(完整版)初三数学总复习知识点

合集下载

初三数学知识点归纳整理

初三数学知识点归纳整理

初三数学知识点归纳整理最全初三数学知识点归纳篇一一、二次根式1、二次根式:一般地,式子叫做二次根式。

注意:(1)若这个条件不成立,则不是二次根式。

(2)是一个重要的非负数,即;≥0。

2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。

3、二次根式比较大小的方法:(1)利用近似值比大小。

(2)把二次根式的系数移入二次根号内,然后比大小。

(3)分别平方,然后比大小。

4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。

①被开方数的因数是整数,因式是整式。

②被开方数中不含能开的尽的因数或因式。

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的最后结果必须化为最简二次根式。

7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点

完整版)初三数学总复习知识点Chapter 1: Quadratic Radical1.A quadratic radical is an n of the form a (a≥0).Property: a (a≥0) is a non-negative number;a^2=a (a≥0);a^2=a (a≥0).2.n and n of quadratic radicals: a•b=ab (a≥0.b≥0);a/a (a≥0.b>0)=√a/b.3.n and n of quadratic radicals: when adding or subtracting quadratic radicals。

XXX form first。

then combine the quadratic radicals with the same radicand.4.Heron's formula: S=p(p-a)(p-b)(p-c)。

where S is the area ofa triangle。

and p=(a+b+c)/2.Chapter 2: XXX1.XXX that has only one unknown variable。

and the highest degree of the variable is2.2.XXX:Completing the square method: transform one side of the ninto a perfect square。

then take the square root of both sides;Quadratic formula: x=(-b±√(b^2-4ac))/2a;Factoring method: factor the left side of the n into two factors。

and set each factor equal to zero.3.ns of XXX life problems.4.Vieta's formulas: let x1 and x2 be the roots of the nax^2+bx+c=0.then we have b=-a(x1+x2) and c=a(x1x2).Chapter 3: XXX1.n of a figure: XXX it around a fixed point by a XXX.Properties: the distance from each point of the figure to the center of n remains the same;the angle een the line segment connecting each point and the center of n is equal to the angle of n;the original figure and the XXX.2.XXX to a point if the figure coincides with itself after a180-degree XXX point.A figure is XXX its image under a 180-degree n around apoint is identical to the original figure.3.Coordinates of points XXX to the origin.Chapter 4: Circle1.ns of circle。

初三数学知识点(6篇)

初三数学知识点(6篇)

初三数学知识点整理(6篇)初三数学学问点整理11.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:全部的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比拟大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

重点学问:初中数学第一课,熟悉正数与负数!新初一的来~2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.肯定值1.概念:数轴上某个数与原点的距离叫做这个数的肯定值。

①互为相反数的两个数肯定值相等;②肯定值等于一个正数的数有两个,肯定值等于0的数有一个,没有肯定值等于负数的数.③有理数的肯定值都是非负数.2.假如用字母a表示有理数,则数a 肯定值要由字母a本身的取值来确定:①当a是正有理数时,a的肯定值是它本身a;②当a是负有理数时,a的肯定值是它的相反数﹣a;③当a是零时,a的肯定值是零.即|a|={a(a>0)0(a=0)﹣a(a0k0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x 的增大而减小。

①x的取值范围是x0,y的取值范围是y0;②当k0抛物线与x轴有两个不同交点.②△=0抛物线与x轴有的公共点(相切).③△0时,抛物线有最低点,函数有最小值.②当a<0时,抛物线有点,函数有值.(7)的符号的判定:表达式,请代值,对应y值定正负;对称轴,用处多,三种式子相约;轴两侧判,左同右异中为0;1的两侧判,左同右异中为0;-1两侧判,左异右同中为0.(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

初三数学知识点全总结(3篇)

初三数学知识点全总结(3篇)

初三数学知识点全总结有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

【考察内容】①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式法和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

【考察内容】①方程及方程解的概念②根据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式出现。

分值为3-4分,难易度为易。

【考察内容】①平行线的性质(公理)③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

【考察内容】①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

【考察内容】①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

【考察内容:】①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。

2024年初三数学知识点全总结(2篇)

2024年初三数学知识点全总结(2篇)

2024年初三数学知识点全总结篇章一:代数1. 简单代数表达式的运算- 整数之间的加减运算- 整数与分数之间的运算- 同类项的加减运算- 代数式的乘法运算- 因式分解与提公因式- 同时含有加法和乘法的运算2. 一次方程及其应用- 一元一次方程的解与解法- 实际问题中的一元一次方程- 类似一元一次方程的解法(含有分数、括号等)3. 二次根式与二次方程- 二次根式的概念及其运算- 二次方程的解与解法- 利用二次方程解决实际问题4. 平方根与整式- 平方根的概念与性质- 整式的概念、运算与化简- 整式的乘法与因式分解篇章二:几何1. 数轴与坐标- 数轴上的数与坐标- 点与坐标的关系2. 三角形- 三角形的定义及性质- 相似三角形的性质与判定- 三角形中的角的性质3. 四边形- 平行四边形的性质与判定- 矩形、正方形、菱形的性质与判定- 平行四边形的面积计算- 梯形、长方形的面积计算4. 直线、射线、线段- 直线与射线的定义及性质- 线段之间的关系与定位5. 圆- 圆的定义与性质- 图形的中心与半径- 圆的弧长与扇形的周长与面积计算6. 测量- 计算长度的单位- 测量长度、面积和体积- 利用尺规作图篇章三:函数1. 函数的概念与表示- 函数的定义及表示- 定义域、值域与函数图象- 函数的奇偶性与单调性2. 一次函数- 一次函数的定义与图象- 一次函数的性质与应用- 一次函数与线性规律3. 二次函数- 二次函数的定义与图象- 二次函数的性质与应用- 二次函数与抛物线4. 探索函数- 分段函数的定义与图象- 反比例函数的定义与图象- 幂函数的定义与图象- 指数函数的定义与图象篇章四:概率与统计1. 数据收集与整理- 数据的收集方法与调查设计- 数据的整理与描述2. 概率与随机事件- 随机事件的概念与性质- 概率的计算与应用3. 数据分析与统计- 数据图表的制作与分析- 平均数、中位数与众数的计算4. 数据的预测与判断- 简单的预测与判断- 统计数据的解读与思考以上是____年初三数学的主要知识点总结,涵盖了代数、几何、函数以及概率与统计。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。

2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。

3. 代数表达式:用字母表示数,表达数量关系和变化规律。

4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。

二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。

2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。

3. 面积与体积:计算平面图形的面积,计算立体图形的体积。

4. 解析几何:理解直线的方程,理解圆及其方程。

三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。

2. 函数的运算:函数的加减法,函数的乘法,复合函数。

3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。

4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。

四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。

2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。

3. 概率的概念:理解概率的基本概念,会计算事件的概率。

4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。

五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。

2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。

3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。

4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。

在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。

同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。

此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。

希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。

初三数学知识点全总结(4篇)

初三数学知识点全总结(4篇)

初三数学知识点全总结数学知识点总结数学作为一门学科,是以数和空间为对象的科学,以研究数量、结构、变化和空间为目标的一种科学研究方法和理论体系。

以下是初三数学知识点的全面总结。

一、代数与方程式1. 整数与有理数的运算- 整数的加减乘除运算- 有理数的加减乘除运算- 有理数的整除性质和约分2. 代数式的表示与运算- 代数式的基本概念:字母与数字的组合、系数、次数等- 代数式的加减乘除运算- 代数式的化简与计算:合并同类项、分配律等3. 方程与不等式的解- 一元一次方程的基本概念与解法- 一元一次不等式的基本概念与解法- 一元一次方程与不等式的实际问题应用4. 二元一次方程组- 二元一次方程组的基本概念与解法- 二元一次方程组应用问题的解决5. 平方根与实数- 平方根的概念和运算- 实数的有理数与无理数之间的关系- 实数的应用问题:根据实际问题确定平方根的范围和符号6. 指数与根式- 指数与幂的基本概念和运算- 根式的基本概念和运算- 根式与分式的关系- 指数与根式运算的应用问题7. 一元二次方程- 一元二次方程的基本概念与解法- 一元二次方程的根与系数的关系- 一元二次方程应用问题的解决8. 四则运算与问题解决- 分数与整数的混合运算- 分数四则运算的应用问题解决二、函数与图像1. 函数的概念与表示- 函数的基本概念与符号表示- 函数的自变量和因变量- 函数的定义域、值域和象- 函数的表格、图像和方程式表示2. 函数的性质与运算- 函数的奇偶性、单调性与周期性- 函数的复合与反函数- 函数的加减乘除与函数的等式3. 直线与二次曲线- 直线的基本概念和方程- 二次曲线的基本概念和方程:抛物线、双曲线和椭圆4. 幂函数与对数函数- 幂函数的基本概念和性质- 对数函数的基本概念和性质- 幂函数与对数函数的关系与互化5. 三角函数- 三角函数的基本概念和性质- 三角函数的图像与变换- 三角函数的应用问题解决三、几何与图形1. 角与三角形- 角的基本概念和分类- 三角形的基本概念和分类- 三角形的内角和三角形的外角性质2. 四边形与多边形- 四边形的基本概念和分类:矩形、平行四边形、菱形、梯形等- 多边形的基本概念和分类:正多边形和一般多边形3. 三角形的相似与全等- 三角形的相似判定和相似性质- 三角形的全等判定和全等性质- 三角形的相似性质与全等性质的应用4. 圆的基本性质- 圆的基本概念与关系:圆心、半径、直径等- 圆的周长和面积的计算- 圆的切线与弦的性质5. 空间图形与立体几何- 空间图形的基本概念和分类:正方体、长方体、正四面体、正六面体等- 空间图形的表面积和体积的计算- 空间图形的投影和展开图的应用四、数据与统计1. 数据的搜集与处理- 数据的搜集方法:调查、实验等- 数据的整理和展示:表格、图表等- 数据的分析和解读:平均数、中位数、众数等2. 概率与统计- 概率的基本概念和运算- 概率实验的基本过程和计算- 统计的基本概念和数据处理方法以上是初三数学知识点的大致总结,包括代数与方程式、函数与图像、几何与图形、数据与统计等方面的内容。

(完整版)初三数学知识点整理

(完整版)初三数学知识点整理

初三数学知识点整理一、《二次函数》1、二次函数的定义:形如y=ax2+bx+c (a≠0)形式叫二次函数。

2、解析式的形式:①一般式:y=ax2+bx+c (a≠0)②顶点式:y=a(x—h)2+k3、图像性质:【顶点的横坐标即图像的对称轴,纵坐标即函数的极值】4 、 a、b、c的作用①a决定:图像的开口方向,a>0,开口向上,a<0,开口向下。

② |a ︳决定:图像的开口大小,|a ︳越大,开口越小.②a、b共同决定:对称轴,当a、b同号时,对称轴在y轴的左侧。

当a、b异号时,对称轴在y轴的右侧。

③c决定:图像与Y轴交点的纵坐标.5、变换求解析式时,考虑两个方面:①a的值②顶点的变化6二次函数与一元二次方程对于二次函数y=ax2+bx+c(a≠0),当Y=0时,得一元二次方程ax2+bx+c=0当b2-4ac>0时,方程有两个不相等的实数根,抛物线与x轴有两个交点,交点横坐标为方程的实根.当b2-4ac=0时,方程有两个相等的实数根,抛物线与x轴有且只有一个交点,交点横坐标为方程的实根。

当b2-4ac<0时,方程没有实数根,抛物线与x轴没有交点。

7、对于二次函数y=ax2+bx+c(a≠0)①如何求与x轴的交点坐标:令y=0代入函数关系式,解得方程的根即为交点的横坐标。

②如何求与y轴的交点坐标:令x=0代入函数关系式。

交点坐标为(0,c)③如何求两个函数图像的交点坐标:将两个函数解析式组成方程组求解。

8、对于二次函数y=ax2+bx+c(a≠0)①当图像顶点在x2-4ac=0 对应解析式为y=a(x—h)2②当图像顶点在y对应解析式为y=ax2+c③当图像顶点在原点时,对应解析式为 y=ax2④当图像过原点时,对应解析式为 y=ax2+bx9、①方程ax2+bx+c=K的解为函数y=ax2+bx+c与直线Y=K的交点的横坐标。

②抛物线的对称轴方程为221xx,其中x1,x2为图像上两对称点的横坐标。

(完整版)初三数学总复习知识点

(完整版)初三数学总复习知识点

2b ab aa 0,b 0 。

x 1 x 2b,x 1 ?x 2 a第三章 旋转1图形的旋转 旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。

中心对称:一个图形绕一个点旋转 180 度,和另一个图形重合,则两个图形关 于这个点中心对称;中心对称图形:一个图形绕某一点旋转 180 度后得到的图形能够和原来的图形初三数学知识点 第一章 二次根式 二次根式:形如a (a 0) 的式子为二次根式;性质: a是一个非负数;二次根式的乘除:aaaa 0;0。

a ? bab a 0,b 0 ;二次根式的加减: 3数相同的二次根式进行合并。

二次根式加减时,先将二次根式华为最简二次根式,再将被开方4 海伦-秦九韶公式: S p(p )(p b)(p c) ,S 是三角形的面积,p 为abc p 。

第二章1 程。

2元二次方程元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方一元二次方程的解法配方法:将方程的一边配成完全平方式,然后两边开方;公式法: xb b 2 4ac2a左边是两个因式的乘积,右边为零。

因式分解法: 一元二次方程在实际问题中的应用 韦达定理:设 x 1 , x 2是方程2 ax 2bx c 0 的两个根,那么有重合,则说这个图形是中心对称图形;3 关于原点对称的点的坐标第四章圆1 圆、圆心、半径、直径、圆弧、弦、半圆的定义2 垂直于弦的直径圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90 度的圆周角所对的弦是直径。

初三知识点数学(汇总10篇)

初三知识点数学(汇总10篇)

初三知识点数学(汇总10篇)初三知识点数学第1篇第一章证明一、等腰三角形1、定义:有两边相等的三角形是等腰三角形。

2、性质:等腰三角形的两个底角相等(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)等腰三角形的两底角的平分线相等。

(两条腰上的中线相等,两条腰上的高相等)等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

等腰三角形的一腰上的高与底边的夹角等于顶角的一半等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形等边三角形1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

初三知识点数学第2篇圆的必考知识点(1)圆在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。

圆有无数条对称轴。

(2)圆的相关特点1)径连接圆心和圆上的任意一点的线段叫做半径,字母表示为r通过圆心并且两端都在圆上的线段叫做直径,字母表示为d直径所在的直线是圆的对称轴。

在同一个圆中,圆的直径d=2r2)弦连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。

直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。

初三数学知识点归纳总结(通用5篇)

初三数学知识点归纳总结(通用5篇)

初三数学知识点归纳总结第1篇1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形是轴对称图形。

3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。

(3)定理2:对角线相等的平行四边形是矩形。

4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的.等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。

初三数学知识点归纳总结第2篇第一轮数学复习主要知识点总结1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

九年级全册数学重点知识点汇总

九年级全册数学重点知识点汇总

九年级全册数学重点知识点汇总
一、代数
1. 整式:含有字母和常数的代数式,可分为单项式和多项式。

2. 方程:含有未知数的等式,可以通过变形求解。

3. 不等式:包含不等号的数学式,寻找不等式的解集是关键。

4. 函数:一种特殊的关系,自变量和因变量之间存在对应关系。

二、几何
1. 直线和角度:直线的性质、角的分类及度量是几何学的基础。

2. 三角形:根据边长和角度的不同分类,边角关系的理解很重要。

3. 圆:圆的性质、圆周角和圆心角是考查的重点。

4. 相似和全等:图形的相似性和完全一致性对应于不同形状的图形。

三、数学关系
1. 比例:两个量之间的比较关系,从比例式求解未知量是核心。

2. 百分数:常用的百分数、百分数之间的关系及转化相互影响。

3. 利率和利息:理解利率和计算利息是数学中常见的问题。

四、统计和概率
1. 统计图表:柱状图、饼图、折线图等图表的绘制和分析。

2. 概率:事件发生的可能性,概率计算和样本空间的应用。

以上就是九年级全册数学重点知识点的汇总,同学们在复习备考时可根据这些内容进行有针对性的学习,希望能帮助大家在数学学习中取得更好的成绩。

愿大家都能顺利通过考试,加油!。

九年级全册知识点

九年级全册知识点

九年级全册知识点第一章:数与式1.1 整数整数的概念:整数由正整数、0、负整数组成,用符号“+”表示正整数、“-”表示负整数。

整数的运算规则:- 整数的加法:同号相加得同号,异号相加取绝对值大的数的符号,结果的绝对值为两数绝对值的和。

- 整数的减法:减去一个正整数等于加上一个负整数,减去一个负整数等于加上一个正整数,然后按加法运算规则计算。

- 整数的乘法:同号相乘为正,异号相乘为负,结果的绝对值为两数绝对值的积。

- 整数的除法:同号相除为正,异号相除为负,结果的绝对值为两数绝对值的商。

1.2 有理数有理数的概念:有理数是整数和分数的统称,可以用分数形式表示。

有理数的运算规则:- 有理数的加法与减法:先化为相同分母,再按整数的加法和减法运算规则计算。

- 有理数的乘法:分子乘以分子,分母乘以分母,再约分。

- 有理数的除法:将除法转化为乘法,即转化为分子乘以倒数的形式,然后按乘法运算规则计算。

第二章:代数式与方程式2.1 代数式与项代数式的概念:由数或字母和运算符号组成的表达式称为代数式,可以是一个数,也可以是若干个数和字母的积和和。

项的概念:代数式中用加号或减号连接的数或字母的乘积称为项。

2.2 方程式方程式的概念:两个代数式之间用等号连接的式子称为方程式,它表示两个代数式的相等关系。

解方程的方法:- 移项法:通过移动代数式的位置,将含有未知数的项移到一边,使方程式变为等价方程式,最后求解未知数的值。

- 相消法:利用等式两边相等,则它们的倍数也相等的性质,去掉方程式中的相同项,最后求解未知数的值。

第三章:平面图形的认识3.1 点、线、面的概念- 点:空间中没有长度、宽度和高度,只有位置的概念,用大写字母标记。

- 线:由无数个点连成的路径,没有宽度,用小写字母表示,两点确定一条直线。

- 面:由无数个点和线围成的平坦的二维图形,有长度和宽度。

3.2 角和三角形- 角的概念:由两条射线共同端点组成的图形称为角,用大写字母标记角的顶点。

初三数学知识点总结

初三数学知识点总结

初三数学知识点总结一、整数1. 整数的概念与表示:正整数、负整数、零,绝对值,相反数,数轴。

2. 整数的加法与减法:同号相加减、异号相加减、绝对值。

3. 整数的乘法与除法:同号得正、异号得负,绝对值。

4. 整数的混合运算:加减乘除综合运算。

二、有理数1. 有理数的概念与表示:整数、分数。

2. 有理数的加法与减法:同分母、异分母。

3. 有理数的乘法与除法:分数相乘、相除。

4. 有理数的混合运算:加减乘除综合运算。

三、代数式1. 代数式的概念与表示:字母、数与字母的组合,常量项与同类项,系数与指数。

2. 代数式的运算:同类项相加减,化简。

3. 代数式的应用:代入数值,解方程。

四、方程与不等式1. 一元一次方程:定义与解法,两个方程的关系。

2. 一元一次不等式:定义与解法,两个不等式的关系。

3. 两个一元一次方程或不等式的应用:实际问题的建立与解答。

五、图形1. 图形的基本概念:平面图形、立体图形,多边形的命名与性质。

2. 平面图形的面积与周长:矩形、正方形、三角形、梯形、圆,面积和周长的计算。

3. 空间图形的体积与表面积:长方体、正方体、棱柱、棱锥、棱台、球,体积和表面积的计算。

六、数与式的比较1. 用比较运算符表示数与式的大小关系:大于、小于、等于、不等于。

2. 用绝对值表示数与式的大小关系:定义与应用。

七、百分数1. 百分数的概念与表示:百分数、百分数的转化。

2. 百分数的应用:百分数与分数的关系,百分数的增加、减少、乘法运算。

八、函数1. 函数的概念与表示:自变量与函数值,函数的定义域、值域与对应关系,函数的图象。

2. 函数的运算:函数的加法、减法、数乘、倍数函数。

3. 函数的图象与平移:函数图象的平移与翻折,函数图象的性质。

九、统计与概率1. 统计表的表示与应用:频数表、频率表、频率分布直方图。

2. 统计量的计算:众数、平均数、中位数、极差。

3. 简单概率的计算:事件的概率、样本空间与事件的关系,简单事件的计算。

中考数学知识点复习总复习资料大全(精华版)

中考数学知识点复习总复习资料大全(精华版)

中考数学总复习资料大全第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:整数正整数0有理数实数(有限或无限循环性数)分数正无理数负整数正分数负分数无理数(无限不循环小数)说明:“分类”的原则:1)相称(不重、不漏)2)有标准负无理数正数实数0负数整数有理数分数无理数整数有理数分数无理数2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:a 2│a│(a 为一切实数)a (a≥0)性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质: A.a ≠1/a (a≠±1);B.1/a 中,a≠0;C.0 <a<1 时1/a >1;a >1 时,1/a <1;D. 积为1。

4.相反数:①定义及表示法②性质: A.a ≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C. 和为0, 商为-1 。

5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小;B. 明确体现绝对值意义;C. 建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:│a│= a(a ≥0) -a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。

②│a│≥0, 符号“││”是“非负数”的标志; ③数 a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[ 乘法] 交换律、结合律;[ 乘法对加法的] 分配律)3.运算顺序: A. 高级运算到低级运算;B. (同级运算)从“左”到“右”(如5÷1 ×55);C.( 有括号时) 由“小”到“中”到“大”。

初三数学的知识点总结

初三数学的知识点总结

初三数学的知识点总结一、代数与函数1. 代数基本概念- 变量、常数和系数- 代数表达式和算式- 等式和不等式- 代数的运算法则2. 一元一次方程与一元一次不等式- 解一元一次方程和一元一次不等式- 解决应用问题3. 一元二次方程与一元二次不等式- 解一元二次方程和一元二次不等式- 判断一元二次方程有无解- 利用因式分解和配方法解一元二次方程- 解决应用问题4. 函数基本概念- 自变量和函数值- 函数的表示法和性质- 函数的图像与函数的性质- 函数的增减性与最值- 复合函数二、空间与图形1. 空间形象和空间想象- 点、线、面和体的基本概念- 空间中的位置关系和方向关系2. 二维空间中的图形- 点、线段、射线、角的概念- 三角形和四边形的基本概念和性质- 判断图形的相似性和全等性- 直线和平面的方程- 直角坐标系与平面直角坐标系- 坐标变化与图形的平移、旋转、翻折3. 三维空间中的图形- 空间几何体的基本概念和性质- 认识线面关系和线面角- 判断立体图形的相似性和全等性- 空间坐标系与空间直角坐标系- 坐标变化与图形的平移、旋转、翻折- 空间图形的表达和表示三、数与式1. 实数- 有理数和无理数- 实数的运算性质和运算法则- 实数的大小比较和数直线2. 整式与分式- 整式的加减乘除运算- 分式的概念和基本性质- 分式的乘除运算- 分式方程的解法3. 特殊数的性质- 平方根与立方根- 质数与合数- 素因数分解- 公因数与最大公因数- 公倍数与最小公倍数- 分数的约分与通分四、统计与概率1. 统计的基本概念- 数据的分类和整理- 数据的图表表示- 数据的分析和描述- 常见统计量的计算2. 概率的基本概念- 基本事件和复合事件- 概率的概念和性质- 事件的关系和运算- 条件概率- 排列与组合问题的计算方法五、几何推理1. 分析推理和直观推理- 求证方法和证明思路- 分析推理的常见方法2. 三角形的性质- 三角形内外角的性质- 三角形的中线、延长线和高线- 三角形的相似性质- 三角形的垂直、平行关系以上就是初三数学的主要知识点的总结,希望对你有所帮助。

初三数学知识点总结归纳(3篇)

初三数学知识点总结归纳(3篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

完整版九年级数学 中考知识点总结归纳

完整版九年级数学 中考知识点总结归纳

1 / 51中考数学知识点总结(完整版)代数部分 第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不循环无限小数,如1.0001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2b ab aa 0,b 0 。

x 1 x 2b,x 1 ?x 2 a第三章 旋转1图形的旋转 旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。

中心对称:一个图形绕一个点旋转 180 度,和另一个图形重合,则两个图形关 于这个点中心对称;中心对称图形:一个图形绕某一点旋转 180 度后得到的图形能够和原来的图形初三数学知识点 第一章 二次根式 二次根式:形如a (a 0) 的式子为二次根式;性质: a是一个非负数;二次根式的乘除:aaaa 0;0。

a ? bab a 0,b 0 ;二次根式的加减: 3数相同的二次根式进行合并。

二次根式加减时,先将二次根式华为最简二次根式,再将被开方4 海伦-秦九韶公式: S p(p )(p b)(p c) ,S 是三角形的面积,p 为abc p 。

第二章1 程。

2元二次方程元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方一元二次方程的解法配方法:将方程的一边配成完全平方式,然后两边开方;公式法: xb b 2 4ac2a左边是两个因式的乘积,右边为零。

因式分解法: 一元二次方程在实际问题中的应用 韦达定理:设 x 1 , x 2是方程2 ax 2bx c 0 的两个根,那么有重合,则说这个图形是中心对称图形;3 关于原点对称的点的坐标第四章圆1 圆、圆心、半径、直径、圆弧、弦、半圆的定义2 垂直于弦的直径圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90 度的圆周角所对的弦是直径。

5 点和圆的位置关系点在圆外d r点在圆上d=r 点在圆内d<r 定理:不在同一条直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

6 直线和圆的位置关系相交d<r相切d=r相离d>r切线的性质定理:圆的切线垂直于过切点的半径;切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

7 圆和圆的位置关系外离d>R+r外切d=R+r相交R-r<d<R+r内切d=R-r内含d<R-r8 正多边形和圆正多边形的中心:外接圆的圆心正多边形的半径:外接圆的半径正多边形的中心角:没边所对的圆心角正多边形的边心距:中心到一边的距离9 弧长和扇形面积10 圆锥的侧面积和全面积侧面积: 全面积11 (附加)相交弦定理、切割线定理第五章 概率初步1概率意义:在大量重复试验中,事件A 发生的频率 m 稳定在某个常数 p 附近,n 则常数 p 叫做事件 A 的概率。

2 用列举法求概率一般的,在一次试验中,有 n 中可能的结果,并且它们发生的概率相等,事件 A3用频率去估计概率 下册 第六章 二次函数a>0, 开口向上; a<0,开口向下;图像的平移可以参照顶点的平移。

2 用函数观点看一元二次方程3 二次函数与实际问题第七章 相似1图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似; 相似比:相似多边形对应边的比值。

2 相似三角形 判定:平行于三角形一边的直线和其它两边相交, 所构成的三角形和原三角形相似; 如果两个三角形的三组对应边的比相等,那么这两个三角形相似; 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三 角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,形相似。

3 相似三角形的周长和面积 相似三角形(多边形)的周长的比等于相似比; 相似三角形(多边形)的面积的比等于相似比的平方。

4 位似 位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行, 这样的两个图顶点坐标:b ,4ac b 2 ; 2a ,4a对称轴: x2a弧长nr l180扇形面积: S2nr 360包含其中的 m 中结果,那么事件A 发生的概率就是 p (A )= mn二次函数ax 2bx c =a x2b 2a24ac b 4a那么两个三角形叫位似图形,相交的点叫位似中心。

第八章锐角三角函数1 锐角三角函数:正弦、余弦、正切;2 解直角三角形第九章投影和视图1 投影:平行投影、中心投影、正投影2 三视图:俯视图、主视图、左视图。

3 三视图的画法初三数学知识点x2ax +bx+c=a(x-x 1)(x-x 2)或 ax 2+bx+c= a xb b 2 4ac 2ab b 2 4ac 2a一、《一元二次方程》1. 一元二次方程的一般形式 : a ≠ 0时, ax 2+bx+c=0 叫一元二次方程的一般形式,研究一元 二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、b 、c ; 其中 a 、 b, 、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法 : 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然 简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式 分解法适用范围较大,且计算简便,是首选方法;配方法使用较少 . 223. 一元二次方程根的判别式 : 当 ax 2+bx+c=0 (a ≠ 0)时,Δ =b 2-4ac 叫一元二次方程根的判 别式 . 请注意以下等价命题:※ 5 .当 ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:( 以下等价关系要求会用公式x 1 x 2 b ,x 1x 2 c ;Δ =b 2-4ac 分析,不要求背记 )a a1) 两根互为相反数b= 0 且Δ≥ 0 ab = 0 且Δ≥ 0;2)两根互为倒数c a =1 且Δ≥ 0 a = c 且Δ≥ 0;3) 只有一个零根c = 0 且 b ≠0c = 0 且 b ≠0;a a4) 有两个零根c = 0 且 b = 0 c = 0 且 b=0;aa5) 至少有一个零根c=0 c=0 ; a6)两根异号c<0aa 、 c 异号;7) 两根异号, 正根绝对值大于负根绝对值c <0且 b >0 a 、c 异号且 a 、b 异号;a a8) 两根异号, 负根绝对值大于正根绝对值c <0且 b <0 a 、c 异号且 a 、b 同号;a a9) 有两个正根cb> 0, > 0 且Δ≥ 0a 、 c 同号,a 、b 异号且Δ≥ 0;a a10)有两个负根c> 0 , b< 0 且Δ≥a 、c 同号, a 、b 同号且Δ≥ 0.aa6.求根法因式分解二次三项式公式: 注意:当Δ< 0 时,二次三项式在实数范围内不能分 解.7.求一元二次方程的公式:x 2 - (x 1+x 2) x + x 1x 2 = 0.注意:所求出方程的系数应化为整数Δ< 0 <=> 无实根;4. 一元二次方程的根系关系: Δ≥0 <=> 有两个实根(等或不等) .2当 ax 2+bx+c=0 (a ≠ 0) 时,如Δ≥ 0,有下列公式:(1) x 1,2b b 2 4ac 2a(2) x 1 x 2x 1x 2aΔ> 0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; bc(1) 第一年为 a , 第二年为 a(1+x) , 第三年为 a(1+x) 2.( 2)常利用以下相等关系列方程: 第三年 =第三年或 第一年 +第二年+第三年=总和 .9.分式方程的解法:两边同乘最简(1) 去分母法 验增根代入最简公分母 (或原方程的每个分母 ) 公分母 (2)换元法凑元换,元设元.,验增根代入原方程每个 分母,值10. 二元二次方程组的解法:等式,公式 ) 推导出含有 x 1, x 2 的关系式 .注意隐含条件 : x 1 0, x 2 0.(6) 如题目中给出特殊的直 角三角形、三角函数、 比例式、等积式等条件 , 可把它们转化为某 些线段的比,并且 引入“ 辅助未知元 k ”.(7) 方程个数等于未知数个 数时 ,一般可求出未知数的值 ;方程个数比未知数个数 少一个时, 般求不出未知数的值 , 但总可求出任何两个未 知数的关系 .、《圆》2 两边平方为( x 1 x 2)2 4(1)代入消元 法方程组 中含有一个二元一次方 程;(2) 分解降次法方程组 中含有能分解为 ( () ) 0 的方程(3)(1 注意: )( 2) 0 应 分组为 (1 ) 0 (2 ) 0 (1 ) 0 (2) 0 (3 )( 4) 0 (3) 0(4 ) 0( 4) 0(3) 0※11.几个常见转化:(1) x 12 x 22 (x 1x 2)22x 1x 2 ;(x 1x 2)2 (x 1 x 2)24x 1x 2;x212(xxx1)2 2; x或x2(xx1)22; x 1x 2(x 1 x 2)(x 1 x 2)2(x 1(x 12x 2 ) 4x 1x 22x 2) 4x 1x 2 (x 1(x 1 x 2) ;;x 2)(2)x 1 x 2 2(3)x 1x 243 ( 或2x 2196)x 1 4 x 1 4 (1) 分类为 1 和 1x 2 3 x 2 3(2) 两边平方一般不用 , 因为增加次数(4) 如 x 1sinA, x 2 sin B 且 A B 90 时, 由公式 sin 2 A cos 2 A 1, cosA 可推出 x 12x 22 1.注意隐含条件 : x 10, x 2 0.sin B(5) x 1,x 2 若为几何图形中线段长 时,可利用图形中的相等关 系( 例如几何定理,相似形 ,面积,值 0.0.几何 A 级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1. 垂径定理及推论 : 如图:有五个元素, “知二可推三” ;需记忆其中四 个定理, 即“垂径定理”“中径定理” “弧径定理”“中垂定理” C 几何表达式举例: ∵ CD 过圆心 ∵CD ⊥ABAE=BE 平分优弧AC = BC A O E 过圆心 垂直于弦 平分弦 平分劣弧AD = BD2. 平行线夹弧定理: 圆的两条平行弦所夹的弧相等 几何表达式举例AB ∥CD AC = BD3. “角、弦、弧、 “等角对等弦” ; “等角对等弧” ; “等弧对等弦” ; “等弦对等弦心距 距”定理: (同圆或等圆中) “等弦对等角” ; “等弧对等角” ; “等弦对等 ( 优,劣 )弧 ” ;“等弦心距对等弦” 圆周角定理及推论 : 圆周角的度数等于它所对的弧的度数的一半 一条弧所对的圆周角等于它所对的圆心角的 ( 如图 ) 等弧对等角” “等角对等弧” ; 直径对直角” “直角对直径” ;( 如图) 如三角形一边上的中线等于这边的一半, 三角形是直角三角形 .( 如图 ) 1) 2) 3)4) 5)那么这个4)几何表达式举例:(1) ∵∠ AOB=∠ COD∴ AB = CD(2) ∵ AB = CD∴∠ AOB=∠COD几何表达式举例1) 2)3) 4)∠ ACB= ∠ AOB2AB 是直径∠ACB=90° ∠ACB=90°AB 是直径 CD=AD=BDΔ ABC 是 Rt Δ5.圆内接四边形性质定理 : 圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角 . 6.切线的判定与性质定理 : 如图:有三个元素, “知二可推一 需记忆其中四个定理 . (1)经过半径的外端并且垂直于这条 半径的直线是圆的切线; 几何表达式举例: ∵ ABCD 是圆内接四边形 ∴ ∠CDE =∠ABC ∠C+∠A =180° 几何表达式举例: (1) ∵ OC 是半径 ∵ OC ⊥ AB ∴ AB 是切线(2) ∵ OC 是半径DE是半径 B垂直 C是切线(1)(2)线∴ O 1 、A 、O 2 三点一12.正多边形的有关计算 :公式举例:(1)中心角 n ,半径 R N , 边心距 r n ,O(1)360边长 a n ,内角 n , 边数 n ; Dn En=; n(2)有关计算在 Rt Δ AOC 中进行 .Rnr n(2)n180n2nACBa n几何 B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念: 圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、 弓形高 三角形的外接圆、 三角形的外心、 三角形的内切圆、 三角形的内心、 圆心角、 圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的 内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角 二定理:1.不在一直线上的三个点确定一个圆2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正 n 边形的半径和边心距把正 n 边形分为 2n 个全等的直角三角形 .三公式: 1. 有关的计算: ( 1)圆的周长 C=2πR ;(2)弧长 L= n R ;(3)圆的面积180 2S=π R 2. (4)扇形面积 S 扇形 =n R 1LR ;(5)弓形面积 S 弓形 =扇形面积 S AOB ±Δ AOB 的面 360 2 积. (如图)2. 圆柱与圆锥的侧面展开图:( 1)圆柱的侧面积: S 圆柱侧 =2πrh ; (r: 底面半径; h:圆柱高 )1( 2)圆锥的侧面积: S 圆锥侧 = 1 LR . (L=2πr , R 是圆锥母线长; r 是底面半径)2四 常识:1. 圆是轴对称和中心对称图形 . 2. 圆心角的度数等于它所对弧的度数 . 3. 三角形的外心两边中垂线的交点三角形的外接圆的圆心;三角形的内心两内角平分线的交点 三角形的内切圆的圆心4. 直线与圆的位置关系: (其中 d 表示圆心到直线的距离;其中 r 表示圆的半径) 直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r.5. 圆与圆的位置关系: (其中 d 表示圆心到圆心的距离,其中 R 、r 表示两个圆的半径且 R ≥r )两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ; 两圆内切 d=R-r ; 两圆内含 d < R-r.6.证直线与圆相切, 常利用:“已知交点连半径证垂直” 和“不知交点作垂直证半径” 的OAB方法加辅助线.7.关于圆的常见辅助线:两圆内切,构造外公切线与垂直两圆内切,构造外公切线与平行.两圆外切,构造内公切线与垂直两圆外切,构造内公切线与平行.两圆同心,作弦心距,可证得AC=DB.两圆相交构造公共弦,连结圆心构造中垂线PA、PB 是切线,构造双垂图形和全等.已知弦构造弦心距已知弦构造Rt Δ .A B已知直径构造直角垂直.圆外角转化为圆周角.MAO201DAP圆内角转化为圆周角AB01EO2D NDB构造垂径定理P构造相似形.MNO102MB一切一割出相似, 并且构造弦切角两割出相似, 并且构造圆周角.双垂出相似, 并且构造直角.规则图形折叠出一对全等,一对相似B相交弦出相似1. 分类为x1 x 2 2 和x1 x2 2圆的外切四边形对边和相等.若AD ∥ BC都是切线,连结OA 、OB 可证∠AOB=180°,即A、O、B三点一线.等腰三角形底边上的的高必过内切圆的圆心和切点, 并构造相似形.补全半圆AB= O1O22 (R r)Rt Δ ABC 的内切圆半径:r=abc2AB= O1O22 (R r)2PC过圆心,PA是切线,构造双垂、Rt Δ.O是圆心,等弧出平行和相似作AN⊥ BC,可证出GF AMBC AN。

相关文档
最新文档