八年级上浙教版43中位数和众数同步练习
平均数,中位数,众数练习题
![平均数,中位数,众数练习题](https://img.taocdn.com/s3/m/a1ee37f57fd5360cba1adbd1.png)
平均数,中位数,众数练习题平均数在现实生活中较为常用,但是它易受极端值的影响,因此在某些情境下,用平均数刻画数据的集中趋势就不太合适,这时就需要选择恰当的统计量刻画数据的集中趋势. 中位数和众数都是刻画数据集中趋势的统计量. 是一个反映数据集中趋势的位置代表值,能够表明一组数据排序最中间的统计量,可以提供这组数据中,约有一半的数据大于(或小于)中位数.众数是表明一组数据出现次数最多的统计量,当一组数据有较多的重复数据时,众数往往是人们所关心的一个统计量,它提供了哪个(或哪些)数据出现的次数最多.一.中位数的概念及计算方法将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.二.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数.三.平均数、众数和中位数这三个统计量的各自特点.1.平均数计算要用到所有的数据,任何一个数据的变动都会相应引起平均数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大.2.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,缺点是当众数有多个且众数的频数相对较小时可靠性小,局限性大.3.中位数仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势,中位数的计算很少.例1.数据-3,-2,1,3,6,x,5的中位数是1,且x为正整数,那么这组数据的众数是【】A. 2B. 1C. 10D.-2【分析】因为数据-3,-2,1,3,6,x,5的中位数是1,且所给数据的个数是7,是奇数,所以把这些数据按照从小到大排列,数字1应该处在第4的位置上,也就是:-3,-2,,x,1,3,5,6;由此可知x不大于1的正整数,所以x=1.答案为B类型一:表格式呈现数据例2.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表:则这9名学生每周做家务劳动的时间的众数及中位数分别是【】A.3时,2.5.时 B. 1时,2时 C 3时,3时D. 2 时,2时【分析】根据表格可知:每周不做家务的有2人,做1小时家务的有2人,做2小时家务的有3人,做3小时家务的有1人,做4小时家务的有1人,所以这9名学生每周做家务的时间的众数是:2时;把这9个数据按照从小到大排列,处于第5个数是中位数,也是2时答案为:D类型二.折线图呈现数据,分析数据的集中趋势.例3.为了解九年级学生的体育锻炼的时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图,如图所示,那么关于该班45名同学一周参加体育锻炼时间的说法错误的是【】A. 众数是9时B. 中位数是9时C. 平均数是9时D.锻炼时间不低于9时的有14名类型三.条形图呈现数据,分析数据的集中趋势.例4.一方有难,八方支援,我国某地发生强烈地震,给当地人民造成了巨大损失,灾难发生后,某中学举行了爱心捐款活动,全校同学纷纷拿出自己的零花钱,踊跃捐款支援灾区人民,小慧对捐款情况进行了抽样调查,抽取了40名同学的捐款数据,把数据进行统计整理后,绘制了条形图如图所示,图中从左到右各长方形高度之比为3:4:5:7:1.(1)捐款20元的同学有名;(2)40名同学捐款数据的中位数是;(3)若该校捐款金额不少于34500元,请估算该校捐款同学的人数至少有多少?练习 1.某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图如图所示,试根据统计图提供的信息,回答下列问题:(1)共抽取了名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均分是,众数是;女生体育成绩的中位数是.(3)若将不低于47分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约有多少名?练习2.物理老师布置了10道选择题作为课堂练习,如图所示是全班解题情况的统计,做对题数的中位数为,众数为.类型四.扇形图与条形图或表格相结合呈现数据,解答相关问题.例5.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图所示的统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图中的m的值为;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?例6.某市以泉水闻名,为保护泉水,造福子孙后代,该市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量均比4月份有所下降,宁宁将5月份各户居民的节水节水量(m3)1 1.5 2.5 3户数(户)50 80 100 70量统计整理制成如下的统计表和统计图:(1)300户居民5月份节水量的众数、中位数分别是多少?(2)扇形统计图中α的度数为;(3)该小区300户居民5月份平均每户节约用水多少立方米?二.选择恰当的统计量刻画数据的集中趋势运用平均数,中位数,众数多角度看一个人的成绩,培养学生的自信,激发学生的学习积极性与主动性,例7八年级(1)班三位同学最近的五次数学测验成绩(单位:分)分别是:小华62 94 95 98 98小明62 62 98 99 100小丽40 62 85 99 99他们都认为自己的数学成绩比其他两位同学好,他们比较的依据分别是什么?你认为谁的数学成绩最好呢?【分析】首先将三人的平均数,中位数,众数计算出来,然后再进行比较,做出决定.从平均数看小华的平均分是89.4,高于其他两人,比其他两人的成绩好.所以小华比较的依据是平均数.从中位数看,小明的中位数是98 高于其他两人,比其他两人的成绩好,所以小明比较的依据是中位数.从众数看,小丽的众数是99,比其他两人的成绩好,所以小丽比较的依据是众数.我认为小华的成绩较好,因为小华的平均分是第一名,中位数排第二,众数只比第一名少一分,也就是说小华的每一项的分数都处于较高的水平.例8 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.例9.下面是某校八年级(2)班两组女生的体重(单位:kg):第1组35 36 38 40 42 42 75第2组35 36 38 40 42 42 45(1)分别求这两组数据的平均数、众数、中位数,并解释它们的实际意义(结果取整数);(2)比较这两组数据的平均数、众数、中位数,谈谈你对它们的认识.例10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.分别计算这些运动员成绩的平均数、中位数、众数(结果保留小数点后两位).例11.为了提高农民收入,村干部带领村民自愿投资办起了一个养鸡场,办场时买来的1000只小鸡,经过一段时间精心饲养,可以出售了,下表是这些鸡出售时的质量的统计数据.(1)出售时这些鸡的平均质量是多少(结果保留小数点后一位)?(2)质量在哪个值得鸡最多?(3)中间的质量是多少?例14.下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告让交警知道这个时段路口来往车辆的车速情况.例15.下表是某班学生右眼视力的检查结果.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 人数 1 2 5 4 3 5 1 1 5 9 6 分析上表中的数据,你能得出哪些结论?例16.甲乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等,比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分10分).依据统计数据绘制了如下尚不完整的统计表和统计图:甲校成绩统计表分数(分)7 8 9 10人数(人)11 0 8(1)在上面扇形统计图中“7分”所在扇形的圆心角的度数是.(2)请你将条形统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数,并从平均分和中位数的角度分析哪个学校的成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?例17.某公司10名销售员去年的销售情况如下表:销售额(万元) 3 4 5 6 7 8 10销售员人数(人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高销售额,准备采用超额有奖的措施,请根据(1)中的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元.例18.学校举行知识竞赛,每班参加比赛人数都为25人,比赛成绩分为A,B,C,D,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的(1)班和(2)班的成绩整理,并绘制成如图所示的统计图.请你根据以上提供的信息解答下列问题:(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为;(2)请你将表格补充完整:班级平均数(分)中位数(分)众数(分)(1)班87.6分90分(2)班87.6分100分(3)请从优秀选手(B级以及B级以上级别)人数的角度来比较(1)班和(2)班的成绩,哪个班成绩更好?。
八年级上册数学6-2中位数与众数同步练习3(精选)
![八年级上册数学6-2中位数与众数同步练习3(精选)](https://img.taocdn.com/s3/m/afd5edef8bd63186bcebbc3e.png)
中位数与众数
一、选择题
1.对于数据组2,4,4,5,3,9,4,5,1,8,其平均数,中位数与众数分别为数()
A.5,4,4 B.4.5,6,4 C.4.5,4,4 D.4.5,6,5
2.下列说法错误的是()
A.一组数据的众数、中位数和平均数不可能是同一个数
B.一组数据的平均数既不可能大于,也不可能小于这组数据中的所有数据
C.一组数据的中位数可能与这组数据的任何数据都不相等
D.一组数据中的众数可能有多个
3.一个班的40名学生中,14岁的有5人,15岁的有26人,16岁的有9人,这个班学生的年龄的中位数是()岁
A.14 B.15 C.15.1 D.16
4.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的()
A.平均数 B.加权平均数 C.中位数 D.众数
5.已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()
A.平均数>中位数>众数 B.平均数<中位数<众数
C.中位数<众数<平均数 D.平均数=中位数=众数
二、填空题
6.已知一组数据2,3,4,2,x,4,1的众数是2,则x=____________.
7.已知一组数据2,3,4,2,x,4,1的众数是4,则这组数据的中位数是______.
三、解答题
8.数学老师布置了10道计算题作为课堂练习,并将全班同学的解题情况绘成了下面的条形统计图.根据图表,求学生做对题数的中位数和众数.
参考答案
1.C 2.A 3.B 4.C 5.D
6.2
7.3
8.略。
《平均数、中位数、众数及方差的有关计算》测试题及答案
![《平均数、中位数、众数及方差的有关计算》测试题及答案](https://img.taocdn.com/s3/m/364a5144ad02de80d4d84011.png)
《平均数、中位数、众数及方差的有关计算》测试题2015.12.28一、选择题1.某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有一个数据被遮盖).被遮盖的数据是( )A.1 ℃B.2 ℃C.3 ℃D.4 ℃2.在一次体育测试中,小芳所在小组8人的成绩分别是46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A.47B.48C.48.5D.493.为了解七年级学生参与家务劳动的时间,李老师随机调查了七年级8名学生一周内参与家务劳动的时间(单位:小时)分别是1,2,3,3,3,4,5,6.则这组数据的众数是( )A.2.5B.3C.3.375D.54.若要对一射击运动员最近5次训练成绩进行统计分析,判断他的训练成绩是否稳定,则需要知道他这5次训练成绩的( )A.中位数B.平均数C.众数D.方差5.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5,10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐6.某校篮球队在一次定点投篮训练中进球情况如图,那么这个队的队员平均进球个数是__________.7.有一组数据:2,3,5,5,x,它的平均数是10,则这组数据的众数是__________.8.数据-2,-1,0,3,5的方差是__________.9.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__________(填“平均数”或“中位数”).10.为测试两种电子表的走时误差,做了如下统计:则这两种电子表走时稳定的是__________.11.一次数学测验中,以60分为标准,超过的部分用正数表示,不够的部分用负数表示,其中5名学生的成绩(单位:分)如下:+36,0,+12,-18,+20.(1)这5名学生中,最高分是多少?最低分是多少?(2)这5名学生的平均分是多少?12.今有两人进行射击比赛,成绩(命中环数)(单位:环)如下:甲:10,8,7,7,8;乙:9,8,7,7,9.哪个人的成绩稳定?13.某校举办八年级学生数学素养大赛.比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分(单位:分)情况.(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问甲能否获得这次比赛一等奖?14.甲、乙两名同学进入初四后某科6次考试成绩如图所示:(1)请根据上图填写下表:平均数方差中位数众数甲75 75乙33.3(2)请你从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?15.某次数学竞赛,初一(6)班10名参赛同学的成绩(单位:分)分别为85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的方差.16.为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率(2)小明对同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是_________(填“甲”或“乙”)组的学生;(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.参考答案9.中位数10.甲1.C2.C3.B4.D5.A6.67.58.34511.(1)因为在记录结果中,+36最大,-18最小,所以这5名学生中,最高分为96分,最低分为42分;(2)因为(36+0+12-18+20)÷5=10,所以他们的平均成绩为60+10=70(分).12.x 甲=15×(10+8+7+7+8)=8,x 乙=15×(9+8+7+7+9)=8.s 2甲=15×[(10-8)2+2×(8-8)2+2×(8-7)2]=1.2,s 2乙=15×[2×(9-8)2+(8-8)2+2×(8-7)2]=0.8.因为x 甲=x 乙且s 2甲>s 2乙, 所以乙的成绩稳定.13.(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分). (2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y.由题意,得20608070,20809080.x y x y ++=++=⎧⎨⎩解得0.3,0.4.x y ==⎧⎨⎩ 所以甲的总分为:20+89×0.3+86×0.4=81.1>80. 即甲能获一等奖. 14.(1)125;75;75;72.5;70.(2)①甲、乙两名同学成绩的平均数均为75分,但是甲的方差为125,乙的方差仅仅33.3,所以乙的成绩相对比甲稳定得多;②从折线图中甲、乙两名同学的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.15.因为这10名同学成绩的唯一众数为85分, 所以x 、y 中至少有一个数为85.假设x为85,又因为平均成绩为90分,×(85+88+95+124+85+y+85+72+88+109)=90.所以110可得另一个数为69.所以这10名同学的成绩的方差为:×s2=110[(85-90)2+(88-90)2+(95-90)2+(124-90)2+(85-90)2+(69-90)2+(85-90)2+(72-90)2+(88 -90)2+(109-90)2]=239.16.(1)6;7.1.(2)甲.(3)乙组的平均分、中位数都高于甲组,方差小于甲组,且成绩集中在中上游.。
平均数众数中位数测试题及答案-用卷
![平均数众数中位数测试题及答案-用卷](https://img.taocdn.com/s3/m/d92dd99f31b765ce04081427.png)
平均数众数中位数1题号一二三四总分得分一、选择题(本大题共13小题,共39.0分)1.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是()A. 96.7分B. 97.1分C. 88.3分D. 265分2.日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A. 5、6、5B. 5、5、6C. 6、5、6D. 5、6、63.关于一组数据:1,5,6,3,5,下列说法错误的是()A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.24.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是()A. a+bm+nB. 12(am+bn)C. am+bnm+nD. 12(am+bn)5.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响()A. 平均分B. 众数C. 中位数D. 极差6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3A. 70分,70分B. 80分,80分C. 70分,80分D. 80分,70分7.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A. 5,5,6B. 9,5,5C. 5,5,5D. 2,6,58.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A. 1.65、1.70B. 1.65、1.75C. 1.70、1.75D. 1.70、1.709.我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A. ,B. ,C. ,D. ,10.某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是()A. 众数是3B. 中位数是0C. 平均数是3D. 方差是2.811.数据2、5、6、0、6、1、8的中位数和众数分别是()A. 0和6B. 0和8C. 5和6D. 5和812.一组数据:1,2,4,2,2,5,这组数据的众数是()A. 1B. 2C. 4D. 513.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册二、填空题(本大题共6小题,共18.0分)14.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.15.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是_______分.16.三个数-1,a,3的平均数是2,则a的值是______ .17.某校男子足球队队员的年龄分布如图所示,根据图中信息可知,这些队员年龄的中位数是______ 岁.18.一组数3,4,7,4,3,4,5,6,5的众数是______.19.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、计算题(本大题共1小题,共6.0分)20.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生______人,并将条形图补充完整;(2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?四、解答题(本大题共1小题,共8.0分)21.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案和解析1.【答案】C【解析】解:根据题意得:89×3+93×4+83×43+4+4≈88.3,故选C.将李明的各项成绩分别乘以其权,再除以权的和,求出加权平均数即可.本题考查了加权平均数,本题易出现的错误是求89,93,83这三个数的平均数,对平均数的理解不正确.2.【答案】D【解析】【分析】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是6+62=6;平均数是:4×2+5×6+6×5+7×4+8×320=6.故选D.3.【答案】C【解析】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是5,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D、这组数据的方差是:15[(1-4)2+(5-4)2+(6-4)2+(3-4)2+(5-4)2]=3.2,故本选项正确;故选:C.分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4.【答案】C【解析】【分析】本题主要考查加权平均数,掌握得出射击环数的总数和加权平均数的定义是解题的关键.求出该班所有学生射击的总环数,再根据平均数的定义计算可得.【解答】解:根据题意知m人射击的总环数为am,n人射击的总环数为bn,则该班打中a环和b环学生的平均环数是am+bnm+n,故选:C.5.【答案】C【解析】【分析】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选C.6.【答案】C【解析】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【答案】C【解析】[分析]此题主要考查了众数、中位数和平均数,关键是掌握三种数的概念.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=1n(x1+x2+…+x n)就叫做这n个数的算术平均数进行分析和计算可得答案.[解答]解:众数是5,中位数:5,平均数:5+2+6+9+5+36=5,故选C.8.【答案】C【解析】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.【答案】D【解析】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选:D.根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大.10.【答案】B【解析】【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为0+3+3+4+55=3,方差为15×[(0-3)2+2×(3-3)2+(4-3)2+(5-3)2]=2.8,故选:B.【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.11.【答案】C【解析】【分析】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.12.【答案】B【解析】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.根据众数定义可得答案.此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.13.【答案】B【解析】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3-0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.14.【答案】5【解析】解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴16(2+5+x+y+2x+11)=12(x+y)=7,解得y=9,x=5,∴这组数据的众数是5.故答案为5.根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数.本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.15.【答案】93.6【解析】【分析】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分)故小明的体育成绩是93.6分.故答案为93.6.16.【答案】4【解析】【分析】本题主要考查了平均数的计算方法:掌握数据和÷数据的个数=平均数是本题的关键.根据平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:∵-1,a,3的平均数是2,∴(-1+a+3)÷3=2,解得:a=4;则a的值是4;故答案为4.17.【答案】15【解析】【分析】本题主要考查中位数有关知识,根据中位数的定义即可得.【解答】解:由图可知共有2+6+8+3+2+1=22人,则中位数为第11、12人年龄的平均数,即15+152=15(岁),故答案为15.18.【答案】4【解析】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.根据众数的定义求解可得.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.19.【答案】135【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.【答案】(1)50 ,补全条形统计图图形如下:(2)10;13.1(3)捐款20元及以上(含20元)的学生有:7+450×600=132(人)【解析】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形见答案;(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:5×9+10×16+15×14+20×7+25×450=13.1,故平均数为13.1;(3)见答案.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100-27.5-25-7.5-10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=30;故答案为40人,30.(2)见答案.。
2022-2023学年八年级上学期数学:平均数中位数众数(附答案解析)
![2022-2023学年八年级上学期数学:平均数中位数众数(附答案解析)](https://img.taocdn.com/s3/m/111ae2312379168884868762caaedd3383c4b5bd.png)
2022-2023学年八年级上学期数学:平均数中位数众数一.选择题(共5小题)
1.某学校在开展“生活垃圾分类星级家庭”评选活动中,从八年级任选出10名同学汇报了各自家庭1天生活垃圾收集情况,将有关数据整理如表:
0.51 1.52
生活垃圾收集量
(单位:kg)
同学数(人)2341
请你计算每名同学家庭平均1天生活垃圾收集量是()
A.0.9kg B.1kg C.1.2kg D.1.8kg
2.一组从小到大排列的数据:2,5,x,y,2x,11,这组数据的平均数与中位数都是7,则这组数据的众数是()
A.2B.5C.7D.11
3.调查某超市的某种蔬菜一周内每天的销售量,结果统计如下表:
该种蔬菜一周内实际销售量表(单位:千克)
日期周一周二周三周四周五周六周日销售量30504530504050这一周中,该种蔬菜销售量的众数和中位数分别为()
A.30,40B.45,50C.50,45D.50,40
4.某城市3月份某星期7天的最低气温如下(单位℃):16,20,18,16,18,18,17.这组数据的众数是()
A.16B.17C.18D.20
5.一次数学课后,李老师布置了6道选择题作为课后作业,课代表小丽统计了本班35名同学的答题情况,结果如图所示,则在全班同学答对的题目数这组数据中,众数和中位数分别是()
第1页(共17页)。
20.2.2平均数、中位数和众数的选用同步练习含答案
![20.2.2平均数、中位数和众数的选用同步练习含答案](https://img.taocdn.com/s3/m/13a6743bf8c75fbfc67db28a.png)
20.2.2 平均数、中位数和众数的选用基础训练1.关于一组数据的平均数、中位数、众数,下列说法中正确的是( )A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的数D.以上说法都不对2.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( ) A.平均数 B.中位数C.众数D.以上都不对3.学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:建议学校商店进货数量最多的品牌是( )A.甲品牌B.乙品牌C.丙品牌D.丁品牌4.种菜能手李大叔种植了一批新品种黄瓜.为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图所示的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是( )A.13.5,20B.15,5C.13.5,14D.13,145.某同学进行社会调查,随机抽查了某个地区的20户家庭的年收入情况,并绘制了如图所示的统计图.(1)先完成下表,再回答问题:年收入(万元) 0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7户数这20户家庭的年平均收入为______万元;(2)这20户家庭的年收入的中位数、众数分别是多少?(3)在平均数、众数两数中,哪个更能反映这个地区家庭的年收入水平?为什么?培优提升1.八年级(1)班有学生46人,已知该班学生的平均身高为1.58米.明明的身高为1.59米,但明明说他的身高在全班是中等偏下的,班上有25个同学比他高,20个同学比他矮,下列说法不正确的是( )A.不可能,因为他的身高已经超过平均身高了B.可能,因为他的身高可能低于中位数C.可能,因为平均数会受极端值的影响D.可能,因为某个同学可能特别矮2.下列说法错误的是( )A.如果一组数据的众数是5,那么这组数据出现次数最多的数是5B.一组数据的平均数一定大于其中每一个数据C.一组数据的平均数、众数、中位数有可能相同D.一组数据的中位数有且只有一个3.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师说:“我班的学生考得还不错,有一半的学生的成绩在79分以上,一半的学生的成绩不到79分.”王老师说:“我班大部分学生的成绩都在80分到85分之间.”通过上面两位老师的对话,你认为林、王两位老师所说的话分别针对( )A.平均数、众数B.众数、中位数C.中位数、平均数D.中位数、众数4.某校有21名同学参加某比赛,预赛成绩各不相同,要取前11名同学参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )A.最高分B.中位数C.平均数D.最低分5.某商场一天内出售某品牌运动鞋13双,其中各种尺码的鞋的销售量如下表:请你给该商场提出一条合理的进货建议: .6.我们知道平均数、中位数和众数都是数据的代表,它们从不同侧面反映了数据的“平均水平”.有一次,小王、小李和小张三位同学进行射击比赛,每人打10发子弹,命中环数如下:小王:9 7 6 9 9 10 8 8 7 10小李:7 10 9 8 9 10 6 8 9 10小张:8 8 9 10 7 8 10 10 10 10统计结果表明,三人的“平均水平”都是9环.每人运用了平均数、中位数和众数中的一种表示“平均水平”,则小王运用了_______;小李运用了;小张运用了.7.为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,从中随机抽取了15名学生家庭的年收入情况,数据如下表:(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.8.甲、乙、丙三个家电厂家在广告中都声称自己的某种电子产品在正常情况下的使用寿命是8年,质量检测部门对这三个厂家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是顾客,你会选购哪个厂家的产品?为什么?参考答案【基础训练】1.【答案】C解:A.如数据0,1,1,4,这四个数的平均数是1.5,不是这组数中的数,错误;B.如数据1,2,3,4的中位数是2.5,不是这组数中的数,错误;C.众数是一组数据中出现次数最多的数,它一定是数据中的数,正确.故选C.2.【答案】C3.【答案】D4.【答案】C5.解:(1)填表如下:1.6(2)中位数是1.2万元,众数是1.3万元.(3)众数更能反映这个地区家庭的年收入水平.因为在平均数,众数两数中,平均数受到极端值的影响较大,所以众数更能反映这个地区家庭的年收入水平.【培优提升】1.【答案】A解:A.班上有25个同学比明明高,即身高在平均身高以下的同学占少数,若比明明高的同学的身高比平均身高高的幅度不大,比明明低的同学的身高比平均身高低的幅度大,则明明的说法是可能的.故本选项错误;B.本选项正确;C.本选项正确;D.本选项正确.故选A.2.【答案】B解:根据众数的概念知A正确;一组数据的平均数、众数、中位数有可能相同,如数据2,3,5,5,10,C正确;一组数据的中位数有且只有一个,故D正确;平均数是所有数据的和与数据个数的比值,不会大于其中每一个数据,故B错误.故选B.3.【答案】D解:“有一半的学生的成绩在79分以上,一半的学生的成绩不到79分”针对的是中位数,“大部分学生的成绩都在80分到85分之间”针对的是众数.故选D.4.【答案】B5.【答案】多进尺码为25 cm的运动鞋解:由表得:众数为25 cm,即25 cm的鞋卖得最好,故多进25 cm的运动鞋.6.【答案】众数;中位数;平均数解:小王命中环数的平均数为(9+7+6+9+9+10+8+8+7+10)÷10=8.3(环),中位数为8.5环,众数为9环;小李命中环数的平均数为(7+10+9+8+9+10+6+8+9+10)÷10=8.6(环),中位数为9环,众数为9环和10环;小张命中环数的平均数为(8+8+9+10+7+8+10+10+10+10)÷10=9(环),中位数为9.5环,众数为10环.∵三人的“平均水平”都是9环,∴小王运用了众数;小李运用了中位数;小张运用了平均数.7.解:(1)平均数为=4.3(万元).这15名学生家庭年收入的中位数为3万元,众数为3万元.(2)用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数和众数3万元是大部分家庭可以达到的水平,因此用中位数或众数来代表这15名学生家庭年收入的一般水平较为合适.8.解:(1)第一组数据:平均数为×(4+5+5+5+5+7+9+12+13+15)=8,众数为5,中位数为6;第二组数据:平均数为×(6+6+8+8+8+9+10+12+14+15)=9.6,众数为8,中位数为8.5;第三组数据:平均数为×(4+4+4+6+7+9+13+15+16+16)=9.4,众数为4,中位数为8.(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数.(3)选购乙厂的产品,理由:在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此选购乙厂的产品.。
新版浙教版八年级数学下3.2中位数和众数同步练习题有答案
![新版浙教版八年级数学下3.2中位数和众数同步练习题有答案](https://img.taocdn.com/s3/m/199647759a6648d7c1c708a1284ac850ad020406.png)
3·2 中位数和众数[学生用书A24]__1.[·湖州]在开展“爱心捐助雅安灾区”的活动中,某8名团员捐款的数额分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数(B) A.3元B.5元C.6元D.10元2.[·临沂]在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是(D)A.94,94 B.95,95 C.94,95 D.95,943.[·舟山]在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是(B)A.1.71 B.1.85 C.1.90 D.2.314.[·青海]数学老师布置了10道选择题作为课堂练习,课代表将全班答题情况绘制成如图3-2-1所示的条形统计图,根据此图可知,每位同学答对的题数所组成样本的中位数和众数分别为(B)图3-2-1A.8,8 B.9,8 C.8,9 D.9,95.[·嘉兴]多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图3-2-2所示的折线统计图,下列说法正确的是(C)图3-2-2A.最大值与最小值的差是47B.众数是42C.中位数是58D.每月阅读数量超过40本的有4个月【解析】A项最大值与最小值的差是83-28=55,故本选项错误;B项众数为58,故本选项错误;C项中位数为(58+58)÷2=58,故本选项正确;D项每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共6个月,故本选项错误,故选C.6.[·眉山]为筹备班级毕业晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果该由调查数据的__众数__决定.(填“平均数”或“中位数”或“众数”)7.[·连云港]某品牌专卖店对上个月销售的男运动鞋尺码统计如下:码号(码)38394041424344销售量(双)681420173 1 这组统计数据中的众数是__41__码.8.[·成都]今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图3-2-3所示,则本次捐款金额的众数是__10__元.图3-2-39.如图3-2-4是某市某景点6月份内1~10日每天的最高气温折线统计图,由图中信息可知该景点这10天的最高气温的中位数是__26__℃.【解析】该景点这10天的最高气温(单位:℃)分别为24,30,28,24,22.5,26,27,26,30,26,从小到大排列为22.5,24,24,26,26,26,27,28,30,30,共10个数据,中位数为26,故填26.图3-2-410.[·黄冈]为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,先从中随机抽取15名学生家庭的年收入情况,数据如表:年收入(单位:万元) 2 2.5 3 4 5 9 13 家庭个数 1 3 5 2 2 1 1(1)求这15名学生家庭年收入的平均数、中位数、众数;(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.解:(1)这15名学生家庭年收入的平均数是(2+2.5×3+3×5+4×2+5×2+9+13)÷15=4.3(万元);将这15个数据从小到大排列,最中间的数是3,所以中位数是3万元;在这一组数据中3是出现次数最多的,故众数是3万元.(2)众数代表这15名学生家庭年收入的一般水平较为合适,因为3出现的次数最多,所以能代表家庭年收入的一般水平.11.[·包头]一组数据从小到大排列为2,4,8,x,10,14,若这组数据的中位数为9,则这组数据的众数为(D) A.6B.8C.9D.1012.[·资阳]若一组数据2,-1,0,2,-1,a的众数为2,则这组数据的平均数为__23__.13.[·东营]一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是__2__.14.[·无锡]九年级(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如下表:打字数/个50 51 59 62 64 66 69 人数 1 2 ▲8 11 ▲ 5 将这些数据按组距5(个字)分组,绘制成如图3-2-5所示的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次打字成绩的众数是__64__个,平均数是__63__个.图3-2-5第14题答图解:(1)表中空缺的数据依次为5,8.补全频数分布直方图如答图所示.(2)646315.[·毕节]在喜迎建九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分;方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案3:所有评委给分的中位数;方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,图3-2-6是这个同学的得分统计图:图3-2-6(1)分别按上述四种方案计算这个同学演唱的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?解:(1)方案1最后得分为110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分为18(7.0+7.8+3×8+3×8.4)=8;方案3最后得分为8;方案4最后得分为8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.。
八年级数学下册3.2中位数和众数同步练习(新版)浙教版
![八年级数学下册3.2中位数和众数同步练习(新版)浙教版](https://img.taocdn.com/s3/m/ff16a8bc0029bd64783e2ce6.png)
3.2 中位数和众数1.数据6,5,7,7,9的众数是____.2.一组数据10,13,9,16,13,10,13的众数与平均数的和是____.3.今年4月10日,在市委宣传部、市教育局等单位联合举办的“走复兴路,圆中国梦”学生演讲比赛中,7位评委给参赛选手张阳同学的打分如下表:则张阳同学得分的众数是( )A.95 B.92 C.90 D.86那么这些运动员跳高成绩的众数是( )A.4 B.1.75 C.1.70 D.1.655.某次测得一周PM2.5的日均值(单位:μg/m3)如下:50,40,75,50,37,50,40,这组数据的中位数是____.6.小斌所在的课外活动小组在课间活动中练习立定跳远成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.18,2.12,2.22,2.32,则这组数据的中位数是____米.7.若一组数据3,x,4,5,6的众数是6,则这组数据的中位数是( )A.3 B.4 C.5 D.68.某合作学习小组的6名同学在一次数学测试中,成绩分别为76,88,96,82,78,96,这组数据的中位数是( )A.82 B.85 C.88 D.969则入围同学的决赛成绩的中位数和众数分别是( )A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.6010.如图,这是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?11.有19位同学参加歌咏比赛,所得的分数互不相同,取前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的( )A.平均数 B.中位数 C.众数 D.最低分数12.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为____.13.在2016年的体育考试中某校6名学生的体育成绩统计如图所示,则这组数据的众数是____,中位数是____.14.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下(单位:年):甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;(3)如果你是顾客,宜选购哪家工厂的产品?为什么?答案:1. 72. 253. B4. D5. 506. 2.167. C8. B9. B10. 解:(1)这些车的平均速度是:(40×2+50×3+60×4+70×5+80×1)÷15=60(千米/时) (2)车速的众数是70千米/时(3)中位数是60千米/时11. B12. 613. 26 2614. 解:(1)甲厂:平均数为8,众数为5,中位数为6;乙厂:平均数为9.6,众数为8,中位数为8.5;丙厂:平均数为9.4,众数为4,中位数为8 (2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数(3)平均数:乙>丙>甲;众数:乙>甲>丙;中位数:乙>丙>甲,顾客在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此应选购乙厂的产品。
8.2 中位数和众数练习
![8.2 中位数和众数练习](https://img.taocdn.com/s3/m/4cf12b2f915f804d2b16c13e.png)
8.2 中位数和众数练习一、目标导航①掌握中位数、众数等数据代表的概念,能根据所给信息求出相应的数据代表. ②结合具体情境体会平均数、中位数和众数三者的差别,能初步选择恰当的数据代表对数据做出自己的判断.③对统计数据从多角度进行全面的分析,从而避免机械的、片面的解释. 二、基础过关1.初三(1)班12名学生的身高为(单位:cm )158,159,157,161,158,165,160,164,158,166,164,156. 则这组数据的众数是 ,中位数是 .2.样本数据10,10,x ,8的众数与平均数相同,则这组数据的中位数是______.3.数据3,4,3,2,5,5,2,5,4,1的平均数为 ,众数为 ,中位数为 . 4.已知数据a ,c ,b ,c ,d ,b ,c ,a 且a <b <c <d ,则这组数据的众数为 ,中位数为 ,平均数为 .5.一组数据6,2,4,2,3,5,2,3的众数是 ,中位数是 .6.2003年5月份,某市一周空气质量报告中某项污染指数的数据是:31, 35, 31,34,30,32,31,则这组数据的中位数是 ,众数是 .7.若一组数据x ,-3,3,-2,1,6的中位数是1,则x =____.8.一组数据:8,9,9,10,12,12,12,13的中位数和众数分别是( )A .11,3B .10,12C .12,12D .11,12 9.对于数据2,2,3,2,5,2,10,2,5,2,3有以下说法:①众数是2; ②中位数与平均数相等;③众数与中位数的数值不等;④平均数与众数的数值相等, 其中正确的结论有( )A .1个B .2人C .3个D .4个10.从小到大排列的一组数据:-2,0,4,4,x ,6,6,9的中位数是5,那么这组数据的众数是( )A .4B .5C .6D .4或6 11.下列说法正确的是( )A .样本7,7,6,5,4的众数是2B .如果数据1x ,2x ,3x ,……,n x 的平均数是x ,则12()()()0n x x x x x x -+-++-=C .样本1,2,3,4,5,6的中位数是4D .样本50,50,39,41,41不存在众数12.在一次体操比赛中,当运动员甲做完一套动作后,四个裁判评分依次为:8.4,9.4,9.6,9.9,这时比赛场记分牌显示9.5,这个分数是以上数据的什么数?为什么这个数代表运动员甲的水平?三、能力提升13在这次竞赛中成绩哪一组好些,哪一组稍差,并说明理由.14.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,15,16,17,17;乙群:3,4,4,5,5,6,6,6,54,57.(1)甲群游客的平均年龄是多少?中位数、众数呢? 其中能较好反映甲群游客年龄特征的是什么?(2)乙群游客的平均年龄是多少?中位数、众数呢? 其中能较好反映乙群游客年龄特征的是什么?15.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售如下:(1)求这15位营销人员该月销售量的平均数、中位数和众数.(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由.四、聚沙成塔这是美国智力趣题专家奇尔出的一道观察力测试题,许多成年人对此不知从何入手,而一些聪明的少年却轻而易举地解开了难题.图中有辆公共汽车,有A和B两个汽车站.问:公共汽车现在是要驶往A车站,还是驶往B车站?。
八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)
![八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)](https://img.taocdn.com/s3/m/f5e111a870fe910ef12d2af90242a8956becaae5.png)
八年级数学(下)第二十章《中位数和众数》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校在五个班级中对认识伦敦奥运会吉祥物的人数进行了调查,统计结果为(单位:人):30,31,27,26,31.这组数据的中位数是A.27 B.29C.30 D.31【答案】C【解析】将数据由小到大排列得:26,27,30,31,31.所以中位数为30.故选C.2.一组数据:85,88,73,88,79,85,其众数是A.88 B.73C.88,85 D.85【答案】C【解析】数据85,88,73,88,79,85有两个众数,它们是88,85.故选C.3.某班一次英语测验的成绩如下,得98分的7人,90分的4人,80分的17人,70分的8人,60分的3人,50分的1人,这里80分是A.是平均数B.只是众数C.只是中位数D.既是众数又是中位数【答案】D【解析】∵80分出现了17次,出现的次数最多,∴80分是众数.∵共有40个数,中位数是第20、21个数的平均数,∴这组数据的中位数是80.故选D.4.某青年排球队12名队员的年龄情况如下:则12名队员的年龄A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选D.5.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的A.中位数B.平均数C.众数D.方差【答案】A【解析】11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选A.6.10个商店某天销售同一品牌的电脑,销售的件数是16、14、15、12、17、14、17、10、15、17,设其平均数为a,中位数为b,众数为c,则有A.a>b>c B.b>c>dC.c>a>b D.c>b>a【答案】D【解析】∵16、14、15、12、17、14、17、10、15、17,设其平均数为a=(16+14+15+12+17+14+17+10+15+17)÷10=14.7,10个数据从小大大排列:10,12,14,14,15,15,16,17,17,17,中位数为b是最中间两数的平均数,即:b=(15+15)÷2=15;众数为c,即c=17.∴a<b<c.故选D.二、填空题:请将答案填在题中横线上.7.一组数据3,4,x,5,8的平均数是6,则该组数据的中位数是__________.【答案】5【解析】根据题意可得:345865x++++=,解得:x=10,这组数据按照从小到大的顺序排列为:3,4,5,8,10,则中位数为:5.故答案为:5.8.某巴蜀中学组织数学速算比赛,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数是__________.【答案】15【解析】把这组数据从小到大排列:13、13、15、15、20,最中间的数是15,则这组数据的中位数是15,故答案为:15.9.已知一组数据:x,10,12,6的中位数与平均数相等,则x的值是__________.【答案】4或8或16【解析】(1)将这组数据从大到小的顺序排列为12,10,x,6,处于中间位置的数是10,x,那么由中位数的定义可知,这组数据的中位数是(10+x)÷2,平均数为(12+10+x+6)÷4,∵数据12,10,x,6,的中位数与平均数相等,∴(10+x)÷2=(12+10+x+6)÷4,解得x=8,大小位置与8对调,不影响结果,符合题意.(2)将这组数据从大到小的顺序排列后12,10,6,x,中位数是(10+6)÷2=8,此时平均数是(12+10+x+6)÷4=8,解得x=4,符合排列顺序.(3)将这组数据从大到小的顺序排列后x,12,10,6,中位数是(12+10)÷2=11,平均数(x+12+10+6)÷4=11,解得x=16,符合排列顺序.∴x的值为4、8或16.故答案为:4或8或16.10.自然数4,5,5,x,y从小到大排列后,其中位数是4,如果这组数据唯一的众数是5,那么所有满的最大值是__________.足条件的x,y中,x y【答案】5【解析】∵这组数据的中位数为4,∴x≤4,y≤4,∵这组数据唯一的众数是5,∴x≠4且y≠4,要求x+y的最大值,∴x=2,y=3,或x=3,y=2,即x+y的最大值=2+3=5,故答案为:5.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.小明最近6次测验的成绩依次为90分、85分、70分、65分、85分、75分。
浙教版八年级数学下册《3.2中位数和众数》同步练习(含答案)
![浙教版八年级数学下册《3.2中位数和众数》同步练习(含答案)](https://img.taocdn.com/s3/m/437821c0856a561252d36f8d.png)
3.2中位数和众数A练就好基础基础达标1.一组数据:5,4,6,5,6,6,3,这组数据的众数是(A)A.6B.5C.4D.32.2018·温州某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(C)A.9分B.8分C.7分D.6分3.2018·宁波若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为(C) A.7 B.5 C.4 D.34.某学习小组9那么这9A.90分,90分B.90分,85分C.90分,87.5分D.85分,85分5.某校共有40名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这40名学生年龄的中位数是(C)某校40名学生年龄统计图A.12岁B.13岁C.14岁D.15岁6.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得了116分.这说明本次考试分数的中位数是(C)A.21分B.103分C.116分D.121分7.某校举办“成语听写大赛”,15名学生进入决赛,他们所得分数互不相同,比赛共设8个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是__中位数__.(填“平均数”“众数”或“中位数”)8.已知一组数据0,2,x,4,5的众数是4,那么这组数据的中位数是__4__.9.在一次数学测验中,12名学生的成绩如下(单位:分):60,95,80,75,80,85,60,55,90,55,80,70.分别求出这次数学测验成绩的众数、中位数与平均数.【答案】这次数学测验成绩的众数是80分,中位数是77.5分,平均数是73.75分.B更上一层楼能力提升10A.平均数是4.6吨B.中位数是4吨C.众数是5吨D.调查了10户家庭的月用水量11.下列说法中错误的是(C)A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个12.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a ,中位数为b ,众数为c ,则a ,b ,c 的大小关系为__b >a >c __.13.为了给车间18名工人确定生产任务,某厂对上月生产情况进行了统计,结果如下表所示:(1)(2)以平均数作为月生产任务合理吗?为什么?你认为把月生产任务定为多少比较合理?解:(1)x =1×40+1×30+5×10+8×9+3×81+1+5+8+3=12(件).众数为9件,中位数为9件.(2)用平均数作为月生产任务不合理,因为18个人中只有2人能完成任务,应定为9件(即众数或中位数)较为合理.C 开拓新思路 拓展创新14.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( A )A .a <13,b =13B .a <13,b <13C .a >13,b <13D .a >13,b =1315.国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作了如下统计图(不完整).其中分组情况如下:A 组,时间小于0.5小时;B 组,时间大于等于0.5小时且小于1小时;C 组,时间大于等于1小时且小于1.5小时;D 组,时间大于等于1.5小时.某地区中学生每天在校体育锻炼时间情况条形统计图某地区中学生每天在校体育煅炼时间根据以上信息,回答下列问题:(1)A 组有________人,并补全条形统计图;(2)本次调查数据的中位数落在________组;(3)根据统计数据估计该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少?解:(1)由统计图可得,A组人数为60÷24%-60-120-20=50.故答案为50,补全的条形统计图如右图所示.(2)由补全的条形统计图可得,中位数落在C组.故答案为C.(3)由题意可得,该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有25 000×(48%+8%)=14 000.。
八年级数学上册4.3中位数和众数同步练习
![八年级数学上册4.3中位数和众数同步练习](https://img.taocdn.com/s3/m/296de89f0b1c59eef9c7b439.png)
4.3 中位数和众数同步练习基础训练:1、判断题:(1)给定一组数据;那么描述这组数据的平均数一定只有一个.()(2)给定一组数据;那么描述这组数据的中位数一定只有一个.()(3)给定一组数据;那么描述这组数据的众数一定只有一个.()(4)给定一组数据;那么描述这组数据的平均数一定位于最大值与最小值之间.()(5)给定一组数据;那么描述这组数据的中位数一定位于最大值与最小值的正中间.()(6)给定一组数据;如果找不到众数;那么众数一定就是0.()2、根据所给数据;求出平均数、中位数和众数;并填入下表.(精确到0.1)(1)在一次数学测验中;甲、乙、丙、丁四位同学的分数分别是90、、90、70;若这四个同学得分的众数与平均数恰好相等;则他们得分的中位数是()A、100B、90C、80D、70(2)当5个整数从小到大排列;其中位数是4;如果这组数据的唯一众数是6;则5个整数可能的最大的和是()A、21B、22C、23D、24(3)10名工人;某天生产同一零件;生产达到件数是:15;17;14;10;15;19;17;16;14;12;则这一组数据的众数是()A、15B、17 15C、14D、17 15 144、某鞋店销售了9双鞋;各种尺码的销售量如下:(2)哪一个指标是鞋厂最感兴趣的指标?哪一个指标是鞋厂最不感兴趣的?拓展思考:某公司有10名销售业务员;去年每人完成的销售额情况如下表(2)为了调动员工积极性;公司准备采取超额有奖措施;请问把标准定为多少万元时最合适?火眼金睛:问题:那边草地上有六个人正在玩游戏;他们年龄的平均数是15岁. 请想象一下是怎样年龄的六个人在玩游戏?小飞认为:那一定是一群中学生在玩游戏.你认为小飞的想法肯定正确吗?如果你认为不正确;那么指出错误的原因.学习预报:阅读课本第六章第4节“方差和标准差”;并思考:(1)什么叫方差、标准差?(2)怎样求方差、标准差?(3)方差的大小反映了数据怎样的特征?答案4.3 基础训练:1、(1)∨(2)∨(3)×(4)∨(5)×(6)×2、22 (2)众数平均数拓展思考:(1)平均数5.6万元;中位数5万元;众数4万元(2)答案不唯一;只要有道理;都正确火眼金睛:不一定正确. 比如是一位65岁的大娘领着五个5岁的孩子在玩游戏也是有可能的;因为这是一个不适合用平均数而适合用众数或中位数代表一组数据的例子;大娘的年龄把平均年龄一下子给抬上去了。
八年级数学下册《3.2 中位数和众数》同步练习1(无答案)浙教版(2021学年)
![八年级数学下册《3.2 中位数和众数》同步练习1(无答案)浙教版(2021学年)](https://img.taocdn.com/s3/m/7899552f2cc58bd63086bdde.png)
浙江省绍兴市绍兴县杨汛桥镇八年级数学下册《3.2 中位数和众数》同步练习1(无答案)(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省绍兴市绍兴县杨汛桥镇八年级数学下册《3.2 中位数和众数》同步练习1(无答案)(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省绍兴市绍兴县杨汛桥镇八年级数学下册《3.2中位数和众数》同步练习1(无答案)(新版)浙教版的全部内容。
3。
2中位数和众数班级姓名1.一次数学测验中,46名学生的成绩的中位数为85分,这说明()A.46名学生的平均成绩为85分B.成绩为85分的学生人数最多C.成绩低于85分和高于85分的人数大致相同D.没有学生的成绩会等于85分t2.为了了解汽车司机遵守交通法规的意识,小明负责的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:km/h)情况如图所示.根据统计图分析,这组车速数据的众数和中位数分别是()A.60,60B.58,60C.60,58 D.58,583.一组数据5,-2,3,x,3,—2,若每个数据都是这组数据的众数,则这组数据的平均数是_________.4.为了解初三学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下:视力4.6以上4。
64.74。
84。
95。
05.0以下人数(人)615510347这组数据的中位数是______________.5.学校快餐店有2元,3元,4元三种价格的炒菜供1500名师生选择(每人限购一份).右图是某月的销售情况统计图,求该校师生购买饭菜费用的中位数和众数.6.此表是某市4所中学举行男子足球单循环赛的成绩登记表.表中①与②表示的是同一场比赛,在这场比赛中一中进了3个球,三中进了2个球,即一中以3:2胜三中,或者说三中以2:3负于一中,其余依次类推.按照比赛规格胜一场得3分,平一场得l 分,负一场得0分.(1)本次足球单循环赛共进行了几场比赛?你能排出他们的名次吗? (2)求各场比赛的平均进球数;(3)求各场比赛进球数的众数和中位数.7.下表是某校八(1)班20名学生某次数学测验的成绩统计表:成绩(分) 60 70 80 90 100 人数l5xy2(1)若这20名学生的平均成绩为82分,求x ,y的值。
浙教版八年级数学下册 中位数和众数 同步练习
![浙教版八年级数学下册 中位数和众数 同步练习](https://img.taocdn.com/s3/m/ec9275cf51e2524de518964bcf84b9d528ea2cf3.png)
3.2中位数和众数知识点1众数1.(2020宿迁)已知一组数据:3,4,5,4,6,则这组数据的众数是()A.4B.5C.6D.32.(2020慈溪中考模拟)据调查,某班40名学生所穿校服尺码统计如下:尺码150 155 160 165 170 175 180频数 1 8 6 15 4 4 2则该班40名学生所穿校服尺码的众数是()A.4B.15C.170D.1653.若一组数据1,2,4,x,6的众数是2,则x的值是()A.1B.4C.2D.6知识点2中位数4.(2020株洲)数据15,18,17,10,19的中位数为()A.14B.15C.16D.175.(2020本溪)数据1,8,8,4,6,4的中位数是.6.已知一组数据是3,4,7,a,它的中位数为4,则a=.7.某校共有40名初中生参加足球兴趣小组,他们的年龄统计情况如图3-2-1所示,则这40名学生年龄的中位数是岁.图3-2-1知识点3平均数、中位数、众数的综合8.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数据中的某个数B.中位数一定是这组数据中的某个数C.众数一定是这组数据中的某个数D.以上说法都不对9.(2020岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A.36.3,36.5B.36.5,36.5C.36.5,36.3D.36.3,36.710.已知数据8,11,7,9,x,13的平均数为10,则这组数据的中位数是()A.7B.8C.9D.1011.(2021杭州萧山区二模)一组数据-2,a,5,3,1有唯一的众数5,则这组数据的中位数是()A.-2B.1C.3D.512.(2020宁波镇海区期末)停课不停学,疫情期间,八(1)班30名同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30名同学15天的打卡次数如下表:打卡次数7 8 9 14 15人数 6 9 6 3 6(1)直接写出打卡次数的众数和中位数;(2)求所有同学打卡次数的平均数;(3)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励.请你根据(1)(2)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由.13.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.最大值C.平均数D.中位数14.(2020杭州江干区期末)开学后,某区针对各校在线教学情况进行评比,A校通过初评决定从甲、乙两个班中推荐一个班作为在线教学先进班级,下表是这两个班的四项指标的考评得分(单位:分)情况:班级课程质量在线答疑作业情况课堂参与甲班10 5 10 7乙班8 8 9 7请你根据统计表中的信息解答下列问题:(1)请确定如下的“四项指标的考评得分分析表”中的a=,b=;班级平均分众数中位数甲班8 10 a乙班8 b8(2)如果A校把“课程质量”“在线答疑”“作业情况”“课堂参与”这四项指标得分按照2∶3∶2∶3的比例确定最终成绩,请你通过计算判断应推荐哪个班作为在线教学先进班级?15.(2020湖州期末)在学校组织的跳绳比赛中,每个班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为10分,9分,8分,7分,现将801班和802班的成绩整理并绘制成如图3-2-2所示的统计图.图3-2-2请根据以上提供的信息解答下列问题:(1)此次比赛中,801班成绩在C级以上(包括C级)的人数为人;(2)将下列表格补充完整:平均分(分) 中位数(分) 众数(分)801班8.76 9802班8.76 10(3)根据以上信息分析,你认为这两个班中哪个班成绩好一些,请说明理由.答案1.A2.D3.C[解析] 众数是一组数据中出现次数最多的数.4.D[解析] 首先将这组数据按大小顺序排列,再利用中位数的定义,即可求出这组数据的中位数.把这组数据从小到大排列为:10,15,17,18,19,则这组数据的中位数是17.5.56.47.148.C[解析] A项,如数据0,1,1,4中四个数的平均数是1.5,不是这组数据中的某个数,错误.B 项,如数据1,2,3,4的中位数是2.5,不是这组数据中的某个数,错误.C项,众数是一组数据中出现次数最多的数,它一定是这组数据中的某个数,正确.D错误.9.B[解析] 这组数据中出现次数最多的是36.5,所以众数是36.5.将这7个数据从小到大排列为:36.3,36.3,36.5,36.5,36.5,36.7,36.8,第4个数即为中位数,为36.5.故选B.10.D11.C12.解:(1)打卡次数为8次的人数最多,所以打卡次数的众数为8次;共30名同学,所有同学打卡次数从小到大排列后第15个、第16个数分别为8次,9次,所以打卡次数的中位数为(8+9)÷2=8.5(次).(2)平均数为(7×6+8×9+9×6+14×3+15×6)÷30=10(次).(3)为了调动同学们锻炼的积极性,打卡奖励标准可以定为所有同学打卡次数的中位数.因为该班共有30名同学,打卡次数在9次以上(含9次)的有15人,等于总数的一半.(答案合理即可)13.D14.解:(1)甲班四项指标考评得分按从小到大排列后,处在中间位置的两个数的平均数为=8.5(分),即a=8.5;乙班四项指标考评得分中出现次数最多的是8分,因此众数是8分,即b=8.故答案为8.5,8.(2)==7.6(分),==7.9(分).∵7.6<7.9,∴应推荐乙班作为在线教学先进班级.15.解:(1)6+12+2=20(人).故答案为20.(2)因为两个班参加的人数相同,801班参加的总人数为6+12+2+5=25(人),所以802班参加的总人数为25人.801班学生的成绩中出现次数最多的是B级,即801班的众数为9分;802班学生的成绩按从小到大的顺序排列后,位于最中间的一个数据在C级,即802班的中位数是8分.(3)因为两个班的平均分相同,从众数的角度看,802班的成绩好一些,从中位数的角度看,801班的成绩好一些.(答案合理即可)。
中位数和众数练习题
![中位数和众数练习题](https://img.taocdn.com/s3/m/20bc754b78563c1ec5da50e2524de518964bd318.png)
中位数和众数练习题1. 问题描述在统计学中,中位数和众数是描述数据集中趋势和集中程度的重要指标。
本文将介绍中位数和众数,并提供一些练习题以帮助读者更好地理解这两个概念。
2. 中位数中位数是将数据集按照大小排列后,位于中间位置的数值。
当数据集元素个数为奇数时,中位数就是中间的数值;当数据集元素个数为偶数时,中位数是中间两个数值的平均值。
例如,对于数据集{1, 3, 5, 7, 9},其中共有5个元素,中位数为5。
而对于数据集 {1, 3, 5, 7, 9, 11},中位数为 (5 + 7) / 2 = 6。
练习题一:计算下列数据集的中位数。
a) {2, 4, 6, 8, 10}b) {3, 4, 7, 8, 8, 9, 10}3. 众数众数是指在数据集中出现频率最高的数值。
一个数据集可以有一个或多个众数,也可以没有众数。
练习题二:找出下列数据集的众数。
a) {2, 4, 6, 6, 8, 10}b) {3, 5, 7, 7, 7, 9, 10}4. 解答练习题一解答:a) 数据集 {2, 4, 6, 8, 10} 中间位置的数值是 6,因此中位数为6。
b) 数据集 {3, 4, 7, 8, 8, 9, 10} 中间位置的两个数值是 7 和 8,因此中位数为 (7 + 8) / 2 = 7.5。
练习题二解答:a) 数据集 {2, 4, 6, 6, 8, 10} 中频率最高的数值是 6,因此众数为6。
b) 数据集 {3, 5, 7, 7, 7, 9, 10} 中频率最高的数值是 7,因此众数为7。
5. 总结通过本文的练习题,我们了解了中位数和众数的定义和计算方法。
中位数是按照数据集大小排列后位于中间位置的数值,而众数是数据集中出现频率最高的数值。
在实际应用中,中位数和众数可以帮助我们了解数据的分布和集中程度,常用于统计分析与决策制定。
《中位数和众数》练习题
![《中位数和众数》练习题](https://img.taocdn.com/s3/m/e28573f626fff705cc170acb.png)
次 数
人 数
6 12 15 18 20 25 27 30 32 35 36
1
1
7
18 10
5
2
2
1
1
2
(1)求这次抽样测试数据的平均数、众数和中位数; (2) 根据这一样本数据的特点 ,你认为该市中考女生“一分钟仰卧起 坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由; (3)根据(2)中你认为合格的标准 ,试估计该市中考女生“一分钟仰卧 起坐”项目测试的合格率是多少?
13.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平 均数为2,则这组数据的中位数为_________. 2
14.某市实行中考改革,需要根据该市中学体能的实际情况重新制定 中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧 起坐”次数测试.测试的情况绘制成表格如下:
均销售额是多少?
(2) 如果想确定一个较高的销售目标 ,你认为月销售额定为多少合适? 请说明理由;
解:(1) 因为众数为 15 万元 ,所以月销售额在 15万元的人最多;因为 中位数是18万元,所以月销售额处于中间的是18万元;月平均销售额是 (13 + 14 + 15×5 + 16×4 + 17×3 + 18×2 + 19×3 + 22 + 23 + 24 + 26×2
解:(1)∵18÷36%=50,∴八(2)班共有 50 人 (2)∵捐 15 元的同学人数为 50-(7+18+12+3)=10 人, ∴学生捐款的众数为 10 元,又∵第 25 个数为 10, 10+15 第 26 个数为 15,∴中位数为 2 =12.5(元) (3)依题意捐款金额为 20 元的人数所对应的扇形圆心角的度数为 12 360°×50=86.4°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中位数和众数同步练习
基础训练:1、判断题:
(1)给定一组数据,那么描述这组数据的平均数一定只有一个.()
(2)给定一组数据,那么描述这组数据的中位数一定只有一个.()
(3)给定一组数据,那么描述这组数据的众数一定只有一个.()
(4)给定一组数据,那么描述这组数据的平均数一定位于最大值与
最小值之间.()
(5)给定一组数据,那么描述这组数据的中位数一定位于最大值与
最小值的正中间.()
(6)给定一组数据,如果找不到众数,那么众数一定就是0.()
2、根据所给数据,求出平均数、中位数和众数,并填入下表.(精确到)
3、选择题:
(1)在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()
A、100
B、90
C、80
D、70
(2)当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,则5个整数可能的最大的和是()
A、21
B、22
C、23
D、24(3)10名工人,某天生产同一零件,生产达到件数是:15,17,14,10,15,19,17,16,14,12,则这一组数据的众数是()
A、15
B、17 15
C、14
D、17 15
14
4、某鞋店销售了9双鞋,各种尺码的销售量如下:
(1)计算这9双鞋尺码的平均数、中位数和众数.
(2)哪一个指标是鞋厂最感兴趣的指标?哪一个指标是鞋厂最不感兴趣的?
拓展思考:某公司有10名销售业务员,去年每人完成的销售额情况如下表
问题:(1)求10名销售员销售额的平均数、中位数和众数(单位:万元)
(2)为了调动员工积极性,公司准备采取超额有奖措施,请问把标准定为多少万元时最合适?
火眼金睛:
问题:那边草地上有六个人正在玩游戏,他们年龄的平均数是15岁. 请想象一下是怎样年龄的六个人在玩游戏?
小飞认为:那一定是一群中学生在玩游戏.
你认为小飞的想法肯定正确吗?如果你认为不正确,那么指出错误的原因.
学习预报:阅读课本第六章第4节“方差和标准差”,并思考:
(1)什么叫方差、标准差?
(2)怎样求方差、标准差?
(3)方差的大小反映了数据怎样的特征?
答案
基础训练:1、(1)∨(2)∨(3)×(4)∨(5)×(6)×
2、
3、(1)B (2)B (3)D
4、(1)平均数,中位数22,众数22 (2)众数平均数
拓展思考:(1)平均数万元,中位数5万元,众数4万元(2)答案不唯一,只要有道理,都正确
火眼金睛:不一定正确. 比如是一位65岁的大娘领着五个5岁的孩子在玩游戏也是有可能的,因为这是一个不适合用平均数而适合用众数或中位数代表一组数据的例子,大娘的年龄把平均年龄一下子给抬上去了。