单位脉冲函数及傅里叶变换的性质
傅里叶变换性质傅里叶变换的性质证明
F ( ) R ( ) j X ( ) R () jX () F * ()
五.时移特性
若 f(t) F (),
则 f(t t0 ) F ()e j t0 ;
若 F ()F ()ej() 则 f ( t t 0 ) F () e j ( ) t 0
utF 直流 12
余下部 f2(t)分 u(t)1 21 2sgtn),( utj1
f2t微f分 2tt1, f2(t)j1
ut
f1 t
dut f1t
1
dt
1 2
1
o
t
o
t
o
t
2.频域微分性质
若 f(t) F (),则 t( t f ) jF d d
或 j t( t f ) d F d
显然
R ftc ostdt
X
fts
intdt
R R
关于 的奇函数
X X
F F
已 F f t 知 F
F f t F
证明
当 F 1 a 0 时 ,设 f(a a b b t)t e j x t,d 则 tt x b ,d t 1 d x
aa
F 1 f(x )e j axeja ba 1d xa1Faejab
2 E ej24 E 2 E e j2 j2 F 2 F
F 1 2 2 E e j 2 4 E 2 E e j 2
122 E ej2 2 e j2
2 E 2 e j 4 e j 4 2 2 E 2 2 jsi4 n 2
2
对压 所 2 : f缩 2 有 t 5 E S a e j 5 2
傅里叶变换三部曲(二)·傅里叶变换的定义
傅⾥叶变换三部曲(⼆)·傅⾥叶变换的定义Part1:傅⾥叶级数的复数形式设f(x)是周期为l的周期函数,若f(x)∼a02+∞∑n=1(a n cosnπxl+bn sinnπxl),an=1l∫l−lf(x)cosnπxl d x,(n=0,1,2,…)bn=1l∫l−lf(x)sinnπxl d x.(n=1,2,…)记ω=πl,引进复数形式:cos nωx=e i nωx+e−i nωx2,sin nωx=e i nωx−e−i nωx2i级数化为f(x)∼a02+∞∑n=1(a ne i nωx+e−i nωx2+bne i nωx−e−i nωx2i)=a02+∞∑n=1(a n−ib n2e i nωx+a n+ib n2e−i nωx)令c0=a02,cn=a n−ib n2,dn=a n+ib n2,则c0=12l∫l−lf(x)d x,c n=12l∫l−lf(x)(cos nωx−isin nωx)d x=12l∫l−lf(x)e−i nωx d x,d n=12l∫l−lf(x)(cos nωx+isin nωx)d x=12l∫l−lf(x)e i nωx d x≜c−n=¯c n,(n=1,2,…)合并为c n=12l=∫l−lf(x)e−i nωx d x,(n∈Z)级数化为+∞∑n=−∞c n e−i nωx=12l+∞∑n=−∞∫l−l f(x)e−i nωx d x e i nωx我们称c n为f(x)的离散频谱(discrete spectrum),|c n|为f(x)的离散振幅频谱(discrete amplitude spectrum),arg c n为f(x)的离散相位频谱(discrete phase spectrum).对任何⼀个⾮周期函数f(t)都可以看成是由某个由某个周期为l的函数f(x)当l→∞时得来的.Part2:傅⾥叶积分和傅⾥叶变换傅⾥叶积分公式设f T(t)是周期为T的周期函数,在[−T2,T2]上满⾜狄利克雷条件,则f T(t)=1T∞∑n=−∞∫T2−T2f T(t)e−j nωt d t e j nωt,ω=2πT(上式中j是虚数单位,在傅⾥叶分析中我们不⽤i⽽通常记作j)由limT→∞f T(t)=f(t)知,f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt记Δω=2πT,则Δω→0⇔T→∞,则f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt=limΔω→012π+∞∑n=−∞∫T2T2f T(t)e−j nωt d t e j nωtΔω[][][]令F T(nω)=∫T2−T2f T(t)e−j nωt d t,则f(t)=limΔω→012π+∞∑n=−∞F T(nω)e j nωtΔω,F T(t)→∫+∞−∞f(t)e−jωt d t≜F(ω)(T→∞),由定积分定义f(t)=12π∫+∞−∞F(ω)e jωt dω,即f(t)=12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω上述公式称为傅⾥叶积分公式.傅⾥叶积分存在定理若f(t)在任何有限区间上满⾜狄利克雷条件,且在R上绝对可积,则12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω=f(t),t为连续点,f(t−)+f(t+)2,t为间断点.傅⾥叶变换设f(t)满⾜傅⾥叶积分存在定理,定义F(ω)=∫+∞−∞f(t)e−jωt d t 为f(t)的傅⾥叶变换(Fourier Transform)(实际上是⼀个实⾃变量的复值函数),记作F(ω)=F[f(t)]类似地,定义f(t)=12π∫+∞−∞F(ω)e−jωt dω为F(ω)的傅⾥叶逆变换(Inverse Fourier Transform),记作f(t)=F−1[F(ω)]在⼀定条件下,有F[f(t)]=F(ω)⇒F−1[F(ω)]=f(t);F−1[F(ω)]=f(t)⇒F[f(t)]=F(ω). f(t)与F(ω)在傅⽒变换意义下是⼀个⼀⼀对应,称f(t)与F(ω)构成⼀个傅⽒变换对,记作f(t)F↔F(ω)在不引起混淆的情况下,简记为f(t)↔F(ω).f(t)称为原象函数(original image function),F(ω)称为象函数(image function).在频谱分析中,F(ω)⼜称为f(t)的频谱(密度)函数(spectrum function),|F(ω)|称为f(t)的振幅频谱(amplitude spectrum),arg F(ω)称为f(t)的相位频谱(phase spectrum).下⾯我们来求⼏个常见信号函数的傅⽒变换.例1 求矩形脉冲函数(rectangular pulse function)R(t)=1,|t|≤1, 0,|t|>1的傅⽒变换及其频谱积分表达式.解:F(ω)=F[R(t)]=∫+∞−∞R(t)e−jωt d t=∫1−1R(t)e−jωt t=e−jωt−jω1−1=−e−jω−e jωjω=2sinωω;R(t)=12π∫∞−∞F(ω)e jωt dω=1π∫+∞F(ω)cosωt dω=1π∫+∞2sinωωcosωt dω=2π∫+∞sinωcosωtωdω=1,|t|<1, 12,|t|=1, 0,|t|>1因此可知,当t=0时,有[] []{{ []{∫+∞0sin t xd t =π2例2 求指数衰减函数(exponential decay function)E (t )=0,t <0,e −βt ,t ≥0的傅⽒变换及其频谱积分表达式,其中β>0为常数.解:F (ω)=F [E (t )]=∫+∞−∞E (t )e −j ωt d t=∫+∞0e −βt e −j ωtd t =∫+∞0e (β+j ω)t d t =1β+j ωβ−j ωβ2+ω2E (t )=12π∫+∞−∞F (ω)e j ωt ω=12π∫+∞−∞β−j ωβ2+ω2e j ωtω=1π∫+∞βcos ωt +ωsin ωtβ2+ω2d ω=0,t <0,12,t =0,e −βt ,t >0Part3:单位脉冲函数我们记电流脉冲函数q (t )=0,t ≠0,1,t =0,严格地,由于q (t )在t =0出不连续,所以q (t )在t =0点是不可导的.但是,如果我们形式地计算这个导数,有q ′(0)=limΔt →0q (0+Δt )−q (0)Δt=limΔt →0−1Δt=∞我们引进这样⼀个函数,称为单位脉冲函数(unit pulse function)或狄拉克(Dirac)函数,简记为δ−函数,即δ(t )=0,t ≠0,∞,t =0,⼀般地,给定⼀个函数序列δε(t )=0,t <0,1ε,0≤t ≤ε,0,t >ε则有δ(t )=lim ε→0δε(t )=0,t ≠0,∞,t =0于是∫+∞−∞δ(t )d t =limε→0∫+∞−∞δεd t =limε→0∫ε01εd t =1若设f (t )为连续函数,则δ−函数有以下性质:∫+∞−∞δ(t )f (t )d t =f (0);∫+∞−∞δ(t −t 0)f (t )d t =f (t 0)于是我们可得:F [δ(t )]=∫+∞−∞δ(t )e −j ωt t =e −j ωt t =0=1于是δ(t )与常数1构成了⼀对傅⾥叶变换对.例3: 证明:e j ω0t ↔2πδ(ω−ω0)其中ω0是常数.证:{{{{{{|f(t)=F−1[F(ω)]=12π∫+∞−∞2πδ(ω−ω0)e jωt dω=e jωtω=ω=e jω0t在物理学和⼯程技术中,有许多重要函数不满⾜傅⽒积分定理中的绝对可积条件,即不满⾜条件∫+∞−∞|f(t)|d t<∞例如常数,符号函数,单位阶跃函数以及正,余弦函数等, 然⽽它们的⼴义傅⽒变换也是存在的,利⽤单位脉冲函数及其傅⽒变换就可以求出它们的傅⽒变换.所谓⼴义是相对于古典意义⽽⾔的,在⼴义意义下,同样可以说,原象函数f(t)和象函数F(ω)构成⼀个傅⽒变换对.例求正弦函数f(t)=sinω0t的傅⽒变换.解:F(ω)=F[f(t)]=∫+∞−∞f(t)e−jωt d t=∫+∞−∞e jω0t−e−jω0t2je−jωt d t=12j∫+∞−∞e−j(ω−ω0)t−e−j(ω+ω0)t d t=jπδ(ω+ω0)−δ(ω−ω0)同样我们易得F(cosω0t)=πδ(ω+ω0)+δ(ω−ω0)例证明:单位阶跃函数(unit step function)u(t)=0,t<0, 1,t>0的傅⽒变换为F[u(t)]=1jω+πδ(ω)证:F−11jω+πδ(ω)=12π∫+∞−∞1jω+πδ(ω)e jωt dω=12π∫+∞−∞[πδ(ω)]e jωt dω+12π∫+∞−∞1jωe jωt dω=12+12π∫+∞−∞cosωt+jsinωtjωdω=12+12π∫+∞−∞sinωtωdω=12+1π∫+∞sinωtωdω∫+∞0sinωtωdω=π2,t>0,−π2,t<0⇒F−11jω+πδ(ω)=12+1π−π2=0,t<012,t=0,12+1ππ2=1,t>0=u(t).本⽂完|()[][]{[][][][][][] { []{()()。
工程测试-第一章 信号及其描述2
式中, 周期, 整数, 式中,Ts—周期,n—整数, 周期 整数 n=0,±1, ±2, ±3,…。 ± 。
L
L
为周期函数, 为周期函数,而ƒs=1/Ts, , 用傅里叶级数的复指数形式表示: 用傅里叶级数的复指数形式表示:
c o m b (t ) =
1 Cn = Ts
n = −∞
∑
∞
C ne
j 2π nfst
图 具有时移t0的矩形脉冲
如果信号在时域中延迟了时 如果信号在时域中延迟了时 其频谱幅值不会改变, 间t0,其频谱幅值不会改变, 而相频谱中各次谐波的相移而相频谱中各次谐波的相移 2πƒ t0,与频率成正比。 频率成正比。
4. 频移性
如果有 x(t) ↔ X ( f ) 则 x(t)e j 2π f0t ↔ X ( f − f0 ) f0 ——常数。
X ( f ) = X ( f ) e jϕ ( f )
将上式中的 X ( f ) (或 X (ω) ,当变量为ω时) 称非周期信号x(t)的幅值谱, φ(f)(或 φ(ω))称x(t)的相位谱。
周期和非周期信号幅值谱的区别 非周期信号幅值谱|X 与周期信号幅值谱|Cn|之 非周期信号幅值谱 (ƒ)|与周期信号幅值谱 与周期信号幅值谱 之 间的区别: 间的区别: 为连续频谱, 为离散频谱; ①|X (ƒ)|为连续频谱,而|Cn|为离散频谱; 为连续频谱 为离散频谱 的量纲和信号幅值的量纲一致, ②|Cn|的量纲和信号幅值的量纲一致,即cm(振 的量纲和信号幅值的量纲一致 振 的量纲相当于|Cn|/ƒ,为单位频宽 幅),而|X (ƒ)|的量纲相当于 , 的量纲相当于 , 上的幅值, 频谱密度函数” 上的幅值,即“频谱密度函数”,cm/Hz(振 ( 频率)。 幅/频率)。 频率
信号分析与处理——傅里叶变换性质
1. 线性 2. 奇偶性 3. 对偶性 4. 尺度变换特性 5. 时移特性
6.
频移特性
7.
微分特性
8.
积分特性
9. 帕斯瓦尔定理
10. 卷积定理
1、线性(叠加性)
若:
x1 (t) X1 ()
x2 (t) X 2 ()
则: a1x1 (t) a2 x2 (t) a1 X 1 () a2 X 2 ()
Sa(t0
)e
j t0 2
2
由积分性质,可得 的x频2 (谱t)为
X 2 ()
X1() j
X1(0) ()
又因为: 所以得:
X1(0) 1
X 2 ()
1
Sa(
t0
)e
j
t0 2
j 2
()
9、帕斯瓦尔定理
若: x(t) X ()
则:
x(t) 2 dt 1 X () 2 d
2
式(2-100)为有限能量信号的帕斯瓦尔公式
2
)
由线性和时移特性,有:
X
2
()
3Sa(
3
2
)
X
()
1 2
e
j
5 2
X 1 ( )
e
j 5 2
X
2
()
e
j 5 2
1 2
Sa(
2
)
3Sa( 3
2
)
例:求三脉冲信号的频谱
g (t为)P36页的标准矩形脉冲信号
求如下三脉冲信号的频谱函数
x(t) g(t) g(t T ) g(t T )
解:
X () G()(1 e jT e jT ) G()(1 2 cosT ) E Sa( )(1 2 cosT )
傅里叶变换及其性质
αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分
解
别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02
-
4
-
2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4
-
(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:
6.3 单位脉冲函数及其傅里叶变换
sin 0t
|F()|
t
0 O
0
F [cos0t] ( 0) ( 0).
例3 证明:F [u(t)] 1 (). i
证:F
1
1
i
()
1
2
1
i
()
eit d
1
2
() eit d 1
2
1
i
eit
d
1 1
2 2
cos
t
i
i
sin
t
d
1 1
一、单位脉冲函数的定义
定义1
(t)
lim
0
(t).
其中,
0
(t
)
1
0
(t 0)
(0 t )
(t 0)
定义2 若函数满足下列两个条件:
(1) (t) 0, t 0;
(2) (t)dt 1.
则称其为单位脉冲函数,或 -函数。
可将-函数用一个长度等于1的有向线段表示, 这个线段 的长度表示-函数的积分值, 称为-函数的强度.
(t)
δ(t-t0) 1
O
t0
t
如果脉冲发生在时刻t=t0,则函数为δ(t-t0)
二、单位脉冲函数的性质
(1)对任意的连续函数 f (t)
(t) f (t)dt=f 0
(t t0 ) f (t)dt
f
t0
(2)对任意的有连续导数的函数 f (t)
(t)
f
(t )dt =
f
0
第六章 傅里叶变换
第三讲 单位脉冲函数的Fourier变换
06
CHAPTER
§3 单位脉冲函数的Fourier变换
复变函数与积分变换-第七章-傅里叶变换
2
1
2
2d
0 ejt d
ejt
0
ej0t
.
即ej0t 和2d 0 构成了一个傅氏变换对。
由上面两个函数的变换可得
e jt dt 2d
1
2
f ( )cos(t )d
j
f
(
) sin
(t
)d
d
因 f ( )sin(t )d 是ω的奇函数, f cos t d是 的偶函数,
定义
d
t
lim
0
d
t
0
t 0。 t 0
O
d t dt
lim 0
d t dt
lim 0
1 dt
0
1
(在极限与积分可交换意义下)
工程上将d-函数称为单位脉冲函数。
22
d -函数的筛选性质:
若f(t)为无限次可微的函数,则有
2 3
19
3.单位脉冲函数及其傅里叶积分变换
在物理和工程技术中, 常常会碰到单位脉冲函数. 因为有许多物理现象具有脉冲性质, 如在电学中, 要 研究线性电路受具有脉冲性质的电势作用后产生的电 流; 在力学中, 要研究机械系统受冲击力作用后的运 动情况等. 研究此类问题就会产生我们要介绍的单位 脉冲函数.
从 f t 1
2
f
傅里叶变换的性质
1 0 1
21 31
即:
T
t
1 e jn1t T n
再求这个级数的傅氏变换
F
1 T n
e
j
n1t
2
T
n
n1
1 n1
n
T t 的频谱函数如图2-25b所示。 F
1
1
0 1
21 31
单位周期冲激序列的傅氏变换仍为周期冲激序列。
9、奇、偶、虚、实性
f t为实函数时, F 的模与幅角、实部与虚部表示形式
-1
0
0
0
/2
0
0
0
/2
例2-5 求如图2.-18所示
f t 的 F 并作图。
f t
A
t
2
2
-A
解 令 f1t Ag t , f t f1tcos0t 0 2 /
图 2 .
F1 ASa / 2
3
4
则
F
1 2
F1
0
F1
0
A
2
S
a
0 2
Sa
0 2
其中 0 2 /
F1以及 F 如图2-19所示。
a a
特别地,当 a 1 时,得到 其频谱亦为原频谱的折叠,即
f t 的折叠函数 f t ,
f t F 。
尺度特性说明,信号在时域中压缩,频域中就扩展;反 之,信号在时域中扩展,在频域中就一定压缩;即信号 的脉宽与频宽成反比。一般来说时宽有限的信号,其频 宽无限,反之亦然。
可以理解为信号波形压缩(扩展)
为
F f te jtdt
f
t co std t
j
f tsin tdt
常用的傅里叶变换 定理 各种变换的规律(推荐)
GG ( P )
sin(Sx) comb( x)
comb( P )
rect( x) tri( x)
cir (r )
sinc( P )
sinc 2 (P ) J1 ( U )
1
一、δ 函数的傅里叶变换: 设: [δ ( x )] = ∆ ( u ) ,
由卷积定理知: 等号两边作 傅里叶变换:
[g ( x )] = G ( u)
H fx
˄˅լᙗᇊ⨶˖ྲ᷌ F ^g x ` ˄㕙઼᭮৽╄ᇊ⨶˅ 1 § fx · F ^g ax ` G¨ ¸ ࡉᴹ a © a ¹ ˄অ㕍㹽ሴˈ㕍ゴ㹽ሴਈᇭ˅
G f x
˄˅ս〫ᇊ⨶˖ྲ᷌ F ^g x ` G f x ࡉᴹ F ^g x a ` G f x exp j 2Sf x a ࠭ᮠ൘オฏѝⲴᒣ〫ˈᑖᶕ仁ฏѝⲴ〫
3
二、梳状函数的傅里叶变换
F [comb( x )] = comb( u)
普遍型
x F comb = a comb( au) a
结论
comb 函数的
傅里叶变换 仍是
二维情况
x y F comb comb a b = ab comb( au) comb( bv )
结论:余弦函数的傅里叶变换是 δ 函数组合
-u0
0
u0
8
u
六、三角形函数的傅里叶变换
推导 一 维 情 况
F [Λ ( x )] = ?
已知
Λ ( x ) = rect( x ) ∗ rect( x )
= F [rect( x )] •F [rect( x )]
F [ Λ ( x )] = F [rect( x ) ∗ rect( x )] = sinc( u) • sinc( u)
应用高等数学-6.1 傅里叶变换
例8
试证单位阶跃函数
F () F[(t)] (t)e jt d t e jt 1
t0
显然, (t)与常数1构成了一傅氏变换对,按
逆变换公式有
(t)
F
1[F ()]
1 2π
e
jt
d
由上式可得 e jt d 2π (t)
(6-9)
这是一个关于δ函数的重要公式.
例5 证明:1和 2π ()构成傅氏变换对.
f
(t)
1, 1,
π t 0 0 t π
如何将函数展开为傅里叶级数的三角形式.
解: 由定理6.1可得 0 1,a0 0,an 0 (n 1, 2,L )
bn
1
π
f (t)sin ntdt
π
π2
π
sin ntdt
0
nπ 2 (cos
nt
π
) 0
nπ 2 (1 cos nπ)
nπ 2 [1 (1)n ]
2π ( 0 )
例7 求正弦函数 f (t) sin 0t 的傅氏变换.
解:
F() F[ f (t)]
e
jt
sin
0t
d
t
1 (e j0t e j0t )e jt d t
2 j
1 (e j(0 )t e j(0 )t ) d t
2 j
jπ[ ( 0 ) ( 0 )]
式中当t=0可得重要积分公式
sin
x
d
x
π
0x
2
例4
求单边指数衰减函数
f
(t)
0, et ,
t0 t0
( 0)
的频谱函数、振幅谱、相位谱.
单位脉冲函数及傅里叶变换的性质
1
2
2d
0
1
2
jd
1
2
2d
0
1
2
jd
d
1
2
jd
0
1
0 2
jd
0 .
像函数的微分性:
F() jF[tf (t)] 或F[tf (t)] jF()
F (n) () ( j)nF[tn f (t)] 或F[tn f (t)] jnF (n) ()
由上面两个函数的变换可得
eitd t 2d ()
e d t i(0 )t
2d
(
0 )
注 在 d 函数的 Fourier 变换中,其广义积分是根据 d 函数的
性质直接给出的,而不是通过通常的积分方式得出来的, 称这种方式的 Fourier 变换是一种广义的Fourier变换。
在物理学和工程技术中, 有许多重要函数不满 足傅氏积分定理中的绝对可积条件, 即不满足条件
0
d
(t)d t
lim
0
1 dt 1
0
可将d-函数用一个长度等于1的有向线段表示, 这个线段的长度表示d-函数的积分值.
d (t)
1
O
t
d-函数有性质:
(1) (筛选性质)
d (t) f
(t)d t
f
(0) 及
d (t
t0 )
f
(t)d t
f
(t0 ) .
(f
t 为连续函数)
(2) d函数为偶函数,即d (t) d (t) .
点电荷, 点热源, 集中于一点的质量及脉冲技术中的非常
窄的脉冲等, 就能够象处理连续分布的量那样, 以统一的
积分变换主要公式超强总结 (1)
一、傅里叶变换1、傅里叶积分存在定理:设()f t 定义在(),-∞+∞内满足条件:1)()f t 在任一有限区间上满足狄氏条件; 2)()f t 在(),-∞+∞上绝对可积(即()f t dt +∞-∞⎰收敛;则傅氏积分公式存在,且有()()()()()(),1[]11002,2iw iwt f t t f t f e d e dw f t f t t f t τττπ+∞+∞--∞-∞⎧⎪=-⎨++-⎪⎩⎰⎰是的连续点是的第一类间断点2、傅里叶变换定义式:()[]()()iwt F f t F w f t e dt +∞--∞==⎰ 1-2 傅里叶逆变换定义式:()11[]()()2iwt F F w f t F w e dw π+∞--∞==⎰1-33、常用函数的傅里叶变换公式()1()FFf t F ω-−−→←−− 矩形脉冲函数1,22()sin 20,2F F E t E f t t ττωτω-⎧≤⎪⎪−−→=⎨←−−⎪>⎪⎩1-4 单边指数衰减函数()()1,0110,0tFFe t e t F e t iw j t βββω--⎧≥−−→=⇒=⎡⎤⎨←−−⎣⎦++<⎩ 1-5 单位脉冲函数 ()11FFt δ-−−→←−− 1-6 单位阶跃函数 ()()11FFu t w iwπδ-−−→+←−− 1-7 ()112F Fw πδ-−−→←−− 1-8 ()12F Ft j πδω-−−→'←−− 1-9 ()0102F j t Fe ωπδωω-−−→-←−− 1-10 ()()1000cos FFt ωπδωωδωω-−−→++-⎡⎤←−−⎣⎦1-11()()1000sin F Ft j ωπδωωδωω-−−→+--⎡⎤←−−⎣⎦1-12 4、傅里叶变换的性质设()()[]F f t F w =, ()()[]i i F f t F w =(1)线性性:()()1121()()FFf t f t F F αβαωβω-−−→++←−−1-13 (2)位移性:()()010Fj t Ff t t e F ωω--−−→-←−− 1-14 ()010()F j t Fe f t F ωωω-−−→-←−− 1-15 (3)微分性:()1()FFf t j F ωω-−−→'←−− 1-16 ()()()1()F n n Ff t j F ωω-−−→←−− 1-17 ()()1()FFjt f t F ω-−−→'-←−− 1-18 ()()()()1()Fn n Fjt f t F ω-−−→-←−− 1-19 (4)积分性:()11()tFFf t dt F j ωω--∞−−→←−−⎰ 1-20 (5)相似性:11()FFf at F a a ω-⎛⎫−−→←−− ⎪⎝⎭1-21 (6)对称性:()1()2FFF t f πω-−−→-←−− 1-22 上面性质写成变换式如下面:(1)线性性:[]1212()()()()F f t f t F w F w αβαβ⋅+⋅=⋅+⋅ 1-13-1[]11212()()()()F F w F w f t f t αβαβ-⋅+⋅=⋅+⋅(,αβ是常数)1-13-2(2)位移性:[]0()F f t t -=()0iwt e F w - 1-14()000()()iw t w w w F e f t F w F w w =-⎡⎤==-⎣⎦ 1-15(3)微分性:设+∞→t 时,0→)t (f , 则有[]()()()()[]()F f t iw F f t iw F w '== 1-16()()()()()[]()n n n F f t iw F f t iw F w ⎡⎤==⎣⎦1-17[]()()dF tf t jF w dw= 1-18 ()()nnnn d F t f t j F w dw ⎡⎤=⎣⎦ 1-19(4)积分性:()()tF w F f t dt iw-∞⎡⎤=⎢⎥⎣⎦⎰ 1-20(5)相似性:[]1()()wF f at F a a=1-21-1 翻转性:1=a 时()()w F t f F -=-][ 1-21-2(6)对称性:设 ()()w F t f −→←,则 ()()w f t F π2−→←- 或 ()()2F t f w π←−→- 1-225、卷积公式 :)()(21t f t f *=τττd t f f )()(21-⎰+∞∞-。
阐述脉冲响应函数h(t)与频率响应函数H(jω),与传递函数H(s)的关系。
阐述脉冲响应函数h(t)与频率响应函数H(jω),与传递函数H(s)的关系。
在信号与系统领域中,脉冲响应函数h(t)、频率响应函数H(jω)和传递函数H(s)都是常见的概念。
它们之间存在着密切的联系和相互转换的关系。
一、脉冲响应函数h(t)的定义和作用脉冲响应函数h(t)是指系统对一个单位脉冲信号的响应。
一般情况下,系统的输出信号可以看作是输入信号与系统脉冲响应函数的卷积积分。
因此,脉冲响应函数是描述线性时不变系统动态特性的一个重要参数。
二、频率响应函数H(jω)的定义和作用频率响应函数H(jω)是指在复平面上,系统传输函数H(s)在s=jω处的取值,其中j表示虚数单位。
频率响应函数描述了系统对不同频率的输入信号的变化,可通过傅里叶变换或拉普拉斯变换得到。
三、传递函数H(s)的定义和作用传递函数H(s)是指输入信号与响应信号的相对传递函数。
它是描述线性时不变系统动态行为的函数。
系统的传递函数可以通过脉冲响应函数h(t)与拉普拉斯变换相结合得到。
四、脉冲响应函数、频率响应函数与传递函数的关系1. 脉冲响应函数与传递函数的关系在时域中,我们有:h(t) = L^{-1} {H(s)}其中,L^{-1}表示拉普拉斯反变换的运算。
这个式子告诉我们,脉冲响应函数h(t)是由传递函数H(s)与拉普拉斯反变换组合而成。
2. 频率响应函数与传递函数的关系在频域中,我们有:H(jω) = H(s) |_{s=jω}这个式子告诉我们,频率响应函数H(jω)是由传递函数H(s)在s=jω处的取值所组成。
因此,我们可以通过对传递函数H(s)的计算,得到频率响应函数H(jω)的信息。
3. 脉冲响应函数与频率响应函数的关系根据傅里叶变换的性质,可得到:H(jω) = \int_{-\infty}^{+\infty} {h(t) e^{-jωt} dt}这个式子告诉我们,频率响应函数H(jω)可以通过脉冲响应函数h(t)的傅里叶变换来得到。
机械工程测试技术基础知识点总结
机械⼯程测试技术基础知识点总结《机械⼯程测试技术基础》知识点总结1. 测试是测量与试验的概括,是⼈们借助于⼀定的装置,获取被测对象有相关信息的过程。
测试⼯作的⽬的是为了最⼤限度地不失真获取关于被测对象的有⽤信息。
分为:静态测试,被测量(参数)不随时间变化或随时间缓慢变化。
动态测试,被测量(参数)随时间(快速)变化。
2. 基本的测试系统由传感器、信号调理装置、显⽰记录装置三部分组成。
传感器:感受被测量的变化并将其转换成为某种易于处理的形式,通常为电量(电压、电流、电荷)或电参数(电阻、电感、电容)。
信号调理装置:对传感器的输出做进⼀步处理(转换、放⼤、调制与解调、滤波、⾮线性校正等),以便于显⽰、记录、分析与处理等。
显⽰记录装置对传感器获取并经过各种调理后的测试信号进⾏显⽰、记录、存储,某些显⽰记录装置还可对信号进⾏分析、处理、数据通讯等。
3. 测试技术的主要应⽤:1. 产品的质量检测 2.作为闭环测控系统的核⼼ 3. 过程与设备的⼯况监测4. ⼯程实验分析。
4. 测试技术是信息技术的重要组成部分,它所研究的内容是信息的提取与处理的理论、⽅法和技术。
现代科学技术的三⼤⽀柱:能源技术材料技术信息技术。
信息技术的三个⽅⾯:计算机技术、传感技术、通信技术。
5. 测试技术的发展趋势: (1) 1. 传感技术的迅速发展智能化、可移动化、微型化、集成化、多样化。
(2)测试电路设计与制造技术的改进(3)计算机辅助测试技术应⽤的普及(4)极端条件下测试技术的研究。
6. 信息:既不是物质也不具有能量,存在于某种形式的载体上。
事物运动状态和运动⽅式的反映。
信号:通常是物理、可测的(如电信号、光信号等),通过对信号进⾏测试、分析,可从信号中提取出有⽤的信息。
信息的载体。
噪声:由测试装置本⾝内部产⽣的⽆⽤部分称为噪声,信号中除有⽤信息之外的部分。
(1)信息和⼲扰是相对的。
(2)同⼀信号可以反映不同的信息,同⼀信息可以通过不同的信号来承载。
傅里叶变换的定义及基本概念
傅里叶变换的定义及基本概念
傅里叶变换是一种能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合的方法。
它可以在不同的研究领域中,如数字信号处理、热过程的解析分析等中,有不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换的定义和基本概念如下:
傅里叶变换的基本性质:包括对称性质、奇偶性质、线性性质、时移性质、频移性质、尺度变换性质、卷积定理、时域微积分等。
傅里叶变换的收敛性:在一个周期内具有有限个极值点,绝对可积。
傅里叶变换的充要条件:函数在xoy全平面上绝对可积,即函数在xoy全平面上每一个有限区域内局部连续,仅存在有限个间断点;函数没有无限大间断点。
广义傅里叶变换:对于某些无法满足存在条件的函数,如sgn(x)、step(x)、三角函数、脉冲函数等,需要推广傅里叶变换的定义,即广义傅里叶变换。
傅里叶变换基础知识
傅里叶变换基础知识1•傅里叶级数展幵最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
1.1周期信号的傅里叶级数在有限区间上,任何周期信号双/)只要满足狄利克雷(dmclilet)条件,都可以展开成傅里叶级数。
1・1・1狄利克雷(duichlet)条件狄利克雷(duichlet)条件为:(1)信号双/)在一个周期内只有有限个第一类间断点(当t从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2 )信号/ (t)在一周期内只有有限个极人值和极小值;(3 )信号在一个周期内是绝对可积分的,即应为有限值。
1.1.2间断点在非连续函数y二f{・x)中某点处心处有中断现彖,那么,兀就称为函数的不连续点。
(1)第一类间断点(有限型间断点):a.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(兀令分母为零时等情况);b.跳跃间断点:函数在该点左极限、右极限存在,但不相等(y = lxl/x°在点x = 0处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
1.13傅里叶级数三角函数表达式傅里叶级数三角函数表达式为X X0=仇+乞(①cos“q/ +加• • •J1-1式中:心为信号的常值分量;色为信号的余弦信号幅值:你为信号的正弦信号幅值。
%、心、》分别表示为:==J :) cosncootdtx{ t )sinncootdt式中:7;为信号的周期;。
为信号的基频,即角频率,$=2龙/7;「=1,2,3...。
合并同频项也可表示为X (t)二% + 艺 A cos (gf + q)H-l式中:信号的幅值人和初相位q分别为人=虫+丐2 =arcnm (・b” /心)1.1.4频谱的相矢概念(1) 信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化矢系,即信号的结构,是(或&・/)和q 厂3 (或2・/)的统称;(2) 信号的幅频谱:周期信号幅值人随e (或/)的变化尖系,用(或A ・/>表示; (3) 信号的相频谱:周期信号相位仇随e (或f )的变化矢系,用0,弋。
傅里叶变换的基本性质
的
傅里叶变换
不同于傅里叶系数
谐频点)取得了无穷大的频谱值。
,它不是有限值,而是冲激函数,这表明在无穷小的频带范围(即
例 3-20 图 3-27(a)表示一周期为 ,脉冲宽度为 ,幅度为 1 的周期性矩形脉冲信号,记为
。
试求其频谱函数。
解 由式(3-26)可知,图 3-27(a)所示周期性矩形脉冲信号
和积分性求
解: 因为
,又
的频谱函数。 ,根据时域积分性
例 3-14 求图 3-23 所示信号
的频谱函数
。
解:
对 求两次微分后,得
且 由时域积分性
十、频域积分性 若
则 例 3-15 已知 解: 因为
,求
。
根据频域积分性
十一、时域卷积定理 若 则 证明:
例 3-16 图 3-24(a)所示的三角形函数
对于一般周期为 T 的周期信号
,其指数型傅里叶级数展开式为
式中
,
.
对上式两边取傅里叶变换,并利用其线性和频移性,且考虑到 与时间 无关,可得
式(3-82)表明,一般周期信号的傅里叶变换(频谱函数)是由无穷多个冲激函数组成,这些冲激函数位
于信号的各谐波频率
处,其强度为相应傅里叶级数系数 的 倍。
可见,周期信号的频谱是离散的。但由于傅里叶变换是反映频谱密度的概念,因此周期信号
一、复指数信号的傅里叶变换
对于复指数信号
,
因为
,由频移性
复指数信号是表示一个单位长度的相量以固定的角频率ω0 随时间旋转,经傅里叶变换后,其频谱为 集中于 ,强度为 的冲激。这说明信号时间特性的相移对应于频域中的频率转移。
二、余弦、正弦信号的傅里叶变换
傅里叶变换基础知识
傅里叶变换基础知识1. 傅里叶级数展开最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
周期信号的傅里叶级数在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。
狄利克雷(dirichlet )条件狄利克雷(dirichlet )条件为:(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2)信号()x t 在一周期内只有有限个极大值和极小值;(3)信号在一个周期内是绝对可积分的,即00/2/2()dt T T x t -⎰应为有限值。
间断点在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。
(1)第一类间断点(有限型间断点):a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
傅里叶级数三角函数表达式傅里叶级数三角函数表达式为0001()(cos sin )n n n x t a a n t b n t ωω∞==++∑式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。
0a 、n a 、n b 分别表示为: 000000/20/20/20/20/20/201()2()cos 2()sin T T T n T T n T a x t dtT a x t n tdt T b x t n tdtT ωω---===⎧⎪⎪⎪⎨⎪⎪⎪⎩⎰⎰⎰ 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。
第三章3典型信号傅里叶变换 性质1
f (t) 1 F ()e jtd
2
1 F () e d j[t ()]
2
1
F () cos[ t ()]d
2
j
F () sin[ t ()]d
2
f (t) 1
F () cos[ t ()]d
2
1
F() cos[ t ()]d
0
F () d
0 cos[ t ()]
2 , f 1 , B f 1
2
(4)符号函数
sgn(t)
1 (t 0) f (t) sgn(t) 0 (t 0)
实奇函数 1 (t 0)
1
0
t
1
符号函数信号不满足绝对可积条件,但它却存在 傅里叶变换。可以利用它和奇双边指数的关系:
f
(t
)
sgn(t
)
lim
a0
eat ea
1.信号在时间轴上的平移对应频域中的相移 (相位谱产生附加相移)
2.信号在时间轴上的平移不会影响信号的幅频 特性
例题:写出下列信号的傅里叶变换
f1(t)
2
0
4 6t
f3 (t )
2 1
0 1 2 3t
f 2 (t )
24
0
t
2
课本例题131页: 例题3-2 3-3
主要内容
典型信号的傅里叶变换 信号频谱的概念:幅度谱和相位谱 信号频谱带宽的概念:信号幅度谱的带宽,
0
t
F()
2a
a2
2,
F ()
2a
a2 2
() 0
正实偶函数
1
e f (t) a t
(a 0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2i
2i
1 2d
2i
(
0 )
2d (
0)
i
d
(
0)
d
(
0).
sin 0t
t
|F()|
0 O
0
例
5
单位阶跃函数
u(t
)
0, t 1, t
0 0
,
证明:
F[u(t)] 1 d ().
j
证:
F
1
1
j
d
()
1
2
1
j
d
()
e
jt d
1
2
d () e jt d 1
作业
习题十四 1 2 3 4 6
t0
0
t 0 , f2 (t) et
t0
; , 0, .
t0
解: Q
0 0或t 0
f1( ) f2 (t ) e(a ) t
0且t- 0
f1( ) f2(t ) 0的区域如右图所示:
当t 0时,f1(t) f2(t) 0
0
t
当t 0时,f1(t) f2(t)
5.积分性:
设F[ f (t)] F (),若 lim t f (s)ds F(0) 0,则 t
t
F[
f (s)ds]
1 F () .
j
6. 帕塞瓦尔(Parserval)等式
设F[ f (t)] F (),则有
f (t)2 d t 1 F () 2 d .
2
实际上, 只要知道下面五个傅里叶变换, 则很 多傅里叶变换都无须用公式直接计算而可由傅里 叶变换的性质导出.
例3 若 f (t)=cos0t u(t), 求其傅氏变换。 解:u(t) 1 d () j
e e j0t
j0t
f (t) u(t)
2
F ()
1 2
j(
1
0 )
d (
0 )
j(
1
0 )
d (
0 )
j 02 2
[d (
2
0 ) d (
0 )]
一、卷积的定义及运算规律
在原来电流为零的电路中, 某一瞬时(设为t=0) 进入一单位电量的脉冲, 现在要确定电路上的电流 i(t). 以q(t)表示上述电路中的电荷函数, 则
q(t
)
0, 1,
t 0; t 0.
i(t) d q(t) lim q(t t) q(t)
dt
t 0
t
当t0时, i(t)=0, 由于q(t)是不连续的, 从而在 普通导数意义下, q(t)在这一点是不能求导数的.
t
eisds 2d .
证法2:若F()=2d (), 由傅氏逆变换可得
f (t) 1
2d
() eitd
eit
1
2
0
例2 证明ei0t 和2d ( 0 )构成一个傅氏变换对。
证:f (t) 1 F () eitd
2
1
2
2d
(
0
)
eit d
eit
0
ei0t .
即ei0t 和2d ( 0 )构成了一个傅氏变换对。
F[ f (t)] jF()
一般地,若 lim f (k) (t) 0 k 0,1,2,L , n 1,则 t F f (n) (t) j n F ()
像函数的微分性:
F() jF[tf (t)] 或F[tf (t)] jF()
F (n) () ( j)nF[tn f (t)] 或F[tn f (t)] jnF (n) ()
d (t) 1
1
2d ()
e j0t 2d ( 0 )
u(t)
1 d () j
et2
2 e 4
例2 利用傅氏变换的性质求d (tt0), ej0t 的傅氏变换.
因 d (t) 1, 由位移性质得 d (t t0 ) e jt0
由 1 2d (),得 ej0t 2d ( 0 )
点电荷, 点热源, 集中于一点的质量及脉冲技术中的非常
窄的脉冲等, 就能够象处理连续分布的量那样, 以统一的
方式加以解决.
0 t0
给函数序列
d
(t
)
1
0t ,
d(t)
1/
0 t
定义
d
(t)
lim
0
d
(t
)
0
t 0。 t0
O
工程上将d-函数称为单位脉冲函数。
d (t)d t lim
| f (t) | dt
例如常数, 符号函数, 单位阶跃函数以及正, 余弦函 数等, 然而它们的广义傅氏变换也是存在的, 利用 单位脉冲函数及其傅氏变换就可以求出它们的傅 氏变换.
例4 求正弦函数f (t)=sin0t的傅氏变换。
F () F[ f (t)]
sin
0t
eit
d
t
ei0t e j0t eitd t 1 (ei(0 )t ei(0t ) d t
卷积定义: f (t) g(t)
f ( )g(t )d
说明: f1(t) f2 (t)是关于t的函数;
卷积的基本运算规律:
•交换律:f g g f
•加法分配律:f g h f g f h •结合律:f g h f g h
例1 求下列函数的卷积:
0 f1(t) et
2
1
j
e jt d
1 1
2 2
cos
t
j
j
sin
t
d
1 1
2 2
sin t
d
1 2
1
sin t d 0
1 1
2 2
sin t
d
1 2
1
sin t d 0
sint
0
d
2, 2,
t 0
t0
1 2
1
2
0,
t
0
F
1
1
j
d
0
d
(t)d t
lim
0
1 dt 1
0
可将d-函数用一个长度等于1的有向线段表示, 这个线段的长度表示d-函数的积分值.
d (t)
1
O
t
d-函数有性质:
(1) (筛选性质)
d (t) f
(t)d t
f
(0) 及
d (t
t0 )
f
(t)d t
f
(t0 ) .
(f
t 为连续函数)
(2) d函数为偶函数,即d (t) d (t) .
F 1[AF() BG()] AF 1[F()] BF 1[G()]
2. 位移性质:
若F[ f (t)] F (),t0 ,0为实常数,则
F [ f (t t0 )] e jt0 F ( ), F 1[F ( 0 )] e j0t f (t)
或F[e j0t f (t)] F ( 0 )
由上面两个函数的变换可得
eitd t 2d ()
e d t i(0 )t
2d
(
0 )
注 在 d 函数的 Fourier 变换中,其广义积分是根据 d 函数的
性质直接给出的,而不是通过通常的积分方式得出来的, 称这种方式的 Fourier 变换是一种广义的Fourier变换。
在物理学和工程技术中, 有许多重要函数不满 足傅氏积分定理中的绝对可积条件, 即不满足条件
证明:F[ f (t t0 )]
f
(t
t0 )e jtdt
s t t0
f (s)e j (st0 )ds
e jt0 f (s)e jsds e j t0 F ( )
推论:
若F[ f (t)] F (),
则
F[
f
(t) cos 0t]
1 [F (
2
0)
F (
0 )],
单位脉冲函数及其傅氏变换 Fourier变换与逆变换的性质
7.1.3单位脉冲函数及其傅氏变换
在物理和工程技术中, 常常会碰到单位脉冲 函数. 因为有许多物理现象具有脉冲性质, 如在 电学中, 要研究线性电路受具有脉冲性质的电势 作用后产生的电流; 在力学中, 要研究机械系统 受冲击力作用后的运动情况等. 研究此类问题就 会产生我们要介绍的单位脉冲函数.
2
1
2
2d
0
1
2
jd
1
2
2d
0
1
2
jd
d
1
2
jd
0
1
0 2
jd
0 .
像函数的微分性:
F() jF[tf (t)] 或F[tf (t)] jF()
F (n) () ( j)nF[tn f (t)] 或F[tn f (t)] jnF (n) ()
复习:
F () f (t)eitdt
f (t) 1 F ()eitd
2
傅氏变换 傅氏逆变换
f (t)FF1 F ()
f (t) F() 傅氏变换对
若F[ f (t)] F(),则F 1[F()] f (t);
若F 1[F()] f (t),则F[ f (t)] F()
f (t)称为原像函数,F ()称为像函数。
t et e( ) d
0
当t 0时,f1(t) f2(t)
t et e( ) d
0
t
et t e d et 1 e
0
0
1
et et
0
t0
故
f1 (t )