立体几何中体积与距离的问题
用等体积法解点到球体的距离和体积立体几何题
用等体积法解点到球体的距离和体积立体几何题等体积法是一种解决与球体相关的立体几何题目的有效方法。
通过使用这种方法,我们能够快速而准确地计算从点到球体的距离以及球体的体积。
1. 点到球体的距离点到球体的距离是指从一个点到球体表面上最近点的距离。
使用等体积法,我们可以通过以下步骤来计算点到球体的距离:1. 确定球体的半径(r)和球心坐标(a,b,c)。
2. 设点的坐标为(x,y,z)。
3. 计算点到球心的距离,即距离公式为:`d = sqrt((x-a)^2 + (y-b)^2 + (z-c)^2)`4. 如果这个距离小于等于球体的半径,点在或在球体内,距离为0;如果距离大于球体的半径,点在球体外,距离为距离与半径之差。
例如,如果给定一个球体的半径为5,球心坐标为(2,3,4),点的坐标为(5,6,7),我们可以通过计算以下公式来得到点到球体的距离:d = sqrt((5-2)^2 + (6-3)^2 + (7-4)^2)= sqrt(3^2 + 3^2 + 3^2)= sqrt(27)≈ 5.196所以,点到球体的距离约为5.196。
2. 球体的体积球体的体积是指球体所占据的空间大小。
使用等体积法,我们可以通过以下步骤来计算球体的体积:1. 确定球体的半径(r)。
2. 根据体积公式`V = (4/3) * π * r^3`,计算球体的体积。
例如,如果给定一个球体的半径为5,我们可以通过计算以下公式来得到球体的体积:V = (4/3) * π * 5^3≈ 523.599所以,球体的体积约为523.599。
使用等体积法可以大大简化解决点到球体的距离和体积问题的过程。
通过明确定义的步骤和准确的计算,我们可以轻松地求解这些几何问题。
暑假立体几何中的距离问题
立体几何中的距离问题【要点精讲】1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。
其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P在该平面上的射影为P′,则线段PP′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。
○2等体积法。
直线及平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。
求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。
异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定)点到面的距离的做题过程中思考的几个方面: ①直接作面的垂线求解;②观察点在及面平行的直线上,转化点的位置求解; ③观察点在及面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。
用等体积法解点到立方体的距离和体积立体几何题
用等体积法解点到立方体的距离和体积立体几何题本文将介绍如何使用等体积法解决点到立方体的距离和体积相关的立体几何题。
1. 点到立方体的距离要求解点到立方体的距离,我们可以使用等体积法来求解。
具体步骤如下:1. 给定立方体的边长为a,点的坐标为(x, y, z)。
2. 首先计算点到立方体各个面的距离:- 点到立方体底面的距离为z。
- 点到立方体上、下、左、右侧面的距离分别为a-x、x、a-y、y。
- 点到立方体前、后面的距离分别为a-z、z。
3. 点到立方体的最短距离即为以上计算结果中的最小值。
通过以上步骤,我们可以求解点到立方体的距离。
2. 立方体的体积要求解立方体的体积,可以使用等体积法进行计算。
具体步骤如下:1. 给定立方体的边长为a。
2. 立方体的体积计算公式为 V = a^3。
通过以上步骤,我们可以求解立方体的体积。
3. 样例分析3.1 点到立方体的距离假设给定一个边长为5的立方体,点的坐标为(2, 3, 4)。
根据上述步骤计算:- 点到底面的距离为4。
- 点到上、下、左、右侧面的距离分别为3、2、2、2。
- 点到前、后面的距离分别为1、1。
所以,点到立方体的最短距离为1。
3.2 立方体的体积假设给定一个边长为5的立方体。
根据上述步骤计算:- 立方体的体积为 5^3 = 125。
通过以上样例分析,我们可以更好地理解使用等体积法解决点到立方体的距离和体积的立体几何题。
4. 结论使用等体积法可以解决点到立方体的距离和体积的立体几何题。
其中,点到立方体的距离可以通过计算点到立方体各个面的距离,并取最小值来得出。
立方体的体积可以直接使用边长的立方来计算。
希望本文对您理解等体积法解决相关立体几何问题有所帮助!。
用等体积法解点到棱锥的距离和体积立体几何题
用等体积法解点到棱锥的距离和体积立体几何题问题描述我们有一个棱锥,其中一条棱作为底面,顶点在棱的上方。
现在我们想要求出一个点到这个棱锥的距离以及棱锥的体积。
我们可以使用等体积法来解决这个问题。
等体积法等体积法是一种解决几何问题的方法,它基于一个简单的原理:如果两个几何体具有相同的体积,那么它们在某些方面是相等的。
在本题中,我们可以通过将原来的棱锥"切割"成两个几何体,一个是顶部的锥体,另一个是底部的柱体,来求解问题。
点到棱的距离我们首先来求解点到棱的距离。
假设棱的两个端点分别为A和B,我们要求解的点为C。
通过等体积法,我们可以将棱锥切割成底部的柱体和顶部的锥体。
首先,我们可以连接点C与底面的两个端点A和B,形成一个三角形ACB。
然后,我们可以求解这个三角形的面积,将其乘以棱AB的长度,再除以ACB的底边AB的长度,就可以得到点C到棱AB的距离。
具体的计算公式如下:点到棱的距离 = 2 * 三角形ACB的面积 / AB的长度棱锥的体积接下来,我们来求解棱锥的体积。
通过等体积法,我们可以将棱锥切割成底部的柱体和顶部的锥体。
首先,我们可以计算底部柱体的体积。
底部柱体的高度等于点到底面的距离,底面的面积等于底边AB的长度乘以棱锥的底面积。
因此,底部柱体的体积等于底面的面积乘以高度。
接着,我们计算顶部锥体的体积。
顶部锥体的高度等于点到棱AB的距离,底面的面积等于棱锥的底面积。
因此,顶部锥体的体积等于底面的面积乘以高度再除以3。
最后,将底部柱体的体积和顶部锥体的体积相加,就可以得到棱锥的总体积。
具体的计算公式如下:棱锥的体积 = 底面的面积 * 点到底面的距离 + 底面的面积 * 点到棱的距离 / 3示例计算假设底面的长度为10,点到底面的距离为5,点到棱的距离为3,棱锥的底面积为25。
首先,计算点到棱的距离:点到棱的距离 = 2 * 三角形ACB的面积 / AB的长度= 2 * ( 1/2 * AB的长度 * 点到底面的距离) / AB的长度= 点到底面的距离= 3然后,计算棱锥的体积:棱锥的体积 = 底面的面积 * 点到底面的距离 + 底面的面积 * 点到棱的距离 / 3= 25 * 5 + 25 * 3 / 3= 125 + 75 / 3= 125 + 25= 150因此,点到棱的距离为3,棱锥的体积为150。
用等体积法解点到平面的距离和体积立体几何题
用等体积法解点到平面的距离和体积立体几何题体积立体几何问题是许多数学和工程领域经常遇到的问题之一。
解决这类问题的一种方法是使用等体积法,它可以帮助我们计算点到平面的距离和体积等相关参数。
1. 问题描述假设有一个点和一个平面,我们想要计算点到该平面的距离和体积。
下面是一个简单的解题步骤:- 第一步,我们首先需要确定平面的方程。
平面的方程通常可以通过已知的点或者法向量来确定。
- 第二步,通过点到平面的距离公式,我们可以计算出点到平面的距离。
距离公式为:$$d = \left| \frac{{ax + by + cz + d}}{{\sqrt{a^2 + b^2 + c^2}}}\right|$$其中,$(x, y, z)$ 是点的坐标,$ax + by + cz + d$ 是平面的方程,$(a, b, c)$ 是平面的法向量,$d$ 是平面的常数项。
- 第三步,如果我们需要计算点在平面上的投影点的坐标,我们可以使用点到平面的距离公式的推导过程。
对于平面的方程 $ax+ by + cz + d = 0$,我们可以将点到平面的距离公式推导为:$$P = \left( x-\frac{{a(ax+by+cz+d)}}{{a^2+b^2+c^2}}, y-\frac{{b(ax+by+cz+d)}}{{a^2+b^2+c^2}}, z-\frac{{c(ax+by+cz+d)}}{{a^2+b^2+c^2}} \right)$$- 第四步,如果我们需要计算体积,我们可以将问题转化为计算封闭图形的体积。
具体的方法会根据所涉及的几何形状而有所不同。
2. 示例问题以下是一个例子,展示了如何使用等体积法解决点到平面的距离和体积问题:问题:已知平面的方程为 $2x - 3y + 4z - 5 = 0$,点的坐标为$(1, 2, 3)$,求点到该平面的距离。
解答:- 根据距离公式,代入点的坐标和平面的方程,可以计算出点到平面的距离:$$d = \left| \frac{{2 \cdot 1 - 3 \cdot 2 + 4 \cdot 3 -5}}{{\sqrt{{2^2 + (-3)^2 + 4^2}}}} \right| = \left| \frac{1}{\sqrt{29}} \right|$$因此,点到平面的距离为 $d = \frac{1}{\sqrt{29}}$。
立体几何大题中有关体积、面积和距离的求法(教师版)
立体几何大题中有关体积、面积和距离的求法(教师版)立体几何大题中有关体积、面积和距离的求法知识点梳理1.柱、锥、台和球的侧面积和体积圆柱:侧面积为$S_\text{侧}=2\pi rh$,体积为$V=\pir^2h$圆锥:侧面积为$S_\text{侧}=\pi rl$,体积为$V=\frac{1}{3}\pi r^2h$圆台:侧面积为$S_\text{侧}=\pi(r_1+r_2)l$,体积为$V=\frac{1}{3}\pi h(r_1^2+r_2^2+r_1r_2)$直棱柱、正棱锥、正棱台、球的表面积和体积公式不再赘述。
2.几何体的表面积直棱柱、棱锥、棱台的表面积就是各面面积之和。
圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和。
一公式法例1.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为。
解:因为正三棱柱的侧面展开图是边长分别为2和4的矩形,所以有以下两种情况:①:2是下底面的周长,4是三棱柱的高,此时下底面的边长为$\frac{2}{\sqrt{3}}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。
②:4是下底面的周长,2是三棱柱的高,此时下底面的边长为$\sqrt{3}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。
所以正三棱柱的体积为$\frac{4}{3}\sqrt{3}$。
例2.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为()。
解:由题意可知此几何体是一个四棱锥,由图可知底面两条对角线的长分别为2和3,底面边长为2,所以底面菱形的面积为$S=\frac{3}{2}$,侧棱为$\sqrt{2^2+3^2}= \sqrt{13}$,则棱锥的高$h=\sqrt{3^2-(\frac{\sqrt{13}}{2})^2}=\frac{\sqrt{35}}{2}$。
高中数学立体几何空间距离问题
立体几何空间距离问题空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离.●难点磁场(★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点.求:(1)Q到BD的距离;(2)P到平面BQD的距离.P为RT△ABC所在平面α外一点,∠ACB=90°(如图)(1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角(2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离●案例探究[例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC 的中点,点O 是原正方形的中心,求:(1)EF 的长;(2)折起后∠EOF 的大小.命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目.知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直.技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单.解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF∴∠EOF =120°[例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离.命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采用化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC 1,在正方体AC 1中,∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C ,∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离.连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离.在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33.解法二:如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1,∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x ∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1)∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33.●锦囊妙计空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离.(6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离.七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点.求点到平面的距离:(1)直接法,即直接由点作垂线,求垂线段的长.(2)转移法,转化成求另一点到该平面的距离.(3)体积法.求异面直线的距离:(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.●歼灭难点训练 一、选择题1.(★★★★★)正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )21 D. 23C. B.1 22A.2.(★★★★)三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A.10B.11C.2.6D.2.4二、填空题3.(★★★★)如左下图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________.4.(★★★★)如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C 的度数为30°,那么EF与平面ABCD的距离为_________.三、解答题5.(★★★★★)在长方体ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如图:(1)求证:平面A1BC1∥平面ACD1;(2)求(1)中两个平行平面间的距离;(3)求点B1到平面A1BC1的距离.6.(★★★★★)已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:(1)截面EAC的面积;(2)异面直线A1B1与AC之间的距离;(3)三棱锥B1—EAC的体积.7.(★★★★)如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.(1)求点A到平面B1BCC1的距离;(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.8.(★★★★★)如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a .(1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36.参考答案 难点磁场解:(1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b , ∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c∴QE =22222ba b a c ++∴Q 到BD 距离为22222ba b a c ++.(2)解法一:∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离.在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二:设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =22222)(ba cb a abc S AQS BQDABD ++==⋅∆∆歼灭难点训练一、1.解析:过点M 作MM ′⊥EF ,则MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线, ∴∠EBM ′=45°,BM ′=2,从而MN =22 答案:A2.解析:交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案:C二、3.解析:以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB ,同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案:22a4.解析:显然∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD .∴FG 为EF 与平面ABCD 的距离,即FG =2a . 答案:2a三、5.(1)证明:由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1(2)解:设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离.易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S 111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112. (3)解:由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于616112. 6.解:(1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形 ∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45° 又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a ∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a32422322311a a a V EAC B =⋅⋅=-7.解:(1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中, ∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离 ∴A 1N =221a =又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a ∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形.∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90° ∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件. 8.解:(1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离就是直线AD 与平面PBC 间的距离. 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求. 在等腰直角三角形P AB 中,P A =AB =a ∴AE =22a(2)作CM ∥AB ,由已知cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36 下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F .[学法指导]立体几何中的策略思想及方法近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.一、领悟解题的基本策略思想高考改革稳中有变.运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅.二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面.这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解.。
立体几何中的角度、体积、距离问题
第02讲 玩转立体几何中的角度、体积、距离问题【学习目标】1.掌握各种角的定义,弄清异面直线所成的角与两直线所成的角,二面角与二面角的平面角,直线与平面所成的角和斜线与平面所成的角,二面角与两平面所成的角的联系与区别,弄清他们各自的取值范围。
2.细心体会求空间角的转化和数形结合思想。
3.掌握各种距离和距离的求解方法.【基础知识】知识点1.求点线、点面、线面距离的方法(1)若P 是平面α外一点,a 是平面α内的一条直线,过P 作平面α的垂线PO ,O 为垂足,过O 作OA ⊥a ,连接P A ,则以P A ⊥a .则线段P A 的长即为P 点到直线a 的距离(如图所示).(2)一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离叫直线与平面的距离.(3)求点面距离的常用方法:①直接过点作面的垂线,求垂线段的长,通常要借助于某个直角三角形来求解.②转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解.③体积法:利用三棱锥的特征转换位置来求解.知识点2.异面直线所成角的常用方法求异面直线所成角的一般步骤:(1)找(或作出)异面直线所成的角——用平移法,若题设中有中点,常考虑中位线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设(2)所求角大小为θ.若090θ︒<≤︒,则θ即为所求;若90180θ︒<<︒,则180θ︒-即为所求.知识点3.直线与平面所成角的常用方法求平面的斜线与平面所成的角的一般步骤(1)确定斜线与平面的交点(斜足);(2)通过斜线上除斜足以外的某一点作平面的垂线,连接垂足和斜足即为斜线在平面上的射影,则斜线和射影所成的锐角即为所求的角;(3)求解由斜线、垂线、射影构成的直角三角形.知识点4.作二面角的三种常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图①,则∠AOB 为二面角α-l -β的平面角.(2)垂直法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图②,∠AOB 为二面角α-l -β的平面角.(3)垂线法:过二面角的一个面内异于棱上的一点A 向另一个平面作垂线,垂足为B ,由点B 向二面角的棱作垂线,垂足为O ,连接AO ,则AOB ∠为二面角的平面角或其补角.如图③,AOB ∠为二面角l αβ--的平面角.知识点5.求体积的常用方法选择合适的底面,再利用体积公式求解.【考点剖析】考点一:异面直线所成的角例1.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若2==AC BD ,且AC 与BD 所成的角为60°,则EG 的长为()A .1或2B .2或3C .1或3D .12或32考点二:线面角例2.如图,在三棱柱ABC A B C '''-中,底面ABC 是正三角形,AA '⊥底面ABC ,且1AB =,2AA '=,则直线BC '与平面ABB A ''所成角的正弦值为______.考点三:二面角例3.在四棱锥P ABCD -中,底面ABCD 是菱形,60ABC ∠=︒,PA ⊥平面ABCD ,2PA AB ==.(1)求证:PC BD ⊥;(2)求二面角P CD A --的正弦值.考点四:距离问题例4.如图,在直三棱柱111ABC A B C -中,1,,22AB BC AA AC AB BC ⊥===,E ,F 分别是11,AC AB 的中点.(1)证明:AE ∥平面11B C F .(2)求点C 到平面11B C F 的距离.考点五:体积问题例5.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点F 为线段PC 上的点,过A ,D ,F 三点的平面与PB 交于点E .(1)证明://EF 平面ABCD ;(2)若E 为PB 中点,且2AB PA ==,求四棱锥P AEFD -的体积.【真题演练】1.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π62.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( ) A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角1.线面平行垂直的判定;2.线面角,异面直线所成角3.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤4.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A 235D 7 5.已知正方体1111ABCD ABCD -中,E 、F 分别为11、BB CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为____________.6.如下图,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2SA SD ==,3AB =. (1)求SA 与BC 所成角的余弦值;(2)求证:AB SD ⊥.7.如图,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =. (1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.8.如图,在圆锥PO 中,已知2PO O 的直径2AB =,点C 在AB 上,且30CAB ∠=,D 为AC 的中点.(I )证明:AC ⊥平面POD ;(II )求直线OC 和平面PAC 所成角的正弦值.9.如图,P 是边长为1的正六边形ABCDEF 所在平面外一点,1PA =,P 在平面ABC 内的射影为BF 的中点O .(Ⅰ)证明PA ⊥BF ;(Ⅰ)求面APB 与面DPB 所成二面角的大小的余弦值.10.在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA PD =.(1)判断M 点在PB 的位置并说明理由;(2)记直线DM 与平面P AC 的交点为K ,求DK KM的值;(3)若异面直线CM 与AP M CD A --的平面角的正切值. 11.如图,在长方体1111ABCD A B C D -中,AD =1,12AB AA ==,H ,F 分别是棱11C D ,1BB 的中点.(1)判断直线HF 与平面11A BCD 的位置关系,并证明你的结论;(2)求直线HF 与平面ABCD 所成角的正弦值;(3)在线段HF 上是否存在一点Q ,使得点Q 到平面11A BCD ,若存在,求出HQ HF的值;若不存在,说明理由. 【过关检测】1.在长方体1111ABCD A B C D -中,12AB AA ==,3AD =,点E 、F 分别是棱AB 、1AA 的中点,E 、F 、1C ∈平面α,直线11A D 平面P α=,则直线BP 与直线1CD 所成角的余弦值为()A C 2.在正方体1111ABCD ABCD -中,E ,F 分别为棱AD ,11A B 的中点,则异面直线EF 与1CD 夹角的余弦值为()A D3.如图所示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=,且2PA PB AB ===,=PC 则PC 与平面P AB 所成角的余弦值等于()A B 4.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若2==AC BD ,且AC 与BD 所成的角为60°,则EG 的长为()A.1.1.125.在棱长为1的正方体1111ABCD A B C D -中,O 为正方形1111D C B A 的中心,则下列结论错误的是() A .BO AC ⊥B .BO ∥平面1ACDC .点B 到平面1ACD D .直线BO 与直线1AD 的夹角为3π 6.在正方体1111ABCD A B C D -中,,,E F G 分别为11,,BC CC BB 的中点,则下列结论中正确的是() A .1D D AF ⊥B .二面角F AEC --的正切值为2C .异面直线1A G 与EFD .点G 到平面AEF 的距离是点C 到平面AEF 的距离的2倍7.如图,AB 是半球的直径,O 为球心,4,,AB M N =依次是半圆AB 上的两个三等分点,P 是半球面上一点,且PN MB ⊥,(1)证明:平面PBM ⊥平面PON ;(2)若点P 在底面圆内的射影恰在BM 上,求二面角--A PB N 的余弦值.8.已知平面四边形ABCD ,2AB AD ==,60BAD ∠=︒,30BCD ∠=︒,现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,此时AD CD ⊥,点P 为线段AD 的中点.(1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的正弦值;(3)在(2)的条件下,求二面角P BM D --的平面角的余弦值.9.已知四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)当1PD =,BD =PB 与AD 所成角的余弦值;10.已知四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)已知1PD =,(Ⅰ)当BD PB 与AD 所成角的余弦值;(Ⅰ)当直线PB 与平面ABCD 所成的角为45︒时,求四棱锥P ABCD -的体积.11.在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,12BB =.(1)求异面直线11B C 与1A C 所成角正切值的大小;(2)求点1B 与平面1A BC 的距离.第02讲 玩转立体几何中的角度、体积、距离问题【学习目标】1.掌握各种角的定义,弄清异面直线所成的角与两直线所成的角,二面角与二面角的平面角,直线与平面所成的角和斜线与平面所成的角,二面角与两平面所成的角的联系与区别,弄清他们各自的取值范围。
立体几何的最值问题
立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。
在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。
本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。
解决位置关系问题需要运用空间想象和逻辑推理。
在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。
2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。
在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。
3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。
计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。
4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。
解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。
5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。
解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。
6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。
解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。
7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。
解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。
专题38 立体几何中的距离、截面、折叠问题(解析版)
结合图1可知, 为 中点,故 ,从而
所以 ,所以二面角 的平面角的余弦值为 .
向量法:以 点为原点,建立空间直角坐标系 如图所示,
则 , , ,所以 ,
设 为平面 的法向量,则 ,即 ,
解得 ,令 ,得 ,由(Ⅰ)知, 为平面 的一个法向量,
所以 ,即二面角 的平面角的余弦值为 .
2、平面外一点P到平面α的距离:如图,已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点,过点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P到平面α的距离PQ= = =
基本题型:
1.(多选)已知正方体ABCD-A1B1C1D1的棱长为1,点E,O分别是A1B1,A1C1的中点,点P在正方体内部且满足 = + + ,则下列说法正确的是()
【解析二】由题意可知,该平面与在正方体的截面为对边平行的六边形,如图所示,则截面面积为
所以当 时,
7.(2017新课标Ⅰ)如图,圆形纸片的圆心为 ,半径为5 cm,该纸片上的等边三角形 的中心为 . 、 、 为圆 上的点, , , 分别是以 , , 为底边的等腰三角形。沿虚线剪开后,分别以 , , 为折痕折起 , , ,使得 、 、 重合,得到三棱锥。当 的边长变化时,所得三棱锥体积(单位: )的最大值为_______。
所以 , , , .
得 , .
设平面 的法向量 ,平面 的法向量 ,
平面 与平面 夹角为 ,则 ,得 ,取 ,
,得 ,取 ,从而 ,
即平面 与平面 夹角的余弦值为 .
9.(2015浙江)如图,已知 , 是 的中点,沿直线 将 翻折成 ,所成二面角 的平面角为 ,则
10.(2012浙江)已知矩形 , , .将 沿矩形的对角线 所在的直线进行翻折,在翻折过程中,
立体几何第三讲 空间几何体得最值问题
分清定量与变量,然后根据变量的取值情况,利用函数法或平面几何的相关结论判断相应的
最值.如该题中确定三棱锥底面的面积最值是关键.
【玩转跟踪】在棱长为 1 的正方体 ABCD A1B1C1D1 中,点 P1, P2 分别是线段 AB 、BD1(不
包括端点)上的动点,且线段 P1P2 平行于 平面 A1 ADD1 ,则四面体 P1P2 AB 的体积的最大值
锥 P-AEF 的底面积和高,高为定值时,底面积最大,则体积最大.
【解析】因为 PA 平面 ABC, BC 平面 ABC,所以 PABC 又因为 BCAC, PA AC A ,所以 BC 平面 PAC,又 AF 平面 PAC,所以 BCAF , 又 AFPC, PC BC C ,所以 AF 平面 PBC,即 AFEF 。EF 是 AE 在平面 PBC 上的 射影,因为 AEPB ,所以 EFPB ,即 PE 平面 AEF。在三棱锥 P AEF 中, AP AB 2, AEPB ,
5
.
5
又 P 在 BD 上运动,且当 P 运动到点 O 时,PQ 最小,等于 OQ 的长为 2 5 ,也就是异面直 5
线 BD 和 SC 的公垂线段的长.故选 B. 2.几何体表面上的最短距离问题
【例 2】正三棱柱 ABC—A1B1C1 中,各棱长均为 2,M 为 AA1 中点,N 为 BC 的中点,则 在棱柱的表面上从点 M 到点 N 的最短距离是多少?并求之.
又∵ 0<α+β<π,∴(α+β)max=π-arctan 2 ,(α+β)min=π-arctan2 2 .
【迁移运用】
1.【西藏日喀则一中高三 10 月检测】已知正三C 的距离为1,点 是线段 的中点,过点 作球 的截面,则截面面
用等体积法解点到棱柱的距离和体积立体几何题
用等体积法解点到棱柱的距离和体积立体几何题引言本文旨在介绍如何使用等体积法来解决点到棱柱的距离和体积问题。
等体积法是一种几何问题的解决方法,通过利用体积相等的性质,可以简化计算过程并得出准确的结果。
解决点到棱柱的距离问题如果我们需要计算一个点到棱柱的距离,可以使用等体积法来简化计算过程。
1. 将棱柱视为一个立方体,仅保留与给定点垂直的一面,使其成为两个三角形和一个矩形的组合。
2. 计算这两个三角形的面积和矩形的面积,并将其相加得到总体积。
3. 找到与给定点所在垂直线相交的位置,使该点垂直距离棱柱最小。
4. 计算该位置与棱柱底面的垂直距离,即为点到棱柱的最小距离。
这种方法的关键在于将棱柱转化为一个立方体,从而简化计算过程。
通过计算体积,我们可以找到垂直距离最小的位置,从而得出点到棱柱的最小距离。
解决体积立体几何题等体积法也可以应用于解决体积立体几何题,例如计算棱柱的体积。
下面是一个简单的方法:1. 将棱柱视为一个立方体,选择一个基准面作为一个单元体积。
2. 计算这个基准面的面积,并乘以棱柱的高度来得到一个单元体积。
3. 计算整个棱柱包含的基准面的个数,即为棱柱的体积。
同样,这种方法利用了体积相等的性质,将复杂的立体几何题简化为计算基准面的面积和个数的问题。
结论等体积法是一种简化几何计算过程的有效方法。
通过利用体积相等的性质,我们能够解决点到棱柱的距离和体积立体几何题。
这种方法的优势在于简化计算过程,减少了可能出现的错误,并得出准确的结果。
请注意,本文介绍的方法仅适用于简单的棱柱问题,并且必须在进行计算之前确认问题的前提条件。
在解决更复杂的几何问题时,可能需要使用其他方法或结合多种方法以获得准确的结果。
用等体积法解点到面的距离和体积立体几何题
用等体积法解点到面的距离和体积立体几何题在每年的高考中,立体几何是一个重要考查对象。
解决立体几何问题需要我们具备看图、读图、绘图能力、转化能力及空间想象能力。
然而,许多同学在研究时感到困难和麻烦,导致在高考中失分较多。
近年来的高考中,求点到面的距离和体积的问题经常被考查,有时借助常规方法并不能轻松地获得结果。
使用等体积法则可以解决这些问题,给你一种“柳暗花明又一村”的感觉。
一)用等体积法求点到平面的距离在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动。
要证明D1E⊥AD1,并求出当E为AB 的中点时,点E到面ACD1的距离。
解:设点E到平面ACD1的距离为h,在ΔACD1中,AD1=2,AC=CD1=5,故SΔACD1=1/2×2×5=5.又由长方体ABCD-A1B1C1D1的性质可知,SΔADE=SΔBCE=SΔAEB=SΔCDE=1,故VABCD1=4VΔADE=4VΔBCE=4VΔAEB=4VΔCDE=4.因此,VABCD1=4/3πh³,即h=13/3.二)求二面角大小已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD 所成的二面角为120.要求点P到平面ABCD的距离和面APB 与面CPB所成二面角的大小。
解:(Ⅰ)取AD的中点E,连结PE,BE,由ΔPAD为等边三角形可知PE⊥AD。
又因为PB⊥AD,所以AD⊥平面PBE。
因此,AD⊥BE,且∠PEB为平面PAD与平面ABCD 所成二面角的平面角,即∠PEB=120°。
设点P到平面ABCD 的距离为h,则VABCD=VABE,即h=AE×BE×PE×sin120°/2=AE×BE/2=3/2.Ⅱ)略。
C1DE的体积。
Ⅰ)解:∠EAC=45°,∵EAC∥D1B,∴∠D1BE=45°D1BE是45°—45°—90°的等腰直角三角形DE=BE=a/√2SXXXSABD1/2•AB•BD=1/2•a•aⅡ)解:设F为A1B1与AC的交点,∠EAF=45°,∴△EAF是45°—45°—90°的等腰直角三角形,∴AF=EF=a/√2BF=AB-AF=a-a/√2=a(√2-1)异面直线A1B1与AC之间的距离为BF/√2=a(√2-1)/2Ⅲ)解:由(Ⅰ)知SXXX1/2•a•a三棱锥B1C1DE的体积为VB1C1DE=1/3•SXXXDE1/3•1/2•a•a•a/√21/6•a3/√2评:本题利用了45°—45°—90°等腰直角三角形的性质,巧妙地求出了截面面积和异面直线距离,并且通过构造三棱锥B1C1DE,避免了直接求解四棱柱ABCD—A1B1C1D的体积。
高中数学立体几何专题空间距离的各种计算(含答案)
高中数学立体几何 空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离.例1题图例2题图(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =32BE =332332=⨯. 又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫ ⎝⎛-=-BO AB .∴A 到平面BCD的距离是36. 【例4】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin55,AD =3a ,∴AF =53a , 在Rt △P AF 中tan ∠PF A =3535==a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,∴PB =2a ,∴AH =a 22.【例5】如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).∵AEC 1F 为平行四边形,例3题图B ACD1A1B 1C1A .62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则11114cos ||||CC n CC n α⋅==⋅ ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d【例6】正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。
用等体积法解点到曲面的距离和体积立体几何题
用等体积法解点到曲面的距离和体积立体几何题引言在立体几何中,求解点到曲面的距离和体积是非常常见且重要的问题。
本文将介绍一种解决这类问题的方法——等体积法。
等体积法的原理等体积法是通过构造某一等量体积的几何体,来求解点到曲面的距离和体积。
该方法基于体积守恒原理,即几何体之间的体积保持不变。
解决点到曲面距离的步骤1. 给定一个点和一个曲面,确定需要求解的距离。
2. 利用等体积法,构造一个几何体,使其体积与需要求解的距离相等。
3. 根据等量体积的原理,通过计算几何体的参数得到距离值。
解决体积问题的步骤1. 给定一个曲面和特定的几何体,确定需要求解的体积。
2. 利用等体积法,构造一个等量体积的几何体,使其体积与需要求解的体积相等。
3. 根据等量体积的原理,通过计算几何体的参数得到体积值。
实例应用假设有一个球形,需要计算球体的体积。
我们可以采用等体积法来解决此问题。
1. 给定球形的直径为10cm。
2. 利用等体积法,构造一个立方体,使其体积与球体的体积相等。
3. 假设该立方体的边长为x cm,则立方体的体积为x³。
4. 根据等量体积的原理,设置方程x³ = 4/3πr³,其中r是球体的半径。
5. 解方程得到立方体的边长x,即可得到球体的体积。
结论等体积法是解决点到曲面的距离和体积问题的有效方法。
通过构造等量体积的几何体,我们可以快速准确地求解出所需的距离和体积值。
在实际应用中,可以根据具体问题和几何体的特点选择合适的等体积构造方法来解决问题。
高中数学立体几何专题:空间距离的各种计算(含答案)
高中数学立体几何 空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离.例1题图例2题图(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =32BE =332332=⨯. 又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫ ⎝⎛-=-BO AB .∴A 到平面BCD 的距离是36. 【例4】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin55,AD =3a ,∴AF =53a , 在Rt △P AF 中tan ∠PF A =3535==a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,∴PB =2a ,∴AH =a 22.【例5】如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).∵AEC 1F 为平行四边形,例3题图B ACD1A1B 1C1A .62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则11114cos 33||||CC n CC n α⋅==⋅ ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d【例6】正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。
距离问题的知识点总结
距离问题的知识点总结一、距离的定义在空间中,两点之间的距离是指两点之间的空间间隔。
通常情况下,我们可以利用勾股定理进行计算,即两点之间的距离可以用勾股定理来表示。
设A点坐标为(x1, y1),B点坐标为(x2, y2),则AB的距离为:AB = √((x2 - x1)² + (y2 - y1)²)在三维空间中,两点之间的距离可以用三维空间中的坐标表示,假设两点坐标分别为(x1, y1, z1)和(x2, y2, z2),则两点之间的距离为:AB = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)在向量的理论中,两点之间的距离也可以用向量的模表示,即两点之间的距离等于它们的位置矢量的差的模。
二、距离的计算1. 直线距离的计算在平面直角坐标系中,两点之间的直线距离可以用勾股定理进行计算。
如果两点的坐标分别为(x1, y1)和(x2, y2),则直线距离为:AB = √((x2 - x1)² + (y2 - y1)²)在空间直角坐标系中,三维空间中两点之间的直线距离可以用三维坐标表示,即两点坐标分别为(x1, y1, z1)和(x2, y2, z2),则直线距离为:AB = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)2. 曲线距离的计算如果两点之间的距离不是直线距离,而是曲线距离,那么就需要对曲线进行积分来求解。
曲线在数学中可以用参数方程或者函数方程表示,在给定曲线方程的情况下,可以通过积分来计算两点之间的曲线距离。
3. 三角形边长的计算在计算三角形的边长时,可以利用两点之间的距离来进行计算。
假设三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3),则三角形的三边长度为:AB = √((x2 - x1)² + (y2 - y1)²)BC = √((x3 - x2)² + (y3 - y2)²)AC = √((x3 - x1)² + (y3 - y1)²)三、距离的应用1. 地图测距地图测距是距离问题的一个常见应用,通过测量地图上两点之间的直线距离来计算实际距离。
立体几何距离的求法
(1)点点、点线、点面距离:点与点之间的距离就長两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长。
求它们首先要找到表示距离的线段,然后再计算。
注意:求点到面的距离的方法:①1接程直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上);②转移法:转化为另一点到该平面的距离(利用线面平行的性质);③体积法:利用三棱锥体积公式。
(2)线线距离:关于异面直线的距离,常用方法有:①定义法,关键是确定出""的公垂线段;②转化为线面距离,即转化为"与过b而平行于"的平面之间的距离,关键是找出或构造出这个平面;③转化为面面距离;(3)线面、面面距离:线面间距离面面间距离与线线间、点线间距离常常相互转化;六、常用的结论:(1)若直线/在平面&内的射影是直线直线川是平面a内经过/的斜足的一条直线,/ 与厂所成的角为厲,厂与川所成的角为02, I与加所成的角为0,则这三个角之间的关系是cos0 = COSq COS&」;(2)如何确定点在平面的射影位置:①I、如果一个角所在平面外一点到角两边距离相等,那么这点在平面上的射影在这个角的平分线上;II、经过一个角的顶角引这个角所在平面的斜线,如果斜线和这个角的两边夹角相等,那么斜线上的点在平面上的射影在这个角的平分线所在的直线上;III、如果平面外一点到平面上两点的距离相等,则这一点在平面上的射彩在以这两点为端点的线段的垂直平分线上。
②垂线法:如果过平面外一点的斜线与平面内的一条直线垂直,那么这一点在这平面上的射影在过斜足且垂直于平面内直线的直线上(三垂线定理和逆定理);③垂面法:如果两平面互相垂直,那么一个平面内任一点在另一平面上的射影在这两面的交线上(面面垂直的性质定理);④整体法:确定点在平面的射影,可先确定过一点的斜线这一整体在平面内的射影。
(3)在四面体ABCD中:①若丄CD、BC丄AD,则AC丄B£>;且A在平面BCD上的射影<ABCD的塞空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
………………………………………………最新资料推荐………………………………………
1 / 1
B A
C
D
1A
1B C D 1C 1
B 1
A 1
E
D
C
B
A
立体几何中体积与距离的问题
考点一:两条异面直线间的距离
例1如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点.求证:(1)EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离; 考点二:点到平面的距离
例2如图,在长方体AC 1中,AD=AA 1=1,AB=2,当E 为AB 的中点时,
(1)证明:D 1E ⊥A 1D ;(2)求点E 到面ACD 1的距离;
例3正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。
(1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离. 考点三:几何体的体积
1、如图所示,在三棱锥ABC P -中,6AB BC ==
,平面⊥PAC 平面ABC ,AC
PD ⊥于点D ,1AD =,3CD =,2=PD .求三棱锥ABC P -的体积; 2、已知四棱锥P ABCD -的底面ABCD 是边长为4的正方形,PD ABCD ⊥平面,6,,PD E F =分别为,PB AB 中点。
(1)证明:BC PDC ⊥平面;(2)求三棱锥P DEF -的体积。
3.已知在四棱锥ABCD P -中,底面ABCD 是边长为4的正方形,
PAD ∆是正三角形,平面PAD ⊥平面ABCD ,G F E ,,分别是
BC PC PD ,,的中点.
1)求平面EFG ⊥平面PAD ;2)若M 是线段CD 上一点,求三棱锥EFG M -的体积.
练习1、如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A 1C;(Ⅱ)若AB=CB=2,A 1C=6,求三棱柱ABC-A 1B 1C 1的体积
练习2如图,三棱柱ABC -A 1B 1C 1中侧棱垂直底面,∠ACB=90°,AC=BC=1
2AA 1,D 是棱AA 1的中点。
(I) 证明平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
A
B
C
C 1
A 1
B 1
B 1
C B
A
D
C 1
A 1
图5
B
P
A
D。