广东省佛山市2019-2020学年上学期普通高中高三教学质量检测(一)数学理科试题(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省佛山市高考数学一模试卷(理科)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)在复平面内,复数对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
2.(5分)已知集合A={x|x2﹣x﹣2<0},B={x||x|>1},则A∩B=()A.(﹣2,﹣1)B.(﹣1,1)C.(0,1)D.(1,2)
3.(5分)已知x,y∈R,且x>y>0,则()
A.cos x﹣cos y>0 B.cos x+cos y>0
C.lnx﹣lny>0 D.lnx+lny>0
4.(5分)函数f(x)的图象向左平移一个单位长度,所得图象与y=e x关于y轴对称,则f(x)=()
A.e﹣x+1B.e﹣x﹣1C.e x﹣1D.e x+1
5.(5分)希尔宾斯基三角形是一种分形,由波兰数学家希尔宾斯基在1915年提出,先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为希尔宾斯基三角形).在如图第3个大正三角形中随机取点,则落在黑色区域的概率为()
A.B.C.D.
6.(5分)已知等比数列{a n}满足a1﹣a2=36,a1﹣a3=24,则使得a1a2…a n取得最大值的n
为()
A.3 B.4 C.5 D.6
7.(5分)已知α为锐角,cosα=,则tan(+)=()
A.B.C.2 D.3
8.(5分)已知双曲线C:,O为坐标原点,直线x=a与双曲线C的两条渐近线交于A,B两点,若△OAB是边长为2的等边三角形,则双曲线C的方程为()A.﹣y2=1 B.x2=1
C.=1 D.=1
9.(5分)地球上的风能取之不尽,用之不竭.风能是清洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,在2014年累计装机容量就突破了100GW,达到114.6GW,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据以上信息,正确的统计结论是()
A.截止到2015年中国累计装机容量达到峰值
B.10年来全球新增装机容量连年攀升
C.10年来中国新增装机容量平均超过20GW
D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过
10.(5分)已知函数f(x)=+2x+1,且f(a2)+f(2a)>3,则a的取值范围是()A.(﹣∞,﹣3)∪(1,+∞)B.(﹣∞,﹣2)∪(0,+∞)
C.(﹣2,0)D.(﹣1,3)
11.(5分)已知函数f(x)=sin x+sin(πx),现给出如下结论:
①f(x)是奇函数;②f(x)是周期函数;③f(x)在区间(0,π)上有三个零点;
④f(x)的最大值为2.
其中正确结论的个数为()
A.1 B.2 C.3 D.4
12.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长为4,底面边长为2,用一个平面截此棱柱,与侧棱AA1,BB1,CC1分别交于点M,N,Q,若△MNQ为直角三角形,则△MNQ面积的最大值为()
A.3 B.C.D.3
二、填空题:本大题共4小题,每小题5分,满分20分.
13.(5分)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)
14.(5分)在△ABC中,AB=2,AC=3,P是边BC的垂直平分线上一点,则•=.
15.(5分)函数f(x)=lnx和g(x)=ax2﹣x的图象有公共点P,且在点P处的切线相同,则这条切线方程为.
16.(5分)在平面直角坐标系xOy中,对曲线C上任意一点P,P到直线x+1=0的距离与
该点到点O的距离之和等于2,则曲线C与y轴的交点坐标是;设点A(﹣,0),则|PO|+|PA|的最小值为.
三、解答题:本大题共5小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.
17.(12分)绿水青山就是金山银山.近年来,祖国各地依托本地自然资源,打造旅游产业,旅游业正蓬勃发展.景区与游客都应树立尊重自然、顺应自然、保护自然的生态文明理念,合力使旅游市场走上规范有序且可持续的发展轨道.某景区有一个自愿消费的项目:在参观某特色景点入口处会为每位游客拍一张与景点的合影,参观后,在景点出口处会将刚拍下的照片打印出来,游客可自由选择是否带走照片,若带走照片则需支付20元,没有被带走的照片会收集起来统一销毁.该项目运营一段时间后,统计出平均只有三成的游客会选择带走照片.为改善运营状况,该项目组就照片收费与游客消费意愿关系作了市场调研,发现收费与消费意愿有较强的线性相关性,并统计出在原有的基础上,价格每下调1元,游客选择带走照片的可能性平均增加0.05,假设平均每天约有5000人参观该特色景点,每张照片的综合成本为5元,假设每个游客是否购买照片相互独立.(1)若调整为支付10元就可带走照片,该项目每天的平均利润比调整前多还是少?
(2)要使每天的平均利润达到最大值,应如何定价?
18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知a sin B=b sin(A﹣).(1)求A;
(2)D是线段BC上的点,若AD=BD=2,CD=3,求△ADC的面积.
19.(12分)已知椭圆C:+=1(a>b>0)的离心率为,点A(1,)在椭圆C
上,直线l1过椭圆C的有交点与上顶点,动直线l2:y=kx与椭圆C交于M、N两点,交l1于P点.
(1)求椭圆C的方程;