数值计算方法试题

合集下载

《数值计算办法》试题集及参考答案

《数值计算办法》试题集及参考答案

精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。

答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。

16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。

22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。

(完整版)数值计算方法试题及答案

(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题及答案

数值计算方法试题及答案
(1) (1)试用余项估计其误差。
(2)用n8的复化梯形公式(或复化Simpson公式)计算出该积分的近似值。
e
2
x
数值试题
四、1、(15分)方程x3x10在x不同的等价形式(1)x3对应迭代格式
xn1
1xn
1.5附近有根,把方程写成三种
x1对应迭代格式xn1xn1;(2)
x1
1x
;(3)x
3
x1对应迭代格式xn1xn1。判
出其代数精度:
1xfxdxAfA1f10021
(3) (3) (6分)用幂法求矩阵10A111的模最大的特征值及其
相应的单位特征向量,迭代至特征值的相邻两次的近似值的距
8
数值试题
离小于0.05,取特征向量的初始近似值为1,0。
T
(4) (4) (6分)推导求解常微分方程初值问题
y’xfx,yx,axb,yay0
x1
x
(x1)的形式,使计
6
数值试题
(3) (3) (2分)设(4) (4)

2
x12x2
fx
xx12
,则f’x
1x2是3次样条函数,
2x3,0x1
Sx3
2
xaxbxc,(3分)设
(5) (5) (3分)若用复化梯形公式计算0
10
6
1
edx
x
,要求误差不超过
,利用余项公式估计,至少用个求积节点。
x11.6x21
分)写出求解方程组0.4x1x22的
(6) (6) (6
代公式
Gauss-Seidel迭
,为此迭代法是否收敛。
5A
4
43
迭代矩阵
(7) (7) (4分)设

数值计算方法总结计划试卷试题集及答案

数值计算方法总结计划试卷试题集及答案

一、选择题(每题2分,共20分)1.数值计算的基本思想是()。

A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。

A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。

7.数值计算的主要目的是将_______问题转化为_______问题。

8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。

9.有限差分法的核心思想是将偏微分方程转化为_______方程。

10.牛顿法是一种_______方法,适用于求解非线性方程组。

三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。

()12.在数值计算中,误差只能通过增加计算精度来减小。

()13.迭代法求解线性方程组时,需要预先知道方程组的解。

()14.数值计算方法在实际应用中具有较高的可靠性。

()15.有限元法适用于求解所有类型的偏微分方程。

()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。

17.请简要介绍有限差分法的原理及应用。

18.请简要说明牛顿法求解非线性方程组的原理。

五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

(完整版)《数值计算方法》试题集及答案

(完整版)《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.253、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

数值计算方法测试题

数值计算方法测试题

数值计算方法测试题一一、填空题(每空1分,共17分)1、如果用二分法求方程在区间内的根精确到三位小数,需对分( )次。

2、迭代格式局部收敛的充分条件是取值在( )。

3、已知是三次样条函数,则=( ),=( ),=( )。

4、是以整数点为节点的Lagrange 插值基函数,则( ),( ),当时( )。

5、设和节点则 和 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。

8、给定方程组,为实数,当满足 ,且时,SOR迭代法收敛。

9、解初值问题的改进欧拉法是阶方法。

10、设,当( )时,必有分解式,其中为下三角阵,当其对角线元素满足( )条件时,这种分解是唯一的。

二、选择题(每题2分)1、解方程组的简单迭代格式收敛的充要条件是( )。

(1), (2) , (3) , (4)2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。

(1), (2), (3), (4),043=-+x x ]2,1[)2(21-+=+k k k x x x αα⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S a b c )(,),(),(10x l x l x l n Λnx x x ,,,10Λ∑==n k kx l)(∑==nk k jk x lx 0)(2≥n =++∑=)()3(204x l x xk k nk k 1326)(247+++=x x x x f ,,2,1,0,2/Λ==k k x k =],,,[10n x x x f Λ=∆07f {}∞=0)(k kx ϕ]1,0[x x =)(ρ1)(0=x ϕ⎰=14)(dx x x ϕ⎩⎨⎧=+-=-221121b x ax b ax x a a 20<<ω00(,)()y f x y y x y '=⎧⎨=⎩⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ∈a T LL A =L )3,2,1(=i l ii b Ax =g Bx x k k +=+)()1(1)(<A ρ1)(<B ρ1)(>A ρ1)(>B ρ⎰∑=-≈bani i n i x f C a b dx x f 0)()()()()(n i C 8≥n 7≥n 10≥n 6≥n3(1)二次; (2)三次; (3)四次; (4)五次4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。

《数值计算方法》试题与答案

《数值计算方法》试题与答案

习题一1.设x >0相对误差为2%4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352 ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少? 解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

《数值计算方法》试题集及答案解析

《数值计算方法》试题集及答案解析

=
9

4 8 2 A= 2 5 7 1 3 6 的 A = LU ,则 U = 32、设矩阵
4 8 2 U = 0 1 6 1 0 0 − 2

3
33、若 f ( x ) = 3 x + 2 x + 1 ,则差商 f [ 2, 4, 8,16, 32] =
5、舍入误差是( A )产生的误差。 A. 只取有限位数 C. 观察与测量 B.模型准确值与用数值方法求得的准确值 D.数学模型准确值与实际值
6、3.141580 是π的有( B )位有效数字的近似值。 A. 6 B. 5 C. 4 C )误差。 D. 舍入
4
D. 7
7、用 1+x 近似表示 ex 所产生的误差是( A. 模型 B. 观测
1 x +1 + x
27 、若用二分法求方程 f ( x ) = 0 在区间 [1,2] 内的根,要求精确到第 3 位小数,则需要对分 10 次。
2 x 3 , 0 ≤ x ≤ 1 S (x ) = 3 2 x + ax + bx + c, 1 ≤ x ≤ 2 是 3 次样条函数,则 28、设
C. 截断
8、解线性方程组的主元素消去法中选择主元的目的是( A )。 A.控制舍入误差 C.防止计算时溢出 B. 减小方法误差 D. 简化计算
x 3 9、用 1+ 3 近似表示 1 + x 所产生的误差是(
D )误差。 D. 截断 )位有效数字。 D. 8
A. 舍入
B. 观测
C. 模型
10、-324.7500 是舍入得到的近似值,它有( C A. 5 B. 6 C. 7

计算机数值方法试题

计算机数值方法试题

标准适用数值计算方法试题一、填空(共 20 分,每题 2 分)1、设,取5位有效数字,则所得的近似值x=_____.2、设一阶差商,则二阶差商3、数值微分中,已知等距节点的函数值则由三点的求导公式,有4、求方程的近似根,用迭代公式,取初始值,那么5、解初始值问题近似解的梯形公式是6、,则A的谱半径=,A的=7、设,则=和=8、若线性代数方程组AX=b 的系数矩阵 A 为严格对角占优阵,则雅可比迭代和高斯 - 塞德尔迭代都 _____9、解常微分方程初值问题的欧拉(Euler )方法的局部截断偏差为_____10、设,当时,必有分解式,此中L为下三角阵,当其对角线元素足条件时,这类分解是独一的。

标准适用二、计算题(共 60 分,每题 15 分)1、设(1)试求在上的三次Hermite插值多项式H(x)使知足H( x)以升幂形式给出。

(2)写出余项的表达式2、已知的足,怎样利用结构一个收的迭代函数,使0, 1⋯收?3、试确立常数 A, B, C和,使得数值积分公式有尽可能高的代数精度。

试问所得的数值积分公式代数精度是多少?它能否为Gauss型的?4、推常微分方程的初值问题的数值解公式:三、证明题1、设(1)写出解的 Newton 迭代格式(2)证明此迭代格式是线性收敛的2、R=I - CA,假如,明:(1)A、C 都是非奇怪的矩阵(2)参照答案:一、填空题1、2、3、4、5、6、7、8、收敛9、O(h)10、二、计算题1、1、(1)(2)2、由,可得因故故, k=0,1, ⋯收。

3、,数求公式拥有 5 次代数精准度,它是Gauss型的4、数分方法结构数解公式:方程在区上分,得,步 h, 分用 Simpson 求公式得因此得数解公式:三、明1、明:( 1)因,故,由Newton迭代公式:n=0,1, ⋯得, n=0,1, ⋯( 2)因迭代函数,而,又,故此迭代格式是性收的。

2、明:( 1)因,因此I–R非奇怪,因I–R=CA,因此C,A都是非奇怪矩(2)故有( 2.1 )因 CA=I–R,因此 C=( I – R) A-1,即 A-1 =(I –R)-1 C-1-1又 RA =A –C,故由(里用到了教材98 引理的)移得(2.2)合( 2.1 )、 (2.2) 两式,得模拟试题一、填空题(每空 2 分,共 20 分)1、解非线性方程f(x)=0的牛顿迭代法拥有_______收敛2、迭代过程(k=1,2, ⋯)收的充要条件是___3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽 x 拥有的有效数字是___4、高斯 -- 塞尔德迭代法解线性方程组的迭代格式中求______________5、经过四个互异节点的插值多项式p(x), 只需知足_______,则 p(x) 是不超出二次的多项式6、对于 n+1 个节点的插值求积公式起码拥有___次代数精度 .7、插值型求积公式的求积系数之和___8、, 为使 A 可分解为 A=LL T,此中L为对角线元素为正的下三角形, a 的取值范围_9、若则矩阵A的谱半径(A)=___10 、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每题15 分,共 60 分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据以下x023f (x)132求二次插值多项式及 f ( 2.5 )3、用牛顿法导出计算的公式,并计算,要求迭代偏差不超出。

数值计算方法练习题

数值计算方法练习题

数值计算方法练习题习题一1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。

(1);(2);(3);(4);(5);(6);(7);2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?3. 设均为第1题所给数据,估计下列各近似数的误差限。

(1);(2);(3)4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么?(1);(2);(3)(4)5. 序列满足递推关系式若(三位有效数字),计算时误差有多大?这个计算过程稳定吗?6. 求方程的两个根,使其至少具有四位有效数字(要求利用。

7. 利用等式变换使下列表达式的计算结果比较精确。

(1);(2)(3);(4)8. 设,求证:(1)(2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。

9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

11.下列公式如何才比较准确?(1)(2)12.近似数x*=0.0310,是位有数数字。

13.计算取,利用式计算误差最小。

四个选项:习题二1. 已知,求的二次值多项式。

2. 令求的一次插值多项式,并估计插值误差。

3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。

0.4 0.5 0.6 0.7 0.80.38942 0.47943 0.56464 0.64422 0.717364. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。

5. 已知,求及的值。

6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。

X 1.615 1.634 1.702 1.828 1.921F (x) 2.41450 2.46459 2.65271 3.03035 3.340667. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法试题
重庆邮电大学数理学院
一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收

2、迭代过程(k=1,2,…)收敛的充要条件是
2、已知y=f(x)的数据如下 ,,, x 0 2 3
3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,,
4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5)
3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。

4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,,
,
5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算
y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式
三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定
积分近似计算的抛物线公式
具有三次代数精度至少具有,,,次代
数精度.
7、插值型求积公式的求积
2、若,证明用梯形公式计算积分所
系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。

参考答案:
T8、 ,为使A可分解为A=LL, 其中L一、填空题
1、局部平方收敛
2、< 1
3、 4 为对角线元素为正的下三角形,a的取值范围,
4、
5、三阶均差为0
6、n
7、b-a 9、若则矩阵A的谱半径(A)= ,,,
8、
9、 1 10、二阶方法
10、解常微分方程初值问题的梯形二、计算题
格式
1、是,,,阶方法
二、计算题(每小题15分,共60分)
修德博学求实创新
李华荣
1
重庆邮电大学数理学院
2、
右边:
3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度
4、y(0.2)?0.01903
A卷三、证明题
一、填空题(本大题共8小题,每小题3分,共9×31、证明:当 =1时,公式左
,27分)
边: 1、要使的近似值的相对误差不超过0.1%,11
公式右应取______________有效数字。

2、设是真值经过x*,1.21和y*,,0.123x和y边: 左边==右边
四舍五入得到的近似值,则的绝对误x*,y*当 =x时左边:
差限为 _________________。

l(x)x(i,0,1,2,3)3、设为互异节点,为对应ii
的三次Lagrange插值基函数,则右边:
33=_______________。

xl(1),iii,0左边==右边
1114、求积公式的代f(x)dx,f(,),f(),,当时左边: 133
数精度为_________。

5、用牛顿迭代法求解方程的f(x),cosx,x,0
右边: 迭代格式为___________。

bf(x)dx,(b,a)f(a)6、左矩形公式的截断误,a左边==右边
差为__________。

7、设解线性方程组的迭代格式为
(k,1)(k)当时左边: ,则迭代法收敛的充要条x,Bx,f
右边: 件为____________。

120,,
,,左边==右边 A,,12,18、已知矩阵,则,,
,,011,,当时左边:
修德博学求实创新
李华荣
2
重庆邮电大学数理学院
4x,,,,, ;
121A,______Cond(A),______1,,,,,,,,,,B,6X,xA,213,, ,,,,2,,,,,,,,y',,20y 311,5x,,3,,,,9、对初值问题,则步长h满足,y(0),1,
_______________时,Euler法是稳定的。

8、用改进的Euler法解下列初值问题: 二、计算题(本大题共8小题,每小题8分,共8×82x,y',y,, ,
(0,x,1)y,,64分) ,y(0),1,
1、已知过三点(1,0),(2,-5),(3,-6),试f(x)
取步长h=0.1,计算。

y,y12求其二次Lagrange插值多项式,并求的近f(1.5)
三、证明题(9分):对于线性方程组似值。

x,2x,2x,1,1232、观察下列数据,写出求取这些数据的线性最小二乘,x,x,x,1 证明用Jacobi迭代法收敛。

,123
,拟合的法方程组。

2x,2x,x,1123,
B卷 ,1 ,0.5 0 0.5 1 xi
一、填空题(本大题共7小题,每小空3分,共8×3 ,0.2 0.8 2.00 3.0 4 yi
,24分)
2,10,,,,1、用,3. 1416作为=3. 1415926…的近似值,x,A,02,13、用乘幂法计算按模最大特征值,,
,,其有效数字有位。

0,12,,
与特征向量,取初值 2、设是真值经过x*,1.21和y*,,0.123x和y(0,0,1),迭代两次。

四舍五入得到的近似值,则的绝对误x*,y*32x,x,1,04、求方程的正根,对于下列迭代格式,
差限为 _________________。

判定其收敛性,并说明理由。

123AXb,A3、若线性方程组的系数矩阵为严格对x,1,x,1,x(1) (2) 2x
角占优阵, 则雅可比迭代和高斯-塞德尔迭代1,xI,edx5、用辛普生公式计算积分(用e表达) 。

,0_________________。

x,x,x6、求3个不同求积节点使公式:4、设解线性方程组的迭代格式为012 (k,1)(k)1,则迭代法收敛的充要条x,Bx,ff(x)dx,C[f(x),f(x),f(x)]具有3次012,,1
件为____________。

代数精度。

,31,, T5、已知,则XA,,,(,),12,,AX,B7、用Doolittle法的紧凑格式求解矩阵方程:,,21,,其中
AXA= ; = 。

11
修德博学求实创新
李华荣
3
重庆邮电大学数理学院
1, 使方程4、试确定迭代函数11g(x)6、求积公式的f(x)dx,f(,),f(),,133 对任意的,相x,02,fxxx()ln(),,,,20,,0代数精度为_________。

应的迭代过程收敛。

27、求的Newton迭代法格式为x,2x,1,05、用Doolittle分解法求方程组AX=b, 其中
10316,,,,_____________。

,,,,6A,213, b=。

,,,,二、计算题(本大题共7小题,每小题10分,共7×,,,,3111,,,,
10,70分) 6、用GS迭代方法求解下列方程组,写出其迭代格式,
并判定其敛散性。

1、已知,求的fff(),(),(),,,,,131024fx()
1023xxx,,,,123,二次插值多项式,及并用所求的插值多项式计
算,,,,21015xxx ,123
,的值。

f(.)15,,,,xxx2510123,
2、已知函数表如下,试构造出差商表。

,yy,,15,7、讨论欧拉公式求初值问题的稳定域。

,ya()0,x 0.4 0.5 0.6 0.7 0.8 ,
-0.916-0.693-0.510-0.356-0.223三、证明题(6分): lnx 291 147 826 675 144 证明数值求积公式 :
b,f(,)21f(x)dx,(b,a)f(b),(b,a), ,Ifxdx,()3、对积分,试: 2,a0
(1)构造以为节点的辛浦生xxx,,,0051,., ,,,,a,b012
求积公式。

(2)指出所构造公式的代数精度。

修德博学求实创新
李华荣4。

相关文档
最新文档