多面体与球切、接的问题(一)

合集下载

第5讲 竞赛和自主招生专题——立体几何中与球关于的问题

第5讲 竞赛和自主招生专题——立体几何中与球关于的问题

第5讲 竞赛和“三一”专题资料——立体几何中与球有关问题 编写林国夫班级___________姓名____________学号__________一.多面体与球的问题(1)多面体内接于球:若球O 是多面体 的外接球,则球O 的球心O 在多面体 的各个表面上的射影为该表面多边形的外心.根据这个性质我们可以确定球心的位置,结合截面法求解相应的量.(2)多面体的内切球:若球O 内切多面体 ,则球O 的球心到多面体 各个表面的距离均为球半径.根据这个性质,结合等体积法求解内切球的半径.(3)球O 被平面 相截,所得的截面为圆截面,设截面圆的圆心为1O ,则1OO 平面 . (4)若多面体是通过长方体或正方体切割所得,则求其外接球的半径可以等价转化为求长方体或正方体的外接球半径.例1(1)如图,一个四面体棱长分别为6,6,6,6,6,9, 则其外接球的半径为______________.(2)如图,已知空间一球,SC 为其直径且||4,,SC A B =为球上两点,满足:||30AB ASC BSC ︒=∠=∠=,则四面体S ABC -的体积为___________.AP(3)在四面体ABCD 中,1AD DB AC CB ====,则四面体ABCD 体积最大时,它的外接球半径R =.(4)(2018·浙江预赛)在四面体PABC 中,PA BC PB AC PC AB ======,则该四面体外接球的半径为_________.B例2 (有关几何体中球的内切问题)(1)四棱锥P ABCD -中,底面ABCD 是正方形,边长为,,a PD a PA PC ===,在这个四棱锥中放入一个球,则球的最大半径为(2)在边长为1的正方体C 内作一个内切大球1O ,再在C 内作一个小球2O ,使它与大球1O 外切,同时与正方体的三个面都相切,则球2O 的表面积为___________.(3)在正三棱锥P ABC 中,有一半球,其底面与正三棱锥的底面重合,正三棱锥的三个侧面都和半球相切. 如果半球的半径等于1,则正三棱锥的体积最小时,正三棱锥的高等于 _______________.(4)设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并放入半径为r 的一个实心球,此时球与容器壁及水面恰好都相切,则取出球后水面高为_______________二.有关球与球的组合体(抓住球心构建的多面体)例3(1)若4个半径为1的球两两外切,则这4个球的外切正四面体的棱长为__________(2)桌面上有3个半径为2017的球两两相切,在其上方空隙里放入一个球,使其顶点(最高点)与3个球的顶点(最高点)在同一平面内,则该球的半径是___________.(3)若半径为R 的球的内部装有4个相同半径为r 的小球,则小球半径r 的最大可能值是________.(4)将3个半径为1的球和一个半径为1-的球叠为两层放在桌面上,上层只放一个较小的球,四个球两两相切,那么上层小球的最高点到桌面的距离是___________.O2第5讲 竞赛和“三一”专题资料——立体几何中与球有关问题(练习) 编写林国夫班级___________姓名____________学号__________一.多面体与球的问题相关练习1.外接球的半径为1的正四面体的棱长为________________2.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .3.在四面体ABCD 中,AB BCD ⊥平面,BCD △是边长为3的等边三角形。

多面体的外接球和内切球(解析版)

多面体的外接球和内切球(解析版)

多面体的外接球和内切球一、结论1、球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。

定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。

球的内切问题(等体积法)例如:在四棱锥P -ABCD 中,内切球为球O ,求球半径r .方法如下:V P -ABCD =V O -ABCD +V O -PBC +V O -PCD +V O -PAD +V O -PAB即:V P -ABCD =13S ABCD ⋅r +13S PBC ⋅r +13S PCD ⋅r +13S PAD ⋅r +13S PAB ⋅r ,可求出r .球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB =CD ,AD =BC ,AC =BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P-ABC中,选中底面ΔABC,确定其外接圆圆心O1(正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2r=asin A);②过外心O1做(找)底面ΔABC的垂线,如图中PO1⊥面ABC,则球心一定在直线(注意不一定在线段PO1上)PO1上;③计算求半径R:在直线PO1上任取一点O如图:则OP=OA=R,利用公式OA2=O1A2+OO12可计算出球半径R.4.双面定球心法(两次单面定球心)如图:在三棱锥P-ABC中:①选定底面ΔABC,定ΔABC外接圆圆心O1②选定面ΔPAB,定ΔPAB外接圆圆心O2③分别过O1做面ABC的垂线,和O2做面PAB的垂线,两垂线交点即为外接球球心O.二、典型例题1(2023春·湖南湘潭·高二统考期末)棱长为1的正方体的外接球的表面积为()A.3π4B.3πC.12πD.16π【答案】B【详解】解:易知,正方体的体对角线是其外接球的直径,设外接球的半径为R,则2R=12+12+12=3,故R=3 2.所以S=4πR2=4π×322=3π.故选:B.【反思】本例属于正方体外接球问题,其外接球半径公式可直接记忆.2(2023春·湖南长沙·高三长沙一中校考阶段练习)在四面体PABC中,PA⊥AB,PA⊥AC,∠BAC= 120°,AB=AC=AP=2,则该四面体的外接球的表面积为()A.12πB.16πC.18πD.20π【答案】D【详解】因为PA⊥AB,PA⊥AC,AB∩AC=A,AB,AC⊂平面ABC,所以PA⊥平面ABC.设底面△ABC的外心为G,外接球的球心为O,则OG⊥平面ABC,所以PA⎳OG.设D为PA的中点,因为OP=OA,所以DO⊥PA.因为PA⊥平面ABC,AG⊂平面ABC,所以PA⊥AG,所以OD⎳AG.因此四边形ODAG为平行四边形,所以OG=AD=12PA=1.因为∠BAC=120°,AB=AC=2,所以BC=AB2+AC2-2AB⋅AC cos∠BAC=4+4-2×2×2×-1 2=23,由正弦定理,得2AG=2332=4⇒AG=2.所以该外接球的半径R满足R2=OG2+AG2=5,故该外接球的表面积为S=4πR2=20π.故选:D.【反思】本例属于单面定球心问题①用正弦定理求出ΔABC外心G;②过G做平面ABC的垂线,则外接球球心O在此垂线上;③通过计算算出半径.3(2023秋·湖南娄底·高三校联考期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD 是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50π C.100π D.500π3【答案】B【详解】因PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,则PA⊥AB,PA⊥AD,又因四边形ABCD为矩形,则AB⊥AD.则阳马的外接球与以PA,AB,AD为长宽高的长方体的外接球相同.又PA=5,AB=3,AD=BC=4.则外接球的直径为长方体体对角线,故外接球半径为:R=PA 2+AB 2+AD 22=32+42+522=522,则外接球的表面积为:S =4πR 2=4π⋅504=50π.故选:B【反思】本例属于墙角型模型,通过补形,将原图形补成长方体模型,借助长方体模型求外接球半径.4(2023·全国·高三专题练习)已知菱形ABCD 的各边长为2,∠D =60°.如图所示,将ΔACD 沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S -ABC ,此时SB =3.E 是线段SA 的中点,点F 在三棱锥S -ABC 的外接球上运动,且始终保持EF ⊥AC ,则点F 的轨迹的周长为()A.233π B.433π C.533π D.2213π【答案】C【详解】取AC 中点M ,则AC ⊥BM ,AC ⊥SM ,BM ∩SM =M ,∴AC ⊥平面SMB ,SM =MB =3,又SB =3,∴∠SBM =∠MSB =30°,作EH ⊥AC 于H ,设点F 轨迹所在平面为α,则平面α经过点H 且AC ⊥α,设三棱锥S -ABC 外接球的球心为O ,△SAC ,△BAC 的中心分别为O 1,O 2,易知OO 1⊥平面SAC ,OO 2⊥平面BAC ,且O ,O 1,O 2,M 四点共面,由题可得∠OMO 1=12∠O 1MO 2=60°,O 1M =13SM =33,解Rt △OO 1M ,得OO 1=3O 1M =1,又O 1S =23SM =233,则三棱锥S -ABC 外接球半径r =OO 21+O 1S 2=73,易知O 到平面α的距离d =MH =12,故平面α截外接球所得截面圆的半径为r 1=r 2-d 2=73-14=536,∴截面圆的周长为l =2πr 1=533π,即点F 轨迹的周长为533π.故选:C 【反思】此题典型的双面定球心。

高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)

高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)

一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力。

研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)多面体外接球半径的求法,当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体. (2)与球的外切问题,解答时首先要找准切点,可通过作截面来解决. (3)球自身的对称性与多面体的对称性;二.解题策略类型一 柱体与球【例1】(2020·河南高三(理))已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( ) A .116π B .106πC .56πD .53π【答案】A 【解析】【分析】由题意得出11118104AB BC AA AB BC BC AA AB AA ++=⎧⎨⋅+⋅+⋅=⎩,由这两个等式计算出2221AB BC AA ++,可求出长方体外接球的半径,再利用球体表面积公式可计算出结果.【详解】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=,所以,()()222211112116AB BC AA AB BC AA AB BC BC AA AB AA ++=++-⋅+⋅+⋅=,故外接球半径r ==,因此,所求长方体的外接球表面积24116S r ππ==.故选:A.【点睛】本题考查长方体外接球表面积的计算,解题的关键就是利用长方体的棱长来表示外接球的半径. 【举一反三】1.(2020·2,若与球相关的外接与内切问题该棱柱的顶点都在一个球面上,则该球的表面积为( ) A .73π B .113π C .5π D .8π【答案】D【解析】根据条件可知该三棱柱是正三棱柱,上下底面中心连线的中点就是球心,如图,则其外接球的半径22221123222sin 60R OB OO BO ⎛⎫ ⎪⎛⎫==+=+= ⎪ ⎪︒⎝⎭⎝⎭, 外接球的表面积428S ππ=⨯=.故选:D【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径. 2.(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( ). A .234a π B .23a π C .26a πD .232a π【答案】D【解析】由已知作出截面图形如图1,可知正三角形的边长等于正方体的面对角线长,正方体与其外接球的位置关系如图2所示,可知外接球的直径等于正方体的体对角线长,设正方体的棱长为m ,外接球的半径为R ,则2a m =,23R m =,所以64R a =,所以外接球的表面积为222634442a S R a πππ⎛⎫==⨯= ⎪ ⎪⎝⎭, 故选:D .【点睛】本题考查正方体的外接球、正方体的截面和空间想象能力,分析出外接球的半径与正三角形的边长的关系是本题的关键,3.(2020·河南高三(理))有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( ) (附:2 1.414,3 1.732,5 2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C【解析】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为52cm ,每装两个球称为“一层”,这样装n 层球, 则最上层球面上的点距离桶底最远为()()10521n +-cm ,若想要盖上盖子,则需要满足()10521100n +-≤,解得19213.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球.故选:C 类型二 锥体与球【例2】5.已知球O 的半径为102,以球心O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为_________. 【来源】重庆市2021届高三下学期二模数学试题 【答案】182【解析】由题知,正四面体截球面所得曲线为四个半径相同的圆,每个圆的周长为2π,半径为1,故球心O 到正四面体各面的距离为2106122⎛⎫-=⎪⎝⎭,设正四面体棱长为a ,如图所示,则斜高332AE EF a ==,体高63=AF a ,在Rt AEF 和R t AGO 中,13OG EF AO AE ==,即61236632a =-,∴6a =,∴231362618234312V a a =⋅⋅=⋅=. 【举一反三】1.(2020四川省德阳一诊)正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______. 【答案】【解析】如图,设正四面体ABCD 的棱长为,过A 作AD ⊥BC , 设等边三角形ABC 的中心为O ,则,,,即.再设正四面体ABCD 的外接球球心为G ,连接GA , 则,即.∴正四面体ABCD 的外接球的体积为.故答案为:.2.(2020·宁夏育才中学)《九章算术》是我国古代的数学名著,其中有很多对几何体体积的研究,已知某囤积粮食的容器的下面是一个底面积为32π,高为h 的圆柱,上面是一个底面积为32π,高为h 的圆锥,若该容器有外接球,则外接球的体积为 【答案】288π【解析】如图所示,根据圆柱与圆锥和球的对称性知,其外接球的直径是23R h =,设圆柱的底面圆半径为r ,母线长为l h =, 则232r ππ=,解得42r =222(2)(3)l r h +=, 222(82)9h h ∴+=,解得4h =,∴外接球的半径为3462R =⨯=,∴外接球的体积为3344628833R V πππ⨯===.3.(2020·贵阳高三(理))在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD ∆是一个正三角形,若平面PAD ⊥平面ABCD ,则该四棱锥的外接球的表面积为( ) A .143πB .283πC .563πD .1123π【答案】D 【解析】【分析】过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,取PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O ,可证O 为外接球的球心,利用解直角三角形可计算PO .【详解】如图,过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,在PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O .因为PAD ∆为等边三角形,AF FD =,所以PF ⊥AD . 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PF ⊂平面PAD ,所以PF ⊥平面ABCD ,因GF ⊂平面ABCD ,故PF GF ⊥. 又因为四边形ABCD 为正方形,而,G F 为,BC AD 的中点,故FG CD ,故GF AD ⊥,因ADPF F =,故PF ⊥平面PAD .在Rt PGF ∆中,因,OE GF PF GF ⊥⊥,故OE PF ,故OE ⊥平面ABCD ,同理OH ⊥平面PAD .因E 为正方形ABCD 的中心,故球心在直线OE 上,因H 为PAD ∆的中心,故球心在直线OH 上,故O 为球心,OP 为球的半径. 在Rt PGF ∆中,2234343323PH PF ==⨯⨯=,2OH EF ==, 故16282214333OP =+==,所以球的表面积为28112433ππ⨯=. 类型三 构造法(补形法)【例3】已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( ) A .128π B .132πC .144πD .156π【答案】B【解析】PA ⊥平面ABC ,AB AC ⊥,将三棱锥P ABC -补成长方体PQMN ABEC -,如下图所示:设AE BC F =,连接OF 、DF 、OD ,可知点O 为PE 的中点,因为四边形ABEC 为矩形,AE BC F =,则F 为AE 的中点,所以,//OF PA 且12OF PA =,设2PA x =,且2210AE AB BE =+=,222225PE PA AE x ∴+=+所以,球O 的半径为21252R PE x ==+, 在Rt ABE △中,2ABE π∠=,6AB =,10AE =,3cos 5AB BAE AE ∠==,在ADF 中,243AD AB ==,5AF =, 由余弦定理可得222cos 17DF AD AF AD AF BAE =+-⋅∠=,PA ⊥平面ABCD ,OF ∴⊥平面ABCD ,DF ⊂平面ABCD ,则OF DF ⊥,12OF PA x ==,22217OD OF DF x ∴=+=+, 设过点D 的球O 的截面圆的半径为r ,设球心O 到截面圆的距离为d ,设OD 与截面圆所在平面所成的角为θ,则22sin d OD R r θ==-.当0θ=时,即截面圆过球心O 时,d 取最小值,此时r 取最大值,即2max 25r R x ==+;当2πθ=时,即OD 与截面圆所在平面垂直时,d 取最大值,即2max 17d OD x ==+,此时,r 取最小值,即()22min max 22r R d =-=. 由题意可得()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦,0x,解得22x =.所以,33R =,因此,球O 的表面积为24132S R ππ==.故选:B.【举一反三】1.(2020宁夏石嘴山模拟)三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于 .【答案】【解析】把三棱锥,放到长方体里,如下图:,因此长方体的外接球的直径为,所以半径,则三棱锥的外接球的表面积为.2.(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.【答案】C【解析】如图所示,将直三棱柱补充为长方体,则该长方体的体对角线为,设长方体的外接球的半径为,则,,所以该长方体的外接球的体积,故选C.3.(2020·贵州高三月考(理))某几何体的三视图如图所示,则该几何体的体积为()A.43B.53C.83D.163【答案】A【解析】【分析】如图所示画出几何体,再计算体积得到答案.【详解】由三视图知该几何体是一个四棱锥,可将该几何体放在一个正方体内,如图所示:在棱长为2的正方体1111ABCD A B C D -中,取棱11,,,,B C DA AB BC CD 的中点分别为,,,,E M N P Q ,则该几何体为四棱锥E MNPQ -,其体积为()2142233⨯⨯=.故选:A 类型四 与球体相关的最值问题【例4】(2020·福建高三期末(理))在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高h =( ) A .143B .134C .72D .163【答案】D 【解析】【分析】设正三棱锥底面的边长为a ,高为h ,由勾股定理可得22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22183h h a -=,三棱锥的体积()23384V h h =-,对其求导,分析其单调性与最值即可得解. 【详解】解:设正三棱锥底面的边长为a ,高为h ,根据图形可知22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22180,3h h a -=>08h ∴<<. 又正三棱锥的体积21334V a h =⨯()2384h h h =-()23384h h =-,则()231634V h h '=-, 令0V '=,则163h =或0h =(舍去), ∴函数()23384V h h =-在160,3⎛⎫ ⎪⎝⎭上单调递增,在16,83⎛⎫⎪⎝⎭上单调递减,∴当163h =时,V 取得最大值,故选:D. 【点睛】本题考查球与多面体的最值问题,常常由几何体的体积公式、借助几何性质,不等式、导数等进行解决,对考生的综合应用,空间想象能力及运算求解能力要求较高. 【举一反三】1.(2020·广东高三(理))我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC BC ⊥,若12AA AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外接球体积为( )A .22πB .823C .23D .2π【答案】B【解析】依题意可知BC ⊥平面11ACC A .设,AC a BC b ==,则2224a b AB +==.111111323B A ACC V AC AA BC AC BC -=⨯⨯⨯⨯=⨯⨯22114232323AC BC +≤⨯=⨯=,当且仅当2AC BC ==时取得最大值.依题意可知1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B ,故半径221111222OB A B AA AB ==⨯+=.所以外接球的体积为()34π82π233⋅=. 特别说明:由于BC ⊥平面11ACC A ,1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B 为定值,即无论阳马11B A ACC -体积是否取得最大值,堑堵111ABC A B C -外接球保持不变,所以可以直接由直径1A B 的长,计算出外接球的半径,进而求得外接球的体积.故选:B2.(2020·遵义市南白中学高三期末)已知A ,B ,C ,D 四点在同一个球的球面上,6AB BC ==,90ABC ∠=︒,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .4πB .8πC .16πD .32π【答案】C 【解析】根据6AB BC ==可得直角三角形ABC ∆的面积为3,其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q , 由于底面积ABC S ∆不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为为133ABC S DQ ∆⨯=,即133,33DQ DQ ⨯⨯=∴=,如图, 设球心为O ,半径为R ,则在直角AQO ∆中,即222(3)(3,)2R R R =∴+=-, 则这个球的表面积为24216S ππ=⨯=,故选C.3.(2020·河南高三(理))菱形ABCD 的边长为2,∠ABC =60°,沿对角线AC 将三角形ACD 折起,当三棱锥D -ABC 体积最大时,其外接球表面积为( ) A .153π B .2153π C .209π D .203π 【答案】D 【解析】【分析】当平面ACD 与平面ABC 垂直时体积最大,如图所示,利用勾股定理得到2223(3)()3R OG =-+和22223()3R OG =+,计算得到答案. 【详解】易知:当平面ACD 与平面ABC 垂直时体积最大. 如图所示:E 为AC 中点,连接,DE BE ,外接球球心O 的投影为G 是ABC ∆中心,在BE 上 3BE =,3DE =,33EG =,233BG =设半径为R ,则2223(3)()3R OG =-+,22223()3R OG =+ 解得:153R =,表面积22043S R ππ== 故选:D三.强化训练一、选择题1.(2020·广西高三期末)棱长为a 的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的表面积为( ) A .2334a + B .2336a + C .2336a - D .2334a - 【答案】A【解析】由题意,多面体ABCDE 的外接球即正四面体ABCD 的外接球, 由题意可知AE ⊥面BCD 交于F ,连接CF ,则233323CF a a =⋅= 且其外接球的直径为AE ,易求正四面体ABCD 的高为223633a a a ⎛⎫ ⎪ ⎪=⎝⎭-. 设外接球的半径为R ,由2226333R a R a ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=⎭-⎝-得64R a =. 设正三棱锥E BCD -的高为h ,因为6623AE a a h ==+,所以66h a =. 因为底面BCD ∆的边长为a ,所以2222EB EC ED CF h a ===+=, 则正三棱锥E BCD -的三条侧棱两两垂直.即正三棱锥E BCD -的表面积222121333322224S a a a ⎛⎫+=⨯⨯+⨯= ⎪ ⎪⎝⎭,故选:A .2、(2020辽宁省师范大学附属中学高三)在三棱锥中,,则三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】如图,把三棱锥补形为长方体,设长方体的长、宽、高分别为,则,∴三棱锥外接球的半径∴三棱锥外接球的表面积为.故选:C.3.(2020·安徽高三期末)如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为()A23B.223C.22D.223【答案】Ba b c R【解析】设正四面体、正方体、正八面体的棱长以及外接球半径分别为,,,则2223,23,22R a R b R c =⨯==, 即222,,2::2:2:333R R a b c R a b c ===∴=故选:B 4.(2020·北京人大附中高三)如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,23AB =,2AD =,120ASB ∠=︒,SA AD ⊥,则四棱锥外接球的表面积为( )A .16πB .20πC .80πD .100π 【答案】B【解析】由四边形ABCD 为矩形,得AB AD ⊥,又SA AD ⊥,且SA AB A ⋂=,∴AD ⊥平面SAB ,则平面SAB ⊥平面ABCD ,设三角形SAB 的外心为G ,则23322sin 2sin12032AB GA ASB ====∠︒. 过G 作GO ⊥底面SAB ,且1GO =,则22215OS =+=.即四棱锥外接球的半径为5. ∴四棱锥外接球的表面积为24(5)20S ππ=⨯=.故选B .5.(2020河南省郑州市一中高三)在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( ) A . B .C .D .【答案】C【解析】解:如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以,在中,设外接圆的直径为,则:,所以外接球的半径,则:,故选:C.6、(2020河南省天一大联考)某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A.B.C.D.【答案】C【解析】由三视图可得,该几何体为一个三棱锥,放在长、宽、高分别为2,1,2的长方体中,此三棱锥和长方体的外接球是同一个,长方体的外接球的球心在体对角线的中点处,易得其外接球的直径为,从而外接球的表面积为.故答案为:C.7.(2020·江西高三期末(理))如图,三棱锥P ABC -的体积为24,又90PBC ABC ∠=∠=︒,3BC =,4AB =,410PB =,且二面角P BC A --为锐角,则该三棱锥的外接球的表面积为( )A .169πB .144πC .185πD .80π【答案】A【解析】因90PBC ABC ∠=∠=︒,所以BC ⊥平面PAB ,且PBA ∠为二面角P BC A --的平面角, 又3BC =,4AB =,410PB =,由勾股定理可得13PC =,5AC =, 因为1sin 8102PAB S PB AB PBA PBA ∆⋅=⋅∠=∠,所以三棱锥的体积1181032433PAB V S BC PBA ∆=⋅=⨯∠⨯=,解得310sin PBA ∠=,又PBA ∠为锐角,所以10cos 10PBA ∠=, 在PAB ∆中,由余弦定理得2101601624410144PA =+-⨯⨯=, 即12PA =,则222PB PA AB =+,故PA AB ⊥, 由BC ⊥平面PAB 得BC PA ⊥,故PA ⊥平面ABC ,即PA AC ⊥,取PC 中点O , 在直角PAC ∆和直角PBC ∆中,易得OP OC OA OB ===,故O 为外接球球心, 外接圆半径11322R PC ==,故外接球的表面积24169S R ππ==.故选:A. 8.(2019·湖南长沙一中高三)在如图所示的空间几何体中,下面的长方体1111ABCD A B C D -的三条棱长4AB AD ==,12AA =,上面的四棱锥1111P A B C D -中11D E C E =,1111PE A B C D ⊥平面,1PE =,则过五点A 、B 、C 、D 、P 的外接球的表面积为( )A .311π9B .311π18C .313π9D .313π18【答案】C【解析】问题转化为求四棱锥P ABCD -的外接球的表面积.4913PC =+=,∴3sin 13PCD ∠=.所以PCD ∆外接圆的半径为131336213r ==⨯,由于PE ⊥平面1111D C B A ,则PE ⊥平面ABCD ,PE ⊂平面PCD ,所以平面PCD ⊥平面ABCD , 所以外接球的222169313243636R r =+=+=.所以2313π4π9S R ==球表面积.9.三棱锥P —ABC 中,底面ABC 满足BA=BC , ,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P 到底面ABC 的距离为( ) A .3 B .C .D .【答案】B【解析】设外接球半径为,P 到底面ABC 的距离为,,则,因为,所以, 因为,所以当时,,当时,,因此当时,取最小值,外接球的表面积取最小值,选B.10.(2019·河北高三月考)在平面四边形ABCD 中,AB ⊥BD ,∠BCD =30°,2246AB BD +=,若将△ABD 沿BD 折成直二面角A -BD -C ,则三棱锥A-BDC 外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】C【解析】取,AD BD 中点,E F ,设BCD ∆的外心为M ,连,,MB MF EF , 则01,30,22MF BD BMF DMB BCD BM BF BD ⊥∠=∠=∠=∴== 分别过,E M 作,MF EF 的平行线,交于O 点, 即//,//OE MF OM EF ,,BD AB E ⊥∴为ABD ∆的外心,平面ABD ⊥平面BCD ,AB ⊥平面BCD ,//,EF AB EF ∴⊥平面BCD ,OM ∴⊥平面BCD ,同理OE ⊥平面ABD ,,E M 分别为ABD ∆,BCD ∆外心,O ∴为三棱锥的外接球的球心,OB 为其半径, 22222221342OB BM OM BD EF BD AB =+=+=+=, 246S OB ππ=⨯=球.故选:C11.(2020·梅河口市第五中学高三期末(理))设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为3的等边三角形,45ACB ∠=︒,则当三棱锥P ABC -的体积最大时,球O 的表面积为( ) A .283π B .10πC .323π D .12π【答案】A【解析】如图,由题意得2334AB =,解得2AB =.记,,AB c BC a AC b ===, 12sin 24ABC S ab C ab ∆==,由余弦定理2222cos c a b ab C =+-,得224222a b ab ab ab =+-≥-,42(22)22ab ≤=+-,当且仅当a b =时取等号.所以CA CB =且平面PAB ⊥底面ABC 时,三棱锥P ABC -的体积最大.分别过PAB ∆和ABC ∆的外心作对应三角形所在平面的垂线,垂线的交点即球心O , 设PAB ∆和ABC ∆的外接圆半径分别为1r ,2r ,球O 的半径为R ,则123r =,21222sin 45r =⨯=︒.故222211172233R r r ⎛⎫=+=+= ⎪⎝⎭, 球O 的表面积为22843R ππ=.故选:A.12.(2020四川省成都外国语学校模拟)已知正方形ABCD 的边长为4,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 折成一个三棱锥P-AEF (使B ,C ,D 重合于P ),三棱锥P-AEF 的外接球表面积为( )A .B .C .D .【答案】C 【解析】如图,由题意可得,三棱锥P-AEF 的三条侧棱PA ,PE ,PF 两两互相垂直, 且,,把三棱锥P-AEF 补形为长方体,则长方体的体对角线长为, 则三棱锥P-AEF 的外接球的半径为,外接球的表面积为.故选:C .13.已知球O 夹在一个二面角l αβ--之间,与两个半平面分别相切于点,A B .若2AB =,球心O 到该二面角的棱l 的距离为2,则球O 的表面积为( ) A .8πB .6πC .4πD .2π【来源】江西省萍乡市2021届高三二模考试数学(文)试题 【答案】A【解析】过,,O A B 三点作球的截面,如图:设该截面与棱l 交于D ,则OA l ⊥,OB l ⊥,又OA OB O =,所以l ⊥平面AOB ,所以OD l ⊥,所以||2OD =,依题意得,OA AD OB BD ⊥⊥,所以,,,O A D B 四点共圆,且OD 为该圆的直径,因为||2||AB OD ==,所以AB 也是该圆的直径,所以四边形OADB 的对角线AB 与OD 的长度相等且互相平分,所以四边形OADB 为矩形,又||||OA OB =,所以该矩形为正方形,所以2||||22OA AB ==,即圆O 的半径为2,所以圆O 的表面积为24(2)8ππ⨯=. 故选:A14.已知点,,A B C 在半径为2的球面上,满足1AB AC ==,3BC =,若S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( ) A .32312+ B .3236+ C .23312+ D .3312+ 【答案】A【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=, 设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =, 22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大, 即S 为O O '32,所以三棱锥S ABC -体积的最大值为11112)2)3322ABCS ⨯=⨯⨯⨯=故选:A15.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C .6D 【答案】D【解析】如图1所示,设BC x =,CO r '=,作CF AB ⊥于点F ,延长OO '交球面于点E ,则1BF r =-,OO CF '===2得CO O D ''⋅=()()11O E O H OO OO ''''⋅=+⋅-,即((211r =+⋅,解得212x r =-,则圆台侧面积(2π1102x S x x ⎛⎫=⋅+-⋅<< ⎪⎝⎭,则'2322S x ππ=-,令'0S =,则3x =或x =,当0x <<时,'0S >x <<'0S <,所以函数2π112x S x ⎛⎫=⋅+-⋅ ⎪⎝⎭在⎛ ⎝⎭上递增,在⎝上递减,所以当3x =时,S 取得最大值.当3x BC ==时,21123x r =-=,则213BF r =-=.在轴截面中,OBC ∠为圆台母线与底面所成的角,在Rt CFB △中可得cos 3BF OBC BC ∠==故选:D .16.(2020·重庆八中高三)圆柱的侧面展开图是一个面积为216π的正方形,该圆柱内有一个体积为V 的球,则V 的最大值为 【答案】323π【解析】设圆柱的底面直径为2r ,高为l ,则222π16πr l l =⎧⎨=⎩,解得24πr l =⎧⎨=⎩.故圆柱的底面直径为4,高为4π,所以圆柱内最大球的直径为4,半径为2,其体积为34π32π233⨯=. 17.(2020·江西高三)半正多面体(semiregular solid )亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,则该二十四等边体外接球的表面积为【答案】8π【解析】2,侧棱长为2的正四棱柱的外接球,2222(2)(2)(2)2R ∴=++,2R ∴,∴该二十四等边体的外接球的表面积24πS R =24π(2)8π=⨯=.18.(2020·福建高三期末(理))在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别为1AA ,BC 的中点,点M 在棱11B C 上,11114B M BC =,若平面FEM 交11A B 于点N ,四棱锥11N BDD B -的五个顶点都在球O 的球面上,则球O 半径为 【答案】2293【解析】如图1,2,,B M F 三点共线,连结22,B E B MF ∈从而2B ∈平面FEM ,则2B E 与11A B 的交点即为点N ,又12Rt B B N ∆与1Rt A EN ∆相似,所以1112112A E A NB B NB ==; 如图2,设11B D N ∆的外接圆圆心为1O ,半径为r ,球半径为R ,在11B D N ∆中,111445,103NB D D N ︒∠==,由正弦定理得453r =,所以1853D P =,在1Rt DD P ∆中,解得4293DP =,即42293R =,所以所求的球的半径为2293.19.(2020·黑龙江高三(理))设,,,A B C D 是同一个半径为4的球的球面上四点,在ABC 中,6BC =,60BAC ∠=︒,则三棱锥D ABC -体积的最大值为【答案】183【解析】ABC 中,6BC =,60BAC ∠=︒,则643223sin sin 60a r r A ===∴=︒,22max 6h R r R =-=,222222cos 36a b c bc A b c bc bc bc =+-=+-≥∴≤ ,1sin 932S bc A =≤ 当6a b c ===时等号成立,此时11833V Sh ==20.(2020·河北承德第一中学高三)正三棱锥S -ABC 的外接球半径为2,底边长AB =3,则此棱锥的体积为【答案】934或334【解析】设正三棱锥的高为h ,球心在正三棱锥的高所在的直线上,H 为底面正三棱锥的中心因为底面边长AB=3,所以2222333332AH AD ⎛⎫==-= ⎪⎝⎭当顶点S 与球心在底面ABC 的同侧时,如下图此时有222AH OH OA += ,即()()222322h +-=,可解得h=3因而棱柱的体积113393333224S ABC V -=⨯⨯⨯⨯=当顶点S 与球心在底面ABC 的异侧时,如下图有222AH OH OA +=,即()222322h +-=,可解得h=1所以113333313224S ABC V -=⨯⨯⨯⨯=9333421.(2020·江西高三(理))已知P,A,B,C 是半径为2的球面上的点,PA=PB=PC=2,90ABC ∠=︒,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值为 【答案】338【解析】如下图,由题意,2PA PB PC ===,90ABC ∠=︒,取AC 的中点为G ,则G 为三角形ABC 的外心,且为P 在平面ABC 上的射影,所以球心在PG 的延长线上,设PG h =,则2OG h =-,所以2222OB OG PB PG -=-,即22424h h --=-,所以1h =. 故G CG 3A ==,过B 作BD AC ⊥于D ,设AD x =(023x <<),则23CD x =-,设(03)BD m m =<≤,则~ABD BCD ,故23m xx m-=, 所以()223m x x =-,则()23m x x =-,所以ABD 的面积()3112322S xm x x ==-,令()()323f x x x =-,则()2'634f x x x =-(),因为20x >,所以当3032x <<时,()'0f x >,即()f x 此时单调递增;当33232x ≤<时,()'0f x ≤,此时()f x 单调递减.所以当332x =时,()f x 取到最大值为24316,即ABD 的面积最大值为1243932168=.当ABD 的面积最大时,三棱锥P ABD -体积取得最大值为19333388⨯=.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.【来源】宁夏固原市第五中学2021届高三年级期末考试数学(文)试题 【答案】163π【解析】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=,所以球O 的半径为2323x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 23.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___【答案】π 【解析】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =,设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+=, 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==;②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=.24.若正四棱锥P ABCD -的底面边长和高均为8,M 为侧棱PA 的中点,则四棱锥M ABCD -外接球的表面积为___________.【来源】山西省运城市2021届高三上学期期末数学(文)试题 【答案】132π【解析】在正四棱锥P ABCD -中M 为侧楼PA 中点,∴四棱锥M ABCD -外接球即为棱台MNEF ABCD -的外接球,如图,四棱锥P ABCD -的底面边长和高均为8,1214,42AB O N O M ===∴ 212242AO MO ==∴设球心为O ,则图中12,OO A OMO △△均为直角三角形, 设1OO h =,222(42)OA h ∴=+,222(22)(4)OM h =++,A , M 都在球面上,222O O M R A =∴=,解得21,33h R =∴=,24132S R ππ∴==球25.已知P 为球O 球面上一点,点M 满足2OM MP =,过点M 与OP 成30的平面截球O ,截面的面积为16π,则球O 的表面积为________.【来源】广西钦州市2021届高三第二次模拟考试数学(理)试题 【答案】72π 【解析】如图所示:设截面圆心为1O , 依题意得130OMO ∠=, 设1OO h =,则2OM h =, 又2OM MP =,所以3OP h =,即球的半径为3h ,所以3ON h =,又截面的面积为16π,所以()2116O N ππ=,解得14O N =,在1Rt OO N 中,()22316h h =+, 解得2h =,所以球的半径为32, 所以球的表面积是()243272S ππ==,故答案为: 72π 26.如图是数学家GeminadDandelin 用来证明一个平面截圆锥得到的截面是椭圆的模型(称为丹德林双球模型):在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,设图中球1O 和球2O 的半径分别为1和3,128O O =,截面分别与球1O 和球2O 切于点E 和F ,则此椭圆的长轴长为___________.【来源】江苏省盐城市阜宁县2020-2021学年高三上学期期末数学试题【答案】15【解析】如图,圆锥面与其内切球12,O O 分别相切与,B A ,连接12,O B O A ,则12,O B AB O A AB ⊥⊥,过1O 作12O D O A 于D ,连接12,,O F O E EF 交12O O 于点C ,设圆锥母线与轴的夹角为α,截面与轴的夹角为β,在Rt △12O O D 中,2312DO ,22182215O D11221515cos 84O D O O α===128O O = , 218CO O C =-,△2EO C △1FO C ,11218O C O C EO O F -= 解得12O C =,26O C = 222211213CF O C FO ∴=-=-= ,即13cos 2CFO C , 所以椭圆离心率为cos 25cos 5c e aβα=== 在△2EO C 中223cos cos 2EC ECO O C β=∠== 解得33EC =,432EF c ==2325155a a =⇒= 2215a ∴=故答案为:21527.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.【来源】江苏省六校2021届高三下学期第四次适应性联考数学试题 【答案】16538【解析】如图所示:平面ABMN 将长方体分成两部分,MN 有可能在平面11CDD C 上或平面1111A D C B 上,根据对称性知,两球半径和的最大值是相同的,故仅考虑在平面11CDD C 上的情况,延长11B C 与BM 交于点P ,作1O Q BC ⊥于Q 点,设1CBP BPB α∠=∠=,圆1O 对应的半径为1r ,根据三角形内切圆的性质, 在1Rt O QB 中,12QBO α∠=,15BQ BC CQ r =-=-,111tan 25O Q r BQ r α==-, 则15tan5251tan 1tan 22r ααα==-++,又当BP 与1BC 重合时,1r 取得最大值,由内切圆等面积法求得1512251213r ⨯≤=++,则2tan 23α≤ 设圆2O 对应的半径为2r ,同理可得266tan2r α=-, 又252r ≤,解得7tan 212α≥. 故1255566tan 176(1tan )221tan 1tan 22r r αααα+=-+-=--+++,72tan 1223α≤≤, 设1tan 2x α=+,则195[,]123x ∈,()5176f x x x=--, 由对号函数性质易知195[,]123x ∈,函数()f x 单减,则19519165()()1761912123812f x f ≤=--⨯=,即最大值为16538 故答案为:16538 28.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为___________.【来源】江苏省南京市秦淮中学2021届高三下学期期初学情调研数学试题【答案】183【解析】ABC 为等边三角形且其面积为93,则23934ABC SAB ==,6AB ∴=,如图所示,设点M 为ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===, 点M 为三角形ABC 的重心,2233BM BE ∴==, Rt OMB ∴中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,所以三棱锥D ABC -体积的最大值19361833D ABC V -=⨯=29.已知四面体ABCD 的棱长均为6,,EF 分别为棱,BC BD 上靠近点B 的三等分点,过,,A E F 三点的平面与四面体ABCD 的外接球O 的球面相交,得圆'O ,则球O 的半径为___________,圆'O 的面积为__________.【来源】河南省九师联盟2021届高三下学期3月联考理科数学试题【答案】3 8π【解析】。

2023学年上海高二数学上学期同步知识点 几何体的表面积、体积、轴截面、多面体与球体内切外接问题

2023学年上海高二数学上学期同步知识点 几何体的表面积、体积、轴截面、多面体与球体内切外接问题

重难点02 几何体的表面积、体积、轴截面、多面体与球体内切外接问题(重难点突破解题技巧与方法)1.求解几何体表面积的类型及求法求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积2.求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换3.几何体的外接球:一个多面体的顶点都在球面上即为球的外接问题,解决这类问题的关键是抓住外接球的特点,即球心到多面体的顶点的距离等于球的半径.几何体的内切球:求解多面体的内切球问题,一般是将多面体分割为以内切球球心为顶点,多面体的各侧面为底面的棱锥,利用多面体的体积等于各分割棱锥的体积之和求内切球的半径.4.截面问题:在高考立体几何考点中涉及到空间几何体的截面的地方较多,如:判断截面的形状、计算出空间几何体的截面周长或面积、或者求与之相关的体积问题、以及最值问题都在考察之列,但是要顺利地解决前面所提到的诸多问题,关键是根据题意作出截面,并判断其形状.能力拓展技巧方法题型一:柱、锥、台体的表面积、体积、轴截面 一、填空题1.(2021·上海·格致中学高二期中)已知一个圆锥的侧面展开图恰好是一个半圆,任取圆锥的两条母线a ,b ,则a ,b 所成角的最大值为______. 【答案】3π【分析】由题意可得圆锥的母线长R 和底面半径长r 的关系,可知轴截面是等边三角形,即可求解. 【详解】设圆锥的母线长为R ,底面半径长为r ,则222Rr ππ=,解得2R r =,所以圆锥的轴截面是等边三角形. 任取圆锥的两条母线a ,b ,如图:当a ,b 为轴截面的两条母线时,a ,b 所成角最大为3π. 故答案为:3π. 2.(2022·上海浦东新·高二期末)已知正三棱锥O ABC -的底面边长为4,高为2,则此三棱锥的体积为___________ 【答案】833【分析】根据题意条件,计算出底面积,然后再利用'13O ABC ABCV SOO -=⨯⨯,计算可求解出体积.【详解】如图,过O 点作底面ABC 的投影'O ,连接'OO ,取BC 的中点D ,连接AD ,在正三棱锥O ABC -中,底面ABC 为正三角形,边长为4,所以23AD = 1432ABCS AD BC =⨯⨯=,而'OO 为该正三棱锥O ABC -的高,长为2,所以'1833O ABC ABCV SOO -=⨯⨯=故答案为:833. 3.(2022·上海·复旦附中高二期中)如图所示,过三棱台上底面的一边11A C ,作一个平行于棱1BB 的截面,与下底面的交线为DE .若D 、E 分别是AB 、BC 的中点,则111111A B C DBE A B C ABCV V --=______.【答案】37【分析】证得11114A B C ABCSS =,然后结合棱台与棱柱的体积公式即可求出结果.【详解】因为1//BB 平面11DEC A ,且平面11BB C C平面111DEC A C E =,所以11//BB C E ,又因为11//B C BE ,所以四边形11BB C E 为平行四边形,所以11B C BE =,且E 分别是BC 的中点,所以1112B C BC =,同理1112A B AB =,因此11114A B C ABCS S =,设上底面的面积为S ,高为h ,则下底面的面积为4S ,所以()111111317443A B C DBEA B C ABCV ShV S S S S h --==+⋅+,故答案为:37.二、解答题4.(2021·上海·西外高二期中)设四边形ABCD 为矩形,点P 为平面ABCD 外一点,且P A ⊥平面ABCD ,若|P A |=|AB |=1,|BC |=2.(1)求四棱锥P -ABCD 的体积;(2)在BC 边上是否存在一点G ,使得点D 到平面P AG 2|BG |的值,若不存在,请说明理由;(3)若点E 是PD 的中点,在△P AB 内确定一点H ,使|CH |+|EH |的值最小,并求此时|HB |的值. 【答案】(1)23;(2)存在,|BG |=1;(3)位置答案见解析,值为53. 【分析】(1)根据棱锥的体积计算公式计算即可;(2)假设BC 边上存在一点G 满足题设条件,作DQ AG ⊥,可证明DQ ⊥平面PAG ,从而得到2DQ =,由此求解1BG =;(3)延长CB 到C ',使得C B CB '=,连结C E ',过E 作EE AD '⊥于E ',利用三点共线,两线段和最小,得到min ()CH EH +=C E ',过H 作HH AB '⊥于H ',连结HB ,在Rt △HH B '中,求解HB 即可.(1)由题可知112121333P ABCD ABCD V S PA -=⋅⋅=⨯⨯⨯=;(2)假设BC 边上存在一点G 满足题设条件,作DQ AG ⊥,则DQ ⊥P A , 则DQ ⊥平面PAG ,故2DQ =, 由1133P AGD D PAG AGDPAGV V SAP SDQ --=⇒⋅⋅=⋅⋅,则1122AD AB AP PA AG DQ ⋅⋅⋅=⋅⋅⋅ 则AD AB AG DQ ⋅=⋅ 则21|2AG⨯=⋅∣ 则2AG = 则22||211BG AG AB =-=-=故存在点G ,且当G 是BC 中点时,点D 到平面P AG 的距离为2,此时|BG |=1;(3)延长CB 到C ',使得C B CB '=,连结C E ',过E 作EE AD '⊥于E ', 则22141104CH EH C H EHC E EE C E '''''+=+=++ 当且仅当C '、H 、E 三点共线时等号成立,故min 41()2CH EH +=, 过H 作HH AB '⊥于H ',连结HB , 在Rt △HBH '中,13HH '=,23H B '=, ∴2222125()()333HB HH H B ''=+=+=. 5.(2021·上海·华东师范大学第三附属中学高二期中)如图所示,圆锥SO 的底面圆半径1OA =,母线3SA =.(1)求此圆锥的体积和侧面展开图扇形的面积;(2)如图,半平面SOA 与半平面SOP 所成二面角P SO A --大小为120,设线段SO 中点为M ,求异面直线AM 与PS 所成角的余弦值.【答案】(1)22,侧面展开图扇形的面积为3π73【分析】(1)利用锥体的体积公式以及扇形的面积公式可求得结果;(2)取OP 的中点E ,连接AE 、ME ,分析可知异面直线PS 与AM 所成的角为AME ∠或其补角,计算出AME △三边边长,利用余弦定理可求得结果. (1)解:由题意可知,2222SO SA OA - 圆锥SO 的体积为21223V OA SO π=⨯⨯=,该圆锥的侧面展开图扇形的面积为3S OA SA ππ'=⨯⨯=. (2)解:在圆锥SO 中,SO ⊥平面AOP ,AO 、PO ⊂平面AOP ,SO AO ∴⊥,SO PO ⊥,所以,二面角P SO A --的平面角为120AOP ∠=,取OP 的中点E ,连接AE 、ME ,E 、M 分别为PO 、SO 的中点,则//ME PS 且1322ME PS ==, 所以,异面直线PS 与AM 所成的角为AME ∠或其补角,3SA =,1OA =,则2222SO SA AO =-=,223AM AO OM ∴=+=,在AOE △中,12OE =,1OA =,120AOE ∠=, 由余弦定理可得2272cos1202AE AO OE AO OE =+-⋅=, 由余弦定理可得22273cos 218AM ME AE AME AM ME +-∠==⋅. 因此,异面直线AM 与PS 所成角的余弦值为7318. 6.(2021·上海市延安中学高二期中)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,90APC ︒∠=.(1)证明:PC ⊥平面PAB ;(2)设2DO =,圆锥的侧面积为23π,求三棱锥P ABC -的体积. 【答案】(1)证明见详解3【分析】(1)根据题意,先证明AB ⊥平面POC ,进而可得AB PC ⊥,,再结合090APC ∠=,即可证明PC ⊥平面PAB ;(2)根据题意,结合勾股定理与侧面积公式,即可求出圆锥底面半径为r 和母线长为l ,再根据棱锥的体积公式,即可求解.(1)证明:如图,连接CO 并延长,交AB 于点E .∵O 为ABC 外接圆的圆心,∴CE AB ⊥,即CO AB ⊥.在圆锥中,易知PO ⊥平面ABC ,∵AB 平面ABC ,∴PO AB ⊥,∵CO ⊂平面POC ,PO ⊂平面POC ,且CO PO O ⋂=,∴AB ⊥平面POC ,∴AB PC ⊥, ∵90APC ∠=︒,∴AP PC ⊥,又∵AB 平面PAB ,PA ⊂平面PAB ,且AB PA A ⋂=,∴PC ⊥平面PAB .(2)设圆锥底面半径为r ,母线长为l ,∵2DO =,且圆锥的侧面积为23π,∴222223r lrl ππ⎧+=⎪⎨=⎪⎩,解得26r l ⎧=⎪⎨=⎪⎩∵PA PC =,PA PC ⊥,∴22223PA AC r ==,即6PA =, ∵OA r =,∴3AB AC BC r ===,且2222PO PA OA r =-=, ∴333112663222332P ABC ABCrr V SPO -⋅=⋅⋅==题型二:多面体与球体内切外接问题 一、单选题1.(2021·上海·曹杨二中高二阶段练习)半径为5的球内有一个高为8的正四棱锥,则该球与该内接正四棱锥体积之比为( ) A .2564πB .12564πC .12516πD .1254π【答案】B【分析】由题意画出图形,设正四棱锥P ABCD -,AC 的中点为E ,连接PE 并延长交球于G ,得8PE =,10PG =,根据2·PA PE PG =求出PA ,再由勾股定理求出球内接正四棱锥的底面边长AB ,最后根据球的体积公式和棱锥的体积公式,分别求出球与该内接正四棱锥的体积,即可得出答案. 【详解】解:由题可知,正四棱锥的高为8,外接球半径为5,如图,设正四棱锥P ABCD -,AC 的中点为E ,连接PE 并延长交球于G ,可知PE ⊥底面ABCD ,且PA AG ⊥,则8PE =,10PG =, cos PE PAAPE PA PG∴∠==,即2·80PA PE PG ==,得45PA =,2280648AC AE ∴==-=,28422AB ∴=⨯=, ∴球的体积为:41253V π=⨯,该内接正四棱锥体积为:21256(42)833P ABCD V -=⨯⨯=,∴球与该内接正四棱锥的体积之比为:41251253256643P ABCDV V ππ-⨯==. 故选:B.2.(2021·上海市复兴高级中学高二期中)在三棱锥A BCD -中,7AB BC CD DA ====23BD =面角A BD C --是钝角.若三棱锥A BCD -的体积为2.则三棱锥A BCD -的外接球的表面积是( ) A .12π B .373π C .13π D .534π 【答案】C【分析】取BD 的中点O ,可得AOC ∠为二面角A BD C --的平面角且BD ⊥平面AOC ;利用三棱锥A BCD -体积可构造方程求得AC ,将三棱锥A BCD -补为长方体BMDG HCFA -,则长方体外接球即为三棱锥的外接球,通过求解长方体外接球表面积即可得到结果. 【详解】如图(1),取BD 的中点O ,连接,AO CO ,AB BC CD DA ===,AO BD ∴⊥,CO BD ⊥,AOC ∴∠为二面角A BD C --的平面角,BD ⊥平面AOC .取AC 的中点E ,连接OE ,设AC 2a =,在AOC △中,732AO OC ==-=,OE AC ∴⊥, 则22224OE a a =-=-, 21111232423326A BCD AOCV SBD AC OE BD a a -∴=⋅=⨯⨯⨯⨯=⨯⨯⨯-=,化简得:42430a a -+=,解得:3a =或1a =, 当1a =时,60AOC ︒∠=,不合题意,舍去,23∴=AC .图(1) 图(2)如图(2),把三棱锥A BCD -补形成长方体BMDG HCFA -,使三棱锥A BCD -的各棱分别是长方体的面对角线,则三棱锥A BCD -的外接球即为长方体BMDG HCFA -的外接球. 设,,BM x BG y BH z ===,则222222222(23)(7)(7)x y x z y z ⎧+=⎪⎪+=⎨⎪+=⎪⎩,解得:661x y z ⎧=⎪⎪=⎨⎪=⎪⎩,外接球的直径为22213AM x y z =++=, 四面体ABCD 外接球的表面积为134134S ππ=⨯=. 故选:C .【点睛】本题考查三棱锥外接球表面积的求解问题,涉及到三棱锥体积的应用;解题关键是能够通过将三棱锥补为长方体,通过求解长方体的外接球来求得结果.3.(2021·上海市松江二中高二期中)已知一圆锥底面圆的直径为333个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( ) A .3 B 2C .9322D .322【答案】B【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a 的最大值. 【详解】依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球设球心为P ,球的半径为r ,下底面半径为R ,轴截面上球与圆锥母线的切点为Q ,圆锥的轴截面如图:则32OA OB ==,因为332SO =, 故可得:223SA SB SO OB ==+=;所以SAB △为等边三角形,故P 是SAB △的中心, 连接BP ,则BP 平分SBA ∠, 所以30PBO ∠=︒; 所以tan 30r R︒=,即33333322r R ==⨯=, 即四面体的外接球的半径为32r =. 另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a 2, 而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球, 所以126233r AA =,所以2a =即a 2 故选:B .【点睛】本题考查了正四面体的外接球,将正四面体的外接球转化为正方体的外接球,是一种比较好的方法,本题属于难题. 二、填空题4.(2021·上海市控江中学高二期中)直三棱柱111ABC A B C -的所有顶点都在球O 的球面上,AB BC ⊥,1AB =,22BC =14AA =,则球O 的体积是__________.【答案】1256π 【分析】把直三棱柱111ABC A B C -补成长方体,求出外接球的直径即得解.【详解】把直三棱柱111ABC A B C -补成长方体,则直三棱柱和长方体的外接球重合,外接球的直径25R =,故球O 的体积3412536V R ππ==. 故答案为:1256π 5.(2021·上海·华师大二附中高二期中)已知三棱锥A BCD -的侧棱两两互相垂直,且该三棱锥的外接球的体积为36π,则该三棱锥的侧面积的最大值为________. 【答案】18【分析】由题意将该三棱锥补成一个长方体,由球的体积公式可得外接球的半径R ,令AB x =,AC y =,AD z =,进而可得22236x y z ++=,再利用基本不等式即可得解.【详解】由题意以该三棱锥的三条侧棱为长、宽、高,将该三棱锥补成一个长方体,长方体的体对角线就是外接球的直径,令AB x =,AC y =,AD z =,外接球的半径为R ,根据三棱锥外接球的体积为34363R ππ=,可得球的半径3R =,则()2222236R x y z =++=, 所以该三棱锥的侧面积S 111222yz xy xz =++ ()()()()2222222221111184442y z x y x z x y z ≤++++++=+=,当且仅当x y z ===. 故该三棱锥的侧面积的最大值为18. 故答案为:18.【点睛】本题考查了几何体的外接球相关问题的求解及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.6.(2021·上海·高二专题练习)如图,边长为2的正方形ABCD 中,点E 、F 分别是边AB 、BC 的中点,AED ∆、EBF ∆、FCD ∆分别沿DE 、EF 、FD 折起,使A 、B 、C 三点重合于点A ',若四面体A EFD '的四个顶点在同一个球面上,则该球的表面积为________.【答案】6π【分析】把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径,就是三棱锥的外接球的半径,由此能求出该球的表面积,得到答案.【详解】由题意,知A EF '∆是等腰直角三角形,且A D '⊥平面A EF ', 三棱锥的底面A EF '扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥和外接球与正四棱柱的外接球是同一个球, 正四棱柱的对角线长就是外接球的直径, 所以球的半径222112622R ++==, 所以该球的表面积为22644()62S R πππ==⨯=. 故答案为6π.【点睛】本题主要考查了球的表面积的求法,同时考查空间几何体的结构特征的应用,着重考查了推理与论证能力,以及运算能力,属于中档试题.7.(2021·上海市西南位育中学高二期中)已知三棱锥P ABC -中,PA PB PC 、、两两垂直,且长度相等,若P A B C 、、、都在半径为1的同一球面上,则球心到平面ABC 的距离为__________. 【答案】13【分析】由弥补法知三棱锥P ABC -的外接球为以PA PB PC 、、为相邻三条棱的正方体的外接球,球心到平面ABC 的距离即为正方体中心到平面ABC 的距离,利用等体积法可求得P 到平面ABC 的距离,进而求得答案.【详解】因为三棱锥P ABC -中,PA PB PC 、、两两垂直,且长度相等,所以此三棱锥的外接球即为以PA PB PC 、、为相邻三条棱的正方体的外接球,又球的半径为1,所以正方体的棱长为233,即233PA PB PC ===球心到平面ABC 的距离即为正方体中心到平面ABC 的距离, 设P 到平面ABC 的距离为h ,则正三棱锥P ABC -的体积3111123()33323ABCPABV Sh SPC =⋅=⋅=⨯⨯等边ABC 的边长为22232326+=333⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,21263232323ABCS⎛⎫∴=⨯⨯= ⎪ ⎪⎝⎭3311231123()()232332313123333ABC h S ⨯⨯⨯⨯∴===⨯所以球心到平面ABC 的距离为13故答案为:13【点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段 两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用长方体的外接球求解.8.(2022·上海奉贤区致远高级中学高二期末)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为___________. 【答案】183【分析】求出等边ABC 的边长,画出图形,判断D 的位置,然后求解即可. 【详解】ABC 为等边三角形且其面积为93,则23934ABCSAB ==,6AB ∴= 如图所示,设点M 为ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OMB ∴中,有222OM OB BM -=,426DM OD OM ∴=+=+=,所以三棱锥D ABC -体积的最大值19361833D ABC V -=⨯⨯=故答案为:183【点睛】思路点睛:本题考查球的内接多面体,棱锥的体积的求法,要求内接三棱锥体积的最大值,底面是面积一定的等边三角形,需要该三棱锥的高最大,故需要DM ⊥底面ABC ,再利用内接球,求出高DM ,即可求出体积的最大值,考查学生的空间想象能力与数形结合思想,及运算能力,属于中档题. 三、解答题9.(2021·上海·华师大二附中高二期中)已知正方体1111ABCD A B C D -.(1)若正方体的棱长为1,求点A 到平面1A BD 的距离;(2)在一个棱长为10的密封正方体盒子中,放一个半径为1的小球,任意摇动盒子,求小球在盒子中不能达到的空间的体积;(3)在空间里,是否存在一个正方体,它的定点1111A B C D A B C D 、、、、、、、到某个平面的距离恰好为0、1、2、3、4、5、6、7,若存在,求出正方体的棱长,若不存在,说明理由. 【答案】3()3761043cm π-(3)21【分析】(1)利用等体法:11A A BD A ABD V V --=即可求解.(2)求出小球在正方体的8个顶点以及12条棱处不能到达的空间,利用球的体积公式以及柱体体积公式即可求解.(3)设平面α为符合题意的平面,α过点C ,延长1111,,D C A B AB 分别交平面α于点,,E F G ,由题意可得1111::::::1:2:3:4:5:6:7C E BG B F DC D E AG A F =,设正方体的棱长为4a ,根据11C ECF C EC F V V --=,求出点1C 到平面α的距离,进而得出正方体的棱长.(1)正方体的棱长为1,设点A 到平面1A BD 的距离为h , 由11A A BD A ABD V V --=,则111133A BDABDS h SAA⋅=⋅,即11111113232⨯=⨯⨯⨯⨯, 解得h (2)在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为:331448118833ππ⎡⎤⎛⎫-⨯=- ⎪⎢⎥⎝⎭⎣⎦, 除此之外,以正方体的棱为一条棱的12个118⨯⨯的正四棱柱空间内, 小球不能到达的空间共()21121181896244ππ⎡⎤⨯⨯-⨯⨯=-⎢⎥⎣⎦,其它空间小球均能到达,故小球不能到达的空间体积为:4768962410433πππ-+-=- (3cm )(3)设平面α为符合题意的平面,α过点C , 延长1111,,D C A B AB 分别交平面α于点,,E F G , 由图可知,点1111,,,,,,,C C B B D D A A与平面α的距离分别应为0、1、2、3、4、5、6、7,因为11,,,D E A F DC AG 互相平行,所以它们与平面α所成角相等, 故由比例关系得1111::::::1:2:3:4:5:6:7C E BG B F DC D E AG A F =. 设正方体的棱长为4a ,则11,2,3C E a BGa B F a ===,用几何方法可解得EF =,,EC CF ==, 故2ECFS=,由1CC ⊥平面1111D C B A ,知1CC 为四面体1C EC F -的底面1EC F 上的高, 所以由11C ECF C EC F V V --=,算得点1C 到平面α的距离,121EC FECFSCC d S⋅===,实际上已知1d =1=,从而可得a = 所以正方体的棱长为4a =.10.(2019·上海·华师大二附中高二期中)平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体ABCD 中棱,,AB AC AD 两两垂直,那么称四面体ABCD 为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论1~3中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中h 表示斜边上的高,,r R 分别表示内切圆与外接圆的半径) 直角三角形ABC直角四面体ABCD条件 AB AC ⊥,,AB AC AB AD AC AD ⊥⊥⊥结论1 222AB AC BC +=结论2 22sin sin 1B C += 结论3222111h AB AC =+结论4 1111AB AC h r ++=结论5 ()()2222122R AB BC CA =++【分析】结论1:分别表示222123S S S 、、,然后证明2222123S S S S ++=结论2:在DAE △中利用等面积法,表示出高d ,然后分别表示222sin sin sin αβγ、、,再证明222sin sin sin 1αβγ++=结论3:利用结论2中得到的d 的表达式,再表示出222111AB AC AD 、、,再证明22221111d AB AC AD =++ 结论4:内切球的球心与四个顶点相连接,把三棱锥分成四个小的三棱锥,利用D ABC O ABC O ABD O ACD O BCD V V V V V -----=+++进行证明结论5:将直角四面体ABCD 补形成为以AB AC AD 、、为长、宽、高的长方体,再进行证明. 【详解】记ABC ABD ACD BCD 、、、的面积依次为123S S S S 、、、, 平面BCD 与AB AC AD 、、所成角依次为αβγ、、,点A 到平面BCD 的距离为d r R ,,分别表示内切球与外接球的半径,内切球的球心为O , 直角三角形ABC直角四面体ABCD条件 AB AC ⊥AB AC AB AD AC AD ⊥⊥⊥,,结论1222AB AC BC += 2222123S S S S ++=结论2221sin B sin C +=222sin sin sin 1αβγ++=结论3222111h AB AC =+ 22221111d AB AC AD =++结论41111AB AC h r ++=11111AB AC AD d r +++=结论5 ()()2222122R AB BC CA =++()22222R AB BC CA =++证明:设AB a AC b AD c ===、、,过A 作AE BC ⊥,垂足为E ,联结DE ,过A 作AH DE ⊥,垂足为H ,易证:DE BC ⊥,AH ⊥平面BCD ,则d AH =,结论1:()22222222222212311112224S S S ab ac bc a b a c b c ⎛⎫⎛⎫⎛⎫++=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在Rt ABC 中,22AB ACAE BCa b ⋅==+2222222a b DE AD AE c a b=+=++()2222222222222221=214a b a c b a b S a b c a b c ⎛⎫+⋅+= ⎪ ⎪+⎝++⎭s 2222123S S S S ∴++=;结论2:2222222222222abc AD AE abc a bd AH DE a b a b a c b c c a b ⋅⋅+====++++, ∴222222sin d bcaa b a c b c α==++. 同理,222222sin ac a b a c b c β=++,222222sin ab a b a c b c λ=++∴222222222222222sin sin sin 1b c a c a b a b a c b c αβγ++++==++; 结论3:∵222222abc d a b a c b c =++,∴22222222221a b a c b c d a b c ++=,又222222222222222111111b c a c a b AB AC AD a b c a b c ++++=++=, ∴22221111d AB AC AD =++ 结论4:D ABC O ABC O ABD O ACD O BCD V V V V V -----=+++,∴222222111111111632323232abc ab r ac r bc r a c b c a b r =⋅⋅+⋅⋅+⋅⋅+⋅++⋅. 从而22222211111ab ac bc a c b c a b r abc abc abc abc c b a d++=+++=+++,即11111r AB AC AD d =+++; 结论5:将直角四面体ABCD 补形成为以AB AC AD 、、为长、宽、高的长方体,则长方体的体对角线即为直角四面体ABCD 的外接球的直径,即()22222R AB BC CA =++.【点睛】本题考查平面图形向立体图形的推广,涉及到侧面积的表示,线面角的表示,几何体的体积分割法求内切球半径,补齐几何体求外接球半径等,属于难题.一、单选题1.(2022·上海市杨浦高级中学高二期末)大数学家阿基米德的墓碑上刻有他最引以为豪的数学发现的象征图——球及其外切圆柱(如图).以此纪念阿基米德发现球的体积和表面积,则球的体积和表面积均为其外切圆柱体积和表面积的( )巩固练习A .13B .12C .23D .34【答案】C【分析】设球的半径为R ,则圆柱的底面半径为R ,高为2R ,分别求出球的体积与表面积,圆柱的体积与表面积,从而得出答案.【详解】设球的半径为R ,则圆柱的底面半径为R ,高为2R 所以球的体积为343R π, 表面积为24R π. 圆柱的体积为:3222R R R ππ⨯=,所以其体积之比为:3342323RR ππ= 圆柱的侧面积为:2224R R R ππ⨯=, 圆柱的表面积为:222426R R R πππ+=所以其表面积之比为:224263R R ππ= 故选:C2.(2022·上海·复旦附中高二期中)为提高学生数学学习的积极性,复旦附中联合浦东分校、青浦分校、复旦中学组织了复旦附中月度数学学科知识竞赛.本次比赛的年度总冠军奖杯由一个铜球O 和一个底座组成,如图(1)所示,已知球的体积为36π,底座由边长为12的正三角形铜片ABC 沿各边中点的连线垂直向上折叠成直二面角所得,如图(2)所示.则在图(1)所示的几何体中,下列结论中正确的是( )A .CD 与BE 是异面直线B .异面直线AB 与CD 所成角的大小为45°C .由A 、B 、C 三点确定的平面截球所得的截面面积为3πD .球面上的点到底座底面DEF 的最大距离为336++ 【答案】C【分析】取,DF EF 中点N ,M ,利用给定条件证明//,//BC DE AB DF ,推理判断A ,B ;求出ABC 外接圆半径,结合球面截面圆性质计算判断C ,D 作答.【详解】取,DF EF 中点N ,M ,连接,,,,,AB BC AC BM MN CN ,如图,因BEF 为正三角形,则BM EF ⊥,而平面BEF ⊥平面DFE ,平面BEF 平面DFE EF =,BM ⊂平面BEF ,于是得BM ⊥平面DFE ,同理CN ⊥平面DFE ,即//BM CN ,33BM CN ==因此,四边形BCNM 是平行四边形,有////BC NM DE ,则直线CD 与BE 在同一平面内,A 不正确; 由选项A ,同理可得//AB DF ,则异面直线AB 与CD 所成角等于直线DF 与CD 所成角60,B 不正确; 由选项A 知,132BC MN DE ===,同理可得3AB AC ==,正ABC 外接圆半径3r = 由A 、B 、C 三点确定的平面截球所得的截面圆是ABC 的外接圆,此截面面积为3π,C 正确; 体积为36π的球半径R ,由34363R ππ=得3R =,由选项C 知,球心到平面ABC 的距离226d R r =-=由选项A ,同理可得点A 到平面DFE 的距离为33ABC 与平面DFE 的距离为33的点到底座底面DEF 的最大距离为3336R d BM ++=+D 不正确. 故选:C【点睛】易错点睛:异面直线所成的角的取值范围是π0,2⎛⎤⎥⎝⎦,当求出角的余弦值为负时,要取其相反数作为异面直线夹角余弦. 二、填空题3.(2022·上海交大附中高二阶段练习)己知正三棱锥的底面边长为4,高为2,则三棱锥的表面积是_________. 【答案】3【分析】画出图形,求出底面积和侧面积,从而求出表面积.【详解】如图,正三棱锥O -ABC ,高OM =2,取BC 中点N ,连接AN ,ON ,则M 在线段AN 上,且13MN AN =,由AB =4,BN =2,由勾股定理得:16423AN =-=,所以12333MN AN ==,2222343433ON OM MN ⎛⎫=+=+= ⎪ ⎪⎝⎭,所以18323OBCS BC ON =⋅=,1432ABCS BC AN =⋅=,所以三棱锥的表面积为833431233⨯+=. 故答案为:1234.(2018·上海市金山中学高二期中)已知长方体的三条棱长分别为,,,并且该长方体的八个顶点都在一个球的球面上,则此球的表面积为____________. 【答案】6π【详解】22226621126,4(6R R S ππ=++=∴==球5.(2022·上海市建平中学高二阶段练习)正四面体边长为4,则其体积为_________ 162【分析】由正四面体性质求体高,再应用棱锥的体积公式求体积即可. 【详解】由正四面体的体高为h 22161223h h --46h = 所以体积为214613162432⨯=1626.(2021·上海市市西中学高二期中)如图,在正三角形ABC 中,E 、F 依次是AB 、AC 的中点,AD ⊥BC ,EH ⊥BC ,F G⊥BC ,D 、H 、G 为垂足,若将正三角形ABC 绕AD 旋转一周所得的圆锥的体积为V ,则其中由阴影部分所产生的旋转体的体积与V 的比值是______________.【答案】58【分析】利用圆锥的体积公式及圆柱的体积公式即求.【详解】由题可知由阴影部分所产生的旋转体的体积为将正三角形ABC 绕AD 旋转一周所得的圆锥的体积与四边形EFGH 旋转一周所得的圆柱的体积的差,设圆锥的高为h ,底面半径为r ,则圆柱的高为2h,底面圆的半径为2r ,则2252211183r h V V V VV r h ππ⎛⎫⋅⎪-⎝⎭=-=-=圆柱圆柱, 即由阴影部分所产生的旋转体的体积与V 的比值是58.故答案为:587.(2021·上海市南洋模范中学高二期中)一矩形的一边在x 轴上,另两个顶点在函数22(0)1xy x x =>+的图像上,如图,则此矩形绕x 轴旋转而成的几何体的体积的最大值是___________.【答案】π【分析】先利用基本不等式求出y 的取值范围,再设点A ,B 的坐标,由A ,B 的纵坐标相同,得到121=x x ,从而得到h ,再利用圆柱的体积公式以及基本不等式,即可得到答案. 【详解】由22211x y x x x==++,又0x >,则1122x x x x +≥⋅=,当且仅当1x =时取等号, ∴222111x y x x x==≤++,且12x x y+=, ∵矩形绕x 轴旋转而成的几何体为圆柱,设A 1(x ,1)y ,2(B x ,2)y ,如图所示,则圆柱的底面圆的半径为y ,高为21h x x =-,且()112121x f x x =+,()222221x f x x =+, ∴1222122211x x x x =++,即()()211210x x x x --=,由12x x ≠,可得121=x x , ∴()()222212121212114444h x x x x x x x x y ⎛⎫=-=+-=+-=- ⎪⎝⎭,故222144y h y y-=-=, ∴圆柱的体积为()()22222212124y y V y h y y ππππ+-==-≤⋅=,当且仅当22y =时取等号, ∴此矩形绕x 轴旋转而成的几何体的体积的最大值是π. 故答案为:π.8.(2021·上海市南洋模范中学高二期中)如图,已知半径为2的球O 的直径AB 垂直于平面α,垂足为B ,△BCD 是平面α内边长为2的正三角形,线段AC ,AD 分别与球面交于点M ,N ,则三棱锥A BMN -的体积为___________.【答案】【分析】由已知证明三角形相似可得AM AC =45AN AD =,得到求出三棱锥A BMN -的体积为把2R =代入得答案.【详解】2AB R =,BC R =,5AC R =,半径为R 的球O 的直径AB 垂直于面α,垂足为B ,△BCD 是面α内边长为R 的正三角形, 线段AC ,AD 分别与球面交于点M ,N ,BAM BAC ∴∠=∠,90AMB ABC ∠=∠=︒,则ABCAMB ,易知:45AM AC =,同理有45AN AD =,∴三棱锥A BMN -的体积为231613832253475A BMN V R R R -=⨯⨯⨯⨯=,又2R =,∴三棱锥A BMN -的体积为.故答案为:9.(2021·上海·格致中学高二期中)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为______.【答案】5003π 【分析】设球的半径为R ,根据已知条件得出正方体上底面截球所得的截面圆的半径4AA '=,球心到截面圆圆心的距离2OA R '=-,利用勾股定理即可求出球的半径,再带入球体积公式即可.【详解】由题意得正方体上底面到水面的高为862-=,设球体的半径为R ,由题意如图所示:三角形OAA '为直角三角形,A 为球与正方体的交点,则2OA R '=-,842AA '==,OA R =,所以:222(2)4R R =-+,解得5R =, 所以球的体积33445005333V R =π=π⨯=π. 故答案为:5003π 10.(2021·上海·闵行中学高二期中)如图,三棱锥P ABC -的四个顶点都在球O 的球面上,PA PC ⊥,ABC。

与球有关的内切、外接问题

与球有关的内切、外接问题

(2)三棱锥A-BCD,侧棱长为2 5 ,底面是边长为2 3 的等边三角形, 125
则该三棱锥外接球的体积为___6__π__.
解析 如图所示,该三棱锥为正三棱锥,O为底面 BCD的中心且AO垂直于底面BCD,O′在线段AO上, O′为外接球球心, 令 O′A=O′D=R,OD=23DE=23×2 3× 23=2, AD=2 5,
(2) 三 棱 锥 A - BCD 的 四 个 面 都 是 直 角 三 角 形 , 且 侧 棱 AB 垂 直 于 底 面
BCD,BC⊥CD,AB=BC=2,且VA-BCD=
4 3
,则该三棱锥A-BCD外接
球的体积为__4___3_π__.
解析 因为AB⊥BC,BC⊥CD,构造如图所示的长方体, 则AD为三棱锥A-BCD的外接球的直径. 设外接球的半径为R. ∵VA-BCD=13×12×BC×CD×AB=16×2×CD×2=43, ∴CD=2,∴该长方体为正方体,∴AD=2 3,∴R= 3, 外接球体积为 V=43πR3=4 3π.
B,C,D都在同一球面上,则此球的体积为___3__.
解析 如图,设正四棱锥的底面中心为O1, ∴SO1垂直于底面ABCD,令外接球球心为O, ∴△ASC的外接圆就是外接球的一个轴截面圆, 外接圆的半径就是外接球的半径. 在△ASC 中,由 SA=SC= 2,AC=2,
得SA2+SC2=AC2. ∴△ASC是以AC为斜边的直角三角形. ∴A2C=1 是外接圆的半径,也是外接球的半径. 故 V 球=43π.
∴AO= AD2-OD2=4,∴OO′=4-R,
又OO′2+OD2=O′D2, ∴(4-R)2+4=R2,解得 R=52,∴V 球=43πR3=1625π.
反思 感悟

【课件】球与多面体的内切、外接课件2022-2023学年高一下学期数学人教A版(2019)必修第二册

【课件】球与多面体的内切、外接课件2022-2023学年高一下学期数学人教A版(2019)必修第二册

o2
o
5πa2

R
r o1
课堂练习
2.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球
32π
的体积为
,那么这个正三棱柱的体积是(
3
A.96 3
C.24 3
)
B.16 3
√D.48
3
1 3
3
设正三棱柱的底面边长为a,则球的半径 R= × a= a,
3 2
6
3
正三棱柱的高为 a.
3
4 3 32π
三棱锥、四个面都是直角三角形的三棱锥都分别可构造长方体或
A
正方体.
P
B
C
探究新知
总结:正四面体的棱长与外接球、内切球的半径总结的关系
1.若正四面体棱长为a,外接球半径为R,内切球半径为r,则
r PO R
6
R
a
4
R : r 3 :1
6
r
a
12
6
6
6
a
a
a.
3
4
12
P
P
a
a
A
V 球= πR = .∴a=4 3.
3
3
3
3
2
∴V 柱= ×(4 3) × ×4 3=48 3.
4
3
例题讲解
(4)正棱锥、圆锥 ①内切球
P
例6 正三棱锥的高为1,底面边长为2,内有一个球与
它的四个面都相切,求内切球的表面积与体积.
A
解1:如图,P-ABC为正三棱锥,
设球的半径为r,底面中心为D,取BC边中点E ∴PD=2,易知
1
V锥体 Sh
3

球与各种几何体切、接问题专题(一))

球与各种几何体切、接问题专题(一))

球与各种几何体切、接问题专题(一))近年来,高考命题中球与各种几何体的切、接问题主要以选择题、填空题为主,大题较少出现。

在此之前,需要明确两个定义:一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球;一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

一、球与柱体的切接。

规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题。

1、球与正方体。

正方体有三种形态:内切球、棱切球和外接球。

内切球的位置关系为正方体的六个面都与一个球相切,正方体中心与球心重合,数据关系为2r=a。

棱切球的位置关系为正方体的十二条棱与球面相切,正方体中心与球心重合,数据关系为2r=2a。

外接球的位置关系为正方体的八个顶点在同一个球面上,正方体中心与球心重合,数据关系为2r=3a。

例如,对于一个棱长为1的正方体ABCD-A1B1C1D1,如果其8个顶点都在球O的表面上,那么直线EF被球O截得的线段长为2.2、球与长方体。

长方体的外接球直径是长方体的对角线。

例如,已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为32π。

3、球与正棱柱。

正棱柱的外接球的球心是上下底面中心的连线的中点。

结论2:直三棱柱的外接球的球心位于上下底面三角形外心的连线的中点。

二、球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题。

1、正四面体与球的切接问题1)正四面体的内切球,如图4.位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有4R= h=6a/√3;例4:正四面体的棱长为a,则其内切球的半径为R= a/√6.解析】如图正四面体ABCD的中心为O,即内切球球心,内切球半径R即为O到正四面体各面的距离。

球与多面体的组合体问题

球与多面体的组合体问题

问题一:多面体与球的组合体问题 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==; 二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==; 三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则13A O R '==. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为() A .22 B .1 C .212+ D .2【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A .2πB .4πC .8πD .16π1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A. B.4π C. D.【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为.1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+. 例3正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为()A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,3SE a CE ==则有2222233a R r a R r CE +=-=,=,解得:66,.R r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A.12πB.C.3πD.2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和例7矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是()A.π12125B.π9125C.π6125D.π3125例8三棱锥A BCD -中,AB CD ====AC AD BD BC ==A BCD -的外接球的半径是.三、球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例9在半径为R的球内放入大小相等的4个小球,则小球半径r的最大值为()A.(-1)RB.(-2)RC.RD.R四、球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=.例10把一个皮球放入如图10所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A.l03cm B.10cmC.102cm D.30cm五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还原几何体,根据几何体的特征选择以上介绍的方法进行求解.例11【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外接球的球面面积为()A .5πB .12πC .20πD .8π 【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.πB.πC.πD.π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.【针对训练】1.【2016届云南省玉溪市一中高三第四次月考】直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒则此球的表面积等于()A .952πB .π20C .π8D .352π 2.【2016届河北省衡水二中高三上学期期中】已知四面体P -ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC,23AC =,若四面体P -ABC 的体积为32,则该球的体积为() A .3πB .433C .83πD .8333.【2016届河北省衡水二中高三上学期期中考试】某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A .4πB .283πC .443πD .20π4.【2016届福建省三明一中高三上第二次月考】如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为()A .2B .22C .2D .1 5.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为()(A )π(B )2π(C )3π(D )4π6.【河北省“五个一名校联盟”2015届高三教学质量监测(一)】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )A. B. C. D.7.【2016届贵州省贵阳市六中高三元月月考】表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为.8.【2016届陕西省渭南市白水中学高三上第三次月考】一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是.9.【2016届重庆市巴蜀中学高三上学期一诊模拟】已知S A B C ,,,都是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,2SA =,3AB =,4BC =,则球O 的表面积等于______.10.【2016届黑龙江省哈尔滨师大附中高三12月考】利用一个球体毛坯切削后得到一个四棱锥P ABCD -,其中底面四边形是边长为1的正方形,1PA =,且PA ⊥平面ABCD ,则球体毛坯体积的最小值应为.11.【2016届河北省邯郸市一中高三一轮收官考试】如图,在四面体CD AB 中,AB ⊥平面CD B ,CD ∆B 是边长为6的等边三角形.若4AB =,则四面体CD AB 外接球的表面积为.12.正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为.13.已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.14.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是?,则这个三棱柱的体积为.15.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为.。

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题提高练【答题技巧】1.“切”“接”问题的处理规律(1)“切”的处理:球的内切问题主要是球内切于多面体或旋转体.解答时要找准切点,通过作截面来解决.(2)“接”的处理:把一个多面体的顶点放在球面上即球外接于该多面体.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.2.当球的内接多面体为共顶点的棱两两垂直的三棱锥、共顶点的三个侧面两两垂直的三棱锥或三组对棱互相垂直的三棱锥时,常构造长方体或正方体以确定球的直径.3.与球有关的组合体的常用结论 (1)长方体的外接球: ①球心:体对角线的交点;②半径:,,r a b c =为长方体的长、宽、高). (2)正方体的外接球、内切球及与各条棱都相切的球:①外接球:球心是正方体的中心,半径(r a =为正方体的棱长); ②内切球:球心是正方体的中心,半径(2ar a =为正方体的棱长);③与各条棱都相切的球:球心是正方体的中心,半径r =(a 为正方体的棱长). (3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):①外接球:球心是正四面体的中心,半径(r a =为正四面体的棱长);②内切球:球心是正四面体的中心,半径(r a =为正四面体的棱长). 【练习】1.在三棱锥P-ABC 中,△ABC 的内切圆圆O 的半径为2,PO ⊥平面ABC ,且三棱锥P-ABC 的三个侧面与底面所成角都为60°,则该三棱锥的内切球的体积为( )C.16π3D.4π32.已知在三棱锥P-ABC 中,△ABC 是以A 为直角的三角形,AB=AC=2,△PBC 是正三角形,且PC 与底面ABC所成角的正弦值为34,则三棱锥P-ABC外接球的半径为( )A.43B.32C.133D.2233.张衡是中国东汉时期伟大的天文学家、数学家等,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A-BCD的每个顶点都在球O的表面上,AB⊥底面BCD,BC⊥CD,且AB=CD=3,BC=2,利用张衡的结论可得球O的表面积为( )A.30B.1010C.33D.12104.已知三棱锥P-ABC中,PA PB PC ABC==,是边长为42的正三角形,D,E分别是PA,AB上靠近点A 的三等分点,DE PC⊥,则三棱锥P-ABC的内切球的表面积为( )A.(5763203)π-B.(2881603)π-C.(64323)π-D.(64323)π-5.取两个相互平行且全等的正n边形,将其中一个旋转一定角度,连接这两个多边形的顶点,使得侧面均为等边三角形,我们把这种多面体称作“n角反棱柱”.当6n=时,得到如图所示棱长均为2的“六角反棱柱”,则该“六角反棱柱”外接球的表面积等于( )A.(53)π+ B.(1243)π+ C.(2553)π+ D.(2843)π+6.已知在菱形ABCD中,23AB BD==ABCD沿对角线BD折起,得到三棱锥A BCD-,且使得棱33AC=A BCD-的外接球的表面积为( )A.7πB.14πC.28πD.35π7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛.问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟10 000斛,问该粮仓的高是多少?”已知1斛粟的体积为2.7立方尺,一丈为10尺,则该粮仓的外接球的体积是( )A.133π4立方丈 B.133π48立方丈 C.133133π4立方丈 D.133133π48立方丈 8.已知正方形ABCD 中,E ,F 分别是AB ,BC 的中点,沿DE ,DF ,EF 折起得到如图所示的空间几何体,若2AB =,则此几何体的内切球的体积为( )A.3π2B.π4C.π48D.π169.在平面四边形ABCD 中,2,2AB AD BC CD DB =====,现将ABD 沿BD 折起,使二面角A BD C --的大小为60︒.若,,,A B C D 四点在同一个球的球面上,则球的表面积为( ) A.13π3B.14π3C.52π9D.56π910.已知三棱锥S-ABC 的顶点都在球O 的球面上,且该三棱锥的体积为23,SA ⊥平面,4,120ABC SA ABC =∠=︒,则球O 的体积的最小值为_________.11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为_________________.12.设正四面体的内切球半径为r ,外接球半径为R ,则rR=___________. 13.已知底面为正方形的四棱锥P ABCD -的五个顶点在同一个球面上,,2,1PD BC AB PC ⊥==,3PD =则四棱锥P ABCD -外接球的体积为________.14.已知有两个半径为2的球记为12,O O ,两个半径为3的球记为34,O O ,这四个球彼此相外切,现有一个球O 与这四个球1234,,,O O O O 都相内切,则球O 的半径为____________.15.在三棱锥P-ABC 中,PA ⊥平面,,12ABC AB BC PA AB AC ⊥===,三棱锥P-ABC 的所有顶点都在球O 的表面上,则球O 的半径为__________;若点M 是ABC 的重心,则过点M 的平面截球O 所得截面的面积的最小值为__________.16.已知正三棱柱111ABC A B C -,底面边长为3,高为2,P 为上底面三角形111A B C 中线上一动点,则三棱锥P ABC -的外接球表面积的取值范围是_____________.17.如图,已知边长为1的正方形ABCD 与正方形BCFE 所在平面互相垂直,P 为EF 的中点,Q 为线段FC 上的动点,当三棱锥P-ABQ 的体积最大时,三棱锥P-ABQ 的外接球的表面积为_________________.答案以及解析1.答案:A解析:设三棱锥P ABC -的内切球的半径为R ,过O 作OD AC ⊥于点,D OE BC ⊥于点,E OF AB ⊥于点F ,则2OD OE OF ===.连接PD ,易证PD AC ⊥,因为三棱锥P-ABC 的三个侧面与底面所成角都为60°,所以60PDO ∠=︒,则22tan 6023,4cos60PO PD ===︒=︒.由题意可知三棱锥P-ABC 的内切球的球心'O 在线段PO 上,在Rt POD 中,sin OD RDPO PD PO R∠==-,即2423R =-,解得23R =.所以该三棱锥的内切球的体积为334423323πππ33R ⎛⎫== ⎪ ⎪⎝⎭,故选A. 2.答案:C解析:如图,不妨令二面角P BC A --为钝二面角,取BC 的中点D ,连接AD , 因为2AB AC ==,90BAC ∠=︒,所以2BC =,且D 为ABC 外接圆的圆心.作PH ⊥平面ABC 于H ,易知H 在直线AD 上,连接,HC HA ,则PCH ∠为PC 与底面ABC 所成角, 则3sin 4PH PCH PC ∠==,又2PC BC ==,所以32PH =,又3PD =,则332sin 3PH PDH PD ∠===. 设1O 为PBC 的外心,O 为三棱锥P ABC -外接球的球心,连接1,OO OD ,则1OO ⊥平面PBC ,OD ⊥平面133,,cos ABC O D PDO =∠=,则12cos 3O D OD PDO ==∠,设外接球的半径为R ,则222413131,99R OD DA R =+=+==,故选C.3.答案:B解析:因为BC CD ⊥,所以7BD 又AB ⊥底面BCD ,所以10AD O 的球心为侧棱AD 的中点,从而球O 10利用张衡的结论2π5168=,可得π10=所以球O 的表面积为2104π10π1010==⎝⎭故选B.4.答案:C解析:因为PA PB PC ==,ABC 是边长为42的正三角形,所以三棱锥P ABC -为正三棱锥, 由正棱锥对棱垂直可知PB AC ⊥.又D ,E 分别是PA ,AB 上靠近点A 的三等分点,所以//DE PB , 所以DE AC ⊥.又,DE PC PC AC C ⊥⋂=,所以DE ⊥平面PAC ,所以PB ⊥平面PAC ,所以90APB ∠=︒,所以4PA PB PC ===,所以,,PA PB PC 两两互相垂直. 设三棱锥P ABC -的内切球的半径为r ,则由等体积法可得,()1133PABPACPBCABCPACSSSSr S PB ⋅+++=⋅,即11(88883)8433r ⨯+++=⨯⨯,解得2(33)r -=,故三棱锥P ABC -的内切球的表面积为222(33)(64323)π4π4πS r ⎡⎤--==⨯=⎢⎥⎣⎦.故选C. 5.答案:B解析:如图,设上、下正六边形的中心分别为1O ,2O ,连接12O O ,则其中点O 即为所求外接球的球心. 连接2O C ,取棱AB 的中点M ,作2MN O C ⊥于点N ,连接1O M ,MC ,则13O M MC ==.而22O C =, 则22212NC O C O N O C O M =-=-=-3,222123(23)231O O MN MC NC ∴==-=--=-,则131OO -.连接OA ,1O A ,设所求外接球的半径为R ,则有2222211(31)233R OA OO O A ==+=+=+∴该“六角反棱柱”外接球的表面积24π(1243)πS R ==+.故选B.6.答案:C解析:由题意可知,ABD BCD 为等边三角形.如图所示,设外接球的球心为O ,等边三角形BCD 的中心为,O '取BD 的中点F ,连接,,,AF CF OO ',,,OB O B OA '由AB AD BC BD DC ====,得,,AF BD CF BD ⊥⊥又AF CF F ⋂=,所以BD ⊥平面AFC ,且可求得AF =3,CF =而33,AC =所以AFC ∠=120.︒在平面AFC 中过点A 作CF 的垂线,与CF 的延长线交于点E ,由BD ⊥平面AFC 得.BD AE ⊥又,,AE EC BD EC F ⊥⋂=所以AE ⊥平面BCD .过点O 作OG AE ⊥于点G ,则四边形O EGO '是矩形. 又2sin 6023O B BC '︒=⨯=,所以13331.sin 60,sin3022O F O B AE AF EF AF ''︒︒======. 设外接球的半径为,,R OO x '=则由222222,OO O B OB OA AG GO ''+==+, 得2222223332,1,2x R x R ⎛⎫⎛⎫+=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭解得23,7,x R == 故三棱锥A BCD -外接球的表面积24π28π.S R ==故选C.7.答案:D解析:由题意可得粮仓的高2723 4.5h ==⨯(丈),设外接球的半径为R , 则2222133133(2)23 4.533.25,4R R =++==该粮仓的外接球的体积是34133133133π3⨯⨯⎝⎭(立方丈),选D. 8.答案:C解析:在等腰DEF 中,2222215,112DE DF EF ==+=+=D 到EF 的距离为h , 则22293(5)2222h ⎛⎫-= ⎪ ⎪⎝⎭令该几何体的内切球的球心为O ,且球心O 到三个面的距离均为半径r .又因为,DP PE DP PF ⊥⊥,且PE PF P ⋂=,所以DP ⊥平面PEF .由等体积法知O PEF O PFD O PDE O DEF D PEF V V V V V -----+++=,即11113111121212211232323232232r r r r ⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯,解得14r =, 则3 441πππ336448O V r ==⨯⨯=球,故选C.9.答案:C解析:如图所示,设M 为BD 的中点,连接,MA MC ,依题意,折起后AMC ∠是二面角A BD C --的平面角,则60AMC ∠=︒.易知,四面体ABCD 的外接球的球心O 在平面MCA 上,于是点O 在底面BCD 上的射影是正BCD的中心,设为点Q,而点O在侧面ABD上的射影是M,易得3MQ=,又30OMQ∠=︒,因此13OQ=,进而22221231333R OC OQ QC⎛⎫⎛⎫==+=+=⎪⎪ ⎪⎝⎭⎝⎭,所以球O的表面积为21352π4π9⎛⎫⨯=⎪⎪⎝⎭,故选C.10.4010π解析:由题意得,三棱锥S ABC-的体积11342332S ABCV AB BC-=⨯⋅=,则6AB BC⋅=,、当球O 的体积最小时,ABC外接圆的半径最小,即AC最小,在ABC中,由余弦定理和基本不等式得222123182AC AB BC AB BC AB BC⎛⎫=+-⋅⨯-⋅=⎪⎝⎭,当且仅当6AB BC=取等号,则min32AC=,此时ABC外接圆的直径min32226sin1203ACr===O的半径22210R r=+=O的体积的最小值为344010ππ3R=.11.答案:2821π解析:解法一由题意知PAD为正三角形,取AD的中点M,PAD的中心N,记AC BD F⋂=,连接,PM FM,过,N F分别作平面11AA D D与平面ABCD的垂线,两垂线交于点O,则点O为四棱锥P ABCD-的外接球球心.由题意知22362333PN PM===132ON MF AB===,所以四棱锥P ABCD-的外接球半径22223(23)21R ON PN++所以四棱锥P ABCD-的外接球的体积34π2821π3V R==.解法二连接1111,,,AC BD AC B D,记1111,AC BD F AC B D E⋂=⋂=,连接EF,易知四棱锥P ABCD-的外接球的球心O在线段EF上.取AD的中点G,连接PG,设OF x=,球O的半径为R,易知1122AF AC==⨯36232,633PG==则22222(32)(33)3R x x =+=-+,得3x =,则21R =, 所以四棱锥P ABCD -的外接球的体积34π2821π3V R ==. 12.答案:13解析:如图,在正四面体PABC 中,D ,E 分别为BC ,AC 的中点,连接AD ,BE 交于点F ,则点F 为正三角形ABC 的外心,连接PF ,则PF ⊥底面ABC ,且正四面体PABC 的外接球球心与内切球球心为同一点,应在线段PF 上,记作点O ,如图所示.不妨设正四面体PABC 的棱长为a ,则在ABC 中,22233sin 60333AF AD AC ==⋅⋅==°. PF ⊥底面,ABC AF ⊂底面,ABC PF AF ∴⊥,2222363PF AP AF a a ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 正四面体PABC 的外接球、内切球球心均为O ,,OP OA R OF r ∴===.OF PF OP =-,且在Rt AFO 中有222AF OF OA +=,22236R R ⎫⎫∴+-=⎪⎪⎪⎪⎝⎭⎝⎭, 6666,R r ∴==-=,611236r R a ∴==. 13.答案:82π3. 解析:由题意知,BC DC BC PD ⊥⊥,所以BC ⊥平面PCD ,而BC ⊂平面ABCD ,则平面PCD ⊥平面ABCD .由条件知222CD PC PD =+,所以PC PD ⊥.如图,取CD 的中点G ,连接,AC BD ,交于点O , 则O 为正方形ABCD 的中心,过点G 作平面CDP 的垂线,则点O 在该垂线上, 所以O 为四棱锥P ABCD -外接球的球心,由于2AO , 所以四棱锥P ABCD -外接球的体积为3482ππ(2)3=.14.答案:6解析:由题意可得121314234,O O O O O O O O ====24345,6O O O O ==.如图,取12O O 的中点34,M O O 的中点N ,连接1234,,,,,MN O N O N O M O M 则12O O ⊥3124,.O M O O O M ⊥ 又3412,O M O M M O O ⋂=∴⊥平面34.O O M 同理可证34O O ⊥平面2,.O O N 平面12O O N ⋂平面34,O O M MN =∴球心O 在线段MN 上. 设球O 的半径为R ,则142442, 3.5,3,OO R OO R O O O N =-=-==2222222114,23,O N MN O N O M OM OO O M ∴==-==-=222244(2)4,(3)9R ON OO O N R --=-=--.,MN OM ON =+即22(2)4(3)923,R R --+--=解得6R =.故球O 的半径为6.15.答案:3;4π9解析:(1)PA ⊥平面,ABC BC ⊂平面ABC ,,PA BC ∴⊥又AB BC ⊥,且,PA AB A BC ⋂=∴⊥平面,PAB PB ⊂平面,PAB BC PB ∴⊥,所以PC 是两个直角三角形PAC 和PBC 的斜边,取PC 的中点O ,点O到四点P ,A ,B ,C 的距离相等,即点O 是三棱锥P ABC -的外接球的球心,2231(2)3,PC R =+==(2)当点M 是截面圆的圆心时,此时圆心到截面的距离最大,那么截面圆的半径最小,即此时的面积最小,点N 是AC 的中点,M 是ABC 的重心,112,366MN BN AC ON ∴====1122PA =,所以22116OM ON MN =+=,截面圆的半径222()3r R OM =-=,所以2min 4ππ9S r ==16.答案:25π,8π4⎡⎤⎢⎥⎣⎦解析:如图,设正三棱柱111ABC A B C -上、下底面中心分别为1,O O ,点P 是111A B C 中线1C D 上一点,G 是三棱锥P ABC -的外接球的球心.因为A ,B ,C 在球面上,所以球心在线段1O O 上,点P 也在球面上, 设三棱锥P ABC -外接球的半径为R ,ABC 外接圆的半径为r ,由正弦定理有260sin 32==r ,所以1r =,设11,O P x O G y ==,则OG =2,y PG CG R -==,在1Rt PGO 中,222R x y =+,在Rt CGO 中,2221(2)R y =+-,于是2221x y +=+2(2)y -,解得254.x y =-因为点P 是111A B C 中线1C D 上一点,所以10≤≤x ,于是451≤≤y ,所以222222554(2)1,216R x y y y y ⎡⎤=+=-+=-+∈⎢⎥⎣⎦,所以外接球的表面积225π4π,8π4S R ⎡⎤=∈⎢⎥⎣⎦球.17.答案:41π16解析:如图,由题意知三棱锥P-ABQ 的体积最大时,点Q 与点C 重合,即求三棱锥P-ABC 外接球的表面积.因为正方形ABCD 与正方形BCFE 的边长均为1,点P 为EF 的中点,所以51,2,AB BC AC BP PC =====.过点P 作PG BC ⊥,垂足为G ,由正方形ABCD 与正方形BCFE 所在平面互相垂直,得PG ⊥平面ABC .设三棱锥P-ABC 外接球的球心为O ,AC 的中点为1O ,连接1OO , 则1OO ⊥平面ABC.延长1O O 到点H ,使1O H PG =.连接PH ,OP ,OA ,设1OO x =, 则2222211,(1)22OH x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得38x =, 设三棱锥P-ABC 外接球的半径为R ,则2221314128264R x ⎛⎫=+=+= ⎪⎝⎭.故所求表面积241414π4ππ6416S R ==⨯=.。

微专题-与球有关的内切、外接问题--高一数学-(-必修第二册)

微专题-与球有关的内切、外接问题--高一数学-(-必修第二册)

(2)三棱锥 A-BCD,侧棱长为 2 5,底面是边长为 2 3的等边三角形, 125
则该三棱锥外接球的体积为____6__π__.
解析 如图所示,该三棱锥为正三棱锥,O为底面BCD的中心且AO垂直 于底面BCD,O′在线段AO上,O′为外接球球心, 令 O′A=O′D=R,OD=23DE=23×2 3× 23=2,AD=2 5, ∴AO= AD2-OD2=4,∴OO′=4-R, 又OO′2+OD2=O′D2, ∴(4-R)2+4=R2,解得 R=52, ∴V 球=43πR3=1265π.
解析 如图所示,O为△BCD的中心,且AO垂直于底面BCD,E为BC的
中点,
∵底面边长为2,
∴DE= 3,OD=233,OE= 33,
∴AE= AO2+OE2=
1+
332=23 3,
S△ABC=12×2×233=233,S△BCD= 3,
S 表=3S△ABC+S△BCD=2 3+ 3=3 3,
a 切球半径为__2__.
解析 设该正方体的外接球半径为R,内切球半径为r, 正方体的体对角线长即为外接球直径,棱长即为内切球的直径, 即 2R= 3a,2r=a,
∴R= 23a,r=a2.
(2)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的
顶点都在同一个球面上,且该六棱柱的体积为 9 ,底面周长为3,则这个
反思 感悟
一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为 a,b,c,则就可以将这个三棱锥补成一个长方体,于是长方 体的体对角线的长就是该三棱锥的外接球的直径.设其外接球 的半径为 R,则有 2R= a2+b2+c2.
三、寻求轴截面圆半径法
例 3 (1)正四棱锥 S-ABCD 的底面边长和各侧棱长都为 2,点 S,A,B, 4π

多面体的内切球外接球问题求解策略(原卷版)

多面体的内切球外接球问题求解策略(原卷版)

专题32 多面体的“内切球”、“外接球”问题求解策略【高考地位】球作为立体几何中重要的旋转体之一,成为考查的重点,基本属于必考题目.而且球相关的特殊距离,即球面距离是一个备考的重点,要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,更应特别加以关注的.题目一般属于中档难度,往往单独成题,或者在解答题中以小问的形式出现.类型一球的内切问题万能模板内容使用场景有关球的内切问题解题模板第一步首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面;第二步然后寻找几何体与几何体之间元素的关系第三步得出结论.例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.图1【变式演练1】阿基米德是古希腊伟大的数学家、物理学家、天文学家,是静态力学和流体静力学的奠基人,和高斯、牛顿并列为世界三大数学家,他在不知道球体积公式的情况下得出了圆柱容球定理,即圆柱内切球(与圆柱的两底面及侧面都相切的球)的体积等于圆柱体积的三分之二.那么,圆柱内切球的表面积与该圆柱表面积的比为( )A .12B .13C .23D .34【来源】2021年秋季高三数学开学摸底考试卷03(江苏专用)【变式演练2】正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.【变式演练3】【江西省乐平市第一中学2021届高三上学期联考理科】已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球和内切球分别为球1O ,球2O ,则球1O 上的点到球2O 上的点的距离的最大值为( )A .BC D【变式演练4】【湖南省衡阳市第八中学2020-2021学年高三上学期10月月考】攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为( )A .3B .4C .2 D类型二 球的外接问题例2. 两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【来源】2021年天津高考数学试题例3、已知点M 是边长为3的等边三角形ABC 的边AC 上靠近点C 的三等分点,BC 的中点为F .现将ABF沿AF 翻折,使得点B 到达B '的位置,且平面AB F '⊥平面ACF ,则四面体AB FM '的外接球的表面积为( )A B C .372π D .374π 【来源】2021年高考最后一卷理科数学(第八模拟)【变式演练5】【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】四面体A BCD -中,AB ⊥底面BCD ,AB BD ==1CB CD ==,则四面体A BCD -的外接球表面积为( ) A .3π B .4π C .6π D .12π【变式演练6】【湖南省衡阳市第八中学2020-2021学年高三上学期11月第三次月考】在三棱锥A SBC -中,10AB ,4ASC BSC π∠=∠=,AC AS =,BC BS =,若该三棱锥的体积为3,则三棱锥S ABC -外接球的表面积为( )A .3πB .12πC .48πD .36π【变式演练6】【福建师范大学附属中学2021届高三上学期期中考试】在四面体ABCD 中,BD AC ==2AB BC AD ===,AD BC ⊥,则四面体ABCD 的外接球的体积为( )A .B .C .D .【高考再现】1.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12B .12C .4D .42.【2020年高考全国Ⅰ卷文数12理数10】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC ∆的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π3.【2020年高考天津卷5】若棱长为 ) A .12π B .24π C .36π D .144π4.(2019•新课标⊙,理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D5.(2018•新课标⊙,理10文12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为( )A .B .C .D .6.【2020年高考全国Ⅲ卷文数16理数15】已知圆维的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .7.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________.【反馈练习】1.【浙江省台州市第一中学2020-2021学年高三上学期期中】设ABC 为等腰三角形,2AB AC ==,2π3A ∠=,AD 为BC 边上的高,将ADC 沿AD 翻折成ADC ',若四面体ABC D ',则线段BC '的长度为( )A .BC D2.【河南省九师联盟2021届高三第一学期11月质量检测理科】已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是O 的表面积是( )A .28π3B .14π3C .56π3D .7π 33.【陕西省安康市2020-2021学年高三上学期10月联考文科】四棱锥P ABCD -的顶点都在球O 的球面上,ABCD 是边长为P ABCD -体积的最大值为54,则球O 的表面积为( ) A .36π B .64π C .100π D .144π4.【广东省湛江市2021届高三上学期高中毕业班调研】鳖臑(biē nào )是我国古代对四个面均为直角三角形的三棱锥的称呼.已知三棱锥A -BCD 是一个鳖臑,其中AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =6,BC =3,DC =2,则三棱锥A -BCD 的外接球的体积是( )A .493πB .3432πC .49πD .3436π 5.【湖北省鄂州高中2020-2021学年高三上学期10月质量检测】张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 1,利用张衡的结论可得该正方体的外接球的表面积为( )A .30B .C .D .366.【四川省成都市蓉城名校联盟2021届高三第一次联考文科】已知三棱锥P ABC -,PA ⊥平面ABC ,且PA =,在ABC 中,1AC =,2BC =,且满足sin 2sin 2A B =,则三棱锥P ABC -外接球的体积为( )A .3B .323πCD .83π 7.球O 的两个相互垂直的截面圆1O 与2O 的公共弦AB 的长度为2,若1O AB △是直角三角形,2O AB △是等边三角形,则球O 的表面积为( )A .9πB .12πC .16πD .20π【来源】辽宁省丹东市2021届高三二模数学试题8.【河南省洛阳市汝阳县2020-2021学年高三上学期联考数学(文)】我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B .2C .30πD .45π9.【湖南师大附中2021届高三(上)月考】四棱锥P ABCD -的底面ABCD 是矩形,侧面PAD ⊥平面ABCD ,120APD ︒∠=,AB PA ==2PD =,则该四棱锥P ABCD -外接球的体积为( )A .323πB .3C .D .36π10.【内蒙古赤峰市中原金科2020-2021学年高三大联考】据《九章算术》记载,“鳖臑(biēnào)”为四个面都是直角三角形的三棱锥.如图所示,现有一个“鳖臑”,PA ⊥底面ABC ,AB BC ⊥,且2PA AB BC ===,三棱锥外接球表面积为( )A .4πB .8πC .12πD .16π11.【内蒙古赤峰市松山区2020-2021学年高三第一次统一模拟考试文科】已知三棱锥P ABC -中,1PA =,3PB =,AB =CA CB ==PAB ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .143π B .283π C .11π D .12π12.如图,已知球O 是棱长为1 的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( )A .3πB .8πC .6πD .4π 13.(多选)【湖南省长沙市长郡中学2020-2021学年高三上学期月考(三)】已知球O 是正三棱锥(底面为正三角形,点在底面的射影为底面中心)A BCD -的外接球,3BC =,AB =E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆的面积可能是( )A .πB .2πC .3πD .4π14.(多选)设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+ 【来源】重庆市2021届高三高考数学第三次联合诊断检测试题15.【江苏省泰州市2020-2021学年高三上学期期中】已知直三棱柱ABC —A 1B 1C 1中,AB =BC =1,AC ,侧棱AA 1=2,则该三棱柱外接球的体积为_______.16.【江西省南昌市第十中学2021届高三上学期期中考试】如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.【福建省莆田第一中学2021届高三上学期期中考试】在长方体1111ABCD A B C D -中,1AB CC ==1BC =,点M 为正方形11CDD C 对角线的交点,则三棱锥11M ACC -的外接球表面积为______.18.在一个棱长为3+方体和大球之间的空隙自由滑动,则小球的表面积最大值是___________.【来源】2021届高三数学临考冲刺原创卷(一)19.阿基米德在他的著作《论圆和圆柱》中,证明了数学史上著名的圆柱容球定理:圆柱的内切球(与圆柱的两底面及侧面都相切的球)的体积与圆柱的体积之比等于它们的表面积之比.可证明该定理推广到圆锥容球也正确,即圆锥的内切球(与圆锥的底面及侧面都相切的球)的体积与圆锥体积之比等于它们的表面积之比,则该比值的最大值为________.【来源】福建省厦门第一中学2021届高三高考模拟考试数学试题20.在一次综合实践活动中,某手工制作小组利用硬纸板做了一个如图所示的几何模型,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .经研究发现,当点P 在半圆弧AD 上(不含A ,D 点)运动时,三棱锥P ABD -的外接球始终保持不变,则该外接球的表面积为______.【来源】山东省烟台市2021届高三二模数学试题21.一个封闭的正方体容器内盛有一半的水,以正方体的一个顶点为支撑点,将该正方体在水平桌面上任意旋转,当容器内的水面与桌面间距离最大时,水面截正方体各面所形成的图形周长为外接球的表面积为___________.【来源】湘豫联考2021届高三5月联考文数试题22.以三棱柱上底所在平面某一点为对称中心,将上底图形旋转180°后,再将上、下底顶点连接形成空间几何体称为“扭反三棱柱”.如图所示的“扭反三棱柱”上、下底为全等的等腰三角形,且顶点A ,B ,C ,A 1,B 1,C 1均在球O 的球面上,AB =AC =A 1B 1=A 1C 1=m ,截面BCB 1C 1是矩形,BC =2,B 1C =4.则该几何体的外接球表面积为__________,当该几何体体积最大时m =__________.【来源】重庆市第八中学2021届高三下学期适应性月考卷(七)数学试题23.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家、物理学家,享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家.公元前212年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁.阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球(一个球与圆柱上下底面相切且与侧面相切)的图形,以纪念他在几何学上的卓越贡献,这个图形中的内切球的体积与圆柱体积之比为________,内切球的表面积与圆柱的表面积之比为_______.【来源】湖南省衡阳市第八中学2021届高三下学期考前预测(二)数学试题24.将三个边长为6的正方形分别沿相邻两边中点裁剪而成(1、2)部分,与正六边形组合后图形如图所示,将此图形折成封闭的空间几何体,则这个几何体的体积是___________,外接球表面积为___________.【来源】全国新高考2021届高三数学方向卷试题(B)25.天津滨海文化中心地天津滨海新区开发区,是天津乃至京津冀地区的标志性文化工程.其中滨海图书馆建筑独具特色,被称为“滨海之眼”,如图所示,中心球状建筑引起了小明的注意,为了测量球的半径,小明设计了两个方案,方案甲,构造正三棱柱侧面均与球相切如图所示,底面边长约为30米,估计此时球的完整表面积为 ________平方米;方案乙,测量球被地面截得的圆的周长约为16π米,地面到球顶部高度约为16米,估计此时球的完整体积为__________立方米,你认为哪种方案好呢?【来源】天津市河东区2021届高三下学期一模数学试题26.2020年底,中国科学家成功构建了76个光子的量子计算机“九章”,推动全球量子计算的前沿研究达到一个新高度.该量子计算机取名“九章”,是为了纪念中国古代著名的数学专著《九章算术》.在《九章算术》中,底面是直角三角形的直三棱柱被称为“堑堵”.如图,棱柱111ABC A B C -为一“堑堵”,P 是1BB 的中点,12AA AC BC ===,则在过点P 且与1AC 平行的截面中,当截面图形为等腰梯形时,该截面的面积等于___________,该“堑堵”的外接球的表面积为___________.【来源】全国100所名校2021年高考冲刺试卷(样卷一)文科数学试题。

球的内切和外接问题

球的内切和外接问题

正方体外接球的直径2R 3 2 a, R 6 a
2
4
S表
3 2
a 2
A B
O D
C
求正多面体外接球旳半径
求正方体外接球旳半径
球旳内切、外接问题
1、内切球球心到多面体各面旳距离均相等, 外接球球心到多面体各顶点旳距离均相等。 2、正多面体旳内切球和外接球旳球心重叠。 3、正棱锥旳内切球和外接球球心都在高线上,但不 重叠。
丙球外接于该正方体,则三球表面面积之比为( A )
A. 1:2:3
B. 1: 2: 3 C. 1:3 4:3 9 D. 1: 8: 27
图3
图4
图5
甲球为内切球直径=正方体棱长
设为1
S甲 4 R12 =
D
C
A
B
中截面
O
.
D1
C1
A1
B1
球内切于正方体旳棱
正方形旳对角线等于球旳直径= 2a
S乙 4 R22 =2
连 AO 延长交 PD 于 G
6a 3
P
则 OG ⊥ PD,且 OO1 = OG
3
∵ Rt △ PGO ∽ Rt △ PO1D
A
a 2
•O G
O1 D
R
6 a R 3
3a
3a
2
6
R 6 a 4
E 3a
6
S表
3 2
a2
求棱长为a的正四面体P ABC的外接球的表面积
解法2:
正方体的棱长为 2 a, 2
球与多面体旳内切、外接
球旳半径r和正方体 旳棱长a有什么关系?
.r
a
一、 球体旳体积与表面积

V球

十种题型搞定多面体的外接球,内切球问题

十种题型搞定多面体的外接球,内切球问题

十种题型搞定多面体的外接球,内切球问题题型一 直角四面体的外接球 补成长方体,长方体对角线长为球的直径1.三棱锥P ABC -中,ABC ∆为等边三角形,2PA PB PC ===,PA PB ⊥,三棱锥P ABC -的外接球的表面积为( )A .48πB .12πC .D .2.在正三棱锥A BCD -中,,E F 分别是,AB BC 的中点,EF DE ⊥,若BC =A BCD -外接球的表面积为A πB 2πC 3πD 4π3.在正三棱锥S ABC -中,,M N 分别是,SC BC 的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥S ABC -外接球的表面积为A 12πB 32πC 36πD 48π 4.(2019全国1理12).已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D5.设A ,B ,C ,D 是半径为2的球面上的四个不同点,且满足AB →·AC →=0,AD →·AC →=0,AB →·AD →=0,用S 1、S 2、S 3分别表示△ABC 、△ACD 、△ABD 的面积,则S 1+S 2+S 3的最大值是________.题型二 等腰四面体的外接球 补成长方体,长方体相对面的对角线为等腰四面体的相对棱1.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==ABCD 的外接球的表面积为( ) A .2πB .4πC .6πD .8πA B C D ,,,四点在半径为225的球面上,且5AC BD ==, AD BC ==,AB CD =,则三棱锥D ABC -的体积是____________.3.在三棱锥S ﹣ABC 中,底面△ABC 的每个顶点处的三条棱两两所成的角之和均为180°,△ABC 的三条边长分别为AB=3,AC=5,BC=6, 则三棱锥ABC S -的体积( )A .22B . 10C .232D .234 题型三 有公共斜边的两个直角三角形组成的三棱锥 ,球心在公共斜边的中点处1.在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为A. π12125B.π9125C.π6125D.π31252.三棱锥S ABC -的所有顶点都在球O 的球面上,且SA AC SB BC ====4SC =,则该球的体积为A2563π B 323π C 16π D 64π3.在四面体S ABC -中,,2AB BC AB BC SA SC ⊥====,二面角S AC B --的余弦值是3-)A. B .6π C .24π D4.在平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体'A BCD -,使平面'A BD ⊥平面BCD ,若四面体'A BCD -顶点都在同一个球面上,则该球的体积为A 32πB 3πC 23π D 2π 5.平行四边形ABCD 中,AB ·BD =0,沿BD 将四边形折起成直二面角A 一BD -C ,且4222=+BD AB ,则三棱锥A -BCD 的外接球的表面积为( ) A .2π B .4π C .π4 D .2π6已知直角梯形ABCD ,AB AD ⊥,CD AD ⊥,222AB AD CD ===,沿AC 折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为 .题型四 侧棱垂直于地面或侧面垂直于地面 过底面外心做垂线,球心有垂线上 1.已知四面体P ABC -,其中ABC ∆是边长为6的等边三角形,PA ⊥平面ABC ,4PA =,则四面体P ABC -外接球的表面积为________.2. 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的( )外接球的半径为33B .表面积为137++C .体积为3D .外接球的表面积为π4. 题型五 其中一条侧棱满足某个特殊的条件1.已知三棱锥BCD A -中,2====CD BD AC AB ,AD BC 2=,直线AD 底面BCD 所成的角是3π,则此时三棱锥外接球的体积是 ( ) A π8 B π32 C π324 D π328 答案。

多面体与球的切接问题(解析版)

多面体与球的切接问题(解析版)

多面体与球的切接问题一.方法综述多面体与球接、切问题的求解方法:(1)涉及球与棱柱、棱锥的相切、接问题时,一般先过球心及多面体中的特殊点(如接、切点或线)作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程组求解.(2)若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,,PA a PB b PC c ===一般把有关元素“补形”成为一个球内接长方体,根据22224R a b c =++求解.下面通过例题说明应对这类问题的方法与技巧.二.解题策略类型一 球与柱体的切接问题【例1】【2020·河南濮阳期末】已知长方体1111ABCD A B C D −的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( ) A .116π B .106πC .56πD .53π【答案】A【解析】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=,所以()()222211112AB BC AA AB BC AA AB BC BC AA AB AA ++=++−⋅+⋅+⋅=116,故外接球半径r ==24116S r ππ==,故选A.【例2】【2020·全国高三专题练习】已知正四棱柱1111ABCD A B C D −的每个顶点都在球O 的球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为________.【答案】【解析】设球O 的半径为R ,则2412R ππ=,解得R =,设正四棱柱的底面边长a ,高为h ,则正四棱柱的体对角线为球O 2R ==22212a h +=,由基本不等式可得22212a h +=≥ah ≤222a h =,即h ==. 故该正四棱柱的侧面积为4ah ,其最大值为324122⨯=. 【例3】【河南省2018年高考一模】已知三棱柱的底面是正三角形,侧棱底面ABC ,若有一半径为2的球与三棱柱的各条棱均相切,则的长度为______.【答案】【解析】由题意,的外接圆即为球的大圆 设底面外接圆圆心,从而正三角形边长为设圆心,由题意在球面上,为中点,则在中,,,则则 故答案为【指点迷津】1.如图1所示,正方体1111D C B A ABCD −,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心. 常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2ar OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 .2.长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==3.球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法——构造直角三角形法.设正三棱柱111C B A ABC −的高为h ,底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R .【举一反三】1.【2020湖北省荆州市荆州中学模拟】在直三棱柱中,,,,,则其外接球与内切球的表面积之比为A .B .C .D .【答案】A【解析】将直三棱柱扩充为长方体,其体对角线长为,外接球的半径为,内切球的半径为,则其外接球与内切球的表面积之比为,故选2.【2020·陕西省铜川期末】已知正四棱柱1111ABCD A B C D −的每个顶点都在球的O 球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为( ) A .122 B .182C .16D .18【答案】A【解析】设球O 的半径为R ,则2412R ππ=,得3R =,设正四棱柱的底面边长为x ,高为h ,则正四棱柱的体对角线即为球O 222223x h R +==22212x h +=,由基本不等式可得2212222x h xh =+≥,32xh ∴≤2h x =时,等号成立,因此,该四棱柱的侧面积为4432122xh ≤⨯=,故选A. 类型二 球与锥体的切接问题【例4】【2020·四川绵阳期末】已知三棱锥P-ABC 中,PA=4,3BC=6,PA ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .16π B .32πC .64πD .128π【答案】C【解析】∵底面ABC 中,2AB AC ==,6BC =,∴1cos 2BAC ∠=−,∴3sin 2BAC ∠=,∴ABC 的外接圆半径1 323r ==PA ⊥面ABC ,∴三棱锥外接球的半径(22222232162PA R r ⎛⎫=+=+= ⎪⎝⎭,所以三棱锥P ABC −外接球的表面积2464S R ππ==,故选C . 【例5】【2020·江西九江一中月考】已知三棱锥A BCD −中,5AB CD ==,2==AC BD ,3AD BC ==,若该三棱锥的四个顶点在同一个球面上,则此球的体积为( )A .32π B .24πC .6πD .6π【答案】C【解析】作出三棱锥A BCD −的外接长方体AEBF GDHC −,如下图所示,设DG x =,DH y =,DE z =,则2223AD x z =+=,2224DB y z =+=,2225DC x y =+=,上述三个等式相加得()222222234512AD BD CD x y z ++=++=++=,所以该长方体的体对角线长为2226x y z ++=,则其外接球的半径为62R =,因此此球的体积为346632ππ⎛⎫⨯= ⎪ ⎪⎝⎭,故选C.【例6】【2020云南师大附中月考】四边形ABDC 是菱形,60BAC ∠=,3AB =,沿对角线BC 翻折后,二面角A BC D −−的余弦值为13−,则三棱锥D ABC −的外接球的体积为( ) A .5π B .6πC .7πD .22π【答案】B【解析】如下图所示,取BC 的中点为M ,设球心O 在平面ABC 内的射影为1O ,在平面BCD 内的射影为2O ,则二面角A BC D −−的平面角为AMD ∠,3AB =,所以32DM =,2213DO DM ==,212O M =,设2AMD θ∠=,则21cos 22cos 13θθ=−=−,21cos 3θ∴=,则22sin 3θ=,2tan 2θ∴=,tan 2θ∴=,222tan 2OO O M θ∴=⋅=,球O 的半径222262R DO OO =+=,所求外接球的体积为246632V ππ⎛⎫=⋅= ⎪ ⎪⎝⎭,故选B. 【指点迷津】 1.球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系.如图4,设正四面体ABC S −的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接SE SD CD ,,为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,33,32,,a CE a SE r OE R OS CO =====则有2222233a R r a R r CE +=−=,=,解得:66,.412R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2 .球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体.常见两种形式:一是三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111D AB A −的外接球的球心和正方体1111D C B A ABCD −的外接球的球心重合,设a AA =1,则a R 23=. 二是如果三棱锥的三条侧棱互相垂直且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心,4422222l c b a R =++=(l 为长方体的体对角线长).3 .球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积. 4.球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法、等进行求解. 【举一反三】1.已知正四面体A -BCD 的棱长为12,则其内切球的表面积为( ) A .12π B .16π C .20π D .24π【答案】D【解析】法一:如图,作BF ⊥CD 于F ,AE ⊥BF 于E ,由A -BCD 为正四面体可知AE ⊥平面BCD ,设O 为正四面体A -BCD 的内切球的球心,则OE 为内切球的半径,连接OB .因为正四面体的棱长为12,所以BF =AF =63,BE =43, 所以AE =122-(43)2=4 6.又OB 2-OE 2=BE 2,即(46-OE )2-OE 2=(43)2, 所以OE =6,则其内切球的半径是 6. 所以内切球的表面积为4π×(6)2=24π.法二:因为正四面体的棱长为12,其内切球半径为正四面体高的14,所以r =14×63×12=6,故其内切球的表面积为24π.2.【2020·天津中学月考】在三棱锥P ABC −中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC −的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B【解析】ABC ∆的外接圆半径为232sin3AB r π==PA ⊥底面ABC ,所以,三棱锥P ABC −的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此三棱锥P ABC −的外接球的表面积为2221284433R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭,故选B. 3.【2020·安徽省六安一中月考】已知四棱锥P ABCD −中,底面四边形ABCD 为等腰梯形,且//AB CD ,12AB CD =,PA PB AD ==,43PA AD CD +==若平面PAB ⊥平面ABCD ,则四棱锥P ABCD −外接球的表面积为_____________.【答案】52π【解析】因为四边形ABCD 为等腰梯形,//AB CD ,故AD BC =;因为PA PB =,12AB CD =, PA PB AD ==,43PA AD CD +==,23PA PB AB AD BC =====,故3ADC π∠=,取CD 的中点G ,则G是等腰梯形ABCD 外接圆圆心,设四棱锥P ABCD −外接球的球心为O ,所以O 在平面ABCD 的射影为G ,作PF AB ⊥于F ,则F 为AB 中点,3PF =,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,所以PF ⊥平面ABCD ,而FG ⊂平面ABCD ,所以PF FG ⊥,由PF OG ,可得在平面PAGF 中,作OE PF ⊥,则OG EF d ==,3OE FG ==,由22OP OC =,可得2222OE PE OG GC +=+,即()()2229323d d +−=+,解得1d =,所以9413R =+=,所以四棱锥P ABCD −外接球的表面积为()241352ππ⨯=.三.强化训练1.【2020·黑龙江哈尔滨三中月考】已知三棱锥O ABC −中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC −3O 的表面积为( )A .323πB .16πC .52πD .64π【答案】C【解析】由题意2AB BC ==,ABC 1120=||||sin 32ABC S AB BC ABC ∆∠=︒∠=,1333O ABC ABC V S h h −∆==∴=,又ABC ∆的外接圆的半径222sin 2sin 30oAB r C ===,因此球O 的半径222313R =+=,球的表面积:2452S R ππ==,故选C2.【2020·河北邯郸一中月考】圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( ) A .9:32 B .8:27C .9:22D .9:28【答案】A【解析】设圆锥底面圆的半径为r,圆锥母线长为l ,则侧面积为πrl ,侧面积与底面积的比为2πrl 2lr rπ==,则母线l=2r,圆锥的高为h=223l r r −=,则圆锥的体积为2313πh 33r r π=,设外接球的球心为O,半径为R,截面图如图,则OB=OS=R,OD=h-R=3r R −,BD=r ,在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即()2223R r r R=+−,展开整理得R=2,3r 所以外接球的体积为33344832333393r R r πππ=⨯=,故所求体积比为33393323293rr ππ=,故选A3.【2020·四川泸县四中月考】三棱锥D ABC −的四个顶点都在球O 的球面上,ABC ∆是边长为3的正三角形.若球O 的表面积为16π,则三棱锥D ABC −体积的最大值为( ) A 93B 33C .23D .33【答案】A【解析】由题意得ABC ∆的面积为19333234sin π⨯⨯⨯=,又设ABC ∆的外心为1O , 则1233332AO =⨯=,由2416R ππ=,得2R =,∵1OO ⊥面ABC ,∴11OO =. ∴球心O 在棱锥内部时,棱锥的体积最大,此时三棱锥D ABC −高的最大值为123+=,∴三棱锥D ABC −体积最大值为193933344⨯⨯=,故选A.4.【2020·广东深圳中学期末】在三棱锥P ABC −中, 25PA PB PC === 23AB AC BC ===,则三棱锥P ABC −外接球的体积是( ) A .36π B .125π6C .32π3D .50π【答案】B【解析】由题意,易知三棱锥P ABC −是正三棱锥,取O '为ABC 外接圆的圆心,连结PO ',则PO '⊥平面ABC ,设O 为三棱锥P ABC −外接球的球心.因为23AB AC BC ===,所以31223O A '==,因为25PA PB PC ===224PO PA O A ''=−=,设三棱锥P ABC −外接球的半径为R ,则()2244R R −+=,解得52R =,故三棱锥P ABC −外接球的体积是34125ππ36R =,故选B.5.【2020·甘肃省甘南期末】已知圆柱的上底面圆周经过正三棱锥P ABC −的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC −的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径之比为( ) A .7:4 B .2:1C .3:1D .5:3【答案】A【解析】正三棱锥P ABC −的底面边长为2a ,高为h ,如图所示,则圆柱的高为2h,底面圆半径为332sin3a aπ=,设圆柱的外接球半径为R ,则22163h a R =+,222242216343h a h a h R ==+=+,解得43h a =,此时,23R a =,设正三棱锥P ABC −的外接球的半径为r ,则球心到底面距离为h r −,22332sin 3aOA a π==,由勾股定理得()222233r h r a ⎛⎫=−+ ⎪ ⎪⎝⎭,解得76r a =,故74r R =,故选A.6.【2020·全国高三专题练习】在正方体1111ABCD A B C D −中,E 为棱11A B 上一点,且2AB =,若二面角11B BC E −−为45︒,则四面体11BB C E 的外接球的表面积为( )A .172π B .12π C .9πD .10π【答案】D【解析】连接11B C 交1BC 于O ,则11B O BC ⊥,易知111A B BC ⊥,则1BC ⊥平面1B OE ,所以1BC EO ⊥,从而1B OE ∠为二面角11B BC E −−的平面角,则145B OE ︒∠=.因为2AB =,所以112B E B O ==,故四面体11BB C E 的外接球的表面积为22444102ππ⎛⎫++= ⎪ ⎪⎝⎭,故选D .7.【2020·湖南株洲一中月考】SC 是球O 的直径,A 、B 是该球面上两点,3AB =30ASC BSC ∠=∠=,棱锥S ABC −3O 的表面积为( )A .4πB .8πC .16πD .32π【答案】C【解析】如下图所示,由于SC 为球O 的直径,所以903,0SAC SBC ASC BSC ︒︒∠=∠=∠=∠=,所以12CB CA SC ==,设球O 的半径为R ,连接,OA OB 则OA OB OC AC CB R =====,取AB 的中点D ,连接,OD CD ,又3AB =则234OD CD R ==−S ABC −的高为2h ,又三棱锥O ABC −的高为△ODC 的边DC 上的高,所以三棱锥O ABC −的高为h ,故13S ABC V −=×12 ×3 ×234R − 23h ⨯=2334h R −= ,在△ODC 中有12 234h R − = 2133244R R ⨯− ,故32 =12 R ·23344R −解得2R =,故球O 的表面积为2416R ππ=,故选C.8.【2020·河南南阳中学月考】平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C −−大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为_____. 【答案】20π【解析】由题意,取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C −−的平面角,又由121O E O E ==,连接OE ,在Rt △1O OE 中,则13O O =,在Rt △1O OA 中,12O A =,得5OA =,即球半径为5R OA ==,所以球面积为24S R =π= 20π.9.【2020河北石家庄一中月考】一个圆锥的母线长为2,圆锥的母线与底面的夹角为4π,则圆锥的内切球的表面积为 【答案】24(22)π【解析】作出圆锥截面图如图,母线长为2,圆锥的母线与底面的夹角为4π,∴2设内切球的半径为r ,则利用轴截面,根据等面积可得11222(2222)22r ⨯=⨯++,22r ∴=,∴该圆锥内切球的表面积为224(22)4(22)ππ⨯−=.10.【2020关系北海一中期中】已知正方形ABCD 的边长为22,将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B ACD −,若O 为AC 边的中点,M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,设BN x =,则三棱锥N AMC −的体积取得最大值时,三棱锥N ADC −的内切球的半径为 .【答案】262 【解析】因为正方形ABCD 的边长为24AC =,又平面ABC ⊥平面ACD ,O 为AC 边的中点 BO AC ∴⊥,所以BO ⊥平面ACD ,∴三棱锥N AMC −的体积111()sin 332AMC y f x S NO AC CM ACM NO∆===⨯∠211224(2)2)3223x x x x =⨯⨯⨯−=−+ 2221)x =−+ 即为开口向下,对称轴为1的抛物线.1BN ∴=时,三棱锥N AMC −的体积取得最大值.此时,22215AN DN CN ===+ 122362ADN CDN S S ∆∆==⨯=. 11()33N ADC ADC ADC AND NDC ANC V S NO S S S S r −∆∆∆∆∆=⨯⨯=+++,解得2263r =−。

与球有关的切、接问题(有答案)

与球有关的切、接问题(有答案)

与球有关的切、接问题1.球的表面积公式:S =4πR 2;球的体积公式V =43πR 3 2.与球有关的切、接问题中常见的组合: (1)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE =23a ,CE =33a ,则有R +r =23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a . (2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a 2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a .③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a .(3)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1-AB 1D 1的外接球的球心和正方体ABCD -A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a .②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长). 角度一:正四面体的内切球1.(2015·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π.角度二:直三棱柱的外接球2.(2015·唐山统考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1 C. 2解析:选C 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),∴⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.角度三:正方体的外接球3.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π.答案:43π角度四:四棱锥的外接球4.(2014·大纲卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )B .16πC .9π解析:选A 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD 中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A. [类题通法]“切”“接”问题的处理规律1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[牛刀小试]1.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A .100π C .25π解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π.2.(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )B .4πC .2π解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+22=1,所以V 球=4π3×13=4π3.故选D.3.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 C .2 6 D .23解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3. 4.(2015·山西四校联考)将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A -BCD ,则四面体A -BCD 的外接球的体积为________.解析:设AC 与BD 相交于O ,折起来后仍然有OA =OB =OC =OD ,∴外接球的半径r =32+422=52,从而体积V =4π3×⎝⎛⎭⎫523=125π6. 5.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.解析:设等边三角形的边长为2a ,则V 圆锥=13·πa 2·3a =33πa 3;又R 2=a 2+(3a -R )2,所以R =233a ,故 V 球=4π3·⎝ ⎛⎭⎪⎫233a 3=323π27a 3,则其体积比为932. [高考全国课标卷真题追踪]1.(15课标1理)已知,A B 是球O 的球面上两点,090AOB ∠=,C 为该球面上的动点,若O ABC -三棱锥体积的最大值为36,则球O 的表面积为( C )(A)36π (B)64π (C)144π (D)256π2.(13课标1理)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( A )(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π 3.(12课标理)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( A )(A)2 (B)3 (C)2 (D )24.(12课标文)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( B )(A )6π (B )43π (C )46π (D )63π5.(10新课标理)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( B )(A) 2a π (B) 273a π (C) 2113a π (D) 25a π 6.(10新课标文)设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为( B )(A )23a π (B )26a π (C )212a π (D )224a π 7.(07新课标文)已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,2AC r =,则球的体积与三棱锥体积之比是(D) A.π B.2πC.3π D.4π 8.(13新课标2文)已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为24π。

(经典)高考球的内切和外接常考类型全归纳

(经典)高考球的内切和外接常考类型全归纳

多面体与球的内切和外接常见类型归纳在平常教学中,立体几何的多面体与球的位置关系,是培养学生的立体感,空间想象能力的好教材。

可是学生在两个几何体的组合后,往往感到无从下手。

针对这种情况,笔者把日常教学中有关这方面的习题加以总结和归类如下:一.正四面体与球如图所示,设正四面体的棱长为a ,r 为内切球的半径,R 为外接球的半径。

则高SE=32a,斜高SD=43a ,OE=r=SE-SO ,又SD=BD,BD=SE-OE,则在2222)(OE SE BD EB OE OEB -==+∆中,直角r=a 126。

R=SO=OB=a 46 特征分析:1. 由于正四面体是一个中心对成图形,所以它的内切球与外接球的球心为同一个。

2. R=3r. r=a 126R=a 46。

此结论可以记忆。

例题一。

1、一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) 分析:借助结论,R=a 46=462=23,所以S=42R π=3π。

2、球的内接正四面体又有一个内切球,则大球与小球的表面积之比是( ) 分析:借助R=3r ,答案为9:1。

二、特殊三棱锥与球四个面都是直角三角形的三棱锥。

SA AB BC ABC ABC ⊥⊥为直角三角形,面, 因为SA ⊥AC ,SB ⊥BC ,球心落在SC 的中点处。

所以R=2SC 。

三.正方体与球。

1.正方体的外接球即正方体的8个定点都在球面上。

关键找出截面图:ABCD 为正方体的体对角面。

设正方体的边长为a ,则AB=2a ,BD=2R ,AD=a ,R=23a 。

2. 正方体的内切球。

(1)与正方体的各面相 切。

如图:ABCD 为正方 体的平行侧面的正方形。

R=2a(2)与正方体的各棱相切。

如图:大圆是正方形ABCD 的外接圆。

AB=CD=a , R=22a 。

3. 在正方体以一个顶点为交点的三条棱组成的三棱锥,特征是:三棱锥的三条侧棱互相垂直且相等,它的外接球可把三棱锥补形成正方体的外接球,再求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多面体与球切、接的问题(一)
纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见.首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.
1球与柱体的切接
规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.
1.1球与正方体
如图所示,正方体ABCD -A 1B 1C 1D 1,设正方体的棱长为a ,E ,F ,H ,G 为棱的中点,O
为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则
a
OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则2
GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R a '==
.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.
(1)正方体的内切球,如图1.
位置关系:正方体的六个面都与一个球都相切,正方体中
心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.
(2)正方体的外接球,如图2.
位置关系:正方体的八个顶点在同一个球面上;正方体中
心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.
(3)正方体的棱切球,如图3.位置关系:正方体的十二条棱与球面相切,正方体中心与
球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.
例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是
棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为(

A .2
2B .1C .2
12+D 思路分析:由题意推出,球为正方体的外接球.平面11AA DD 截面所得圆面的半径122
AD R ==得知直线EF 被球O 截得的线段就是球的截面圆的直径.
1.2球与长方体
例2自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.
思路分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.
例3(全国卷I高考题)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().
A.16π
B.20π
C.24π
D.32π
思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.
2球与锥体的切接
规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.
2.1正四面体与球的切接问题
(1)正四面体的内切球,如图4.位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;
数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有
6
4
3
R h a
==;(可
以利用体积桥证明)
(2)正四面体的外接球,如图5.
位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;
数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有436R h a ==;
(可用正四面体高h 减去内切球的半径得到)
(3)正四面体的棱切球,如图6.
位置关系:正四面体的六条棱与球面相切,正四面体
的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有
6432,.3
R h a h a ===
例4设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.
思路分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.
2.2其它棱锥与球的切接问题
球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球
面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.
球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.
例5正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.
思路分析:此题求解的关键是搞清球的半径与正三棱锥的高及底面边长的关系,由等体积法可得:ABC O PBC O PAC O PAB O ABC P V V V V V -----+++=,得到263
3232-=+=R .
例6积是.
思路分析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法.三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,由侧棱长均相等,所以可构造正方体模型.
点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中计算问题,这是解决几何体与球切接问题常用的方法.
例7【2012年新课标高考卷】已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 是球O 的直径,且2SC =;则此棱锥的体积为(

A.6
B.6
C.3
D.2
思路分析:ABC ∆的外接圆是球面的一个小圆,由已知可得其半径,从而得到点O 到面ABC 的距离.由SC 为球O 的直径⇒点S 到面ABC 的距离即可求得棱锥的体积.。

相关文档
最新文档