安徽省淮北市高中数学人教版 选修4-4第二讲 参数方程 02 参数方程
人教版高中数学选修4-4课件:2.1曲线的参数方程 第二课时.2
林老师网络编辑整理
29
【解析】(1)选D.xy=1,x取非零实数,而A,B,C中的x的
范围不符合要求.
(2)①把y=sinθ代入方程,得到 于是x2=4(1-sin2θ)=4cos2θ,
x2 sin2 1, 4
林老师网络编辑整理
30
即x=±2|cosθ|,由于θ具有任意性,sinθ与cosθ的
t
2,(t为参数)化为普通方程为________.
【解析】消去y参 2数t 方程 x 中t2,的参数t,
得到普通方程为y2=4x. y 2t
答案:y2=4x
林老师网络编辑整理
7
【知识探究】 探究点 参数方程和普通方程的互化 1.同一曲线的参数方程是否唯一? 提示:求曲线的参数方程,关键是灵活确定参数,由于参 数不同,同一曲线的参数方程也会有差异,但是一定要 注意等价性.
(θ为参数)
x 2cos,
y 1 2பைடு நூலகம்in
林老师网络编辑整理
5
【解析】选D.圆x2+(y+1)2=2的圆心坐标为C(0,-1),半
径为
2
,所以它的参数方程为 x
2cos,
(θ为参
数).
y 1 2sin,
林老师网络编辑整理
6
2.参数方程
x
(为参数) .
(1)3x+4y=3cosθ+4sinθ+4=4+5sin(θ+φ),
其中 tan 且34φ, 的终边过点(4,3).
因为-5≤5sin(θ+φ)≤5,所以-1≤4+5sin(θ+φ)≤9,
所以3x+4y的最大值为9,最小值为-1.
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
人教版高中数学选修4-4课件 第2讲-2《圆锥曲线的参数方程》
= 55|5cos(θ+φ)-13|,
从而当 cos θ=45,sin θ=-35时,(其中 φ 由 sin φ=35,cos
φ=45确定)cos(θ+φ)=1,d
取得最小值8
5
5 .
14
1.从第(2)问可以看出椭圆的参数方程在解题中的优越 性.
2.第(2)问设计十分新颖,题目的要求就是求动点 M 的 轨迹上的点到直线 C3 距离的最小值,这个最小值归结为求关 于参数 θ 的函数的最小值.
ya22+bx22=1(a>b>0)
x=bcos φ y=asin φ
(φ 为参数)
2
2.双曲线的参数方程 普通方程
参数方程
xa22-by22=1(a>0,b>0)
x=asec φ y=btan φ
(φ 为参数)
3.抛物线的参数方程
x=2pt2
(1)抛物线 y2=2px 的参数方程是 y=2pt
F1(0,-4)与 F2(0,4).
10
已知曲线 C1:xy==-3+4+sinctos t ,(t 为参数),曲 线 C2:6x42 +y92=1.
(1)化 C1 为普通方程,C2 为参数方程;并说明它们分别表 示什么曲线?
(2)若 C1 上的点 P 对应的参数为 t=π2,Q 为 C2 上的动点, 求 PQ 中点 M 到直线 C3:x-2y-7=0 距离的最小值.
=|a2b2seac22+φ-b2tan2 φ|=aa2+2b2b2(定值).
19
在研究有关圆锥曲线的最值和定值问题时,使用曲线的 参数方程非常简捷方便,其中点到直线的距离公式对参数形 式的点的坐标仍适用,另外本题要注意公式 sec2 φ-tan2 φ=1 的应用.
2014-2015学年高中数学(人教版选修4-4)配套课件第二讲 2.2 2.2.2 双曲线的参数方程
1.已知动点 M 和定点 A(5,0),B(-5,0).
x2 y2 - =1 (1)若||MA|-|MB||=8,则 M 的轨迹方程是__________________ ; 16 9 x 2 y2 - =1(x<0) (2)若|MA|-|MB|=8,则 M 的轨迹方程是____________________ ; 16 2 9 2 栏 x y 目 - =1(x>0) (3)若|MB|-|MA|=8,则 M 的轨迹方程是____________________ . 链 16 9
2 2
x=2sec α, ∴参数方程为 (α 为参数). y=2tan α
变式 训练
x= 3tan θ, 1.已知双曲线的参数方程为 (θ 为参数), y=sec θ
则它的两条渐近线所成的锐角是________.
栏 目 链 接
答案:60°
题型2
第二讲 参数方程
2.2 圆锥曲线的参数方程
2.2.2 双曲线的参数方程
栏 目 链 接
1.理解双曲线参数方程的概念。
2.能选取适当的参数,求简单曲线的参数方程。
3.掌握参数方程化为普通方程的 几种基本方法。
栏 栏 目 目 链 链 接 接
4.利用双曲线的参数方程求确定最值和轨迹问题。
栏 目 链 接
栏 目 链 接
变式 训练
2.已知定点 A(0,4)和双曲线 x2-4y2=16 上的动点 B, 点 P 分有向线段 AB 的比为 1∶3,则利用双曲线的参数方 程可求得点 P 的轨迹普通方程是_______________.
栏 目 链 接
答案:x2-4(y-3)2=1
x2 y2 - =1 的参数方程为________. 16 9
人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程
【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ
即
(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.
人教版高中数学选修4-4课件:第二讲二第2课时双曲线的参数方程和抛物线的参数方程
x=sec θ,
解:把双曲线方程化为参数方程
(θ 为参
y=tan θ
数),
林老师网络编辑整理
18
设双曲线上点 Q(sec θ,tan θ),则
|PQ|2=sec2θ+(tan θ-2)2=
(tan2θ+1)+(tan2θ-4tan θ+4)=
2tan2θ-4tan θ+5=2(tan θ-1)2+3,
林老师网络编辑整理
5
2.抛物线的参数方程
如图,抛物线 y2=2px(p>0)的参数方程为
x=2pt2,
____y_=__2_p_t ____t为参数,t=tan1
α.
林老师网络编辑整理
6
温馨提示 t=sin1 α(α 是以射线 OM 为终边的角),即 参数 t 表示抛物线上除顶点之外的任意一点与原点连线的 斜率的倒数.
第二讲 参数方程
林老师网络编辑整理
1
二、圆锥曲线的参数方程 第 2 课时 双曲线的参数方程和
抛物线的参数方程
林老师网络编辑整理
2
[学习目标] 1.了解抛物线和双曲线的参数方程,了 解抛物线参数方程中参数的几何意义(重点). 2.利用抛 物线和双曲线的参数方程处理问题(重点、难点).
林老师网络编辑整理
当 tan θ-1=0,即 θ=π4时,
|PQ|2 取最小值 3,此时有|PQ|= 3.
即 P、Q 两点间的最小距离为 3.
林老师网络编辑整理
19
[迁移探究] (变换条件)已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2-y2=1 上一点 Q,求 P,Q 两点间 距离的最小值.
解:设 Q(sec θ,tan θ), 由题意知|O1P|+|PQ|≥|O1Q|. |O1Q|2=sec2θ+(tan θ-2)2=
人教版高中数学选修4-4课件:第二讲三直线的参数方程
解:由题意知 F(1,0),
x=1- 22t,
则直线的参数方程为
(t 为参数),
y=
2 2t
代入抛物线方程得( 22t)2=4(1- 22t), 整理得 t2+4 2t-8=0,由一元二次方程根与系数的 关系可得 t1+t2=-4 2,t1t2=-8,由参数 t 的几何意义 得 |AB|=|t1-t2|= (t1+t2)2-4t1t2= 64=8.
x=3+ 22t,
解:设直线的参数方程为
y=4+
2 2t
(t 为参数),
将它代入已知直线 3x+2y-6=0 得 3(3+ 22t)+ 24+ 22t=6,解得 t=-115 2,
则|MP0|=|t|=115 2.
[迁移探究] (变换条件,改变问法)过抛物线 y2=4x
的焦点 F 作倾斜角为34π的直线,它与抛物线交于 A,B 两点,求这两点之间的距离.
4.设直线 l 过点 A(2,-4),倾斜角为56π,则直线 l 的参数方程是________________.
x=2+tcos56π,
解析:直线
l
的参数方程为 y=-4+tsin
5 (t 6π
为参
x=2- 23t, 数),即y=-4+12t (t 为参数).
x=2- 23t,
答案: y=-4+12t
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”). (1)直线 y=2x+1 的参数方程是xy==2t-t-11,(t 为参 数).( )
x=-1+2t ,
(2)直线的参数方程为 y=2+
23t
(t 为参数),M0(-
1,2)和 M(x,y)是该直线上的定点和动点,则|t|的几何意
高中数学选修4-4第二讲——参数方程 精品优选公开课件
坐标.
x 3 2cos
y
4
2sin
PA2PB2
( 4 2 c) 2 o ( 4 s 2 s) i 2 ( n 2 2 c) 2 o ( 4 s 2 s) i 2
6 0 8 (3 c o 4 ssi)n
6 04s0in ()
练习
1、曲线
x y
1 t2 (t为参数)与x轴的交点坐标是(
4t 3
B
)
A(1,4); B (25/16, 0) C(1, -3) D(±25/16, 0)
2、方程xy csions(为参数)所表示的曲线上一点的坐标是( D ) A(2,7); B(1/3, 2/3) C(1/2, 1/2) D(1,0)
圆周运动中,当物 体绕定轴作匀速运动 时,物体上的各个点 都作匀速圆周运动,
怎样刻画运动中点 的位置呢?
y
M(x, y)
r
M0
o
x
如果在时刻t,点M转过的角度是θ,坐标是M(x, y), 那么θ=ωt. 设|OM|=r,那么由三角函数定义,有
cost x,sint y
r
r
即
xrcost yrsint
1.代入法:利用解方程的技巧求出参数t,然后代入消去参数
2.三角法:利用三角恒等式消去参数
3.整体消元法:根据参数方程本身的结构特征, 整体上消去
化参数方程为普通方程为F(x,y)=0:在消参过程中 注意变量x、y取值范围的一致性,必须根据参数的取值 范围,确定f(t)和g(t)值域得x、y的取值范围。
(1)求
y x
的最小值与最大值
(2)求x-y的最大值与最小值
高考数学(人教,理)总复习课件:选修4-4-第2节参数方程
当 θ=kπ+π2(k∈Z)时,y=0,x=±t+1t . 由于当 t>0 时,t+1t ≥2; 当 t<0 时,t+1t ≤-2,于是|x|≥2. ∴方程 y=0(|x|≥2)表示 x 轴上以(-2,0)和(2,0)为端点的 向左和向右的两条射线.
参数方程、普通方程互化的方法: (1)参数方程化为普通方程的过程就是消去参数的过程, 消参可用代入消参或利用恒等式消参等. (2)参数方程化为普通方程时,不仅要消去参数,还应注 意普通方程与原参数方程的取值范围保持一致.
M 点的坐标为xy= =452+ ×3115× 56=113465=1461
,即 M4116,34.
(3)|AB|=|t2-t1|= t1+t22-4t1t2=85 73.
1.涉及过定点的线段长度或距离常选用直线的参数方
程.(1)直线的点斜式方程为 y-y0=k(x-x0),其中 k=tan α(α≠90°) . (2)α 为 直 线 的 倾 斜 角 , 则 参 数 方 程 为
x=2cos φ, y=3sin φ
(φ 为参数),以坐标原点为极点,x 轴的正半轴
为极轴建立极坐标系,曲线 C2 的极坐标方程是 ρ=2,正方形
ABCD 的顶点都在 C2 上,且 A,B,C,D 依逆时针次序排列,
点 A 的极坐标为(2,π3).
(1)求点 A,B,C,D 的直角坐标; (2)设 P 为 C1 上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2 的取值范围.
(α 为参数),
这是点 P 轨迹的参数方程,消参得点 P 的直角坐标方程
为 x2+(y-1)2=1.
(2)直线 l 的普通方程为 x-y-1=0,曲线 C 的普通方程 为 x2+(y-2)2=4,
选修4-4参数方程
= 4(sin +cos ) 16(1+sin )
2 2
=16sin(2cos -1)>0 1 3 cos ,0 sin . 2 2 由直线参数方程中参数的几何意义知 4 |PA||PB|=|t 2 |=|t1 t 2 |= , 1||t 2 1+sin 16 <|PA||PB|<4. 7
.
的参数方程为
.
x 2cos , ( 为参数) y 2 2sin
4t x , 2 1 t (t为参数) 2 y 4t 1 t2
典型例题—直线的参数方程几何意义的运用
例3直线 l 经过点 P(2,1) ,倾斜角为 ,它与椭圆
4 cos , 6 2x+y max 4.
典型例题—求动点的轨迹方程
例6已知线段BB 4 ,直线 l 垂直平分 BB,交 BB
于点 O ,在 l 上并且以 O 为起点的同一射线上取两
点 P, P ,使 OP OP 9 ,求直线 BP 与直线 BP
典型例题—曲线上的点到定点或定直线的距离
于 A, B 两点,在椭圆C 上找一点 P ,使 ABP
x2 y2 1 例4设直线l : x 2 y 2 0 ,交椭圆 C : 9 4
分析:因为三角形一边AB为定值,故只需 面积最大 . 求AB边上的高的最大值. 解: 由椭圆的参数方程,
x y 2 1相交于A, B 两点,求 PA PB 的取值范围. 2
解: x=2+tcos , 设直线l的参数方程为 (t为参数), y=1+tsin
2
将上式代入到椭圆方程x2 +2y2 =2中, 得(2+tcos ) 2 2(1+tsin ) 2 2 整理,得(1+sin )t +4(sin +cos )t+4=0,
选修4-4 第2讲 参数方程
例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)
圆
x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.
人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程
3.参数方程x=11-+tt22,(t 为参数),化为普通方程为 y=1+2tt2
() A.x2+(y-1)2=1
B.(x-1)2+y2=1
C.(x-1)2+(y-1)2=1 D.x2+y2=1
1-t2 1-x 解析:x=1+t2,1+x=t2
代入
y=1+2tt2,
|1-(-2)+m|
则
2
=2,解得 m=-3±2 2.
类型 2 利用圆的参数方程求轨迹
[典例 2] 如图,圆 O 的半径为 2,P 是圆上的动点, Q(6,0)是 x 轴上的定点,M 是 PQ 的中点.当点 P 绕点 O 作匀速圆周运动时,求点 M 的轨迹的参数方程.
解:设点 M 的坐标为(x,y),∠POQ=θ,取 θ 为参
(2)圆(x-x0)2+(y-y0)2=r2 的参数方程为 ___xy_==__yx_00++__rr_sc_ion_s_θθ_,__(_θ_为__参__数__)_.__
温馨提示 圆的参数方程不唯一,选取的参数不同,
相应的参数方程也不同.
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”).
(1)求圆 C 的普通方程及直线 l 的直角坐标方程; (2)设圆心 C 到直线 l 的距离等于 2,求 m 的值.
解:(1)消去参数 t,得到圆的标准方程为(x-1)2+(y
+2)2=9. 由 2ρsin(θ-π4)=m,得 ρsin θ-ρcos θ-m=0. 所以直线 l 的直角坐标方程为 x-y+m=0. (2)依题意,圆心 C 到直线 l 的距离等于 2,
2.利用圆的参数方程容易解决一些与圆有关的最值 和取值范围问题.
求最值问题时,利用圆的参数方程来将问题合理地转 化,常用的方法是建立代数与三角函数的联系,利用三角 函数的值域求解,解决此类问题还要注意数形结合思想的 应用.
人教版高数选修4-4第2讲:参数方程(学生版)-word文档资料
参数方程__________________________________________________________________________________ __________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数:()()x f t y g t =⎧⎨=⎩;反过来,对于t 的每个允许值,由函数式()()x f t y g t =⎧⎨=⎩所确定的点P (x ,y )都在曲线C 上,那么方程()()x f t y g t =⎧⎨=⎩叫作曲线C 的参数方程,变量t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x 、y 中的一个与参数t 的关系,可把它代入普通方程,求另一变数与参数t 的关系,则所得的()()x f t y g t =⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t =⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数). 三.椭圆x 2a 2+y2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线 练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则y x 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8: 在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.练习1:求圆3cos ρθ=被直线22,14x t y t=+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5. 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t 为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝ ⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个.6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP 的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .011. 直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13. 已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14. 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.。
高二数学选修4-4:第二讲 一 曲线的参数方程 1.参数方程的概念
首页
上一页
下一页
末页
结束
求曲线参数方程的主要步骤 (1)画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画 图时要注意根据几何条件选择点的位置,以利于发现变量之 间的关系. (2)选择适当的参数.参数的选择要考虑以下两点:一是 曲线上每一点的坐标 x,y 与参数的关系比较明显,容易列出 方程;二是 x,y 的值可以由参数唯一确定.例如,在研究运 动问题时,通常选时间为参数;在研究旋转问题时,通常选 旋转角为参数.此外,离某一定点的“有向距离”、直线的 倾斜角、斜率、截距等也常常被选为参数. (3)根据已知条件、图形的几何性质、问题的物理意义等, 建立点的坐标与参数的函数关系式,证明可以省略.
首页
上一页
下一页
末页
结束
求曲线的参数方程
[例 2] 如图,△ABP 是等腰直角三角形, ∠B 是直角,腰长为 a,顶点 B,A 分别在 x 轴、y 轴上滑动,求点 P 在第一象限的轨迹的 参数方程.
[思路点拨] 解决此类问题关键是参数的选取.本例中由 于 A,B 的滑动而引起点 P 的运动,故可以 OB 的长为参数, 或以角为参数,此时不妨取 BP 与 x 轴正向夹角为参数来求解.
则其对应的参数 t 的值为________.
解析:由 t+1t=2,解得 t=1. 答案:1
首页
上一页
下一页
末页
结束
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a. 解:∵点 M(5,4)在曲线 C 上,∴45==a1+ t2,2t, 解得ta==21,. ∴a 的值为 1.
首页Biblioteka 上一页下一页末页结束
人教A版高中数学选修4-4:2.参数方程 教学案
第二讲 参数方程一、内容及其解析本节课要学习的内容有参数方程的概念,圆、椭圆、双曲线、抛物线及直线的参数方程形式,参数方程与普通方程的互化。
学生已经理解掌握了三角函数、解方程组、各种曲线的普通方程的形式,本节课的内容就是在此基础上的延伸与发展。
学习的重点是参数方程的概念、参数方程与普通方程的互化、圆、椭圆及直线的参数方程的形式特点,其核心是参数方程与普通方程的互化,解决核心的关键是参数方程的概念。
二、目标及其解析目标定位:1.理解参数方程的概念、理解掌握参数方程与普通方程的互化;2.了解直线、圆、椭圆的参数方程的形式特点。
目标解析:目标定位1就是理解曲线上的任一点的横坐标x 与纵坐标y 均可表示为某个变数t 的函数;将参数方程通过消参就可以得到普通方程,将x,y 同时用一个变数t 的函数来表示就是将普通方程转化为参数方程; 目标定位2就是指用一个变数t 来表示直线、圆、椭圆,并根据形式来了解方程的特点。
三、教学过程问题1.什么是参数方程?设计意图:通过案例让学生理解参数方程的概念及意义。
师生活动:1.引例: 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?救援物资做何运动?你能用物理知识解决这个问题吗?2100,1500.2x t y gt =⎧⎪⎨=-⎪⎩2.你能说说下面这个方程的特征吗?(1)有几个变量?(2)x ,y 都可以用什么来表示?(3)给定t 的一个值,方程中x ,y 的值确定吗?3.参数方程的概念:一般地, 在平面直角坐标系中,如果曲线上任意一点的坐标x, y 都是某个变数t 的函数()(2)()x f t y g t =⎧⎨=⎩并且对于t 的每一个允许值, 由方程组(2) 所确定的点M(x,y)都在这条曲线上, 那么方程(2) 就叫做这条曲线的参数方程, 联系变数x,y 的变数t 叫做参变数, 简称参数。
高中数学人教A版选修4-4课件 第二讲参数方程2.2圆锥曲线的参数方程
(������-������)2 (������-������)2 形式 .如 2 + 2 =1(a>b>0)的参数方程可表示为 ������ ������
������ = ������ + ������cos������, (φ 为参数). ������ = ������ + ������sin������
二
圆锥曲线的参数方程
学 习 目 标 思 维 脉 络 1.掌握 椭圆、双曲线、抛物 线的参数方程,了解 参数方 圆锥曲线的参数方程 椭圆的参数方程及其应用 程中参数的几何意义. 2.能够 运用椭圆、双曲线、 双曲线的参数方程及其应用 抛物线的参数方程解决简 抛物线的参数方程及其应用 单问题.
1.椭圆的参数方程
������ = ������cos������, 数方程是 ������ = ������sin������ (φ 为参数).通常规定参数 φ 的取值范围为 φ ∈ [0,2π).
������2 (2)中心在原点,焦点在 y 轴上的椭圆 2 ������
������2 (1)中心在原点,焦点在 x 轴上的椭圆 2 ������
答案:C
)
3.抛物线的参数方程 ������ = 2������������ 2 , (1)抛物线y2=2px(p>0)的参数方程为 ������ = 2������������ (t为参数,t∈(∞,+∞)). (2)参数t的几何意义是抛物线上除顶点外的任意一点与原点连线 的斜率的倒数.
做一做3 抛物线y2=7x的参数方程为( ������ = 7������, A. (t 为参数) ������ = 7������ 2
第二讲 坐标系与参数方程(选修4-4)
2.圆的极坐标方程 若圆心为M(ρ0,θ0),半径为r的圆方程为:
2 ρ2-2ρ0ρcos(θ-θ0)+ρ2 0-r =0.
几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r:ρ=r; (2)当圆心位于M(r,0),半径为r:ρ=2rcosθ;
【标准解答】
(1)设(x1,y1)为圆上的点,在已知变换
x=x1 下变为C上点(x,y),依题意,得 y=2y1
2 y y 2 2 2 2 由x 1 +y 2 1 =1得x +( ) =1,即曲线C的方程为x + = 2 4
1.
x=cost 故C的参数方程为 y=2sint
π π 3 3 故D的直角坐标为(1+cos3,sin3),即(2, 2 ).
类题通法
对于同时含有极坐标方程和参数方程的题可考虑同时 化为普通方程再求解.
x=-2t-1, 5.已知直线l: y=t-1
(t为参数)与曲线C:ρ= )
π 4 2sin(θ+ ),则直线l和曲线C的位置关系为( 4 A.相交 C.相离 B.相切 D.相交或相切
ห้องสมุดไป่ตู้例3】
(2014· 新课标卷Ⅱ)在直角坐标系xOy中,以
坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C π 的极坐标方程为ρ=2cosθ,θ∈[0, ]. 2 (1)求C的参数方程; (2)设点D在C上,C在D处的切线与直线l:y= 3 x+2
垂直,根据(1)中你得到的参数方程,确定D的坐标.
解:将曲线C1的参数方程化为普通方程,曲线C2的极 坐标方程化为参数方程后求解. (1)由曲线C1的参数方程可得曲线C1的普通方程为y= x2(x≠0),由曲线C2的极坐标方程可得曲线C2的直角坐标方 程为x+y-1=0,则曲线C2的参数方程为 x=-1- 2t, 2 2 y=2+ 2 t 得t2+ 2t-2=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省淮北市高中数学人教版选修4-4第二讲参数方程 02 参数方程姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分) (2019高一上·颍上月考) 函数()的值域是()
A .
B .
C .
D .
2. (2分)将参数方程(为参数),化为普通方程为()
A . y=x-2
B . y=x+2
C . y=x-2
D . y=x+2
3. (2分)(2012·全国卷理) 已知x+3y-1=0,则关于的说法正确的是()
A . 有最大值8
B . 有最小值
C . 有最小值8
D . 有最大值
4. (2分) (2018高二上·拉萨月考) 如下图,在同一直角坐标系中表示直线y=ax与y=x+a,正确的是()
A .
B .
C .
D .
5. (2分)已知函数的值域为则其定义域是()
A .
B .
C . (0,1)
D .
6. (2分)使 = 成立的α范围()
A . {x|2kπ﹣π<α<2kπ,k∈Z}
B . {x|2kπ﹣π≤α≤2kπ,k∈Z}
C . {x|2kπ+π<α<2kπ+ ,k∈Z}
D . 只能是第三或第四象限的角
7. (2分)参数方程(t为参数)表示()
A . 一条直线
B . 一条射线
C . 抛物线
D . 两条射线
8. (2分)已知条件p:;条件q:直线与圆相切,则p是q的()
A . 充要条件
B . 既不充分也不必要条件
C . 充分不必要条件
D . 必要不充分条件
二、填空题 (共3题;共3分)
9. (1分) (2018高二下·西安期末) 已知椭圆的参数方程为,则该椭圆的普通方程是________.
10. (1分)(2014·湖南理) 在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足| |=1,则| + + |的最大值是________.
11. (1分) (2018高二上·张家口月考) 动圆经过点,且与直线相切,则动圆圆心的轨迹方程为________.
三、解答题 (共3题;共30分)
12. (10分)(2018·银川模拟) 选修4-4:极坐标与参数方程
在极坐标系中,已直曲线 ,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1 ,又已知直线,且直线与C1交于A、B两点,(1)求曲线C1的直角坐标方程,并说明它是什么曲线;
(2)设定点 , 求的值;
13. (10分)(2018·陕西模拟) 在平面直角坐标系中,直线的方程为以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .
(1)写出直线的一个参数方程与曲线的直角坐标方程;
(2)已知直线与曲线交于两点,试求中点的坐标.
14. (10分)已知函数f(x)=sin2x﹣2a(sinx+cosx)+a2 ,
(1)当a=2时,求函数f(x)的最小值;
(2)若函数f(x)的最小值为g(a),无论a为何值g(a)≥m恒成立,求m的取值范围.
参考答案
一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
三、解答题 (共3题;共30分)
12-1、
12-2、13-1、13-2、14-1、
14-2、。