向量法求空间中的角 课件

合集下载

8.7.2 利用空间向量求空间角和距离

8.7.2 利用空间向量求空间角和距离

第24页
名师伴你行 ·高考一轮总复习 ·数学(理)
则各点的坐标分别为B(1,0,0),C(1,1,0),D(0,2,0),
P(0,0,2),

告 一
因为B→P=(-1,0,2),设B→Q=λB→P=(-λ,0,2λ)(0≤λ≤1), 课

又C→B=(0,-1,0),则C→Q=C→B+B→Q=(-λ,-1,2λ),
(1)证明:平面PEF⊥平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.
第8章 第7节 第2课时
第33页
名师伴你行 ·高考一轮总复习 ·数学(理)
报 告
(1)[证明] 由已知可得,BF⊥PF,BF⊥EF,

又PF∩EF=F,所以BF⊥平面PEF.


又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.
|AD||n|
3
2a = 32a2×1
22,
作 业

解得θ=45°,即AD与平面BCD所成的角为45°.
第8章 第7节 第2课时
第16页
名师伴你行 ·高考一轮总复习 ·数学(理)

(2)∵A→D·B→C=0,∴AD⊥BC,


∴AD与BC所成角为90°.


(3)设m=(x,y,z)是平面ABD的法向量,
作 业
报 告 二
第8章 第7节 第2课时
第3页
名师伴你行 ·高考一轮总复习 ·数学(理)



[考纲展示] 1.能用向量方法解决直线与直线、直线与平 课 时
面、平面与平面的夹角的计算问题.
作 业

2.了解向量方法在研究立体几何问题中的应用.

空间向量求角

空间向量求角
3.2.3立体几何中的向量方法 ——空间“角”问题
空间的角常见的有:线线角、线面角、面面角
一、复习引入
用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间向 量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
再次演示课件
法向量法
n1,n2
n2
n1,n2 n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
结论:cos cos n1, n2
注意法向量的方向:同进 同出,二面角等于法向量
夹角的补角;
关键:观察二面角的范围
一进一出,二面角等于法 向量夹角
四3 、实教践学操过作程的设计与实施
问题1:
二面角的平面角AOB 能否转化成向量的夹角?
B
O l
A
AOB OA,OB
二面角 OA,OB
四、教学过程的设计与实施
2 探究方法
二面角 n1, n2
要点梳理
②方向向量法:
将二面角转化为二面角的两个面的方向向量(在 二面角的面内且垂直于二面角的棱)的夹角.
设二面角α-l-β的大小为θ,其中
z
S
O
Cy
B
sin cos OS, n OS n 2 6
OS n 1 6 3
C(0,1,0); O(0,0,0);
S(0,0,1), 于是我们有
SA =(2,0,-1);AB =(-1,1,0);
OB =(1,1,0);OS =(0,0,1);

空间向量应用-二面角

空间向量应用-二面角

04
二面角的应用
在几何学中的应用
向量投影
在求解向量的投影时,可以利用二面 角的概念,通过计算向量在某一平面 上的投影长度,来得到该向量与该平 面的夹角。
向量夹角
二面角的概念可以用于计算两个向量 的夹角,通过比较两个向量的夹角与 二面角的夹角,可以判断两个向量的 方向关系。
在物理学中的应用
力的合成与分解
建筑设计
在建筑设计中,利用二面角的概念可以确定建筑物的位置、方向和高度等信息, 以保证建筑物的安全和稳定性。
05
空间向量与二面角的关系
向量与二面角的关联
向量是既有大小又有方向的量,其大 小和方向可以用来表示二面角的大小 和方向。
二面角的大小和方向可以通过两个向 量的夹角来描述,这个夹角就是二面 角的平面角。
二面角的向量定义
总结词
二面角的向量定义是通过向量的投影 和叉积来定义的,它是一个标量值, 其大小等于两个向量的叉积的绝对值 再除以两向量的模的乘积。
详细描述
二面角的向量定义是通过向量的投影和叉积来 描述的。设两非零向量a和b分别属于两个半平 面,那么二面角θ的大小可以用公式 ∣a×b∣/∣a∣∣b∣表示,其中a×b表示向量a和b 的叉积,∣a∣和∣b∣分别表示向量a和b的模。这 个标量值的大小就等于二面角θ的大小。
二面角的性质
总结词
二面角具有一些重要的性质,如二面角的取值范围是[0,π],二面角的大小与观察方向有关,以及二面角的补角等 于其平面角的补角等。
详细描述
首先,二面角的取值范围是[0,π],这是由其几何定义直接得出的。其次,二面角的大小与观察方向有关,即观察 方向的不同可能导致二面角的大小发生变化。最后,二面角的补角等于其平面角的补角,这是由向量的性质得出 的。

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,

空间角的计算课件

空间角的计算课件

H A E1B 1 7
E1
B1
.G
A
B
1 5
可得直线AH与BE1所成角的余弦值
1 7
1
2
3
5
例1:在正方体ABCD-A1B1C1D1中,
1
4
D1F1= D1C 1,
角的余弦值。
1
B1E1= 4
A1B1,求直线DF1与BE1所成
D1 F1
A1
H
C1
E1 B1
D
A
C
B
例1:在正方体ABCD-A1B1C1D1中,
综合法:作——证——求。
G
解析:延长AH,BE1 交于点G, 所以∠AGGH= 1 7
在三角形HE1G中,由余弦定理得
A1
H
E1
B1
GE12 GH 2 HE12
cos =
2GE1 • GH

17 17 4 15

2 17 17 17
1
点, 且D1E1= 4 D1C1求直线E1F与平面D1AC所成角的正弦值.
D1(0,0,4)
(0,4,4) C1
E1
(4,2,4) B1 (4,4,4)
(4,0,4)
A1
(0,4,0)
C
D
(4,0,0)
A
B
F
(4,4,0)
解:以
{DA,DC,DD}
正交基底,建立如图所示的
1 为
空间直角坐标系D-xyz,则各点的坐标为
D1 A 2, CE 1 (t 2)2 t 2 4t 5
D1 A • CE=1
D1 A • CE
1
所以cos60 =

立体几何中的向量方法求空间角 ppt课件

立体几何中的向量方法求空间角 ppt课件

a, b
rr
结论:cos |cosa,b|

(2011·陕西卷)如图,在△ABC中,∠ABC
=60°,∠BAC=90°,AD是BC上的高,沿AD 把△ABD折起,使∠BDC=90°.
• 设E为BC的中点,求AE与DB夹角的余弦值.
z
y
x
易得D(0,0,0),B(1,0,0),C(0,3,0),
r uuur n, BA
2
r uuur n, BA
B
2
B
r
ruuu r n
结论:sin |cosn,AB|
• 1.若直线l的方向向量与平面α的法向量的夹 角等于120°,则直线l与平面α所成的角等于(
)

A.120°
B.60°

C.30°
D.60°或30°
• 解析: 由题意得直线l与平面α的法向量所在 直线的夹角为60°,∴直线l与平面α所成的角
b Br
An
sin | cosn,AB|
3.二面角:
B
O
①方向向量法:
r n
B
A
C
l
D
②法向量法:
【注意】法向量的方向:一
coscosu A uB ur,C uuD ur uu A uuu B rurC uuuu D uu rr
进一出,二面角等于法向量 夹角;同进同出,二面角等
ABCD 于法向量夹角的补角。
• (2)分别在二面角的两个平面内找到与棱垂直 且以垂足出发的两个向量,则这两个向量的夹 角的大小就是二面角的大小.
• 以上两种方法各有利弊,要善于结合题目的特 点选择适当的方法解题.
rC
rD
1.异面直线所成r r角: a

2024-2025学年高二数学选择性必修第一册(配北师大版)课件4.3第1课时空间中的角

2024-2025学年高二数学选择性必修第一册(配北师大版)课件4.3第1课时空间中的角

如图:
名师点睛
不要将两直线所成的角与其方向向量的夹角等同起来,因为两直线所成角
π
的范围是 0, ,而两个向量夹角的范围是[0,π],事实上,两直线所成的角与
2
其方向向量的夹角是相等或互补的关系.
思考辨析
怎样用向量法求两条异面直线所成的角的余弦值?
提示 设两条异面直线a与b的夹角为θ,直线a,b的方向向量分别为a,b,且其
知识点2 直线与平面所成的角 指直线和它在平面内的投影所成角
设向量l为直线l的一个方向向量,n是平面α的一个法向量,则直线l与平面α
所成的角θ∈
π
0, 2
,且
π
θ= -<l,n>(如图
2
π
θ=<l,n>- (如图
2
2),
sin θ=sin < , >
π
-2
1)或
故sin θ=|cos<l,n>|.
π
π
3.若<l,n>是一个锐角,则θ= -<l,n>;若<l,n>是一个钝角,则θ=<l,n>- .
2
2
自主诊断
1.判断正误.(正确的画√,错误的画×)
(1)直线与平面所成的角等于直线的方向向量与该平面法向量夹角的余
角.( × )
(2)直线与平面所成的角可以是钝角.( × )
2.已知向量m,n分别是直线l的方向向量和平面α的法向量,若cos<m,n>=则l与α所成的角为( A )
目录索引
基础落实·必备知识一遍过
重难探究·能力素养速提升
学以致用·随堂检测促达标
1.理解两异面直线所成的角与它们的方向向量之间的关系,会用

2024届高考一轮复习数学课件(新教材人教A版强基版):向量法求空间角(一)

2024届高考一轮复习数学课件(新教材人教A版强基版):向量法求空间角(一)
则 λ 的值为___3___.
以D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建 立空间直角坐标系(图略),正方体的棱长为2,
则A1(2,0,2),D1(0,0,2),E(0,2,1),A(2,0,0),
∴—D1→E =(0,2,-1),
—A1→F =—A1→A +A→F=—A1→A +λA→D=(-2λ,0,-2).
以 D 为原点,DA,DC,DD1 所在直线分别为 x 轴、y 轴、z 轴,建
立如图所示的空间直角坐标系,则 D1(0,0, 3),A(1,0,0),D(0,0,0),
B1(1,1, 3),所以A—D→1=(-1,0, 3),D—→B1=(1,1, 3).
设异面直线 AD1 与 DB1 所成的角为 θ,所以
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)两直线的方向向量所成的角就是两条直线所成的角.( × )
(2) 直 线 的 方 向 向 量 和 平 面 的 法 向 量 所 成 的 角 就 是 直 线 与 平 面 所 成 的
角.( × )
(3)两异面直线所成角的范围是 0,π2,直线与平面所成角的范围是
√ 0,π2.(
)
(4)直线的方向向量为u,平面的法向量为n,则线面角θ满足sin θ=
cos〈u,n〉.( × )
教材改编题
1.已知向量 m,n 分别是直线 l 和平面 α 的方向向量和法向量,若 cos〈m,n〉
=-12,则直线 l 与平面 α 所成的角为
√A.30°
C.120°
B.60° D.150°
A.
2 2
B.
15 5
√C. 46
6 D. 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

向量法的三类求角公式和距离公式PPT课件

向量法的三类求角公式和距离公式PPT课件

•线线角 - •线面角
•二面角
•小结 3
题型一:线线角
异面直线所成角的范围:
0,
2
C
D
思考:
A
D1
B
C D ,A B 与 的 关 系 ?
D C ,A B 与 的 关 系 ?
结论: cos | cosCD ,AB|
•线线角 - •线面角
•二面角
•小结 5
题题型型二二::线线面面角角
空间向量
高二数学备课组
•线线角
•线面角 -
•二面角
•小结
1
专题一:
利用向量解决 空间角问题
•线线角 - •线面角
•二面角
•小结 2
空间向量的引入为代数方法处理立体几 何问题提供了一种重要的工具和方法,解题 时,可用定量的计算代替定性的分析,从而 避免了一些繁琐的推理论证。求空间角与距 离是立体几何的一类重要的问题,也是高考 的热点之一。本节课主要是讨论怎么样用向 量的办法解决空间角问题。
10
二、直线到平面的距离
l
d | AP n |
n
P
n
d
O A
其中 A P 为斜向量,n 为法向量。
-
11
三、平面到平面的距离
d | AP n |
n
A
-
n
P
d
O
12
四、异面直线的距离
n
d | AP n | a
P
n
AP ?
b
n?
A
n 是与 a , b 都垂直的向量
-
13
方法指导:
①作直线a、b的方向向量a、b,求a、b的法向量 n,即此异面直线a、b的公垂线的方向向量;

2024届高考一轮复习数学课件(新教材人教A版强基版):向量法求空间角(二)

2024届高考一轮复习数学课件(新教材人教A版强基版):向量法求空间角(二)
(1)二面角的平面角为θ,则两个平面的法向量的夹角也是θ.( × ) (2)二面角α-l-β的平面角与平面α,β的夹角相等.( × ) (3)二面角的范围是[0,π].( √ )
(4)若二面角α-a-β的两个半平面α,β的法向量n1,n2的夹角为θ,则二
面角α-a-β的大小是π-θ.( × )
教材改编题
(1)求证:AB∥CD;
在题图 1 中,CD=DE=1,AD⊥CD,则 CE= 2,∠DEC=45°, 而 AD∥BC,即∠ECB=45°, 在 △BCE 中 , BE = CE2+BC2-2CE·BC·cos∠ECB =
2+4-2 2×2× 22= 2, 则∠AEB=∠EBC=45°, 又 AE∥BC 且 AE=BC,所以四边形 ABCE 为平行四边形,所以 AB= CE= 2,所以∠EAB=∠AEB=45°,
如图,以A为坐标原点建立空间直角坐标系, BC∥y轴,设AB=BC=2,取AS=AD=2m(m>0), 则B(2,0,0),C(2,2,0),S(0,0,2m),E(1,1,m), 由A→B=(2,0,0),A→E=(1,1,m), 设平面 EAB 的法向量为 n1=(x1,y1,z1),则2x1x+1=y10+,mz1=0, 令 y1= m,则 n1=(0,m,-1),
设平面ADE的法向量为m=(a,b,c),
m·E→D= 则
22b+
22c=0,
m·E→A= 2a-b+c=0,
取 c=1,得 m=(- 2,-1,1),
设直线BD与平面ADE所成的角为θ,
sin θ=|cos〈B→D,m〉|=
2-
22+
2
2
2+1+1× 2+12+21
= 33,
所以直线

高考数学大一轮复习 第二节 第一课时 空间角的求法课件 理 苏教版

高考数学大一轮复习 第二节 第一课时 空间角的求法课件 理 苏教版
解析:如图所示,以点A为坐标原点,建 立空间直角坐标系A-xyz,则A(0,0,0), P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0).∵ AM⊥PD,PA=AD,
第十页,共40页。
∴M为PD的中点,∴M的坐标为(0,1,1).
∴ AC =(1,2,0), AM =(0,1,1),CD=(-1,0,0). 设平面ACM的一个法向量为n=(x,y,z),
第二十一页,共40页。
(2)由(1)知, AD1 =(0,3,3), AC =( 3,1,0), B1C1 =(0,1,0). 设 n=(x,y,z)是平面 ACD1 的一个法向量,则
n·AC =0,
n·AD1 =0,
即 3y3+x+3zy==00. ,
令 x=1,则 n=(1,- 3, 3).
设直线 B1C1 与平面 ACD1 所成角为 θ,则
连结 AB1,易知△AB1D 是直角三角形,且 B1D2=BB12+ BD2=BB21+AB2+AD2=21,即 B1D= 21.
在 Rt△AB1D 中,cos∠ADB1=BA1DD=
3= 21
721,即 cos(90°
-θ)=
721.从而 sin θ=
21 7.
即直线 B1C1 与平面 ACD1 所成角的正弦值为
第三页,共40页。
1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而
忽视了夹角为0,π2. 2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为
线面角的正弦值. 3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由
图形决定.由图形知二面角是锐角时cos
θ=
|n1·n2| |n1||n2|
∴cos〈

3.2 向量法解决角度问题

3.2  向量法解决角度问题

解 由(1)知OC⊥AB,OA1⊥AB. 又平面ABC⊥平面AA1B1B,交线为AB, 所以OC⊥平面AA1B1B, 故OA,OA1,OC两两垂直,以O为坐标原点, 建立如图所示的空间直角坐标系Oxyz.
设 AB=2,则 A(1,0,0),A1(0, 3,0),C(0,0, 3),B(-1,0,0), 则B→C=(1,0, 3),B→B1=A→A1=(-1, 3,0), A→1C=(0,- 3, 3).
证明 取AB的中点O,连接OC,OA1,A1B. 因为CA=CB,所以OC⊥AB. 由于AB=AA1,∠BAA1=60°, 故△AA1B为等边三角形,所以OA1⊥AB. 因为OC∩OA1=O,所以AB⊥平面OA1C. 又A1C⊂平面OA1C,故AB⊥A1C.
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正 弦值.
3,1,-
3· 7×
3,-1,- 7
3|=17.
∴异面直线 A1B 与 AO1 所成角的余弦值为17.
反思感悟 求异面直线夹角的方法 (1)传统法:作出与异面直线所成角相等的平面角,进而构造三角形求解. (2)向量法:在两异面直线 a 与 b 上分别取点 A,B 和 C,D,则A→B与C→D可分
30 C. 30
15 D. 15
解析 建立如图所示的空间直角坐标系,设正方体的棱长为2,
则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0), ∴B→1M=(-1,-1,-2),
D→1N=(1,0,-2),
∴cos〈B→1M,D→1N〉=
-1+4 1+1+4×
= 1+4
30 10 .
所以 O(0,0,0),B1( 3,0,2),C1(0,1,2),

高考数学一轮复习第八章立体几何第六节利用空间向量求空间角课件理

高考数学一轮复习第八章立体几何第六节利用空间向量求空间角课件理

(2)建系的基本思想是寻找其中的线线垂直关系,在没有现成 的垂直关系时要通过其他已知条件得到垂直关系,在此基础上选 择一个合理的位置建立空间直角坐标系.
[易错防范] 1.利用向量求角,一定要注意将向量夹角转化为各空间 角.因为向量夹角与各空间角的定义、范围不同. 2.求二面角要根据图形确定所求角是锐角还是钝角.
答案:13
4.在正方体 ABCD-A1B1C1D1 中,点 E 为 BB1 的中点,则平 面 A1ED 与平面 ABCD 所成的锐二面角的余弦值为________.
解析:以 A 为原点建立如图所示的空间直角坐标系,设棱长 为 1,
则 A1(0,0,1),E1,0,12,D(0,1,0),
以 B 为原点,分别以
的方向为 x 轴、y 轴、z 轴的
正方向建立空间直角坐标系,则 A(0,0,2),B(0,0,0),E(2,0,0),
F(2,2,1).
因为 AB⊥平面 BEC,所以 =(0,0,2)为平面 BEC 的法向量. 设 n=(x,y,z)为平面 AEF 的法向量.
所以平面 AEF 与平面 BEC 所成锐二面角的余弦值为23.
A(0,- 3,0),E(1,0, 2),F-1,0, 22,C(0, 3,0),
所以直线
AE
与直线
CF
所成角的余弦值为
3 3.
[解题模板] 利用向量法求异面直线所成角的步骤
直三棱柱 ABC-A1B1C1 中,∠BCA=90°,M,N 分别是 A1B1,
A1C1 的中点,BC=CA=CC1,则 BM 与 AN 所成角的余弦值为( )
接 EG,FG,EF.在菱形 ABCD 中,不妨设 GB=1.
由∠ABC=120°,可得 AG=GC= 3.

向量法求空间角(含解析)

向量法求空间角(含解析)

高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

1
M
2 x 0 z 0 即 取z =2得x=1,y = - 2 2 x 2 y z 0 A
D O B
C
y
所以平面B1MA的一个法向量为 n (1, 2, 2) 1 2 4 6 cos B1O, n 6 6 9
x
由图可知二面角为锐角
6 所以二面角B1 MA C的余弦值为 。 6
即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向
量夹角的补角.
直线和直线在平面内的射影所成的角, 二、线面角: 叫做这条直线和这个平面所成的角.
[0, ] 直线与平面所成角的范围:
A

2
n
思考:如何用空间向量的夹角 表示线面角呢?
B

O

结论: sin
| cos n, AB |
立体几何中的向量方法 ——空间“角”问题
空间的角常见的有:线线角、线面角、面面角
复习回顾
• 直线的方向向量:两点 • 平面的法向量:三点两线一方程 • 设a=(a1,a2,a3),b=(b1,b2,b3) 则(1)a·b= a1b1+a2b2+a3b3 .
复习回顾
• 设直线l1、l2的方向向量分别为a、b,平面α、β的 法向量分别为n1、n2.
10 5
所以直线SA与OB所成角余弦值为
课堂小结:
1.异面直线所成角:
C
D
cos sin
|cos CD, AB | | cos n, AB |

A

B
D1
A
O
2.直线与平面所成角: 3.二面角:
n


B
n2

【课件】第二课时 用空间向量研究夹角问题 课件人教A版选择性必修第一册

【课件】第二课时 用空间向量研究夹角问题 课件人教A版选择性必修第一册

C .-2 5 5
D.2 5 5
答案:B
知识点2 直线与平面所成的角
直线与平面所成的角,可以转化为直线的方向向量与平面的法向量的夹角 。
直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向
u n 量 ,平面α的法向量为 ,如图可得
问题4:方向向量与平面法向量所成的角与线面角是什么关系?
B.30°
C.60° 答案:B
D.30°或 150°
题型分析
两异面直线所成的角
[例 1] (链接教科书第 36 页例 7)已知四面体 OABC 的各棱长均为 1,D 是棱
OA 的中点,则异面直线 BD 与 AC 所成角的余弦值为
()
A.
3 3
B.14
C.
3 6
D.
2 8
[解析] ―BD→=―O→D -―O→B =12―O→A -―O→B ,―A→C =―O→C -―O→A ,于是|―BD→|=
(2)因为四棱柱的所有棱长都相等,所以四边形 ABCD 为
菱形,AC⊥BD.又 O1O⊥底面 ABCD,所以 OB,OC,OO1
两两垂直.如图,以 O 为原点,OB,OC,OO1 所在直线分 别为 x,y,z 轴,建立空间直角坐标系.
设棱长为 2,因为∠CBA=60°,所以 OB= 3,OC=1,
23,|―A→C |=1,且―BD→·―A→C =
1―O→A -―O→B 2
·(―O→C -―O→A )=-14,于是
―→ cos〈 BD ,
―A→C 〉=―B―D→→·――A→→C = | BD || AC |
-1 4 =-
3×1
3,故异面直线 BD 与 AC 所成角的余弦值为 6

新高考数学空间角精品课件

新高考数学空间角精品课件
课前基础巩固
课堂考点探究
第42讲 空间角
作业手册
能用向量方法解决简单的夹角问题,并能描述解决这一类问题的程序,体会向量方法在研究几何问题中的作用.
课标要求
1. 异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a'∥a,b'∥b,把直线a'与b'所成的 叫作异面直线a与b所成的角(或夹角). (2)范围: . (3)求法: ①几何法:平移补形法.②向量法:若异面直线l1,l2所成的角为θ,其方向向量分别为u,v,则cos θ= |cos<u,v>|==.
图7-42-9
课堂考点探究
证明:如图①,连接CP,∵AE⊥平面 ABC,CP⊂平面ABC,∴AE⊥CP.∵△ABC是正三角形,∴CP⊥AB,又AB∩AE=A,∴CP⊥平面ABE.∵PQ⊂平面ABE, ∴CP⊥PQ.易知PQ∥BE∥CD,PQ=BE=CD,∴四边形CDQP为平行四边形,∴DQ∥CP,∴DQ⊥PQ.
课前基础巩固
②向量法:如图7-42-1,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则sin θ=|cos<u,n>|==.
课前基础巩固
图7-42-1
3. 二面角(1)定义:在二面角α-l-β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作 的射线OA和OB,则射线OA和OB构成的∠AOB叫作二面角的平面角(如图7-42-2). (2)范围:[0,π].
图7-42-4
6.在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为 ,二面角B-A1C1-D1的余弦值为 .

高三数学总复习《利用空间向量求角和距离》课件

高三数学总复习《利用空间向量求角和距离》课件

解法二:以D为坐标原点建立坐标系,如图所示.
3.在棱长为a的正方体ABCD—A1B1C1D1中,M是AA1的中点, 则A1到平面MBD的距离是( )
6 3 3 6 A. a B. a C. a D. a 3 6 4 6
答案:D
4.(2009·浙江)在三棱柱ABC—A1B1C1中,各棱长相等,侧棱
与平面BC1D所成的角为30°、
解:(1)证明:∵ABCD是平行四边形,故知
∠BDC1=∠ABD=90°. 即AB⊥BD,C1D⊥BD.
AD BC1 3. 由C1D 1, AC1 2可得,
2 AC1 C1D2 AD2 .
C1D AD. C1D 平面ABD. C1D 平面AC1D, 平面AC1D 平面ABD.
点评 : ①求直线l与平面的夹角的步骤 : ⅰ求出 () l的方 向向量s, (ⅱ)求平面的法向量n, (ⅲ)求n与s的夹角, (ⅳ)

2
n,s .
②求两个平面α与β的夹角,只须求两个平面的法向量的夹角.
变式1:(2009·海南,宁夏)如图所示,已知点P在正方体
ABCD—A′B′C′D′的对角线BD′上,∠PDA=60°.
第四十五讲 利用空间向量求角和距

走进高考第一关 考点关
回归教材
1.直线间的夹角
(1)当两条直线l1与l 2共面时, 我们把两条直线交角中, 范围在 0, 内的角叫做两直线的夹角. 2 (2)当直线l1与l 2是异面直线时, 在直线l1上任取一点
A作AB / / l 2 , 我们把直线l1和直线AB的夹角叫做异 面直线l1与l 2的夹角.
与此平面的夹角.如果一条直线与一个平面平行或在平面内, 我们规定这条直线与平面的夹角为0.如果一条直线与一个平
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面所成的角(范围:
0,
2

A n
A n
B
O
问题1 的余角与< AB , n >
的关系? 相等
c
os(
2
)
=
cos
AB, n
B
O
问题2 的余角与< AB , n >
的关系? 互补
cos(
) = cos
AB, n
2
所以,直线与平面所成的角的正弦值为
sin = cos AB, n
二面角 (范围: 0, )
余弦值为 2 3
点评:法向量法求二面角的余弦值的一般步骤
建系 求两平面的法向量 求两法向量的夹角的余弦值
得二面角的余弦值
异面直线所成的角 (范围:
0,
2

o 过空间任意一点 分别作异面直线a与b的平行线a´与b´,那么
直线a´与b´ 所成的不大于90°的角 ,叫做异面直线a与b 所
成的角。
z
B1(1,0,1) C(1,1,0) C1(1,1,1)
A1
D1
B1C1 (0,1,0),
B1
AB1 (1,0,1), AC (1,1,0)
设平面AB1C的法向量为n=(x1,y1,z1),
C1 A
则n AB1 0, n AC 0
X1+z1=0 所以 X1+y1=0
取x1=1,得y1=z1=-1x
得两异面直线所成角的余弦值
例2:正方体ABCD-A1B1C1D1的棱长为1,点E、F分别为CD、 DD1的中点,
(1)求直线B1C1与平面AB1C所成的角的正弦值;
(2)求二面角F-AE-D的余弦值。
A1
D1
B1
C1
F
A D
E B
C
例2:(1)求直线B1C1与平面AB1C所成的角的正弦值;
解: (1)以点A为坐标原点建立空间 直角坐标系,如图所示,则: A(0,0,0)
得直线与平面所成角的正弦值
例2 (2)点E、F分别为CD、DD1的中点,求二面角F-AE-D的余
弦值。
z
(2)由题意知 F(0,1, 1 ), E( 1 ,1,0) A1
D1
2
2 B1
C1
F
AF (0,1, 1), AE (1 ,1,0)
2
2
A
Dy
设平面AEF的法向量为m=(x2,y2,z2), B
⑵OS与平面SAB所成角α的正弦值; ⑶二面角B-AS-O的余弦值.
解:以o为坐标原点建立空间直角坐标系,如图所示 z
则O(0,0,0);A(2,0,0); B(1,1,0);
S
C(0,1,0); S(0,0,1),
于是我们有 SA =(2,0,-1);OB =(1,1,0); O
y
OS =(0,0,1); AB =(-1,1,0);
于是,得 2CA DB a2 b2 c2 d 2
设向量C与A D的B夹角为 , 就是库底与水坝所成的二面角.
因此2abcos
a2 b2 c2 d 2.
所以
cos
a2 b2 c2 d 2
.
回到图形问题
2ab
库底与水坝所成二面角的余弦值为
a2 b2 c2 d 2 .
2ab
∴二面角B-AS-O的余弦值为 6 6
四、课堂小结 1.异面直线所成角:
cos | cos a,b |
ma
o •m

n

b
n
cos cos m, n
m
a
m

o•
n

b
n
cos cos m, n
2.直线与平面所成角:
sin | cos n, AB |
A
n
B
O n
3.二面角:
(进行向量运算)
(3)把向量的运算结果“翻译”成相应的几何意义。 (回到图形)
向量的有关知识:
1、两向量数量积的定义:a ·b= |_a_|·_|b_|_·_c_o_s_〈__a_,_b_〉 a b
2、两向量夹角公式:cos 〈a,b〉 = ___a____b____
3、平面的法向量:__与__平__面_垂__直__的__向__量___
C
A
B
(1).cos SA,OB SAOB 2 10
SA OB 5 2 5 x
所以异面直线SA与OB所成的角的余弦值为 10 5
(2)设平面SAB的法向量n (x, y, z)
显然有 n AB 0, n SA 0
x y 0
2x
z
0
取x=1,则y=1,z=2; 故 n (1,1,2)
o 向量方向平移到△A1O1B1的位置,已知OA=OB=O 1,取A1B1 、A1O1
的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。
解:以点O为坐标原点建立空间直角坐
z
O1
标系,如图所示,并设OA=1,则:
F1
D1
A(1,0,0)
B(0,1,0)
F1( 1 ,0,1) 2
D1( 1 , 1 ,1) A1 22
n2
n1 n2
n1
n1, n2
n1, n2
cos cos n1, n2
cos cos n1, n2
例3 如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点
B处.从A,B到直线 l(库底与水坝的交线)的距离AC和BD分别为a
和 b,CD的长为 ,cAB的长为 .求d 库底与水坝所成二面角的余弦值.
sin cos OS, n OS n 2 6
OS n 1 6 3
(3)由(2)知面SAB的法向量n1 =(1,1,2)
又∵OC⊥平面AOS, ∴ OC是平面AOS的法向量,
令 n2 OC (0,1,0)
则有 cos n1, n2 n1 n2 n1 n2
1 6 6 1 6
三、巩固练习
如图,已知:直角梯形OABC中,OA∥BC,∠AOC=90°, 直线SO⊥平面OABC,且OS=OC=BC=1,OA=2.求:
⑴异面直线SA和OB所成的角的余弦值; ⑵直线OS与平面SAB所成角α的正弦值; ⑶二面角B-AS-O的余弦值.
S
O A
ቤተ መጻሕፍቲ ባይዱ
C B
如图,已知:直角梯形OABC中,OA∥BC, ∠AOC=90°,SO⊥平面OABC,且OS=OC=BC=1,OA=2. 求⑴异面直线SA和OB所成的角的余弦值;
立体几何中的向量方法
----向量法求空间中的角
一、复习引入
用空间向量解决立体几何问题的“三步曲”
(1)建立立体图形与空间向量的联系,用空间向 量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题; (化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
O
AF1
(
1 2
,0,1),
BD1
(
1 2
,
1 2
,1)
A
cos AF1, BD1
AF1 BD1 AF1 BD1
1 01 x
4
30
5 3 10
42
所以,异面直线BD1与AF1所成的角的余弦值为 30 10
B1
By
点评:向量法求异面直线所成角的余弦值的一般步骤
建系 求两异面直线的方向向量 求两方向向量的夹角的余弦值
E
则m AF 0, m AE 0
所以
1
y2 2 z2 0 1 2 x2 y2 0
取y2=1,得x2=z2=-2
C x
故m=(-2, 1,-2)
又平面AED的法向量为AA1=(0,0,1)
观察图形知,二面角
cos m, AA1
m AA1 m AA1
2 2 31 3
F-AE-D为锐角,所以 所求二面角F-AE-D的
B
A C l
D
n2
cos cos AB,CD AB CD
AB CD
n2
n1
n1
l
l
cos cos n1, n2
cos cos n1, n2

o•

b
n
cos cos m, n
b
n
cos cos m, n
用向量法求异面直线所成角
设两异面直线a、b的方向向量分别为 m 和 n ,
所以,异面直线a、b所成的角的余弦 值为
cos cos m, n m n mn
x1x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
B C
故n=(1,-1,-1)
cos n, B1C1
n B1C1 n B1C1
010 1 3
3 3
故所求直线B1C1与平面AB1C所成的角的正弦值为 3
3
D y
点评:向量法求直线与平面所成角的正弦值的一般步骤
建系
求直线的方向向量 求平面的法向量
求直线的方向向量与平面的法向量 的夹角的余弦值
解:如图,AC a,BD b,CD c,AB d.
B
化为向量问题
C
根据向量的加法法则 AB AC CD DB
D
进行向量运算 d
2
2
AB
( AC
CD
DB)2
A
2
2
2
AC CD BD 2(ACCD AC DB CD DB)
a2 c2 b2 2 AC DB
a2 c2 b2 2CA DB
a
相关文档
最新文档