1平面直角坐标系(提高)知识讲解
平面直角坐标系1
平面直角坐标系一、知识点概述1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、已知点的坐标找出该点的方法:分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x轴y轴的的垂线,两垂线的交点即为要找的点。
3、已知点求出其坐标的方法:由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是改点的横坐标,垂足在y轴上的坐标是该点的纵坐标。
4、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;5、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
6、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号7、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。
8、点P(x,y)的几何意义:点P(x,y)到x轴的距离为|y|,点P(x,y)到y轴的距离为|x|。
9、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点( x-a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。
第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)
第1课时—平面直角坐标系(答案卷)知识点一:有序数对:1.有序数对的概念:由两个数a与b组成的数对。
记做。
2.有序数对的应用:利用有序数对可以表示物体的位置。
表示方法有:定位法;定位法;定位法;定位法。
【类型一:有序数对的理解】1.张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.(4、3)B.3,4C.(3,4)D.(4,3)2.如图是小唯关于诗歌《望洞庭》的书法展示,若“湖”的位置用有序数对(2,3)表示,那么“螺”的位置可以表示为()A.(5,8)B.(5,9)C.(8,5)D.(9,5)3.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)【类型二:用有序数对表示位置】4.以下能够准确表示渠县地理位置的是()A.离达州市主城区73千米B.在四川省C.在重庆市北方D.东经106.9°,北纬30.8°5.下列不能确定点的位置的是()A.东经122°,北纬43.6°B.礼堂6排22号C.地下车库负二层D.港口南偏东60°方向上距港口10海里6.下列数据不能确定物体位置的是()A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°7.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A,B,C的位置如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇B相对于游船的位置可表示为(﹣60°,2),小艇C相对于游船的位置可表示为(0°,﹣1)(向东偏为正,向西偏为负),下列关于小艇A相对于游船的位置表示正确的是()A.小艇A(30°,3)B.小艇A(﹣30°,3)C.小艇A(30°,﹣3)D.小艇A(60°,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是()嘉嘉:目标B的位置为(3,210°);琪琪:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确知识点二:平面直角坐标系:1.平面直角坐标系的概念:如图:平面内,两条相互,且的数轴组成平面直角坐标系。
平面直角坐标系综合讲解
A
O
B
x
2. ( 2013• 东 营 , 6 , 3 分 ) 若 定 义 : f (a, b) (a, b) ,
g (m, n) (m, n) , 例 如
) D. (2, 3)
f (1, 2) ( 1, 2) , g (4, 5) (4,5) ,则 g ( f (2, 3)) =(
平面直角坐标系 本章知识梳理
一、本章的主要知识点 (一)有序数对:有顺序的两个数 a 与 b 组成的数对,记作(a ,b) ; 注意:a、b 的先后顺序对位置的影响。 (二)平面直角坐标系 1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ; 2、构成坐标系的各种名称; 3、各种特殊点的坐标特点。 (三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移。 二、平行于坐标轴的直线的点的坐标特点: 平行于 x 轴(或横轴)的直线上的点的纵坐标相同; 平行于 y 轴(或纵轴)的直线上的点的横坐标相同。 三、各象限的角平分线上的点的坐标特点: 第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。 四、与坐标轴、原点对称的点的坐标特点: 关于 x 轴对称的点的横坐标相同,纵坐标互为相反数 关于 y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标: 坐标轴上 点 P(x,y) X 轴 (x,0) Y 轴 (0,y) 原 点 (0,0) 点 A、点 B 连线平行(垂 直)于坐标轴的点 平行 X 轴 平行 Y 轴 (垂直 Y 轴) (垂直 X 轴) A、 ( ,y) A、 (x, ) B、 ( ,y) B、 (x, ) 点 P(x,y)在各象限 的坐标特点 第一 象限 x>0 y>0 第二 象限 x<0 y>0 第三 象限 x<0 y<0 第四 象限 x>0 y<0 象限角平分线上 的点 第一、 三象限 (m,m) 第二、 四象限 (m,-m)
坐标平面内图形的轴对称和平移(提高) 知识讲解
坐标平面内图形的轴对称和平移(提高)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化. 【典型例题】类型一、用坐标表示轴对称1.在直角坐标系中,已知点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.【思路点拨】(1)根据在平面直角坐标系中,关于y 轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a ,b 即可解答本题;(2)根据点B 关于x 轴的对称的点是C ,得出C 点坐标,进而利用三角形面积公式求出即可.【答案与解析】解:(1)∵点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称,∴2250a b aa b a -=-⎧⎨++-=⎩,解得:13a b =⎧⎨=⎩, ∴点A 、B 的坐标分别为:(4,1),(-4,1);(2)∵点B关于x轴的对称的点是C,∴C点坐标为:(-4,-1),∴△ABC的面积为:12×BC×AB=12×2×8=8.【总结升华】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.举一反三:【变式】小华看到了坐标系中点B关于X轴的对称点为C(-3,2),点A关于Y轴对称点为D(-3,4),若将A、B、C、D顺次连接,此图形的面积是多少?【答案】解:∵B关于x轴的对称点为C(-3,2),∴B(-3,-2),∵点A关于y轴对称点为D(-3,4),∴A(3,4),∴△ABD的面积为:12×AD×DB=12×6×6=18.2.已知点A(a,3)、B(-4,b),试根据下列条件求出a、b的值.(1)A、B两点关于y轴对称;(2)A、B两点关于x轴对称;(3)AB∥x轴;(4)A、B两点在第二、四象限两坐标轴夹角的平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数.(2)关于x轴对称,x不变,y变为相反数.(3)AB∥x轴,即两点的纵坐标不变即可.(4)在二、四象限两坐标轴夹角的平分线上的点的横纵坐标互为相反数,即分别令点A,点B的横纵坐标之和为0,列出方程并解之,即可得出a,b.【答案与解析】解:(1)A、B两点关于y轴对称,故有b=3,a=4;(2)A、B两点关于x轴对称;所以有a=-4,b=-3;(3)AB∥x轴,即b=3,a为≠-4的任意实数.(4)如图,根据题意,a+3=0;b-4=0;所以a=-3,b=4.【总结升华】本题主要考查学生对点在坐标系中的对称问题的掌握;在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.类型二、用坐标表示平移3.如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为.【思路点拨】(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【答案与解析】解:(1)A′为(4,0)、B′为(1,3)C′为(2,﹣2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.【总结升华】此题主要考查了坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)举一反三:【变式】(大庆校级模拟)如图所示,△COB是由△AOB经过某种变换后得到的图形,观察点A与点C的坐标之间的关系,解答下列问题:(1)若点M的坐标为(x、y),则它的对应点N的坐标为.(2)若点P(a,2)与点Q(﹣3,b)关于x轴对称,求代数式…的值.【答案】解:(1)由图象知点M和点N关于x轴对称,∵点M的坐标为(x、y),∴点N的坐标为(x,﹣y);(2)∵点P(a,2)与点Q(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴…=+++…+,=﹣+﹣+…+,=﹣,=.类型三、综合应用4. 如图是某台阶的一部分,如果建立适当的坐标系,使A点的坐标为(0,0),B点的坐标为(1,1)(1)直接写出C,D,E,F的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?【思路点拨】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可;(2)利用平移的性质求出横向与纵向的长度,然后求解即可.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.。
1平面直角坐标系
证法二(向量法)
在 ▱ABCD 中 ,������������ = ������������ + ������������ , 两边平方得������������ 2 =|������������ |2=|������������ |2+|������������ |2+2������������ ·������������ , 同理得������������ 2 =|������������ |2=| ������������|2+|������������ |2+2������������ ·������������ , 以上两式相加,得 |������������ |2+|������������ |2=2(| ������������ |2+| ������������ |2)+2������������ · (������������ + ������������)=2(|������������|2+| ������������ |2), 即 |AC|2+|BD|2=2(|AB|2+|AD|2).
思考辨析 判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打 “×”. (1)若曲线C上的点都是方程f(x,y)=0的解,则曲线C是方程f(x,y)=0的 曲线. ( × ) (2)以方程x2+y2=4的解为坐标的点都是曲线“在y轴右侧到原点的 距离等于2的点的集合”上的点. ( × ) (3)已知等腰三角形ABC的底边为AB,且A(-1,1),B(3,7),则顶点C的轨 迹方程为2x+y-5=0. ( × ) (4)方程(x-a)2+(y-b)2=r2的曲线经过点(1,2)的充要条件是(1-a)2+(2b)2=r2. ( ) √
《平面直角坐标系(复习)》课件 (1)
横坐标写在前, 2叫做点A的纵坐标 纵坐标写在后, 中间用逗号隔开 A点在平面内的坐标为(3, 2)
· 方法:先横后纵
x 横轴
-4
D
-2 -3
-4
E (5,-4)
(-3,-3)
纵轴
y 5
第二象限
4
3 2 1
(- ,+)
-4 -3 -2
第一象限 ( +, +)
横轴 x
-1 0 -1
-2 -3
1
2
3
4
例2、描出下列各点:A(4,3),B(-2,3), C(-4,-1),D(2,-2)。
纵轴 y 5 4 3
B
·
-1
A
2
1
·
4 5 x 横轴
C
-4
·
-3
-2
0 -1
-2
1
2
3
-3
-4
· D
练习:
1、 M为X轴上方的点,到X轴距离 为5,到Y 的距离为3,则M点的坐 标为( D )。 A(5,3) B(-5,3)或(5,3) C(3,5) D(-3,5)或(3,5)
横坐标
关于X轴对称
纵坐标
y1= -y2
x1=x2 x1= - x 2
x1= - x 2
关于Y轴对称
关于原点对称
y1= y 2
y1= -y2
做一做:
1 点P(1,2)关于Y轴的对 称点P1的坐标是(-1,2)
2 点P(1,2)关于X轴的对 称点P2的坐标是(1,-2)
3 点P(1,2)关于原点的 (-1,-2) 对称点P1的坐标是
5
第三象限 ( -, -)
第1章 1 平面直角坐标系
§1平面直角坐标系1.坐标系(1)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系.(2)坐标法解决几何问题的“三步曲”:第一步,建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化成代数问题;第二步,通过代数运算,解决代数问题;第三步,把代数运算结果“翻译”成几何结论. 2.平面直角坐标系的作用平面直角坐标系的作用:使平面上的点与坐标(有序实数对),曲线与方程建立联系,从而实现数与形的结合. 3.平面直角坐标系中的伸缩变换(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归结为坐标伸缩变换,这就是用代数方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 【思维导图】【知能要点】1.回顾坐标系有关概念,体会坐标系的作用.2.了解建立坐标系的方法和原则.3.坐标伸缩变换φ:⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0.题型一平面直角坐标系坐标系是现代数学中的重要内容,它在数学发展的历史上起过划时代的作用.坐标系的创建,在代数和几何之间架起了一座桥梁.利用坐标系,我们可以方便地用代数的方法确定平面内一个点的位置,也可以方便地确定空间内一个点的位置.它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将抽象的代数方程用形象的几何图形表示出来,又可将先进的代数方法应用于几何学的研究.建立直角坐标系,数形结合,我们可以解决许多数学问题,如函数问题就常常需要借助直角坐标系来解决.【例1】如图所示,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得|PM|=2|PN|,试建立适当的坐标系,求动点P的轨迹方程.分析本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:|PM|=2|PN|,即|PM|2=2|PN|2,结合图形由勾股定理转化为|PO1|2-12=2(|PO2|2-12).设P(x,y),由距离公式写出代数关系式,化简整理可得. 解以O1O2的中点O为原点,O1O2所在的直线为x轴,建立如图所示的平面直角坐标系,则O1(-2,0),O2(2,0).由已知|PM|=2|PN|,得|PM|2=2|PN|2.因为两圆的半径均为1,所以|PO1|2-1=2(|PO2|2-1).设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],即(x-6)2+y2=33,所以所求轨迹方程为(x-6)2+y2=33(或x2+y2-12x+3=0).【反思感悟】本题求点的轨迹,考查建坐标系和数形结合思想,利用勾股定理、两点间距离公式等知识,巧妙探求动点P满足的条件.1.一种作图工具如图①所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图②所示的平面直角坐标系. 试求曲线C 的方程.解 设点D (t ,0)(|t |≤2),N (x 0,y 0),M (x ,y ),依题意,MD →=2DN →,且|DN →|=|ON →|=1,所以(t -x ,-y )=2(x 0-t ,y 0),且⎩⎨⎧(x 0-t )2+y 20=1,x 20+y 20=1.即⎩⎨⎧t -x =2x 0-2t ,y =-2y 0,且t (t -2x 0)=0. 由于当点D 不动时,点N 也不动,所以t 不恒等于0, 于是t =2x 0,故x 0=x 4,y 0=-y 2.代入x 20+y 20=1, 可得x 216+y 24=1,即所求的曲线C 的方程为x 216+y 24=1.【例2】 如图所示,四边形ABCD 的四个顶点坐标分别为 A (-1,3),B (-3,-2),C (4,-2),D (3,4),求四边形ABCD 的面积.分析 本例是帮助同学们进一步了解点的坐标.点的坐标还可以表示点到坐标轴的距离(点A (a ,b )到x 轴的距离为|b |,到y 轴的距离为|a |),从而得出某些我们需要的线段的长度.将四边形ABCD 分割成两个三角形和一个梯形,其中BE 的长度等于B 到y 轴的距离减去A 到y 轴的距离,AE 的长度为A 到x 轴的距离加上B 到x 轴的距离,依此类推可以求出DF ,CF ,EF 的长度,从而求出四边形ABCD 的面积.解 作AE ⊥BC ,DF ⊥BC .垂足分别为E 、F .S △ABE =12·BE ·AE =2×52=5;S △CDF =CF ·DF 2=1×62=3; S 梯形AEFD =(AE +DF )·EF 2=(5+6)×42=22, 所以四边形ABCD 的面积为5+22+3=30.【反思感悟】 本例是坐标系在几何图形中的应用,在求面积时要尽量利用图形中的垂直关系,将原图形分割求得面积.2.一直角梯形的上、下底边分别为12和15,两腰分别为33和6,选择适当的坐标系,表示各顶点坐标及较短对角线的长.解 如图所示,以D 为原点,CD 边所在直线为x 轴,建立平面直角坐标系,则A (0,33),B (12,33),C (15,0),D (0,0), |BD |=319.题型二 坐标伸缩变换平面几何图形的伸缩变换可以归结为坐标的伸缩变换,学习中可结合坐标间的对应关系理解.在伸缩变换下,平面直角坐标系保持不变,在同一坐标系下对坐标进行伸缩变换,展示了坐标法思想.在伸缩变换下,直线仍然变为直线,抛物线变为抛物线,双曲线变为双曲线,而椭圆可以变为圆,圆可以变为椭圆.【例3】 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 后的图形.(1)5x +2y =0;(2)x 2+y 2=1.分析 根据变换公式,分清新旧坐标即可.解 (1)由伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y ,得⎩⎨⎧x =2x ′,y =3y ′.将其代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x ′+3y ′=0. 经过伸缩变换后,直线仍然是直线. (2)将⎩⎨⎧x =2x ′,y =3y ′代入x 2+y 2=1,得到经过伸缩变换后的图形的方程是x ′214+y ′219=1.经过伸缩变换后,圆变成了椭圆.【反思感悟】 伸缩变换要分清新旧坐标,直接利用公式即可,变换后的新坐标用x ′,y ′表示.3.伸缩变换的坐标表达式为⎩⎨⎧x ′=x ,y ′=4y .曲线C 在此变换下变为椭圆x ′2+y ′216=1.求曲线C 的方程.解 设P (x ,y )为曲线C 上任意一点.把⎩⎨⎧x ′=x ,y ′=4y 代入x ′2+y ′216=1,得x 2+y 2=1.故曲线C 的方程为x 2+y 2=1. 【例4】 求满足下列图形变换的伸缩变换:由曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1.分析 求满足图形变换的伸缩变换,实际上是求出其变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数就可得了,椭圆伸缩变换之后可得圆或椭圆.解 设变换为⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0,可将其代入第二个方程,得λ2x 2+μ2y 2=1.与4x 2+9y 2=36比较,将其变为436x 2+936y 2=1,即19x 2+14y 2=1,比较系数得⎩⎪⎨⎪⎧λ=13,μ=12.∴⎩⎪⎨⎪⎧x ′=13x ,y ′=12y ,即将椭圆4x 2+9y 2=36上的所有点横坐标变为原来的13,纵坐标变为原来的12,可得到圆x ′2+y ′2=1.【反思感悟】 对于图形的伸缩变换问题,只要搞清新旧坐标,区别x ,y 和x ′,y ′,比较公式中的系数即可.4.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足图像变化的伸缩变换. 解 x 2-36y 2-8x +12=0可化为 ⎝ ⎛⎭⎪⎫x -422-9y 2=1.① x ′2-y ′2-4x ′+3=0可化为 (x ′-2)2-y ′2=1.②比较①②两式得x ′-2=x -42,y ′=3y .故所求伸缩变换为:⎩⎪⎨⎪⎧x ′=12x ,y ′=3y .1.已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且AM ∶MB =1∶2,求动点M 的轨迹方程. 解 (代入法)设A (a ,0),B (0,b ),M (x ,y ), ∵|AB |=6,∴a 2+b 2=36.①M 分AB -的比为12.∴⎩⎪⎨⎪⎧x =a +12×01+12=23a ,y =0+12b1+12=13b .⇒⎩⎪⎨⎪⎧a =32x ,b =3y .②将②式代入①式,化简为x 216+y 24=1.2.已知B 村位于A 村的正西方向1公里处,原计划经过B 村沿着北偏东60°的方向埋设一条地下管线m .但在A 村的西北方向400米处,发现一古代文物遗址W .根据初步勘察的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?解 解决这一问题的关键,在于确定遗址W 与地下管线m 的相对位置,如图所示,以A 为原点,正东方向和正北方向分别为x 轴和y 轴的正方向,建立平面直角坐标系,则A (0,0),B (-1 000,0).由W 位于A 的西北方向及|AW |=400,得W (-2002,2002),由直线m 过B 点且倾斜角为90°-60°=30°,得直线m 的方程是x -3y +1 000=0.于是,点W 到直线m 的距离为|-2002-3·2002+1 000|2=100(5-2-6)≈113.6>100,所以,埋设地下管线m 的计划可以不修改.3.阐述由曲线y =tan x 得到曲线y =3tan 2x 的变化过程,并求出坐标伸缩变换. 解 y =tan x 的图像上点的纵坐标不变,横坐标缩短为原来的12,得到y =tan 2x ,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y =3tan 2x . 设y ′=3tan 2x ′,变换公式为⎩⎨⎧x ′=λx ,λ>0,y ′=μy ,μ>0.将其代入y ′=3tan 2x ′得⎩⎪⎨⎪⎧λ=12,μ=3,∴⎩⎪⎨⎪⎧x ′=12x ,y ′=3y .[P 2思考交流]1.在平面直角坐标系中,圆心坐标为(2,3),5为半径的圆的方程是什么? 答 (x -2)2+(y -3)2=25.2.在平面直角坐标系中,以(a ,b )为圆心,r 为半径的圆的方程是什么? 答 (x -a )2+(y -b )2=r 2. [P 5思考交流]我国1990年至2000年的国内生产总值如表1-2(单位:亿元)表1—2特点. 答 统计图从表中统计数据可看到,我国的生产总值年年增长,1994~1997年增长较快,1997~2001年放慢了增长速度,2001年之后又以较快的速度增长. [P 6思考交流]1.观察例3(2)中y =sin x 的图像与(1)中y =2sin 3x 的图像,讨论它们的关系?答 y =sin x 的图像和y =2sin 3x 的图像可以通过伸缩变换相互得到: y =sin x 的图像――————————————→纵坐标不变横坐标缩短为原来的13得y =sin 3x 的图像―——————————―→横坐标不变纵坐标伸长为原来的2倍得y =2sin 3x 的图像. y =2sin 3x 的图像横坐标不变纵坐标缩短为原来的12得y =sin 3x 的图像.纵坐标不变横坐标伸长为原来的3倍得y =sin x 的图像 2.试将上述讨论引申为坐标轴单位长度任意伸缩的情况.答 设函数y =f (x )与函数y =μf (ωx )(其中ω>0,μ>0)图像之间的关系为:y =μf (ωx )的图像.它们的图像可以通过伸缩变换相互得到. 【规律方法总结】1.建立平面直角坐标系,可以利用未知点满足条件的坐标形式,求点的轨迹方程.2.利用平面直角坐标系,可以将平面图形坐标化,进行证明或计算.3.在伸缩变换中,要分清新旧坐标,然后代入公式比较系数即可.4.在伸缩变换⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,抛物线变为抛物线,双曲线变为双曲线,圆可以变为椭圆,椭圆可以变成圆,我们可以把圆作为椭圆的特例.一、选择题1.▱ABCD 中三个顶点A 、B 、C 的坐标分别是(-1,2)、(3,0)、(5,1),则点D 的坐标是( ) A.(9,-1) B.(-3,1) C.(1,3)D.(2,2)解析 由平行四边形对边互相平行,即斜率相等,可求出D 点坐标.设D (x ,y ),则⎩⎪⎨⎪⎧k AB =k DC ,k AD =k BC ,即⎩⎪⎨⎪⎧2-0-1-3=y -1x -5,2-y -1-x =0-13-5. ∴⎩⎪⎨⎪⎧x =1,y =3.,故D (1,3). 答案 C2.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图像,只需将函数y =sin 4x 的图像( )A.向左平移π12个单位 B.向右平移π12个单位 C.向左平移π3个单位D.向右平移π3个单位解析 由y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin 4⎝ ⎛⎭⎪⎫x -π12得,只需将y =sin 4x 的图像向右平移π12个单位即可,故选B. 答案 B3.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线x ′2+4y ′2=1,则曲线C 的方程为( ) A.25x 2+36y 2=1 B.9x 2+100y 2=1 C.10x +24y =1D.225x 2+89y 2=1解析 将⎩⎪⎨⎪⎧x ′=5x ,y ′=3y代入x ′2+4y ′2=1, 得25x 2+36y 2=1,为所求曲线C 的方程.答案 A4.将一个圆作伸缩变换后所得到的图形不可能是( )A.椭圆B.比原来大的圆C.比原来小的圆D.双曲线 解析 设圆的方程为(x -a )2+(y -b )2=r 2,变换为⎩⎪⎨⎪⎧x ′=λx ,y ′=μy ,化为⎩⎪⎨⎪⎧x =1λx ′,y =1μy ′,(λ,μ不为零). ⎝ ⎛⎭⎪⎫1λx ′-a 2+⎝ ⎛⎭⎪⎫1μy ′-b 2=r 2, 1λ2(x ′-λa )2+1μ2(y ′-μb )2=r 2, ∴(x ′-λa )2(λr )2+(y ′-μb )2(μr )2=1.此方程不可能是双曲线.答案 D二、填空题5.△ABC 中,B (-2,0),C (2,0),△ABC 的周长为10,则A 点的轨迹方程为__________.解析 ∵△ABC 的周长为10,∴|AB |+|AC |+|BC |=10.其中|BC |=4,即有|AB |+|AC |=6>4.∴A 点轨迹为椭圆除去长轴两端点,且2a =6,2c =4.∴a =3,c =2,b 2=5.∴A 点的轨迹方程为x 29+y 25=1 (y ≠0).答案 x 29+y 25=1 (y ≠0)6.在平面直角坐标系中,方程x 2+y 2=1所对应的图形经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后的图形所对应的方程是____________.解析 代入公式,比较可得x ′24+y ′29=1.答案 x ′24+y ′29=17.y =cos x 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y后曲线方程变为________. 解析由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,化为⎩⎪⎨⎪⎧x =12x ′,y =13y ′, 代入y =cos x 中得:13y ′=cos 12x ′,即:y ′=3cos 12x ′.答案 y ′=3cos 12x ′8.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区内的时间为________h.解析 以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,则B (40,0),以点B 为圆心,30为半径的圆的方程为(x-40)2+y 2=302,台风中心移动到圆B 内时,城市B 处于危险区,台风中心移动的轨迹为直线y =x ,与圆B 相交于点M ,N ,点B 到直线y =x 的距离d =402=20 2. 求得|MN |=2302-d 2=20(km), 故|MN |20=1,所以城市B 处于危险区的时间为1 h. 答案 1三、解答题9.已知▱ABCD ,求证:|AC |2+|BD |2=2(|AB |2+|AD |2).证明 法一 坐标法 以A 为坐标原点O ,AB 所在的直线为x 轴,建立平面直角坐标系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则AC 的中点E ⎝ ⎛⎭⎪⎫b 2,c 2,由对称性知D (b -a ,c ),所以|AB |2=a 2,|AD |2=(b -a )2+c 2,|AC |2=b 2+c 2,|BD |2=(b -2a )2+c 2,|AC |2+|BD |2=4a 2+2b 2+2c 2-4ab=2(2a 2+b 2+c 2-2ab ),|AB |2+|AD |2=2a 2+b 2+c 2-2ab ,∴|AC |2+|BD |2=2(|AB |2+|AD |2).法二 向量法 在▱ABCD 中,AC→=AB →+AD →, 两边平方得AC →2=|AC →|2=AB →2+AD →2+2AB →·AD→, 同理得BD →2=|BD →|2=BA →2+BC →2+2BA →·BC→, 以上两式相加,得|AC →|2+|BD →|2=2(|AB →|2+|AD →|2)+2BC →·(AB→+BA →) =2(|AB→|2+|AD →|2), 即|AC |2+|BD |2=2(|AB |2+|AD |2).10.通过平面直角坐标系中的平移变换与伸缩变换,可以把椭圆(x -1)29+(y +2)24=1变为中心在原点的单位圆,求上述平移变换与伸缩变换,以及这两种变换的合成变换.解 先通过平移变换⎩⎨⎧x ′=x -1,y ′=x +2把椭圆(x -1)29+(y +2)24=1变为椭圆x ′29+y ′24=1.再通过伸缩变换⎩⎪⎨⎪⎧x ″=x ′3,y ″=y ′2把椭圆x ′29+y ′24=1变为单位圆x ″2+y ″2=1.由上述两种变换合成的变换是⎩⎪⎨⎪⎧x ″=13(x -1),y ″=12(y +2).习题1-1 (第7页)A 组1.由两点式写直线的方程为35x +36y -41=0.2.直线x 6+y 4=-2与x 轴、y 轴的交点坐标以及直线的斜率分别为(-12,0)、(0,-8)、-23.3.解 △ABC 是以∠A 为直角的直角三角形,且AB 平行于x 轴,AC 平行于y 轴. ∴∠A 的平分线的斜率为1,所在直线方程为x -y +1=0.BC 所在直线的方程为4x +3y -29=0,解⎩⎨⎧x -y +1=0,4x +3y -29=0,得⎩⎪⎨⎪⎧x =267,y =337.∠A 的平分线的长为1227.4.解 法一 由两点式写出直线AB 的方程为3x +y -6=0.将点C (4,-6)代入方程3×4+(-6)-6=0,点C 在直线AB 上,∴A 、B 、C 在同一条直线上.法二 ∵k AB =-3,k BC =-3∴A 、B 、C 三点在同一条直线上.5.解 与x 轴交点 令y =0,2x -10=0,x =5,与y 轴交 点令x =0,-5y -10=0,y =-2,S △=12×5×2=5.6.证明 如图:矩形OABC .设OA =a ,OC =b ,以O 为原点建立如图所示的直角坐标系.则O 、A 、B 、C 的坐标分别为(0,0),(a ,0),(a ,b ),(0,b )|OB |=a 2+b 2, |AC |=b 2+(-a )2=a 2+b 2,∴|OB |=|AC |.结论得证.7.解 (1)设圆的方程为(x -a )2+y 2=r 2代入C 、D 两点得⎩⎨⎧(-1-a )2+1=r 2,(1-a )2+9=r 2,解得a =2,r =10,∴方程为(x -2)2+y 2=10(2)设圆心为(0,b )m则5=|b -6|,b =1或11,∴方程为x 2+(y -1)2=25或x 2+(y -11)2=25.(3)设方程为(x -a )2+(y -b )2=r 2,∵过A 、B 两点,圆心在2x -y =3上,∴⎩⎨⎧(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,2a -b =3,解得a =2,b =1,r =10.∴方程为(x -2)2+(y -1)2=10.(4)设圆方程为(x -a )2+(y -b )2=r 2, 由题意可得⎩⎨⎧(3-a )2+(2-b )2=r 2,b =2a ,r =|2a -b +5|1+4,解得:⎩⎨⎧a =2,b =4或⎩⎪⎨⎪⎧a =45,b =85,r =5, ∴圆的方程为(x -2)2+(y -4)2=5或⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=5, 图略.8.解 以底边中点为原点,底边所在直线为x 轴建立平面直角坐标系.设△ABC ,底边BC =8,高为AD =5,则B (-4,0),C (4,0),D (0,0),A (0,5),设圆的方程为(x -a )2+(y -b )2=r 2则⎩⎨⎧(-4-a )2+b 2=r 2,(4-a )2+b 2=r 2,a 2+(5-b )2=r 2,得a =0,b =910,r 2=412100,∴圆方程为x 2+⎝ ⎛⎭⎪⎫y -9102=1 681100. 9.解 |A 1F 1|+|A 2F 1|=2+14=16=2a ,a =8,F 1(-6,0),F 2(6,0),c =6,∴b 2=28.∴椭圆标准方程为x 264+y 228=1.10.解 (1)由题意知a 2=8,b 2=5,椭圆方程为x 28+y 25=1.(2)由题意知a =3b当焦点在x 轴上时a =3,b =1,椭圆方程:x 29+y 21=1;当焦点在y 轴上时b =3,a =9,椭圆方程:x 29+y 281=1.(3)由题意知c =23,设椭圆方程为x 2a 2+y 2b 2=1,P (5,-6)在椭圆上.∴⎩⎪⎨⎪⎧5a 2+6b 2=1,a 2-b 2=12,解得a 2=20,b 2=8, ∴椭圆方程为x 220+y 28=1.11.略B 组1.证明 ∵圆直径的端点是A (x 1,y 1),B (x 2,y 2)∴圆心坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 半径为(x 1-x 2)2+(y 1-y 2)22∴圆的方程为⎝ ⎛⎭⎪⎫x -x 1+x 222+⎝⎛⎭⎪⎫y -y 1+y 222 =(x 1-x 2)2+(y 1-y 2)24, x 2-x (x 1+x 2)+(x 1+x 2)24+y 2-y (y 1+y 2)+(y 1+y 2)42=(x 1-x 2)2+(y 1-y 2)24, x 2-x (x 1+x 2)+(x 1+x 2)24-(x 1-x 2)24+y 2-y (y 1+y 2)+(y 1+y 2)24-(y 1-y 2)24=0, x 2-x (x 1+x 2)+x 1x 2+y 2-y (y 1+y 2)+y 1y 2=0,(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,∴圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.2.解 由⎩⎨⎧(x -3)2+(y -5)2=4,⎝ ⎛⎭⎪⎫x -322+(y -5)2=1得x -54=0,∴直线方程为x -54=0.3.解 以地球球心与距地最近点所在直线为x 轴,以最近点与最远点的中点为原点建立平面直角坐标系.则2a =6 636+8 196=14 832,a =7 416,a 2=54 997 056,c =8 196-7 416=780,∴b 2=54 388 656.∴椭圆方程为x 254 997 056+y 254 388 656=1.。
1平面直角坐标系课件(1)
• 2 画第二、四象限角平分线,在角平分线上、角平分线上方 和下方分别取两个点,写出这些点的坐标,你能发现什么规 律?
• 3.练习册15.1(1) • 4.堂堂练15.1(1)
谢
谢
15.1(1)平面直角坐标系
•数轴上的点和实数有怎样的关系? •数轴上的点和实数是一一对应的关系. • 怎样建立平面上的点与实数之间的联系呢?
• 可以考虑用“数对”来表示平面内的点. • 在平面内取一点O,过点O画两条互相垂直的数轴,且 使它们以O为公共原点,这样就在平面内建立了一个直 角坐标系.
• 在x轴上方的点的纵坐标大于零, • 在x轴下方的点的纵坐标小于零, • 在x轴上的点的纵坐标等于零.
• 例题2 在直角坐标平面内,横 坐标和纵坐标都是整数的点叫 做格点,顶点都是格点的三角 形叫做格点三角形.如图,已
知格点A(-2,-81),请-6 画一 -4 个格点三角形,使点A在它的内
部,且这个三角形的面积最小, 并写出这个三角形各个顶点的 坐标.
• 水平放置,正方向向右,横轴, • 铅直放置,正方向向上,纵轴, • 如右图记作平面直角坐标系xOy, • 点O叫做坐标原点,简称原点, • x轴和y轴统称为坐标轴.
• 建立了直角坐标系的平面叫做直角坐标平面, 简称坐标平 面.这样,本来平面内的点都可以用有序实数对表示.
• 例题1 在直角坐标平面内取点A,写出表示点A的“数 对”.
A
-2
y4
3 2 1
O
-1 -2 -3
2Hale Waihona Puke 4x• 练习1 课本p125 第1题、第2题
• 练习2 如图,已知格点A
平面直角坐标系1
作业:课本第5、6页习题1、2、3.
1
2
3
E ·
· D
坐标平面内的点 与一对有序实数一一 对应
本节课我们学习了平面直角坐标系。 学习本节我们要掌握以下三方面的内容: 1、能够正确画出直角坐标系。 2、能在直角坐标系中,根据坐标找出点, 由点求出坐标。 3、掌握x轴,y轴上点的坐标的特点: x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
F点在x轴上,它的 纵坐标为0,任何一个在 x轴上的点的纵坐标都为0。
同样:任何一个在y轴 上的点的横坐标为0。
例2、在直角坐标系中,描出下列各点:A(4,3), B(-2,3),C(-4,-1),D(2,-2),E(0,-3)
y 5
B
·
-1
4 3 2 1
A
·
4 5 x
C
-4
·
-3
-2
0 -1 -2 -3 -4
同理可知,点B在数轴 上的坐标是 -3 ;点C在数 轴上的坐标是 2.5 ;点D在 数轴上坐标是 0 .
怎样确定北京市在地图中的位置
确定你在班级中的位置
10 8 *** 6
行
m(4,6)
4
2
·
4
0
讲台
1
2
3
5 列
(纵轴) y 5 第二象限 4 3 2 1 -4 -3 -2 原点 第三象限 -1 0 -1 -2 -3 -4 第四象限 1 2 第一象限
x
-2 -3
-4
例1、写出图中A、B、C、D、E、F各点的坐标。
y 5 坐标是一对 有序实数。
4
( -2,1 ) 3 2 1 0 -1 -2 -3 1
7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?
四
三
二
一
(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.
二
2
-2
三
-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限
轴
轴
+
+
-
+
-
-
+
-
纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>
平面直角坐标系知识讲解
平面直角坐标系知识讲解【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系及点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对表示位置1.如图是小刚的一张笑脸,他对妹妹说:如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成().A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)【思路点拨】由(0,2)表示左眼,用(2,2)表示右眼,可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定嘴的位置.【答案】A.【解析】解:根据(0,2)表示左眼,用(2,2)表示右眼,可得嘴的坐标是(1,0),故答案为A.【总结升华】此题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.举一反三:【变式】下列数据不能表示物体位置的是().A.5楼6号B.北偏东30°C.希望路20号D.东经118°,北纬36°【答案】B (提示A. 5楼6号,是有序数对,能确定物体的位置;B.北偏东30°,不是有序数对,不能确定物体的位置;C.希望路20号,“希望路”相当于一个数据,是有序数对,能确定物体的位置;D.东经118°北纬36°,是有序数对,能确定物体的位置.)类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A,B,C,D各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A为坐标原点,边AB所在的直线为x轴,边AD所在直线为y轴,建立平面直角坐标系,如图(1):A(0,0),B(5,0),C(5,3), D (0,3).解法二:以边AB的中点为坐标原点,边AB所在的直线为x轴,AB的中点和CD的中点所在的直线为y轴,建立平面直角坐标系,如图(2):A(﹣2.5,0),B(2.5,0),C(2.5,3), D (-2.5,3).解法三:以两组对边中点所在直线为x轴、y轴,建立平面直角坐标系,如图(3):A(﹣2.5,-1.5),B(2.5,-1.5),C(2.5,1.5), D (-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x轴和y轴确定,每一个点的位置也确定,而一旦原点或x轴、y轴改变,每一个点的位置也相对应地改变.举一反三:【变式】点A(m,n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).3.平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A 、C 分别作平行于y 轴的直线与过B 点平行于x 轴的直线交于点D 、E ,则四边形ACED 为梯形,根据点A(-3,-1)、B(1,3)、C(2,-3)可求得AD =4,CE =6,DB =4,BE =1,DE =5,所以△ABC 的面积为:. 【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三:111()222ABC S AD CE DE AD DB CE BE =+--△111(46)5446114222=+⨯-⨯⨯-⨯⨯=【变式】如图所示,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),……,则点A 2008的坐标为________.【答案】(-502,-502).类型三、坐标平面及点的特征4. 在平面直角坐标系中,点(﹣1,m +1)一定在第________象限.【思路点拨】根据点在第二象限的坐标特点解答即可.【答案】二.【解析】解:∵点(﹣1,m +1)的横坐标﹣1<0,纵坐标m +1>0,∴符合点在第二象限的条件,故点(﹣1,m2+1)一定在第二象限.【总结升华】本题主要考查平面直角坐标系中各象限内点的坐标的符号.举一反三:【变式1】点P(-m,n)在第三象限,则m ,n 的取值范围是________.【答案】.【变式2】在平面直角坐标系中,横、纵坐标满足下面条件的点,分别在第几象限或哪条坐标轴上.(1)点P(x ,y)的坐标满足xy >0.(2)点P(x ,y)的坐标满足xy <0.(3)点P(x ,y)的坐标满足xy=0.2220,0m n ><【答案】(1)点P在第一、三象限;(2)点P在第二、四象限;(3)x轴或y轴.【变式3】若点C(x,y)满足x+y<0,xy>0,则点C在第_____象限.【答案】三.5.一个正方形的一边上的两个顶点O、A的坐标为O(0,0),A(4,0),则另外两个顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B、C,因为OABC是正方形,所以OC=BA=BC=OA=4.且OC∥AB,OA∥BC,则:(1)当顶点B在第一象限时,如图所示,显然B点坐标为(4,4),C点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0) B.(0,2) C.(2,﹣4) D.(﹣4,2)【答案】A。
平面直角坐标系 (1)
物体位置的确定要点一、平面上确定物体位置的方法1.在平面内,确定一个物体的位置一般需要两个数据.2.在平面上,确定物体位置的方法大致有以下几种:(1)行、列定位法:用行数、列数表示位置.(2)方位角和距离定位法(3)经纬度定位法(4)区域定位法(5)方格纸定位法命题点一:确定物体的位置例1.(1)利用电影票可以找到其相应的位置,如果将“6排8号”简记作(6,8),那么“8排6号”简记作______,那么(8,9)表示这张电影票是______排______号.(2)某市区有3个加油站,位置如图,若加油站1的位置表示为(B,1),则加油站2的位置可表示为_______,加油站3的位置可表示为________.例2.气象台为预报台风,首先要确定台风中心的位置,下列说法能确定台风中心位置的是( ).A.西太平洋B.北纬26°,东经133°C.距台湾300海里D.台湾与冲绳之间例3.如图,是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C 为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场、公园、停车场分别在小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家400m,那么商场和停车场分别距离小明家多少米?命题点二:利用不同的定位方式确定同一位置例5.一个正方形等分成4行4列.(1) 若点A 用(1,1)表示,点B 用(2,2)表示,点C 用(0,0)表示,请在图中标出点C 的位置; (2)若点A用(-3,1)表示,点B 用(-2,2)表示,点D 用(0,0)表示,请标出点D 的位置,并说明第1问中点C 应如何表示.分别向x 轴、y 轴作垂线 一一对应平面直角坐标系要点一、平面直角坐标系平面内两条互相垂直的数轴构成平面直角坐标系,简称为直角坐标系x 轴或横轴:水平方向的数轴,向右为正方向 平面直角坐标系y 轴或纵轴:铅直方向的数轴,向上为正方向原点:两轴的交点O要点二、点的坐标点 一对有序实数对 点的坐标 坐标平面内的点重点剖析:(1)表示一个点的坐标时,一定要横坐标在前,纵坐标在后,中间用逗号隔开,并用小括号括起来.(2)点的坐标是有序的实数对,因此(2,3)和(3,2)尽管数字相同,但是由于顺序不同,所以这两个坐标表示两个不同的点.(3)点(a,b )到x 轴与y 轴的距离分别是|b|与|a|,到原点的距离为22ba要点三:象限及特殊位置上的点的坐标特点1.象限:如图所示,在平面直角坐标系中,两条坐标轴将平面分成四个区域.右上方的区域叫做第一象限,其他三个区域按逆时针方向依次叫做第二象限,第三象限和第四象限. 注意:坐标轴不属于任何象限.2.特殊位置的点的坐标特点:注意:1.坐标原点既在x轴上,又在y轴上,它是两条坐标轴唯一的公共点.2.x轴上的点的纵坐标为0,可以表示为(x,0),y轴上的点的横坐标为0,可以表示为(0,y).要点四:图形变换与点的坐标变化对于图形上的任意一点A(a,b):要点五:建立适当的平面直角坐标系常用的方法:1.使图形中尽量多的点在坐标轴上;2.以某些特殊线段所在的直线为x轴或y轴(如高、中线等);3.以轴对称图形的对称轴作为x轴或y轴;4.以某已知点为原点,使它的坐标为(0,0)命题点一:关于平面直角坐标系内的点的坐标例1.已知点P到x轴的距离是2,到y轴的距离是5,求P点坐标.变式1:如果B(m+1,3m-5)到x轴的距离与它到y轴的距离相等,求:(1)m的值;(2)求它关于原点的对称点坐标变式2:①已知点A(-3,2a-1)与点B(b,-3)关于原点对称,那么点P(a,b)关于y 轴的对称点P′的坐标为_________.②当m为何整数值时,点A(4-m,3m+2)到x轴的距离等于它到y轴的距离的一半.例2.在平面直角坐标系中,下面的点在第一象限的是( )A.(1,2)B.(-2,3)C.(0,0)D.(-3-2)变式1:已知点M(3|a|-9,4-2a)在y轴的负半轴上.(1)求M点的坐标;(2)求(2-a)2015+1的值.变式2:(2017秋•遂川县期末)如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为_______.变式3:若点(a,-b)在第二象限,则点(-a,b²)在第_______象限,点(2a-5,3-4b)在第______象限。
平面直角坐标系(1)
学习目标:
1、理解平面直角坐标系的有关概念,能正确画出直角坐 标系;
2、理解平面内点的坐标的意义,能在平面直角坐标系中, 根据坐标确定点,由点求出坐标。
3、了解平面内的点与有序数对之间一一对应
学习重点和难点:
正确画出直角坐标系以及根据坐标确定点,由点求出坐标。
阅读感知:
1、阅读:课本P72—75
第三象限
第四象限
y
N
-4 -3 -2 -1
4 3 2 1 -1 -2 -3 -4
.
1 2
A
o
3
4
M
x
四、点坐标的特征
1、x轴上的点,纵坐标为零, 记为(x,0);y轴上的点, 横坐标为零,记为(0,y); 原点O的坐标是(0,0)
y
4 3
(- ,+ )
-4 -3 -2 -1
2 1 -1 -2 -3 -4
铅直的数轴叫做y轴或纵轴,取向上为正方向
两轴交点O是原点
y
4 3 2 1 -4 -3 -2 -1 -1 -2 -3 -4
这个平面叫做坐标平面
o
.
1
2
3
4
x
二、坐标平面的划分 x 轴和y 轴把坐标平面分成四个 象限,如图,按逆时针方向编号为 第一、二、三、四象限,注意坐标 轴上的点,不属任何象限。 第二象限
; / 墓地
ath63cwb
乐韵回护,但嘉颜听得清楚,敢情是韩玉笙有所差遣,乐韵竟然当面回嘴,韩玉笙前几日病得死去活来,她也不曾床前照应停当,韩玉笙以为苏 家不容她,差个丫头来给她脸色了,故有赌气回家之语。苏老太太的心思,嘉颜是了解的,对这外孙女儿的才貌着实欣赏,又怜苏老太爷端端正 正的骨血,不忍交给外人糟蹋,这才在家中一留数年,虽后来看韩玉笙清高自赏、不识好歹,怜恤心上便淡了,但到底还没说赶呢,叫一个丫头 撵走了?传扬起来多好看!嘉颜盘算着,这丫头打一顿是免不了了。若韩玉笙真的执意要回京城,惹老太太心烦,固然老太太从此不会再理这外 孙女儿,乐韵也要更往严了办。如何严法?当年大奶奶房里丫头,在大奶奶招待客人时失了大奶奶脸面,听说是直接卖到不干净地方,几个月就 糟践死了,也没人能说个不字。嘉颜固然不忍,涉及主子脸面,也不敢饶放。乐韵这丫头糊涂!真爬上表 头上,闹僵了,伤的不只是表 脸面, 更是苏府的威严。怎能讨下好呢?嘉颜叹口气,已到韩玉笙院中,这排屋子分两翼,每翼三重房间。韩玉笙住在左翼,第一重是厅间,第二重是 起居间,本不睡人,只供日常活动用,但韩玉笙缠绵病榻,起居不易,就在那里下了病榻,常年累月在那里,把那房间当了卧房。嘉颜先经过厅 间,但见炉黯灰冷,无甚佳节气氛,些须摆两瓶黄花,更见萧索,心下内疚,于起居间帘外恭谨柔和道:“嘉颜问表 的安。”宝音心道:“总算 来了。”她闹着乐韵,一为下狠药压服这个丫头,二么,最重要的,却正为引嘉颜来。适才她说要抄段经文给外婆祈祝重阳佳福,有意指使乐韵 剔灯砚墨,乐韵果然嘴里不干不净抱怨,宝音呵责她,诱她说出更大逆不道的话来,正好发作,登时就把那旧茶盏摔到地上,先震慑住了,再训 上一番话,犀利有力,乐韵竟一句也辩不回。宝音复决意要回京,乐韵想:从来光脚不怕穿鞋,以前我光脚,她穿鞋。如今闹豁弄拧了,她甩脱 鞋子作光脚了。她光脚,还有个京城能去,那父亲再薄情,也是京官,她仍是千金大 ,我却是什么下场? 乐韵是聪明人,聪明人就是不用人家 点透,自己都能想到。她心胆俱裂,再不敢起挑衅的心,卟嗵跪下去:“姑娘息怒!姑娘且念在乐韵陪了姑娘这许多年的情面!”宝音不看乐韵, 转过身,邱妈妈已回来,一座山似的护在她身后,她抱住邱妈妈,就哭起来,声音也不高,哀哀切切,最断人肠。乐韵看出生机,匍匐着不断苦 苦哀求,宝音却全没了刚才的凌厉气场,俯在邱妈妈怀里只是哭。洛月心疼的抚着她的背:“姑娘您爱惜身子!”邱妈妈唉声叹气:“唉唉,姑 娘,头发都毛了!再哭,你的这双眼啊——”嘉颜此时来问安,已听到里头哭声,先不进来,又问一声:“表 还好么?婢子嘉
《平面直角坐标系》数学教学PPT课件(5篇)
新知讲解
练习:
如图,在平面直角坐标系中,你能分别写出点A,B,
C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原
点的坐标是什么?
新知讲解
解:
A(4,0),B(-2,0),
C(0,5),D(0,-3)
① x轴上的点的纵坐标为0,一般记为(x,0);
② y轴上的点的横坐标为0,一般记为(0,y);
横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴,
一般取向上方向为正方向。
3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面
直角坐标系的原点,一般用O来表示。
再 见
第七章 平面直角坐标系
平面直角坐标系
学习目标
1
了解平面直角坐标系及相关概念.
2
用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐
为象限.
Ⅰ
-2
Ⅲ
第三象限
-1
-2
-3
-4
O
1
4
2
3
x
Ⅳ
第四象限
5
第二象限
4
Ⅱ
3
y
第一象限
点的位置 横坐标符号 纵坐标符号
Ⅰ
第一象限
2
1
-4
-1
-3
-2
Ⅲ
第三象限
-1
-2
-3
-4
第二象限
O
1
4
2
3
x
Ⅳ
第四象限
第三象限
第四象限
x轴
y轴
+
-
-
+
+
+
-
-
纵坐标为0
横坐标为0
例2
中考数学总复习专题05 平面直角坐标系知识要点及考点典型题型和解题思路
专题05 平面直角坐标系【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
知识点二点的坐标的有关性质(考点)性质一各象限内点的坐标的符号特征象限横坐标x纵坐标y第一象限正正第二象限负正第三象限负负第四象限正负性质二坐标轴上的点的坐标特征1.x轴上的点,纵坐标等于0;2.y轴上的点,横坐标等于0;3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a +XXX性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结:坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴Y 轴原平行X 轴平行Y 轴第一第二第三第四第一、第二、XyP2P mm -nOXy P3Pnm -nOn -XyP1Pnn -mO【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可. 【详解】解:A. 小李现在位置为第1排第4列,故A 选项错误; B. 小张现在位置为第3排第2列,故B 选项正确; C. 小王现在位置为第2排第3列,故C 选项错误; D. 小谢现在位置为第4排第4列,故D 选项错误. 故选:B .变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是( )点象限 象限 象限 象限 三象限 四象限 (x,0)(0,y)(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)A .(6,3)B .(6,4)C .(7,4)D .(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话: 小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…” 根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6, 故选:D .变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( ) A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5, ∴5x =, ∴5x =±,∵点M 在第四象限内, ∴x=5,y=-4,即点M 的坐标为(5,-4) 故选:D.变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为( )A .(4,2)B .(2,8)C .(8,4)D .(8,2)【答案】D【分析】根据菱形的性质得出D 的坐标(0,2),进而得出点B 的坐标即可. 【详解】连接AC ,BD ,AC 、BD 交于点E ,∵四边形ABCD 是菱形,OA =4,AC =4, ∴ED =OA =EB =4,AC =2EA =4, ∴BD =8,OD =EA =2 ∴点B 坐标为(8,2), 故选:D .变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是( ) A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=,∴2m=;∴2224m+=+=,∴点P为:(4,0);故选:A.变式2-4.(2021·广西一模)点M(3,1)关于y轴的对称点的坐标为()A.(﹣3,1)B.(3,﹣1)C.(﹣3.﹣1)D.(1,3)【答案】A【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点M(3,1)关于y轴的对称点的坐标为(﹣3,1),故选:A.考查题型三点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2021的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2021÷4=504…3,A2021在x 轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2021÷4=504 (3)∴A2021在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2021的横坐标为﹣(2021﹣3)×12=﹣1008.∴A 2021的坐标为(﹣1008,0). 故选A .变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+, 则2019A 的坐标是()1009,0, 故选C .变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0【答案】B【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3), ∴OA=4,OB=3,∴,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600, ∴点C 100的坐标为(600,0). 故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( ) A .1 B .32-C .43D .4或-4【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断. 【详解】解:∵点(,2)A a 是第二象限内的点, ∴0a <,四个选项中符合题意的数是32-, 故选:B变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D .变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0b >,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【答案】B【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为()A .(0,﹣4)B .(4,0)C .(0,﹣2)D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选:A .4.(2021·甘肃中考模拟)已知点P (m+2,2m ﹣4)在x 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(﹣4,0)D .(0,﹣4)【答案】A【详解】解:∵点P (m+2,2m ﹣4)在x 轴上,∴2m ﹣4=0,解得:m =2,∴m+2=4,则点P 的坐标是:(4,0).故选:A .5.(2021·广东华南师大附中中考模拟)如果点P (m +3,m +1)在平面直角坐标系的x 轴上,则m =() A .﹣1 B .﹣3 C .﹣2 D .0【答案】A【详解】由P (m +3,m +1)在平面直角坐标系的x 轴上,得m +1=0.解得:m =﹣1,故选:A .2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M 在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2021·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2021·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4- 【答案】C【解析】由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( ) A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C .4.(2012·江苏中考模拟)在平面直角坐标系中,点P (-3,4)到x 轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.5.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB 平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5) C.(1,-3) D.(-5,5)【答案】B【详解】将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.2.(2021·山东中考模拟)已知点P(a+1,2a﹣3)关于x轴的对称点在第二象限,则a的取值范围是()A.﹣1<a<B.﹣<a<1 C.a<﹣1 D.a>【答案】C【详解】依题意得P点在第三象限,∴,解得:a <﹣1.故选C .3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( ) A .﹣1B .1C .2D .3 【答案】B【解析】关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=1 4.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 【答案】B【解析】∵点P (a +1,2a -3)关于x 轴的对称点在第一象限,∴点P 在第四象限。
平面直角坐标系必考点全梳理1—基础过关
平面直角坐标系必考点全梳理1—基础过关必考点1: 象限的判断掌握第1~4象限内点的坐标符号特点分别是:(+,+)、(-,+)、(-,-)、(+,-).例题1: 如果P (ab ,a +b )在第四象限,那么Q (a ,﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】直接利用各象限内点的坐标特点得出a ,b 的符号进而得出答案.【解析】∵P (ab ,a +b )在第四象限,∴ab >0,a +b <0,∴a <0,b <0,∴﹣b >0, ∴Q (a ,﹣b )在第二象限.故选:B .【小结】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.变式1: 对于任意实数m ,点P (m ﹣1,9﹣3m )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【解析】A 、当点在第一象限时{m −1>09−3m >0解得1<m <3,故选项不符合题意; B 、当点在第二象限时{m −1<09−3m >0,解得m <3,故选项不符合题意; C 、当点在第三象限时{m −1<09−3m <0,不等式组无解,故选项符合题意; D 、当点在第四象限时{m −1>09−3m <0,解得m >1,故选项不符合题意. 故选:C .【小结】本题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣),第四象限(+,﹣).变式2: 在平面直角坐标系xOy 中,若点A (m 2﹣4,m +1)在y 轴的非负半轴上,则点B (m ﹣1,1﹣2m )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【分析】根据点A (m 2﹣4,m +1)在y 轴的非负半轴上可得{m 2−4=0m +1>0,据此求出m 的值,再根据各象限内点的坐标的符号进行判断即可.【解析】∵点A (m 2﹣4,m +1)在y 轴的非负半轴上,∴{m 2−4=0m +1>0,解得m =2, ∴m ﹣1=1,1﹣2m =﹣3,∵(1,﹣3)在第四象限,∴点B (m ﹣1,1﹣2m )在第四象限.故选:D .【小结】本题考查了点的坐标,根据y 轴上的点的坐标特点求出m 的值是解答本题的关键,注意:四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).变式3: 如图,平面直角坐标系中有P 、Q 两点,其坐标分别为P (4,a )、Q (b ,6).根据图中P 、Q 两点的位置,判断点(9﹣2b ,a ﹣6)落在第( )象限A .一B .二C .三D .四【分析】直接利用Q ,P 的位置进而得出a <6,b <4,进而得出9﹣2b >0,a ﹣6<0,求出答案即可.【解析】如图所示:a <6,b <4,则9﹣2b >0,a ﹣6<0,故点(9﹣2b ,a ﹣6)落在第四象限.故选:D .【小结】此题主要考查了点的坐标,正确得出a ,b 的取值范围是解题关键.必考点2:坐标轴上点的特征坐标系内点的坐标特点:坐标原点(0,0)、x轴(x,0)、y轴(0,y).注意若点在坐标轴上,则要分成在x轴、y轴上两种情况来讨论.例题2:已知点P(3a,a+2)在y轴上,则点P的坐标是()A.(0,2)B.(0,﹣6)C.(2,0)D.(0,6)【分析】直接利用y轴上点的坐标特点得出其横坐标为零,进而得出答案.【解析】∵点P(3a,a+2)在y轴上,∴3a=0,解得:a=0,故a+2=2.则点P的坐标是(0,2).故选:A.【小结】此题主要考查了点的坐标,正确掌握y轴上点的坐标特点是解题关键.变式4:已知A(a﹣5,2b﹣1)在y轴上,B(3a+2,b+3)在x轴上,则C(a,b)的坐标为.【分析】直接利用x,y轴上点的坐标特点得出a,b的值进而得出答案.【解析】∵A(a﹣5,2b﹣1)在y轴上,B(3a+2,b+3)在x轴上,∴a﹣5=0,b+3=0,解得:a=5,b=﹣3,∴C(a,b)的坐标为:(5,﹣3).【小结】此题主要考查了点的坐标,正确得出a,b的值是解题关键.变式5:如图,在平面直角坐标系xOy中,点A(a2﹣4,3)在y轴上,点B在x轴上,且横坐标为a,则点B的坐标为.【分析】直接利用y轴上点的坐标特点得出a的值,进而得出答案.【解析】∵点A(a2﹣4,3)在y轴上,∴a2﹣4=0,解得:a=2或﹣2,∵点B在x轴上,且横坐标为a,∴点B的坐标为:(2,0)和(﹣2,0).【小结】此题主要考查了点的坐标,正确掌握坐标轴上点的坐标特点是解题关键.变式6:在平面直角坐标系中,已知点A(0,0),|AB|=3,且点B和点A在同一坐标轴上,则点B的坐标为.【分析】根据数轴上到一点距离相等的点有两个,可得答案.【解析】B在x轴上时点B的坐标为(3,0)或(﹣3,0),B在y轴上时点B的坐标为(0,3)或(0,﹣3);故答案为:(3,0)或(﹣3,0)或(0,3)或(0,﹣3).【小结】本题考查了点的坐标.解题的关键能够正确确定出点的坐标,利用数轴上到一点距离相等的点有两个,以防遗漏.必考点3:点到坐标轴的距离点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.例题3:若M在平面直角坐标系第二象限,且M到x轴的距离为4,到y轴距离为3,则点M的坐标为()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】若M在平面直角坐标系第二象限,且M到x轴的距离为4,到y轴距离为3,则点M的坐标为【解析】由题意可得,|x|=3,|y|=4,∵点M在第二象限,∴x=﹣3,y=4,即M(﹣3,4),故选:D.【小结】本题考查了直角坐标系,正确理解横坐标与纵坐标的意义是解题的关键.变式7:已知点P(x,y)到x轴的距离为2,到y轴的距离为3,且x+y>0,x<0,则点P的坐标为()A.(﹣2,3)B.(2,3)C.(3,﹣2)D.(3,2)【分析】由点P(x,y)到X轴距离为2,到Y轴距离为3,可得x,y的可能的值,由x+y >0,xy<0,可得两数异号,且正数的绝对值较大;根据前面得到的结论即可判断点P的坐标.【解析】∵点P(x,y)到x轴距离为2,到y轴距离为3,∴|x|=3,|y|=2,∴x=±3,y=±2;∵x+y>0,xy<0,∴x=3,y=﹣2,∴P的坐标为(3,﹣2),故选:C.【小结】本题涉及到的知识点为:点到x轴的距离为点的纵坐标的绝对值;点到y轴的距离为点的横坐标的绝对值;两数相乘,异号得负;异号两数相加,结果的符号和绝对值较大的加数的符号相同.变式8: 在平面直角坐标系中,点A 的坐标是(3a ﹣5,a +1).若点A 到x 轴的距离与到y 轴的距离相等,且点A 在y 轴的右侧,则a 的值为( )A .1B .2C .3D .1 或 3【分析】根据点A 到x 轴的距离与到y 轴的距离相等可得3a ﹣5=a +1或3a ﹣5=﹣(a +1),解出a 的值,再由点A 在y 轴的右侧可得3a ﹣5>0,进而可确定a 的值.【解析】∵点A 到x 轴的距离与到y 轴的距离相等,∴3a ﹣5=a +1或3a ﹣5=﹣(a +1),解得:a =3或1,∵点A 在y 轴的右侧,∴点A 的横坐标为正数,∴3a ﹣5>0,∴a >53,∴a =3,故选:C .【小结】此题主要考查了点的坐标,关键是掌握到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值.变式9: 若点P (2x ,x ﹣3)到两坐标轴的距离之和为5,则x 的值为 .【分析】分别利用P 点在第一、二、三、四象限以及在坐标轴上分别分析得出答案.【解析】当点P 在第一象限,x ﹣3>0,解得:x >3,且2x +x ﹣3=5,解得:x =83<3,不合题意;当点P 在第二象限,{2x <0x −3>0,不等式组无解,不合题意; 当点P 在第三象限,{2x <0x −3<0,不等式组的解集为:x <0,则﹣2x ﹣x +3=5,解得:x =−23; 当点P 在第四象限,则{2x >0x −3<0,不等式组的解集为:0<x <3,故2x ﹣(x ﹣3)=5,解得:x =2,当点P 在x 轴上,则x ﹣3=0,解得:x =3,此时2x =6,不合题意;当点P 在y 轴上,则2x =0,解得:x =0,此时|x ﹣3|=3,不合题意;综上所述:x =−23或x =2.【小结】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.。
17.2.1平面直角坐标系(整理)
F D
第四象限
第三象限
-3
-4
点的位置与横、纵坐标的符号间的关系:
温馨提示:刚才已知x 轴、y轴把坐标平面分成四个 象限,但是坐标轴上的点不 属于任何一个象限。
y
3
2
第二象限(-,+)
第一象限(+,+)
1
-3
-2
-1
O
第三象限(-,-) -1 两条坐标轴上的点的坐标 各有什么特征? X轴上的点纵坐标等于0, 表示为(x,0)
结论
关于x轴对称的两点横坐标相等,纵坐标互为相反数。 关于y轴对称的两点横坐标互为相反数,纵坐标相等。 关于原点对称的两点横坐标互为相反数,纵坐标互 为相反数。 关于X轴对称 P(a, b)_______ P(a,-b) 关于y轴对称 P(a, b )_______ P ( -a, b ) 关于原点对称 P(a, b )_______ P(-a,-b)
2 1
X
3
2 1 O -1 -2 -3 -1 -2
(B)
X
(A) 3 2 1
Y
3 Y 2 1
X
-3 -2 -1 1 2 3 -1 O -2 -3 (C)
-3 -2 -1 O 1 2 3 -1 -2 -3 (D)
X
根据点求坐标:
对于平面内任意一点P,过 点P分别向x轴、y轴作垂线, 垂足在x轴、y轴上对应的数a, b分别叫做点P的横坐标、纵坐 标,有序数实数对(a,b)叫 a 做点P的坐标。 -3 -2 记作:P(a,b)
-2 -3
x 第四象限(+,-)
1
2
3
Y轴上的点横坐标等于0, 表示为(0,y)
第1讲 第1节平面直角坐标系
P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简 伸缩变换 . 称__________
3.三角函数的伸缩变换 由函数 y=sin x 的图象通过变换得到 y=Asin(ωx+φ)的图 象,方法一(先平移后伸缩): 向左φ>0或向右φ<0 y=sin(x+φ) y = sin x 的图象 ―――――→ ________________ 平移|φ|个单位长度 1 横坐标变为原来的 倍 ω y=sin(ωx+φ) 的图象 ―――――→ _________________ 的图象 纵坐标不变 纵坐标变为原来的A倍 ――→ y=Asin(ωx+φ)的图象. 横坐标不变
[思路点拨]
(1)建立适当坐标系;
(2)用坐标和方程表示出|PM|= 2|PN|; (3)代入坐标,求出(x,y)关系式.
• [解题过程] 如下图,以直线O1O2为x轴,线 段O1O2的垂直平分线为y轴,建立平面直角坐 标系,则两圆心的坐标分别为O1(-2,0), O2(2,0).
[变式训练]
2.在平面直角坐标系中,求下列方程所对应 后的图形,
x′=2x 的图形经过伸缩变换 y′=4y
(1)2x+4y=a; (2)x2+y2=r2(r≠0).
解析:
1 x=2x′ x ′ = 2 x (1)由伸缩变换 ,得到 y′=4y y=1y′ 4
第一 讲
坐标系
•第一节 平面直角坐标系
• 某村庄P处有一堆肥料,现要把这堆肥料沿 道路PA或PB送到成矩形的一块田地ABCD中 去,已知PA=100米,PB=150米,BC=60 米,∠APB=60°. • 能否在田中确定一条界线,使位于界线左侧 的点沿道路PA送肥料较近,而右侧的点沿PB 送肥料较近?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系(提高)知识讲解撰稿:孙景艳责编:赵炜【学习目标】1. 理解平面直角坐标系概念,能正确画出平面直角坐标系,根据坐标确定点,以及由点求出坐标,掌握点的坐标特征3. 由数轴到平面直角坐标系【要点梳理】,渗透类比的数学思想.要点一、有序数对 a 与b 组成的数对,叫做有序数对,记作 (a , b).要点诠释:(a , b)与(b , a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7, 6)则表示7排6号. 要点二、平面直角坐标系及点的坐标的概念 1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的 2. 点的坐标平面内任意一点 P ,过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a , b 分别叫做点P 的横坐标、纵坐标,有序数对(a,b )叫做点P 的坐标,记作:P(a,b),如图2.或横轴,习惯上取向右为正方向;竖直的数轴称为 y 轴或纵轴,取向上方向为正方向,两坐-2-1 1 r i』-3-2-10■L 2 3 -1■-2■X2.能在平面直角坐标系中定义:把有顺序的两个数 有序,即两个数的位置不能随意交换,要点诠释:(1 )表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用 (2)点P(a , b)中,|a|表示点到y 轴的距离;|b 表示点到x 轴的距离. (3)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应, 也就是说,坐标平面内的点与有序数对是 ---- 对应的.要点三、坐标平面 1.象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的I 、n 、ffi 、w 四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.3 -2T iir _2 第三象限一3要点诠释:(1)坐标轴x 轴与y 轴上的点(包括原点)不属于任何象限. 第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x 轴,y 轴、第一象限、第二象限、第三象限、第四象限.这六个区域中,除了 x 轴与y 轴有一个公共点(原点)外,其他区域之间均没有公 共点.-1 -2:”隔开.113笫二象2 第一象限I 2 3 JCIV幫四象限(2)按方位来说:第一象限在坐标平面的右上方, 第二象限在左上方, 第三象限在左下方,要点四、点坐标的特征1.点的位置 第一象限第二象限第三象限 第四象限 H 轴》轴 原点横坐标符号 + — —+ 任意数忑纵樂标符号 十+—任意数;y 0 点的坐标符号〔十,十)COty)(0,0)(1) 对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上 (2) 坐标轴上点的坐标特征: x 轴上的点的纵坐标为 0; y 轴上的点的横坐标为 0.(3 )根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. 2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为3. 关于坐标轴对称的点的坐标特征【思路点拨】 由(0, 2)表示左眼,用(2, 2)表示右眼,可以确定平面直角坐标系中 轴与y 轴的位置,从而可以确定嘴的位置. 【答案】A .(a , a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a ,一 a)-P(a , b)关于x 轴对称的点的坐标为 (a, — b); P(a , b)关于y 轴对称的点的坐标为(—a,b); P(a , b)关于原点对称的点的坐标为(—a, —b).4. 平行于坐标轴的直线上的点平行于x 轴的直线上的点的纵坐标相同; 平行于y 轴的直线上的点的横坐标相同 【典型例题】类型一、有序数对表示位置1.如图是小刚的一张笑脸,他对妹妹说:如果我用( 眼,用(2,2)表示右眼,那么嘴的位置可以表示成(0,2)表示左).A . (1, 0)B . (— 1, 0)C . (—1, 1)D . (1, — 1)【解析】 解:根据(0, 2)表示左眼,用(2, 2)表示右眼, 可得嘴的坐标是(1, 0), 故答案为A •【总结升华】 此题考查了坐标确定位置, 由已知条件正确确定坐标轴的位置是解决本题的关 键.举一反三:A . 5楼6号B .北偏东30 °C .希望路20号D .东经118 °,北纬36【答案】B (提示A. 5楼6号,是有序数对,能确定物体的位置; B.北偏东30°不是有序数对,不能确定物体的位置;C.希望路20号,希望路”相当于一个数据,是有序数对,能确定物体的位置;D.东经118°北纬36°,是有序数对,能确定物体的位置. ) 类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD ,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下 求出A , B , C , D 各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法 边 AB 所在的直线为x 轴,边AD 所在直线为y 轴,建立平面直角坐标系,如图(1):解法二:以边AB 的中点为坐标原点,边 AB 所在的直线为x 轴, 在的直线为y 轴,建立平面直角坐标系,如图(2):A (- 2.5, 0) ,B ( 2.5, 0) ,C ( 2.5 , 3),D ( - 2.5 , 3)【变式】下列数据不能表示物体位置的是()•解法一:以点A 为坐标原点, (5, 3), D (0, 3).VVQcnuhaDXAAB 的中点和CD 的中点所A ( 0, 0),B ( 5, 0), C解法三:以两组对边中点所在直线为x轴、y轴,建立平面直角坐标系,如图( 3):A (- 2.5, — 1.5) ,B ( 2.5, — 1.5),C ( 2.5, 1.5),D ( - 2.5 , 1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x轴和y轴确定,每一个点的位置也确定,而一旦原点或x轴、y轴改变,每一个点的位置也相对应地改变举一反三:【变式】点A(m, n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,A J___■rt—■DJ1BL 1L ■1 1E1■1---- 1 -------*\/11111111丿1,1 11 h-4-3x2-1011j31A* 1 1 11 h UQ3\cvr过点A、C分别作平行于y轴的直线与过B点平行于x轴的直线交于点D、E,则四边形ACED为梯形,根据点A( —3, —1)、B(1 , 3)、C(2, —3)可求得AD = 4, CE = 6, DB = 4, BE= 1, DE = 5,所以△ ABC的面积为:1 11S A ABC =—(AD +CE) LDE AD」DB - —CE ]BE2 2 21 1 1= _(4 +6)x5 ——x4x4 ——x6x1 =142 2 2 ■【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三:【变式】如图所示,已知A1(1 , 0), A2(1 , 1), A3( —1, 1), A4( —1, —1), A5(2, —1) , ••…则点A2008的坐标为'■y"一】厂】)【答案】(一502, —502).类型三、坐标平面及点的特征4.平面直角坐标系内,点【思路点A ( n, 1 —n) —定不在拨】确定横纵坐标的符号.【答案】第三象限和原点.【解析】! n I n <0 ! ncO ( n解:由题意可得:«、«、4 、«[1—n>0 [1—n>0 [1 —ncO [1 —ncO可得:丿n"无解,[1 -ncO因而点A的横坐标是负数,纵坐标也是负数,不能同时成立,即点 A 一定不在第三象限.又n和1 —n不能同时为0,故也一定不在原点.故答案为:第三象限和原点.【总结升华】本题主要考查平面直角坐标系中各象限内点的坐标的符号, 不等式的问题. 举一反三:【高清课堂:第一讲平面直角坐标系1 369934 练习4( 4)】【变式1】点P(-m,n)在第三象限,则 m , n 的取值范围是【答案】m >0, n v O .【变式2】在平面直角坐标系中,横、纵坐标满足下面条件的点,分别在第几象限.(1)点P(x , y)的坐标满足xy > 0.⑵点P(x , y)的坐标满足xy v 0.(3) 点P(x , y)的坐标满足xy=O .【答案】(1)点P 在第一、三象限;(2)点P 在第二、四象限;(3) x 轴或y 轴. 【高清课堂:第一讲平面直角坐标系1 369934练习4 (1)1【变式3】若点C(x,y)满足x+y v 0, xy > 0,则点C 在第5.—个正方形的一边上的两个顶点 O 、A 的坐标为O(0, 0), A(4,0),则另外两个顶点的坐标是什么.【思路点拨1有点的坐标说明已有确定的平面直角坐标系, 但正方形的另两个顶点位置不确 定,所以应按不同位置分类去求.【答案与解析】 解:不妨设另外两个顶点为 B 、C ,因为OABC 是正方形,所以 OC = BA = BC = OA = 4.且OC // AB , OA // BC ,则:(1)当顶点B 在第一象限时,如图所示,显然B 点坐标为(4, 4),C 点坐标为(0, 4).⑵当顶点B 在第四象限时,如图所示,显然B 点坐标为(4, — 4),C 点坐标为(0, — 4).把符号问题转化为象限.【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:(成宁)在平面直角坐标系中,如果mn>0,那么(m, |n|)—定在().BA. 第一象限或第二象限B.第一象限或第三象限C. 第二象限或第四象限 D .第三象限或第四象限【答案】A.【变式】。