如图所示,在光滑水平桌面EAB上有质量为m=2 kg的小球P和质量为M=1 kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为M=1 kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2 m,D点到桌面边缘的水平距离为x=0.2 m,重力加速度为g=10 m/s2,求:
小物块经过B点时,有:
解得:
根据牛顿第三定律,小物块对轨道的压力大小是62N
(2)小物块由B点运动到C点,根据动能定理有:
在C点,由牛顿第二定律得:
代入数据解得:
根据牛顿第三定律,小物块通过C点时对轨道的压力大小是60N
(3)小物块刚好能通过C点时,根据

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析

高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N ; (2)线断裂时小球运动的线速度为5m/s ; (3)落地点离桌面边缘的水平距离2m . 【解析】 【分析】 【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg 、桌面弹力F N 和细线的拉力F ,重力mg 和弹力F N 平衡,线的拉力提供向心力,有: F N =F =mω2R ,设原来的角速度为ω0,线上的拉力是F 0,加快后的角速度为ω,线断时的拉力是F 1,则有: F 1:F 0=ω2: 20ω=9:1, 又F 1=F 0+40N ,所以F 0=5N ,线断时有:F 1=45N .(2)设线断时小球的线速度大小为v ,由F 1=2v m R,代入数据得:v =5m /s .(3)由平抛运动规律得小球在空中运动的时间为:t =220.810h s g ⨯==0.4s , 则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =4.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。

2023届高考物理二轮专题练:圆周运动

2023届高考物理二轮专题练:圆周运动

圆周运动一、选择题1.如图所示,在杂技表演中,杂技演员表演了“球内飞车”的杂技。

一个由钢骨架和铁丝网构成的球壳固定在水平地面上,杂技演员骑摩托车在球壳内飞速旋转,惊险而刺激。

甲演员骑摩托车在球壳内“赤道”平面做匀速圆周运动而不跌落下来;乙演员在“赤道”平面下方某一位置沿水平面做匀速圆周运动。

下列说法正确的是( )A .甲、乙两演员做圆周运动的半径相同B .甲、乙两演员做圆周运动的角速度一定相同C .乙演员的速率增大时,其竖直面内的摩擦力可能减小D .乙演员的速率增大时,其圆周运动的半径一定增大2.如图甲所示,被称为“魔力陀螺”玩具的陀螺能在圆轨道外侧旋转不脱落,其原理可等效为如图乙所示的模型:半径为R 的磁性圆轨道竖直固定,质量为m 的铁球(视为质点)沿轨道外侧运动,A 、B 分别为轨道的最高点和最低点,轨道对铁球的磁性引力始终指向圆心且大小不变,不计摩擦和空气阻力,重力加速度为g ,则( )A.铁球绕轨道可能做匀速圆周运动B.由于磁力的作用,铁球绕轨道运动过程中机械能不守恒C .铁球在A .轨道对铁球的磁性引力至少为5mg ,才能使铁球不脱轨3.(2022·全国·统考高考真题)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。

运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h 。

要求运动员经过c 点时对滑雪板的压力不大于自身所受重力的k 倍,运动过程中将运动员视为质点并忽略所有阻力,则c 点处这一段圆弧雪道的半径不应小于( )A .1h k +B .h kC .2h kD .21h k - 4.(2022·北京·高考真题)我国航天员在“天宫课堂”中演示了多种有趣的实验,提高了青少年科学探索的兴趣。

某同学设计了如下实验:细绳一端固定,另一端系一小球,给小球一初速度使其在竖直平面内做圆周运动。

无论在“天宫”还是在地面做此实验( )A.小球的速度大小均发生变化B.小球的向心加速度大小均发生变化C.细绳的拉力对小球均不做功D.细绳的拉力大小均发生变化5. (2022·全国乙卷)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A. 它滑过的弧长B. 它下降的高度C. 它到P点的距离D. 它与P点的连线扫过的面积6.(2022·河北邯郸·二模)某小组设计一个离心调速装置如图所示,质量为m的滑块Q可沿竖直轴无摩擦地滑动,并用原长为l的轻弹簧与O点相连,两质量均为m的小球1P和2P对称地安装在轴的两边,1P和2P与O、1P和2P与Q间用四根长度均为l的轻杆通过光滑铰链连接起来。

(完整)高中物理圆周运动练习题

(完整)高中物理圆周运动练习题

高中物理圆周运动练习题1. 如图3-1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少?图2. 如图3-2所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心距离为r,c点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A.a点与b 点线速度大小相等B.a点与c 点角速度大小相等C.a点与d 点向心加速度大小相等D.a、b、c、d四点,加速度最小的是b 点图3. 如图3-4所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A 与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO/匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.图3-44.如图3-6所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h处沿OB方向水平抛出一个小球,要使球与盘只碰一次,且落点为B,则小球的初速度v=____,圆盘转动的角速度ω=_____。

图3-6 5. 如图3-7所示,小球Q在竖直平面内做匀速圆周运动,当Q球转到图示位置时,有另一小球P在距圆周最高点为h处开始自由下落.要使两球在圆周最高点相碰,则Q球的角速度ω应满足什么条件?图3-76. 绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m=0.5 kg,绳长L =60 cm,求:①最高点水不流出的最小速率。

②水在最高点速率v=3 m/s时,水对桶底的压力。

7. 汽车质量m为1.5×104 kg,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15 m,如图3-17所示.如果路面承受的最大压力不得超过2×105 N,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少?图3-178. 使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?9. 使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?1. 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有:mg T =︒30cos 1①30sin L ωm =30sin T AB 211②代入数据得:s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉力为T2,则有mg T =︒45cos 2③ T2sin45°=m 22ωLACsin30°④代入数据得:ω2=3.16rad/s 。

高中物理圆周运动同步练习题(含答案)

高中物理圆周运动同步练习题(含答案)

高中物理圆周运动同步练习题(含答案)未命名一、多选题1.有关圆周运动的基本模型,下列说法正确的是()A.如图a,汽车通过拱形桥最高点时对桥的压力大于自身重力B.如图b所示是一圆锥摆模型,增大θ,但保持圆锥摆的高度不变,则小球的角速度变大C.如图c,同一小球在光滑而固定的圆锥筒内的A、B位置先后分别做匀速圆周运动,则在A位置小球所受筒壁的支持力与在B位置时所受支持力大小相等D.如图d,火车转弯超过规定速度行驶时,外轨和轮缘间会有挤压作用2.一质量为m的小球,以O为圆心,在竖直面内做半径为R的圆周运动。

图甲是用轻杆连接小球,图乙是用轻绳连接小球,如图所示。

已知重力加速度为g,则下列说法正确的是()3.如图所示,小球在竖直放置的光滑固定圆形管道内做圆周运动,内侧壁半径为R,小球半径很小,则下列说法正确的是()4.如图所示,管壁光滑的圆形轨道固定在竖直平面内,半径为R。

质量为m的小球在管道内做圆周运动,管道内径远小于轨道半径,下列有关说法中正确的是()二、单选题5.如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动。

下列说法正确的是()6.如图所示,小物体P放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力f的叙述正确的是()A.当圆盘匀速转动时,摩擦力f的大小跟物体P到轴O的距离成正比B.圆盘转动时,摩擦力f方向总是指向轴OC.圆盘匀速转动时,小物体受重力、支持力、摩擦力和向心力作用D.当物体P到轴O距离一定时,摩擦力f的大小跟圆盘转动的角速度成正比7.如图所示,轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,以下说法正确的是()8.如图所示,长度为1.0m的轻杆OA,A端固定一个质量5kg的小球,使小球以O为圆心在竖直平面内做圆周运动。

小球通过最低点时的速率是7.0m/s,g取210m/s,则通过圆周运动最高点时,杆对小球的作用力是()A.大小为5N,向下的拉力B.大小为5N,向上的支持力C.大小为45N,向上的支持力D.大小为95N,向下的拉力三、解答题9.如图所示,一个可以视为质点的小球质量为m ,以某一初速度冲上光滑半圆形轨道,轨道半径为0.9m R =,直径BC 与水平面垂直,小球到达最高点C 时对轨道的压力是重力的3倍,重力加速度210m /s g =,忽略空气阻力,求:(1)小球通过C 点的速度大小;(2)小球落地点距B 点的距离。

高考物理总复习 第四章 第3节 圆周运动检测

高考物理总复习 第四章 第3节 圆周运动检测

避躲市安闲阳光实验学校圆周运动(建议用时:40分钟)1.如图所示,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( ) A.t1<t2B.t1=t2C.t1>t2D.无法比较t1、t2的大小解析:选A.在滑道AB段上取任意一点E,比较从A点到E点的速度v1和从C点到E点的速度v2,易知,v1>v2.因E点处于“凸”形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,则摩擦力越小,可知由A滑到C比由C滑到A在AB段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC段的“凹”形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C处开始滑动时,小滑块损失的动能更大.故综上所述,从A滑到C比从C滑到A在轨道上因摩擦造成的动能损失要小,整个过程中从A滑到C平均速度要更大一些,故t1<t2.选项A正确.2.某同学为感受向心力的大小与哪些因素有关,做了一个小实验:绳的一端拴一小球,手牵着在空中甩动,使小球在水平面内做圆周运动(如图所示),则下列说法正确的是( )A.保持绳长不变,增大角速度,绳对手的拉力将不变B.保持绳长不变,增大角速度,绳对手的拉力将增大C.保持角速度不变,增大绳长,绳对手的拉力将不变D.保持角速度不变,增大绳长,绳对手的拉力将减小解析:选B.由向心力的表达式F n=mω2r可知,保持绳长不变,增大角速度,向心力增大,绳对手的拉力增大,选项A错误,B正确;保持角速度不变,增大绳长,向心力增大,绳对手的拉力增大,选项C、D错误.3.(多选)(2018·高考江苏卷)火车以60 m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s内匀速转过了约10°.在此10 s时间内,火车( )A.运动路程为600 mB.加速度为零C.角速度约为1 rad/sD.转弯半径约为3.4 km解析:选AD.在此10 s时间内,火车运动路程s=vt=60×10 m=600 m,选项A正确;火车在弯道上运动,做曲线运动,一定有加速度,选项B错误;火车匀速转过10°,约为15.7rad,角速度ω=θt=157rad/s,选项C错误;由v =ωR ,可得转弯半径约为3.4 km ,选项D 正确.4.如图所示,运动员以速度v 在倾角为θ的倾斜赛道上做匀速圆周运动.已知运动员及自行车的总质量为m ,做圆周运动的半径为R ,重力加速度为g ,将运动员和自行车看做一个整体,则( )A .受重力、支持力、摩擦力、向心力作用B .受到的合力大小为F =mv 2RC .若运动员加速,则一定沿斜面上滑D .若运动员减速,则一定加速沿斜面下滑解析:选 B.将运动员和自行车看做一个整体,则系统受重力、支持力、摩擦力作用,向心力是按力的作用效果命名的力,不是物体实际受到的力,A 错误;系统所受合力提供向心力,大小为F =m v2R,B 正确;运动员加速,系统有向上运动的趋势,但不一定沿斜面上滑,同理运动员减速,也不一定沿斜面下滑,C 、D 均错误.5.质量为m 的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的直径,如图所示.已知小球以速度v 通过最高点时对圆管的外壁的压力大小恰好为mg ,则小球以速度v2通过圆管的最高点时( )A .小球对圆管的内、外壁均无压力B .小球对圆管的外壁压力等于12mgC .小球对圆管的内壁压力等于12mgD .小球对圆管的内壁压力等于mg解析:选C.以小球为研究对象,小球通过最高点时,由牛顿第二定律得mg+mg =m v 2r ,当小球以速度v2通过圆管的最高点,由牛顿第二定律得mg +F N =m ⎝ ⎛⎭⎪⎫v 22r ,解以上两式得F N =-12mg ,负号表示圆管对小球的作用力向上,即小球对圆管的内壁压力等于12mg ,故选项C 正确.6.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定转轴以恒定的角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/sD .0.5 rad/s解析:选C.当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r ,解得ω=1.0rad/s ,故选项C 正确.7.(2016·高考全国卷Ⅱ)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点 ( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度解析:选C.小球从释放到最低点的过程中,只有重力做功,由机械能守恒定律可知,mgL =12mv 2,v =2gL ,绳长L 越长,小球到最低点时的速度越大,A项错误;由于P 球的质量大于Q 球的质量,由E k =12mv 2可知,不能确定两球动能的大小关系,B 项错误;在最低点,根据牛顿第二定律可知,F -mg =m v2L ,求得F =3mg ,由于P 球的质量大于Q 球的质量,因此C 项正确;由a =v 2L=2g 可知,两球在最低点的向心加速度相等,D 项错误.8.(多选)如图所示,半径r =0.5 m 的光滑圆轨道被竖直固定在水平地面上,圆轨道最低处有一小球(小球的半径比r 小很多).现给小球一个水平向右的初速度v 0,要使小球不脱离轨道运动,重力加速度大小g 取10 m/s 2,v 0应满足( )A .v 0≥0B .v 0≥2 5 m/sC .v 0≥5 m/sD .v 0≤10 m/s解析:选CD.最高点的临界情况为mg =m v 2r,解得v =gr ,小球从最低点到最高点的过程,根据动能定理得-mg ·2r =12mv 2-12mv 20,解得v 0=5 m/s.若恰好不超过圆心高度,根据动能定理有-mgr =0-12mv 20,解得v 0=2gr =10m/s ,所以v 0应满足的条件是v 0≥5 m/s 或v 0≤10 m/s ,故选项C 、D 正确,A 、B 错误.【B 级 能力题练稳准】9.如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲转动且无相对滑动.甲圆盘与乙圆盘的半径之比为r 甲∶r 乙=3∶1,两圆盘和小物体m 1、m 2之间的动摩擦因数相同,m 1距O 点为2r ,m 2距O ′点为r ,当甲缓慢转动起来且转速慢慢增加时( )A.m1与m2滑动前的角速度之比ω1∶ω2=3∶1B.m1与m2滑动前的向心加速度之比a1∶a2=1∶3C.随转速慢慢增加,m1先开始滑动D.随转速慢慢增加,m2先开始滑动解析:选D.甲、乙两圆盘边缘上的各点线速度大小相等,有ω甲r甲=ω乙r乙,因r甲∶r乙=3∶1,则ω甲∶ω乙=1∶3,所以小物体相对盘开始滑动前,m1与m2的角速度之比ω1∶ω2=1∶3,故选项A错误;小物体相对盘开始滑动前,根据a=ω2r得m1与m2的向心加速度之比为a1∶a2=(ω21·2r)∶(ω22r)=2∶9,故选项B错误;根据μmg=mrω2=ma知,因a1∶a2=2∶9,圆盘和小物体的动摩擦因数相同,可知当转速增加时,m2先达到临界角速度,所以m2先开始滑动.故选项C错误,D正确.10.(多选)如图甲所示为建筑行业使用的一种小型打夯机,其原理可简化为一个质量为M的支架(含电动机)上由一根长为l的轻杆带动一个质量为m的铁球(铁球可视为质点),如图乙所示,重力加速度为g.若在某次打夯过程中,铁球以角速度ω匀速转动,则( )A.铁球转动过程中机械能守恒B.铁球做圆周运动的向心加速度始终不变C.铁球转动到最低点时,处于超重状态D.若铁球转动到最高点时,支架对地面的压力刚好为零,则ω=(M+m)gml解析:选CD.由于铁球在做匀速圆周运动的过程中动能不变,但重力势能在不断地变化,所以其机械能不守恒,选项A错误;由于铁球做圆周运动的角速度和半径均不发生变化,由a=ω2l可知,向心加速度的大小不变,但其方向在不断地发生变化,故选项B错误;铁球转动到最低点时,有竖直向上的加速度,故杆对铁球的拉力要大于铁球的重力,铁球处于超重状态,选项C正确;以支架和铁球整体为研究对象,铁球转动到最高点时,只有铁球有向下的加速度,由牛顿第二定律可得(M+m)g=mω2l,解得ω=(M+m)gml,选项D正确.11.(2018·高考全国卷Ⅲ )如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切,BC为圆弧轨道的直径,O为圆心,OA 和OB之间的夹角为α,sin α=35.一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求(1)水平恒力的大小和小球到达C点时速度的大小;(2)小球到达A点时动量的大小;(3)小球从C 点落至水平轨道所用的时间.解析:(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α① F 2=(mg )2+F 20②设小球到达C 点时的速度大小为v ,由牛顿第二定律得F =m v 2R③由①②③式和题给数据得 F 0=34mg ④v =5gR 2.⑤(2)设小球到达A 点的速度大小为v 1,作CD ⊥PA ,交PA 于D 点,由几何关系得DA =R sin α⑥CD =R (1+cos α)⑦由动能定理有-mg ·CD -F 0·DA =12mv 2-12mv 21⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为p =mv 1=m 23gR2.⑨(3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ⑩v ⊥=v sin α⑪由⑤⑦⑩⑪式和题给数据得 t =355R g.⑫答案:见解析12.(2019·湖南六校联考)如图所示为水上乐园的设施,由弯曲滑道、竖直平面内的圆形滑道、水平滑道及水池组成,圆形滑道外侧半径R =2 m ,圆形滑道的最低点的水平入口B 和水平出口B ′相互错开,为保证安全,在圆形滑道内运动时,要求紧贴内侧滑行.水面离水平滑道高度h =5 m .现游客从滑道A 点由静止滑下,游客可视为质点,不计一切阻力,重力加速度g 取10 m/s 2,求:(1)起滑点A 至少离水平滑道多高?(2)为了保证游客安全,在水池中放有长度L =5 m 的安全气垫MN ,其厚度不计,满足(1)的游客恰落在M 端,要使游客能安全落在气垫上,安全滑下点A 距水平滑道的高度取值范围为多少?解析:(1)游客在圆形滑道内侧恰好滑过最高点时,有mg =m v 2R①从A 到圆形滑道最高点,由机械能守恒定律得 mgH 1=12mv 2+mg ·2R ②解得H 1=52R =5 m .③(2)落在M 点时抛出速度最小,从A 到C 由机械能守恒定律得 mgH 1=12mv 21④v 1=2gH 1=10 m/s ⑤水平抛出,由平抛运动规律可知 h =12gt 2⑥得t =1 s则s 1=v 1t =10 m落在N 点时s 2=s 1+L =15 m则对应的抛出速度v 2=s 2t=15 m/s ⑦由mgH 2=12mv 22得H 2=v 222g=11.25 m安全滑下点A 距水平滑道高度范围为 5 m ≤H ≤11.25 m.答案:(1)5 m (2)5 m ≤H ≤11.25 m。

新高考物理圆周运动专题测试题

新高考物理圆周运动专题测试题

新高考物理圆周运动专题测试题(时间:90分钟分值:100分)一、选择题(本题共12小题,每小题4分,1~7为单选,8~12为多选) 1.对于物体做匀速圆周运动,下列说法中正确的是()A.其转速与角速度成反比,其周期与角速度成正比B.运动的快慢可用线速度描述,也可用角速度来描述C.匀速圆周运动的速度保持不变D.做匀速圆周运动的物体,其加速度保持不变B[由公式ω=2πn可知,转速和角速度成正比,由ω=2πT可知,其周期与角速度成反比,故A错误;运动的快慢可用线速度描述,也可用角速度来描述,所以B正确;匀速圆周运动的线速度大小不变,但线速度方向在变,所以C错误;匀速圆周运动的加速度大小不变,方向在变,所以D错误.] 2.如图所示,质量相等的汽车甲和汽车乙,以相等的速率沿同一水平弯道做匀速圆周运动,汽车甲在汽车乙的外侧.两车沿半径方向受到的摩擦力分别为f甲和f乙.以下说法正确的是()A.f甲小于f乙B.f甲等于f乙C.f甲大于f乙D.f甲和f乙的大小均与汽车速率无关A[汽车在水平面内做匀速圆周运动,摩擦力提供做匀速圆周运动的向心力,即f=F=m v2r,由于r甲>r乙,则f甲<f乙,A正确.]3.一小球沿半径为2 m的轨道做匀速圆周运动,若周期T=4 s,则() A.小球的线速度大小是0.5 m/sB.经过4 s,小球的位移大小为4π mC .经过1 s ,小球的位移大小为2 2 mD .若小球的速度方向改变了π2 rad ,经过时间一定为1 s C [小球的周期为T =4 s ,则小球运动的线速度为v =2πr T =π,选项A 错误;经过4 s 后,小球完成一个圆周运动后回到初始位置,位移为零,选项B 错误;经过1 s 后,小球完成14个圆周,小球的位移大小为s =2R =2 2 m ,选项C 正确;圆周运动是周期性运动,若方向改变π2弧度,经历的时间可能为t =(n +1)·T 4=(n +1) s 或t =(n +3)·T 4=(n +3) s ,选项D 错误.] 4.荡秋千是儿童喜爱的一项体育运动,当秋千荡到最高点时,小孩的加速度方向是图中的( )A .竖直向下a 方向B .沿切线b 方向C .水平向左c 方向D .沿绳向上d 方向B [如答图,将重力分解,沿绳子方向T -G cos θ=m v 2R ,当在最高点时,v =0,故T =G cos θ,故合力方向沿G 2方向,即沿切线b 方向,由牛顿第二定律,加速度方向沿切线b 方向.]5.在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示,此时两小球到转轴的距离r 1与r 2之比为( )A.1∶1B.1∶ 2C.2∶1 D.1∶2D[两球向心力、角速度均相等,由公式F1=m1r1ω2,F2=m2r2ω2,即m1r1ω2=m2r2ω2,r1r2=m2m1=12,故选D.]6.质量为m的飞机,以速率v在水平面内做半径为R的匀速圆周运动,空气对飞机作用力的大小等于()A.m g2+v4R2B..m v2 RC.m v4R2-g2D.mgA[空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg、空气对飞机的作用力F,两力的合力为F n,方向沿水平方向指向圆心.由题意可知,重力mg与F n垂直,故F=m2g2+F2n,又F n=m v2R,联立解得F=m g2+v4 R2.]7.如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是()A.车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座位不可能产生大小为mg的压力C.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mgD[过山车是竖直面内杆系小球圆周运动模型的应用.人在最低点时,由向心力公式可得F-mg=m v2R,即F=mg+mv2R>mg,故选项C错误,选项D正确;人在最高点,若v>gR时,向心力由座位对人的压力和人的重力的合力提供,若v=gR时,向心力由人的重力提供,若v<gR时,人才靠保险带拉住,选项A错误;F>0,人对座位产生压力,压力大小F=m v2R-mg,当v2=2Rg时F=mg,选项B错误.]8.如图所示,一个球绕中心轴线OO′以角速度ω做匀速圆周运动,θ=30°,则()A.a、b两点的线速度大小相等B.a、b两点的角速度相同C.a、b两点的线速度大小之比v a∶v b=2∶ 3D.a、b两点的向心加速度大小之比a a∶a b=3∶2BD[球绕中心轴线转动,球上各点应具有相同的周期和角速度,即ωa=ωb,B对.因为a、b两点做圆周运动的半径不同,r b>r a,根据v=ωr知v b>v a,A错;设球半径为R,则r b=R,r a=R cos 30°=32R,故v av b=ωa r aωb r b=32,C错.又根据a=ω2r知a aa b=ω2a r aω2b r b=32,D对.]9.如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的()A .运动周期相同B .运动线速度一样C .运动角速度相同D .向心加速度相同AC [小球受力如图所示,根据牛顿第二定律有mg tan θ=ma =mω2·L sin θ=m v 2L sin θ=m 4π2T2L sin θ, 解得a =g tan θ=g ·L sin θh ,v =gL sin θ·tan θ,ω=g tan θL sin θ=g h ,T =2πhg .] 10.如图所示,长0.5 m 的轻质细杆,一端固定有一个质量为3 kg 的小球,另一端由电动机带动,使杆绕O 点在竖直平面内做匀速圆周运动,小球的速率为2 m/s.g 取10 m/s 2,下列说法正确的是( )A .小球通过最高点时,对杆的拉力大小是24 NB .小球通过最高点时,对杆的压力大小是6 NC.小球通过最低点时,对杆的拉力大小是24 N D.小球通过最低点时,对杆的拉力大小是54 NBD[设小球在最高点时受杆的弹力向上,则mg-N=m v2l,得N=mg-m v2l=6 N,故小球对杆的压力大小是6 N,A错误,B正确;小球通过最低点时N-mg=m v2l,得N=mg+mv2l=54 N,小球对杆的拉力大小是54 N,C错误,D正确.]11.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h,下列说法中正确的是()A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的向心力将越大BC[摩托车受力如图所示.由于N=mg cos θ所以摩托车受到侧壁的压力与高度无关,保持不变,摩托车对侧壁的压力也不变,A错误;由F=mg tan θ=m v2r=mω2r知h变化时,向心力F不变,但高度升高,r变大,所以线速度变大,角速度变小,周期变大,选项B、C正确,D错误.]12.如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O点的半圆,内外半径分别为r和2r.一辆质量为m的赛车通过AB线经弯道到达A′B′线,有如图所示的①、②、③三条路线,其中路线③是以O′为圆心的半圆,OO′=r.赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max.选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等ACD[由几何关系可得,路线①、②、③赛车通过的路程分别为(πr+2r)、(2πr+2r)和2πr,可知路线①的路程最短,选项A正确;圆周运动时的最大速率对应着最大静摩擦力提供向心力的情形,即μmg=m v2R,可得最大速率v=μgR,则知②和③的速率相等,且大于①的速率,选项B错误;根据t=sv,可得①、②、③所用的时间分别为t1=(π+2)rμgr,t2=2r(π+1)2μgr,t3=2rπ2μgr,其中t3最小,可知线路③所用时间最短,选项C正确;在圆弧轨道上,由牛顿第二定律可得μmg=ma向,a向=μg,可知三条路线上的向心加速度大小均为μg,选项D正确.]二、非选择题(本题共6小题,共52分)13.(6分)半径为R的水平圆盘绕过圆心O的竖直轴匀速转动,A为圆盘边缘上一点.在O的正上方有一个可视为质点的小球以初速度v水平抛出时,半径OA方向恰好与v的方向相同,如图所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g,则小球抛出时距O的高度h=_______,圆盘转动的角速度大小ω=___________.[解析] 由平抛运动的规律结合圆周运动的知识求解.小球做平抛运动,在竖直方向:h =12gt 2① 在水平方向:R =v t② 由①②两式可得h =gR 22v 2 ③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…) ④由②④两式得ω=2n πv R (n =1,2,3,…).[答案] gR 22v 22n πv R (n =1,2,3,…) 14.(6分)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R =0.20 m).(a) (b)完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00 kg ;(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为________kg ;(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧.此过程中托盘秤的最大示数为m ;多次从同一位置释放小车,记录各次的m 值如下表所示.序号 1 2 3 4 5m(kg) 1.80 1.75 1.85 1.75 1.90(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为________N;小车通过最低点时的速度大小为________m/s.(重力加速度大小取9.80 m/s2,计算结果保留2位有效数字)[解析](2)题图(b)中托盘秤的示数为1.40 kg.(4)小车5次经过最低点时托盘秤的示数平均值为m=1.80+1.75+1.85+1.75+1.905kg=1.81 kg.小车经过凹形桥最低点时对桥的压力为F=(m-1.00)g=(1.81-1.00)×9.80 N≈7.9 N由题意可知小车的质量为m′=(1.40-1.00) kg=0.40 kg对小车,在最低点时由牛顿第二定律得F-m′g=m′v2 R解得v≈1.4 m/s[答案] 1.407.9 1.415.(8分)如图所示,定滑轮的半径r=2 cm,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2 m/s2做匀加速运动,在重物由静止下落距离为1 m的瞬间,求滑轮边缘上的点的角速度ω和向心加速度a n.[解析]重物下落1 m时,瞬时速度为v=2as=2×2×1 m/s=2 m/s显然,滑轮边缘上每一点的线速度也都是2 m/s,故滑轮转动的角速度,即滑轮边缘上每一点转动的角速度为ω=vr=20.02rad/s=100 rad/s向心加速度为a n=ω2r=1002×0.02 m/s2=200 m/s2.[答案]100 rad/s200 m/s216.(10分)一水平放置的圆盘,可以绕中心O点旋转,盘上放一个质量是0.4 kg的铁块(可视为质点),铁块与中间位置的转轴处O点用轻质弹簧连接,如图所示.铁块随圆盘一起匀速转动,角速度是10 rad/s时,铁块距中心O点30 cm,这时弹簧对铁块的拉力大小为11 N,g取10 m/s2,求:(1)圆盘对铁块的摩擦力大小;(2)若此情况下铁块恰好不向外滑动(视最大静摩擦力等于滑动摩擦力),则铁块与圆盘间的动摩擦因数为多大?[解析](1)弹簧弹力与铁块受到的静摩擦力的合力提供向心力,根据牛顿第二定律得F+f=mω2r代入数值解得f=1 N.(2)此时铁块恰好不向外侧滑动,则所受到的静摩擦力就是最大静摩擦力,则有f=μmg故μ=fmg=0.25.[答案](1)1 N(2)0.2517.(10分)如图所示,在内壁光滑的平底试管内放一个质量为1 g的小球,试管的开口端与水平轴O连接.试管底与O相距5 cm,试管在转轴带动下在竖直平面内做匀速圆周运动.g取10 m/s2,求:(1)转轴的角速度达到多大时,试管底所受压力的最大值等于最小值的3倍?(2)转轴的角速度满足什么条件时,会出现小球与试管底脱离接触的情况?[解析](1)当试管匀速转动时,小球在最高点对试管的压力最小,在最低点对试管的压力最大.在最高点:F 1+mg =mω2r在最低点:F 2-mg =mω2rF 2=3F 1联立以上方程解得ω=2g r =20 rad/s.(2)小球随试管转到最高点,当mg >mω2r 时,小球会与试管底脱离,即ω<gr .[答案] (1)20 rad/s (2)ω<gr18.(12分)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断开时球的速度大小v 1;(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?[解析] (1)设绳断后球飞行时间为t ,由平抛运动规律,竖直方向:14d =12gt 2 水平方向:d =v 1t解得v 1=2gd .(2)设绳能承受的最大拉力大小为T ,这也是球受到绳的最大拉力大小.球做圆周运动的半径为R =34d由牛顿第二定律,有T -mg =m v 21R得T =113mg . (3)设绳长为l ,绳断时球的速度大小为v 2,绳承受的最大拉力不变,由牛顿第二定律得:T -mg =m v 22l解得:v 2=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为s ,时间为t 1.有d -l =12gt 21s =v 2t 1得s =4l (d -l )3,当l =d 2时,s 有最大值s max =233d . [答案] (1)2gd (2)113mg (3)d 2 233d。

高考物理圆周运动例题

高考物理圆周运动例题

图12图13例11:如图11,在桌角处被固定一个内表面为球面的光滑陶瓷碗,0为球心,半径为R ;质量分别为m 1、m 2的小球,用细线相连,开始时,小球m 1放在碗边A 处,小球m 2在C 处,被释放后,它们开始运动,小球m 1沿碗的内表面运动,小球m 2竖直向上运动,不计一切阻力,求:小球m 1运动到最低点时, 速度V 1、V 2的大小?例12:如图12,为一皮带传动装置,右轮的半径为r ,a 是它的边缘上的一点;左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 ( ) (A )a 点与b 点线速度大小相等 (B )a 点与c 点角速度大小相等(C )a 点与d 点向心加速度大小相等 (D )a 、b 、c 、d 四点,加速度最小的是b 点例13:图13,如图所示,小球Q 在竖直平面内做匀速圆周运动,当Q 球转到图示位置时,有另一小球P 在距圆周最高点为h 处开始自由下落,要使两球在圆周的最高点相碰,则Q 球的角速度ω满足什么条件?例14:如图14,在光滑水平桌面上有一质量不计的弹簧,劲度系数为k ,原长为x 0,一端固定在桌面上,另一端栓一质量为m 的小物体,要使小物体在弹簧作用下以速度大小为v 绕固定点做匀速圆周运动,物体运动时: 求(1)弹簧的长度(2)小物体的运动周期3.用长为L 的细绳栓住一个质量为m 的小球,如图所示,当小球在水平面内做匀速圆周运动时,细绳与竖直方向成θ角,求:小球做匀速圆周运动的周期及细绳对小球的拉力。

例15:电风扇在闪光灯的照射下运转,闪光灯每秒钟闪光30次,风扇的叶片有三个,均匀安装在转轴上,当转动时,如果观察者感觉叶片不动,则风扇的转速是__________转/分;如果观察者感觉叶片有六个,则风扇的转速是__________转/分(电动机的转速每分钟不超过1400转)。

高中物理圆周运动经典练习题

高中物理圆周运动经典练习题

圆周运动练习题一、单项选择题1、 如图2A-1所示,A 、B 是两个摩擦传动的靠背轮,A 是主动轮,B 是从动轮,它们的半径R A =2R B , a 和b 两点在轮的边缘,c 和d 在各轮半径的中点,下列判断正确的有( )A Va = 2 V bB ωb = 2ωaC V c = VaD ωb = ωc2、 如图2A-2所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,则物体所需向心力由下列哪个力提供A .重力B .弹力C .静摩擦力D .滑动摩擦力 3、 如图2A-5所示,一圆盘可以绕一个通过圆盘中心且垂直于盘面的竖直轴转动,在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动,那么( )A 、木块受到圆盘对它的摩擦力,方向背离圆盘中心B 、木块受到圆盘对它的摩擦力,方向指向圆盘中心C 、因为木块与圆盘一起做匀速转动,所以它们之间没有摩 擦力D 、因为摩擦力总是阻碍物体运动的,所以木块受到圆盘对它的摩擦力的方向与木块运动方向相反 4、 关于离心现象下列说法正确( )A 做匀速圆周运动的物体,当它所受的一切外力都突然消失时,它将做背离圆心的运动;B 当物体所受的指向圆心的合力大于向心力时产生离心现象;C 做匀速圆周运动的物体,当它所受的一切外力都突然消失时,它将沿切线做直线运动;D.做匀速直线运动的物体,当它所受的一切力都突然消失时,它将做曲线运动。

5.下列关于圆周运动的说法正确的是(A .做匀速圆周运动的物体,所受的合外力一定指向圆心B .做匀速圆周运动的物体,其加速度可能不指向圆心C .作圆周运动的物体,其加速度不一定指向圆心D .作圆周运动的物体,所受合外力一定与其速度方向垂直6.关于匀速圆周运动,下列说法正确的是( )A .匀速圆周运动就是匀速运动B .匀速圆周运动是匀加速运动C .匀速圆周运动是一种变加速运动D .匀速圆周运动的物体处于平衡状态 图 1 图2A-1 图2A-2 图5 图2A-57.下列关于离心现象的说法正确的是( )A.当物体所受的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动8.关于物体做圆周运动的说法正确的是( )A.匀速圆周运动是匀速运动B.物体在恒力作用下不可能做匀速圆周运动C.向心加速度越大,物体的角速度变化越快D.匀速圆周运动中向心加速度是一恒量9.下列说法正确的是( )A.因为物体做圆周运动,所以才产生向心力B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动C.因为向心力的方向与线速度方向垂直,所以向心力对做圆周运动的物体不做功D.向心力是圆周运动物体所受的合外力10.物体质量m,在水平面内做匀速圆周运动,半径R,线速度V,向心力F,在增大垂直于线速度的力F量值后,物体的轨道( )A.将向圆周内偏移B.将向圆周外偏移C.线速度增大,保持原来的运动轨道D.线速度减小,保持原来的运动轨道11.质点做匀速圆周运动时,下列说法正确的是( )A.线速度越大,周期一定越小B.角速度越大,周期一定越小C.转速越小,周期一定越小D.圆周半径越大,周期一定越小12.下列关于向心加速度的说法中,正确的是( )A.向心加速度的方向始终与速度的方向垂直B.向心加速度的方向保持不变C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,向心加速度的大小不断变化13.一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是( )A.轨道半径越大线速度越大B.轨道半径越大线速度越小C.轨道半径越大周期越大D.轨道半径越大周期越小14.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的有( ) A.时针和分针角速度相同B.分针角速度是时针角速度的12倍C.时针和分针的周期相同D.分针的周期是时针周期的12倍15.A、B两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A∶s B=2∶3,转过的角度之比ϕA∶ϕB=3∶2,则下列说法正确的是()A.它们的半径之比R A∶R B=2∶3 B.它们的半径之比R A∶R B=4∶9 C.它们的周期之比T A∶T B=2∶3 D.它们的周期之比T A∶T B=3∶2 16.在匀速圆周运动中,下列物理量不变的是()A .向心加速度B .线速度C .向心力D .角速度17.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 ( )A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力B .物体所受的合外力提供向心力D .向心力的大小—直在变化18.如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是( )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。

高考物理圆周运动必过关大题

高考物理圆周运动必过关大题

A B
C
v 0
R
圆周运动必过关题
1、如图所示,半径R =0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A 。

一质量m=0.10kg 的小球,以初速度v 0=7.0m/s 在水平地面上向左作加速度a =3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点。

求A 、C 间的距离(取重力加速度g=10m/s 2)。

2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的
质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘
面间相互作用的摩擦力最大值为其重力的0.5倍,试求
(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?
(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)
3、如图所示,光滑的水平圆盘中心O处有一个小孔,用细绳穿过小孔,绳两端各系一个小球A和B,两球质量相等,圆盘上的A球做半径为r=20cm的匀速圆周运动,要使B球保持静止状态,求A球的角速度ω应是多大
A
O
B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动水平圆周运动【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。

当圆筒的角速度增大以后,下列说法正确的是(D)A、物体所受弹力增大,摩擦力也增大了B、物体所受弹力增大,摩擦力减小了C、物体所受弹力和摩擦力都减小了D、物体所受弹力增大,摩擦力不变【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a、b两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )A.在a轨道上运动时角速度较大B.在a轨道上运动时线速度较大C.在a轨道上运动时摩托车对侧壁的压力较大D.在a轨道上运动时摩托车和运动员所受的向心力较大【例题】长为L的细线,拴一质量为m的小球,一端固定于O点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L与竖直方向的夹角是α时,求:(1)线的拉力F;(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。

★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。

因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。

由平行四边形法则得小球受到的合力大小为mg tanα,线对小球的拉力大小为F =mg/cosα由牛顿第二定律得mgt anα=mv 2/r 由几何关系得r =Lsi nα 所以,小球做匀速圆周运动线速度的大小为v =小球运动的角速度v rω===小球运动的周期22T π==ω点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。

1、竖直平面内:(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即rmv mg 2临界= ⇒rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度)。

②能过最高点的条件:临界υυ≥。

此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:临界υυ<(实际上小球还没有到最高点就已脱离了轨道)。

(2)图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度0=临界υ。

②图(a)所示的小球过最高点时,轻杆对小球的弹力情况是:当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg;当0<v <rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0。

当rg =υ时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大。

③图(b)所示的小球过最高点时,光滑硬管对小球的弹力情况是:当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N =m g。

当0<v <rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0。

当v=gr 时,N=0。

当v >gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大。

④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力。

在最高点的v 临界=gr 。

当v=gr 时,小球将脱离轨道做平抛运动注意:如果小球带电,且空间存在电场或磁场时,临界条件应是小球所受重力、电场力和洛GF仑兹力的合力等于向心力,此时临界速度gR V 0 。

要具体问题具体分析,但分析方法是相同的【例题】一小球用轻绳悬挂于某固定点。

现将轻绳水平拉直,然后由静止开始释放小球。

考虑小球由静止开始运动到最低位置的过程(AC ) (A)小球在水平方向的速度逐渐增大 (B)小球在竖直方向的速度逐渐增大 (C )到达最低位置时小球线速度最大(D)到达最低位置时绳中的拉力等于小球的重力【例题】如图,细杆的一端与一小球相连,可绕过O 点的水平轴自由转动现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是(AB)A.a 处为拉力,b 处为拉力 B.a 处为拉力,b处为推力 C.a 处为推力,b 处为拉力 D .a 处为推力,b 处为推力【例题】如图所示,半径为R ,内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B以不同速率进入管内,A通过最高点C 时,对管壁上部的压力为3mg ,B 通过最高点C 时,对管壁下部的压力为0.75mg .求A 、B 两球落地点间的距离.★解析:两个小球在最高点时,受重力和管壁的作用力,这两个力的合力作为向心力,离开轨道后两球均做平抛运动,A 、B 两球落地点间的距离等于它们平抛运动的水平位移之差.C OBA对A 球:3mg +mg =m R v A2 v A =gR 4对B球:mg -0.75mg =m R v B 2 v B=gR 41s A=v A t =vAgR4=4R s B =v B t =vBgR4=R (2分)∴s A-sB=3R [点评]竖直面内的非匀速圆周运动往往与其它知识点结合起来进行考查,本题是与平抛运动相结合,解这类题时一定要先分析出物体的运动模型,将它转化成若干个比较熟悉的问题,一个一个问题求解,从而使难题转化为基本题.本题中还要注意竖直面内的非匀速圆周运动在最高点的两个模型:轻杆模型和轻绳模型,它们的区别在于在最高点时提供的力有所不同,轻杆可提供拉力和支持力,而轻绳只能提供拉力;本题属于轻杆模型.【例题】小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B,OB=d ,初始时小球A与O同水平面无初速度释放,绳长为L,为使小球能绕B 点做完整的圆周运动,如图所示。

试求d 的取值范围。

★解析:为使小球能绕B点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:dL V m mg D-≤2根据机械能守恒定律可得[])(212d L d mg mV D --= 由以上两式可求得:L d L ≤≤53m答案:L d L ≤≤53【例题】AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨相切,如图所示。

一小球自A 点起由静止开始沿轨道下滑。

已知圆轨道半径为R ,小球的质量为m,不计各处摩擦。

求⑴小球运动到B 点时的动能;⑵小球下滑到距水平轨道的高度为R /2时速度的大小和方向;⑶小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、NC 各是多大? ★解析:⑴EK =mgR ⑵v=gR 沿圆弧切线向下,与竖直成30º ⑶N B=3mg NC=mg【例题】如图所示,半径R =0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A 。

一质量m =0.10kg 的小球,以初速度v 0=7.0m/s 在水平地面上向左作加速度a =3.0m /s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点。

求A 、C间的距离(取重力加速度g=10m/s2)。

【答案】1.2m【例题】如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求:(1)小球运动到轨道上的B 点时,对轨道的压力多大? (2)小球落地点C 与B 点水平距离s 是多少?Bv 0R★解析:(1)小球由A →B 过程中,根据机械能守恒定律有: mgR =221B mv 小球在B点时,根据向心力公式有;R vm mg F B N 2=-mg Rvm mg F B N 32=+=ﻩ(2)小球由B →C 过程,水平方向有:s =vB ·t 竖直方向有:221gt R H =- 解得R R H s )(2-=【例题】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A 球的质量为m 1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v 0.设A 球运动到最低点时,B 球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m 2、R 与v 0应满足的关系式是______.★解析:这是一道综合运用牛顿运动定律、圆周运动、机械能守恒定律的高考题.A球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下.若要此时两球作用于圆管的合力为零,B 球对圆管的压力一定是竖直向上的,所以圆管对B球的压力一定是竖直向下的.由机械能守恒定律,B 球通过圆管最高点时的速度v 满足方程A2222221221v m R g m v m =⋅+ 根据牛顿运动定律对于A球,Rv m g m N 2111=-对于B 球,Rv m g m N 2222=+又 N 1=N2解得 0)5()(212021=++-g m m Rv m m【例题】如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R。

一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。

要求物块能通过圆形最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。

求物块初始位置相对于圆形轨道底部的高度h 的取值范围。

★解析:2.5R ≤h ≤5R【例题】如图所示,质量为m 的小球由光滑斜轨道自由下滑后,接着又在一个与斜轨道相连的竖直的光华圆环内侧运动,阻力不计,求⑴小球至少应从多高的地方滑下,才能达到圆环顶端而不离开圆环 ⑵小球到达圆环底端时,作用于环底的压力★解析:⑴小球在下滑的过程中机械能守恒,设地面为零势能面,小球下落的高度为h ,小球能到达环顶端市的速度最小为v 2。

小球到达环顶端而不离开的临界条件为重力恰好全部提供向心力hRRmv mg 2= 即gR v =小球在开始的机械能为E 1=m gh 小球在环顶端的机械能为221212mv R mg E +⋅= 根据机械能守恒 E 1=E 2整理得:h=2.5R,即小球至少从离底端2.5R 出滑下才能到达环顶而不离开圆环。

⑵当环从h =2.5R 处下滑到底部速度为v B ,由机械能守恒得mgh mv B =221 即gh v B 2=小球在底端受到重力mg 和支持力N,小球作圆周运动所需要的向心力由支持力和重力提供,即Rmv mg N B2=-整理得:N =6mg圆环对小球的支持力与小球对圆环的压力是作用力反作用力,所以小球作用于圆环的压力为6m g。

相关文档
最新文档