六年级奥数题立体图形(B)

合集下载

小学奥数几何专题--立体图形(六年级)竞赛测试.doc

小学奥数几何专题--立体图形(六年级)竞赛测试.doc

小学奥数几何专题--立体图形(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【答案】600【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10106600.【题文】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【答案】120【解析】原正方体的表面积是44696(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边评卷人得分长是1厘米的正方形.从而,它的表面积是:9646120平方厘米.【题文】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【答案】15000【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:5050615000(平方厘米).【题文】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米?【答案】【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2228(平方厘米);左右方向、前后方向:22416(平方厘米),1144(平方厘米),41(平方厘米),4(平方厘米),这个立体图形的表面积为:41(平方厘米).【题文】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【答案】18【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数.原正方体表面积:1166(平方米),一共锯了(21)(31)(41)6次,6112618(平方米).【题文】一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是多少平方厘米?【答案】168平方厘米【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为.【题文】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【答案】54【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【题文】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当 b2h时,如何打包?⑵当 b2h时,如何打包?⑶当 b2h时,如何打包?【答案】如解析图【解析】图2和图3正面的面积相同,侧面面积正面周长长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h6b,图3的周长是12h4b.两者的周长之差为2(b2h).当b2h时,图2和图3周长相等,可随意打包;当b2h时,按图2打包;当b2h时,按图3打包.【题文】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【答案】1034【解析】考虑所有的包装方法,因为6123,所以一共有两种拼接方式:第一种按长宽高116拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高123拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【题文】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【答案】214【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:(平方分米);侧面:(平方分米),(平方分米).这个立体图形的表面积为:(平方分米).【题文】如图,棱长分别为厘米、厘米、厘米、厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是多少平方厘米?【答案】194平方厘米【解析】 (法1)四个正方体的表面积之和为:(平方厘米),重叠部分的面积为:(平方厘米),所以,所得到的多面体的表面积为:(平方厘米).(法2)三视图法.从前后面观察到的面积为平方厘米,从左右两个面观察到的面积为平方厘米,从上下能观察到的面积为平方厘米.表面积为(平方厘米).【题文】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【答案】54【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面个左面个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(平方厘米).上下面左右面前后面【题文】用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?【答案】46平方厘米【解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于个小正方形的面积,所以该图形表面积为46平方厘米.【题文】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【答案】56【解析】(平方米).【题文】棱长是厘米(为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为,此时的最小值是多少?【答案】5【解析】切割成棱长是1厘米的小正方体共有个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为,而,所以小正方体的总数是25的倍数,即是25的倍数,那么是5的倍数.当时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有个,表面没有红色的小正方体有个,个数比恰好是,符合题意.因此,的最小值是5.【题文】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【答案】74【解析】要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有(个),用黑色的;在面上但不在边上的小正方体有(个),其中个用黑色.这样,在表面的个的正方形中,有22个是黑色,(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【题文】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【答案】307【解析】每个长方体的棱长和是厘米,所以,每个长方体长、宽、高的和是厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个面,有个;涂两面的长方体,若两面不相邻,应涂两个面,有个;若两面相邻,应涂一个面和一个面,此时有个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个面、一个面,有个;若三面两两相邻,有个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有个.【题文】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【答案】108【解析】设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设,那么分成的小正方体个数为,为了使小正方体的个数尽量少,应使最小,而两数之积一定,差越小积越小,所以当时它们的和最小,此时共有个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令,此时共有个小正方体.因为,所以至少要把这个大长方体分割成108个小正方体.【题文】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【答案】22【解析】一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴⑵⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由个方格组成的环,这9个方格中只能有个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的个方格中最多能有个可染成红色.⑶剩下个方格,分布在条棱上,这个格子中只能有个能染成红色.综上所述,能被染成红色的方格最多能有个格子能染成红色,第一种解法中已经给出个红方格的染色方法,所以个格子染成红色是最多的情况.【题文】一个长、宽、高分别为厘米、厘米、厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【答案】1107【解析】本题的关键是确定三次切下的正方体的棱长.由于,为了方便起见.我们先考虑长、宽、高分别为厘米、厘米、厘米的长方体.因为,容易知道第一次切下的正方体棱长应该是厘米,第二次切时,切下棱长为厘米的正方体符合要求.第三次切时,切下棱长为厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:(立方厘米).【题文】有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标的为黑色,图中共有黑色积木多少块?【答案】17【解析】分层来看,如下图(切面平行于纸面)共有黑色积木17块.【题文】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?【答案】216【解析】第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是.【题文】如图所示,一个的立方体,在一个方向上开有的孔,在另一个方向上开有的孔,在第三个方向上开有的孔,剩余部分的体积是多少?表面积为多少?【答案】100;204【解析】求体积:开了的孔,挖去,开了的孔,挖去;开了的孔,挖去,剩余部分的体积是:.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:.求表面积:表面积可以看成外部和内部两部分.外部的表面积为,内部的面积可以分为前后、左右、上下三个方向,面积分别为、、,所以总的表面积为.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:上下方向:左右方向:总表面积为.总结:“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【题文】如图,原来的大正方体是由个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?【答案】72【解析】对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数l【题文】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?【答案】73【解析】解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有个,由侧面图形抽出的小正方体有个,由底面图形抽出的小正方体有个,正面图形和侧面图形重合抽出的小正方体有个,正面图形和底面图形重合抽出的小正方体有个,底面图形和侧面图形重合抽出的小正方体有个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,,所以共抽出了52个小正方体.,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【题文】右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【题文】图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴图⑵【答案】20【解析】首先,我们把展开图折成立体图形,见下列示意图:图⑴图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:图⑶图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是,所以切掉8个角后的体积是.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为的立方体来套.如果把图⑵的立体图形放入边长为的立方体里的话是可以放进去的.这是切去了四个角后的图形,从上面的分析可知一个角的体积为,所以图⑵的体积是:,那么前者的体积是后者的倍.【题文】如图,用高都是米,底面半径分别为米、米和米的个圆柱组成一个物体.问这个物体的表面积是多少平方米?(取)【答案】32.97【解析】从上面看到图形是右上图,所以上下底面积和为(立方米),侧面积为(立方米),所以该物体的表面积是(立方米).【题文】有一个圆柱体的零件,高厘米,底面直径是厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是厘米,孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【答案】307.72【解析】涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为(平方厘米).【题文】圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是多少立方厘米.(结果用表示)【答案】立方厘米或立方厘米【解析】当圆柱的高是12厘米时体积为(立方厘米)当圆柱的高是12厘米时体积为(立方厘米).所以圆柱体的体积为立方厘米或立方厘米.【题文】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.()【答案】100.48【解析】圆的直径为:(米),而油桶的高为2个直径长,即为:,故体积为立方米.【题文】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?()【答案】2056【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:(厘米),原来的长方形的面积为:(平方厘米).【题文】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少平方厘米.原来的圆柱体的体积是多少立方厘米?【答案】25.12【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为厘米,底面半径为厘米,所以原来的圆柱体的体积是(立方厘米).【题文】一个圆柱体的体积是立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? ()【答案】16【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为(厘米),所以增加的表面积为(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为厘米,所以侧面长方形的面积为平方厘米,所以增加的表面积为平方厘米.【题文】一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是多少立方厘米.(取)【答案】100.48【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为厘米的圆柱,空气部分构成高为厘米的圆柱,瓶子的容积为这两部分之和,所以瓶。

小学六年级奥数试题详解 长方体和正方体

小学六年级奥数试题详解 长方体和正方体

第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。

在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。

解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。

六年级奥林匹克数学基础教程 13 立体图形(一)

六年级奥林匹克数学基础教程 13 立体图形(一)

小学数学奥数基础教程立体图形(一)我们学过的立体图形有长方体、正方体、圆柱体、圆锥体等。

这一讲将通过长方体、正方体及其组合图形,讲解有关的计数问题。

例1左下图中共有多少个面?多少条棱?分析与解:如右上图所示,可以分前、后、左、右、上、下六个方向看这个立体图形。

前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面。

所以共有1+1+1+2+2+1= 8(个)面。

前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱6+6+6=18(条)。

例2右图是由18个边长为1厘米的小正方体拼成的,求它的表面积。

分析与解:如果一面一面去数,那么虽然可以得到答案,但太麻烦,而且容易出错。

仔细观察会发现,这个立体的上面与下面、左面与右面、前面与后面的面积分别相等。

如上图所示,可求得表面积为(9+7+8)×2=48(厘米2)。

例3右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?分析与解:正方体只可能有两种:由1个小正方体构成的正方体,有22个;由8个小正方体构成的2×2×2的正方体,有4个。

所以共有正方体 22+4=26(个)。

由两个小正方体组成的长方体,根据摆放的方向可分为下图所示的上下位、左右位、前后位三种,其中上下位有13个,左右位有13个,前后位有14个,共有13+13+14=40(个)。

例4有一个棱长为5厘米的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(见下页左上图),求这个立体图形的表面积。

分析与解:由于正方体中间被穿了孔,表面积不好计算。

我们可以将这个立体图形看成由8个棱长为2厘米的正方体和12个棱长为1厘米的立方体粘合而成。

如右上图所示,八个棱长为2厘米的正方体分别在8个顶角,12个棱长1厘米的正方体分别在12条棱的中间。

由于每个小正方体都有2个面分别粘接两个较大正方体,相对于不粘接,减少了表面积4厘米2,所以总的表面积为(2×2×6)×8+(1×1×6)×12-4×12=216(厘米2)。

小学六年级奥数教案—13立体图形.

小学六年级奥数教案—13立体图形.

小学六年级奥数教案—13立体图形本教程共30讲立体图形(一)我们学过的立体图形有长方体、正方体、圆柱体、圆锥体等。

这一讲将通过长方体、正方体及其组合图形,讲解有关的计数问题。

例1左下图中共有多少个面?多少条棱?分析与解:如右上图所示,可以分前、后、左、右、上、下六个方向看这个立体图形。

前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面。

所以共有1+1+1+2+2+1= 8(个)面。

前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱6+6+6=18(条)。

例2右图是由18个边长为1厘米的小正方体拼成的,求它的表面积。

分析与解:如果一面一面去数,那么虽然可以得到答案,但太麻烦,而且容易出错。

仔细观察会发现,这个立体的上面与下面、左面与右面、前面与后面的面积分别相等。

如上图所示,可求得表面积为(9+7+8)×2=48(厘米2)。

例3右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?分析与解:正方体只可能有两种:由1个小正方体构成的正方体,有22个;由8个小正方体构成的2×2×2的正方体,有4个。

所以共有正方体 22+4=26(个)。

由两个小正方体组成的长方体,根据摆放的方向可分为下图所示的上下位、左右位、前后位三种,其中上下位有13个,左右位有13个,前后位有14个,共有13+13+14=40(个)。

例4有一个棱长为5厘米的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(见下页左上图),求这个立体图形的表面积。

分析与解:由于正方体中间被穿了孔,表面积不好计算。

我们可以将这个立体图形看成由8个棱长为2厘米的正方体和12个棱长为1厘米的立方体粘合而成。

如右上图所示,八个棱长为2厘米的正方体分别在8个顶角,12个棱长1厘米的正方体分别在12条棱的中间。

由于每个小正方体都有2个面分别粘接两个较大正方体,相对于不粘接,减少了表面积4厘米2,所以总的表面积为(2×2×6)×8+(1×1×6)×12-4×12=216(厘米2)。

小学数学六年级奥数《立体图形(1)》练习题(含答案)

小学数学六年级奥数《立体图形(1)》练习题(含答案)

小学数学六年级奥数《立体图形(1)》练习题(含答案)一、填空题1.一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .2.如图,在一块平坦的水泥地上,用砖和水泥砌成一个长方体的水泥池,墙厚为10厘米(底面利用原有的水泥地).这个水泥池的体积是 .3.一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 .4.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.5.图中是一个圆柱和一个圆锥(尺寸如图).问:柱锥V V 等于 .6.一个长方体的表面积是67.92平方分米.底面的面积是19平方分米.底面周长是17.6分米,这个长方体的体积是 .2 单位:米7.一块长方体木块长2.7米,宽1.8分米,高1.5分米.要把它裁成大小相等的正方体小木块,不许有剩余,小正方体的棱长最大是 分米.8.王师傅将木方刨成横截面如右图(单位:厘米)那样高40厘米的一根棱柱.虚线把横截面分成大小两部分,较大的那部分的面积占整个底面的60%.这个棱柱的体积是 立方厘米.9.小玲有两种不同形状的纸板.一种是正方形的,一种是长方形的(如下图).正方形纸板的总数与长方形纸板的总数之比是1:2.她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.在小玲所做的纸盒中,坚式纸盒的总数与横式纸盒的总数之比是 .10.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要 块正方体木块.二、解答题11.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?12.如图表示一个正方体,它的棱长为4厘米,在它的上下、前后、左右的正中位置各挖去一个棱长为1厘米的正方体,问此图的表面积是多少?8 28 2412(图1)(图2)13.下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.14.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨水将它下满要用1小时.有下列(A )-(E )不同的容器(图2),雨水下满各需多少时间(注面是朝上的敞口部分.)PF2cm 2cm (A ) (B ) (C ) (D ) (E ) 雨———————————————答 案——————————————————————1. 96分米.正方体的底面积为384÷6=64(平方分米).故它的棱长为512÷64=8(分米),棱长的总和为8×12=96(分米).2. 8.96立方米.(3-0.1×2)×(1.8-0.1×2)×2=8.96(立米米).3. 圆柱体,200.96立方分米.(3.14×42)×4=200.96(立方分米).4. 216.这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米).5. 241. ππππ816828,3164243122⨯=⨯⎪⎭⎫ ⎝⎛⨯==⨯⎪⎭⎫ ⎝⎛⨯⨯=柱锥V V ,故241=柱锥V V .6. 32.3立方分米.长方体的侧面积是67.92-19×2=29.92(平方分米),长方体的高为29.92÷17.6=1.7(分米),故长方体的体积为19×1.7=32.3(立方分米).7. 0.3长、宽、高分别是270厘米、18厘米和15厘米,而270、18和15的最大公约数为3(厘米),这就是小正方体棱长的最大值.8. 17200.设较大部分梯形高为x 厘米,则较小部分高为(28- x )厘米.依题意有: 4:6)28()824(21:)2412(21=⎥⎦⎤⎢⎣⎡-⨯+⨯⎥⎦⎤⎢⎣⎡+⨯x x 解得x =16,故这棱柱的体积为 1920040)1628()824(2116)2412(21=⨯⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯+⨯(立方厘米).9. 3:1.一个竖式的无盖纸盒要用一个正方形纸板和4个长方形纸板,一个横式的无盖纸盒要用2个正方形纸板和3个长方形纸板.设小玲做的纸盒中,有x 个竖式的, y 个横式的,则共用正方形纸板(x +2 y )个,用长方形纸板(4 x +3 y )个,依题意有: (x +2 y ):(4 x +3 y )=1:3.解得x : y =3:1.10. 20,6.至多要20块(左下图),至少需要6块(右下图).11. 若铁块完全浸入水中,则水面将提高326)3040(203=⨯÷(厘米).此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.设放入铁块后,水深为x 厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有:x x 20201030403040⨯+⨯⨯=⨯解得x =15,即放进铁块后,水深15厘米.12. 大正方体的表面还剩的面积为()9014622=-⨯(厘米2),六个小孔的表面积为()305162=⨯⨯(厘米2),因此所求的表面积为90+30=120(厘米2).13. 截面的线在展开图中如右图的A -C -Q -P -A .14. 在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满; 容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需32 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1A小时接满;容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1.5小时接满;容器(E):容积:接水面积=20×S:S=20:1(S为底面积),接水时间为2小时.。

六年级数学竞赛上册奥数高思第10讲立体几何(彩色)

六年级数学竞赛上册奥数高思第10讲立体几何(彩色)

六年级上册第10讲10立体几何首先,我们来复习长方体、正方体的体积与表面积的计算方法.图形体积表面积c V=abc长方体S=2×(ab+bc+c a)长方体a bV=a=3 S6a2正方体正立方体a70身体健康立体几何课本例题1将表面积为54平方厘米、96平方厘米、150平方厘米的三个实心铁质正方体熔铸成一个大正方体(不计损耗).请问:这个大正方体的体积是多少立方厘米?分析所给的每个正方体的棱长是多少?体积是多少?熔铸成一个大正方体的体积怎么求?练习1.3个相同的正方体拼成一个长方体,长方体的表面积为350平方厘米,那么每个正方体的体积是多少立方厘米?例题2一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米.请问:这个长方体的表面积是多少平方厘米?分析我们先考虑第一种情况,长增加2厘米,高和宽保持不变.如下图(1),多出的体积用虚线表示,我们就会发现,这一块的体积为2×高×宽=40(立方厘米),由此可以求出左右两个侧面的面积.当然另两对侧面也可以用类似的方法求出.?2??3 Щ?4Щ?1??2??3?71身体健康六年级上册第10讲练习2.一个长方体,如果长减少2厘米,宽和高不变,它的体积将减少48立方厘米;如果宽增加3厘米,长和高不变,它的体积将增加99立方厘米;如果高增加4厘米,长和宽都不变,它的体积则会增加352立方厘米.那么这个长方体的表面积是多少平方厘米?例题3有30个棱长为1米的正方体,如图所示堆成一个四层的立体图形.请问:该立体图形的表面积等于多少平方米?分析所谓表面积,就是立体图形露在外面的总面积.我们可以从上、下、左、右、前、后6个不同的方向去考虑这个立体图形,把每个方向露出的面积加在一起就行了.练习3.把棱长为1厘米的正方体,像下图这样层层重叠放置,那么当重叠到第五时,这个立体图形的表面积是多少平方厘米?三视图众所周知,一个物体从正面看与从后面看,从左边看与从右边看、从上面看与从下面看得到的图形都是相同的,于是我们把从正面、左面、上面看过去得到的图形,分别叫做正视图、左视图、俯视图,三个图形合起来我们就称之为三视图.???????72身体健康立体几何课本那么请同学们想一想,一个圆锥的三视图是什么样子的呢?给定了三视图,它所对应的物体形状是不是唯一确定的呢?如果一个物体的三视图如下所示,它的形状又可能有哪几种呢??????例题4一个正方体被切成24个大小形状相同的小长方体(见右图),这些小长方体的表面积之和为162平方厘米,那么原正方体的体积是多少立方厘米?分析我们先来分析一下切成小块的过程中,图形的表面积是如何变化的.同学们请看下图:一刀下去,正方体被一分为二.表面积和原来相比,正好多出了A、B 两个面.不难看出,这两个面的面积都等于原正方体6个面中1个面的面积.按这种方法,每切一刀,增加的都是两个面的面积.同学们可以计算一下,按如图的方式切了6刀后,表面积究竟增加了多少?练习4.如图所示,有一个长方体,先后沿不同方向切了三刀.切完第一刀后得到的两个小长方体的表面积之和是472平方厘米,切完第二刀后得到的四个小长方体的表面积之和是632平方厘米,切完第三刀后得到的八个小长方体的表面积之和是752平方厘米.那么在原来长73身体健康六年级上册第10讲方体的6个面中,面积最小的面是多少平方厘米?除了长方体、正方体之外,圆柱和圆锥在我们的生活中也特别常见.??????如图,圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高.圆锥的圆面叫做底面;尖点叫做顶点;顶点到底面的距离叫做高;顶点到底面圆周上任意一点的连线叫做母线.关于圆锥的内容,我们不作深入的学习,同学们只需要学会如何计算它的体积即可.立体图形体积侧面展开图h V圆柱= 底面积×高= r2h圆柱的侧面展开图为长方形,长为圆柱底面周长,宽为圆柱的高.r圆锥的侧面展开图为扇形,半hr V圆锥=1313×底面积×高2h径为母线(不是圆锥的高!),弧长为圆锥底面周长.(注:圆锥侧面展开只需了解,不需掌握)大家可以把圆柱想象成一个底面是圆形的柱子,那其他柱体也就是底面是其他图形的柱子.如图,所有“上下一般粗”的图形都称为柱体,图中的两个图形分别叫做三棱柱和四棱柱,它们的体积计算公式都是:V= 底面积×高埃及金字塔金字塔是4000多年前古埃及法老的陵墓,因为其造型的雄伟和年代的久远,被誉为世界七大奇迹之首.其中最大的一座是兴建于公元前2760年的胡夫金字塔.据历史学家推测,当年建造这座金字塔一共动用了10万人的劳力,前后历时30年,才得以竣工.74身体健康立体几何课本在胡夫金字塔的东南面还有著名的狮身人面像,是法老胡夫的儿子哈佛拉的形象.两者交相辉映,甚为壮观.从形状上看,胡夫金字塔是一个正四棱锥,底座是一个正方形,侧面是4个形状一胡夫金字塔侧视图胡夫金字塔俯视图模一样的等边三角形.正方形底座每边长约230米,塔高约147米,有将近50层楼高!这么一个庞然大物,它的体积究竟是多少呢?例题5张大爷去年用长2米、宽1米的长方形苇席围成了一个容积最大的圆柱体粮囤.今年他改用长3米、宽2米的长方形苇席来围,也同样围成容积最大的圆柱囤.请问:今年粮囤的容积是去年粮囤容积的多少倍?分析用长方形苇席成圆柱体的粮囤只有两种围法,如下图所示.用去年的苇席怎样围,得到的圆柱体粮囤最大?用今年的苇席呢?练习5.有一根长为20厘米、底面直径为6厘米的圆柱体钢材,在它的两端各钻一个深为4厘米、底面直径也为6厘米的圆锥形的孔,做成一个零件(如右图).这个零件的体积为多少立方厘米?75六年级上册第10讲例题6一个底面长30分米、宽10分米、高12分米的长方形水池,存有四分之三的池水.(1)将一个高11分米,体积330立方分米的圆柱放入池中,水面的高度变为几分米?(2)如果再放入一个同样的圆柱,水面高度又变成了几分米?(3)如果再放入一个同样的圆柱,水面高度又变成了几分米?分析圆柱放入水中可能有如下几种情况:(1)水浸没了圆柱的一部分.这时的情况如图所示:????????????????????(2)水把圆柱都浸没了,但是水没有溢出池面,如图所示:?????????(3)水溢出了水池.这时水面的新高度就是水池的高度.如图所示:ē? ??? ??????因此,在一次次放入圆柱时,我们要做两次判断:先要判断放入圆柱后,水是否完全浸没圆柱;如果完全浸没,再判断水是否会溢出水池.然后才来求解.76立体几何课本练习6.一个底面长20分米、宽8分米、高15分米的长方形水池,存有三分之二池水.将一个高50分米,体积400立方分米的长方体竖直放入池中,那么长方体被水浸湿的部分有几分米高?思考题右图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的正方体,做成一种玩具.该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少平方厘米?本讲知识点汇总一、长方体、正方体的表面积与体积公式.二、圆柱体、圆锥体的体积公式.三、三视图法求表面积.四、立体图形与排水问题.作业1.一个长方体的体积是120立方厘米,底面是面积为4平方厘米的正方形,求长方体的表面积.77六年级上册第10讲2.如图,同样大小的立方体木块堆放在房间的一角,一共垒了10层,那么在这10层中看不见的木块共有多少个?3.一个正方体棱长10厘米,在它的表面上挖去一个棱长3厘米的小正方体.请求出剩下立体图形表面积的所有可能.4.求下面图形的体积:(取=3.14)1410165.一个圆柱形玻璃杯内装着水,水面高2.5厘米.从里面量,玻璃杯的底面积是72平方厘米.将一个棱长为6厘米的正方体铁块放入杯中,水面会淹没铁块吗?如果没有,这时水面高多少厘米?78。

完整版六年级奥数专题13立体图形

完整版六年级奥数专题13立体图形

十三、立体图形(1)一、填空题1. 一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体 棱长的总和是.2. 如图,在一块平坦的水泥地上,用砖和水泥砌成一个长方体的水泥池,墙厚为 10厘米(底面利用原有的水泥地)•这个水泥池的体积是•3. —个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到 一个,这个形体的体积是•4. 把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立6. —个长方体的表面积是67.92平方分米.底面的面积是19平方分米.底面周 长是17.6分米,这个长方体的体积是.年级班姓名得分方体的表面积是平方厘米5.图中是一个圆柱和一个圆锥 8(尺寸如图)•问:Y 锥等于.7.—块长方体木块长2.7米,宽1.8分米,高1.5分米.要把它裁成大小相等的正方体小木块,不许有剩余,小正方体的棱长最大是分米.8. 王师傅将木方刨成横截面如右图(单位:厘米)那样高40厘米的一根棱柱.虚线把横截面分成大小两部分,较大的那部分的面积占整个底面的60%.这个棱柱的体积是立方厘米.9. 小玲有两种不同形状的纸板.一种是正方形的,一种是长方形的(如下图).正方形纸板的总数与长方形纸板的总数之比是1:2 .她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.在小玲所做的纸盒中,坚式纸盒的总数与横式纸盒的总数之比是.10. 在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用块正方体木块,至少需要块正方体木块.二、解答题11. 一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10 厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?8(图1)(图2)12. 如图表示一个正方体,它的棱长为4厘米,在它的上下、前后、左右的正中位置各挖去一个棱长为1厘米的正方体,问此图的表面积是多少?13. 下图是正方体,四边形APQC是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来•C G HB F E14.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨水将它下满要用1小时•有下列(A)-(E)不同的容器(图2),雨水下满各需多少时间?雨(注:叵;面是朝上的敞口部分.)20cm20cm10cm厂Z.UUIII —、•Q110cm(E)2 cmA20cmJ0cm10cm10cm(A)10cm 10cm 10cm(B)0c10cm10cm30cm图120cm10cm 20cm 10cmcm 710cm10cm(D)20cm10cm10cm-20cm2cm1. 96分米.正方体的底面积为384W=64(平方分米)•故它的棱长为512W4=8(分米),棱长 的总和为8X12=96(分米).2. 8.96立方米.(3-0.1 2X X 1.8-0.1 2)X X =8.96(立米米). 3.圆柱体,200.96立方分米. (3.14 X ) X =200.96(立方分米).4. 216.这个立方体的表面由 3X 3X 2+8X2+10X2=54个小正方形组成,故表面积为4X 54=216(平方厘米).6. 32.3立方分米.长方体的侧面积是67.92-19 X =29.92(平方分米),长方体的高为 29.92 47.6=1.7份米),故长方体的体积为19>1.7=32.3(立方分米). 7. 0.3长、宽、高分别是270厘米、18厘米和15厘米,而270、18和15的最大公 约数为3(厘米),这就是小正方体棱长的最大值. 8. 17200.设较大部分梯形高为x 厘米,则较小部分高为(28- x)厘米.依题意有:1 1-(1224)x : $ (248) (28 x) 6:4解得x =16,故这棱柱的体积为1 1 (12 24) 16(24 8) (2816)40 19200(立方厘米).229. 3:1.一个竖式的无盖纸盒要用一个正方形纸板和 4个长方形纸板,一个横式的无 盖纸盒要用2个正方形纸板和3个长方形纸板.设小玲做的纸盒中,有x 个竖式的, y 个横式的,则共用正方形纸板(x +2 y)个,用长方形纸板(4 x +3 y)个,依题意有:(x +2 y):(4 x +3 y)=1:3.解得 x: y =3:1.5.1 2424 16 、,- 4 ,V2316 8 ,故空丄. V 柱 2410. 20,6.至多要20块(左下图),至少需要6块(右下图).211. 若铁块完全浸入水中,则水面将提高203 (40 30) 6-(厘米).此时水面的3高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面. 设放入铁块后,水深为x 厘米.因水深与容器底面积的乘积应等于原有水体 积与铁块浸入水中体积之和,故有: 40 30x 40 30 10 20 20x解得x =15,即放进铁块后,水深15厘米.12.大正方体的表面还剩的面积为6 42 12 90(厘米2),六个小孔的表面积为6 12 530 (厘米2),因此所求的表面积为90+30=120(厘米2).14. 在例图所示的容器中,容积:按水面积=(10 >10X30):(10 30))=10:1,需 1小时接 满所以容器(A):容积:接水面积=(10 X 0X 10):(10 1>)=10:1,需1小时接满; 容器(B):容积:接水面积=(10 >0>30):(10 1>)=30:1,需3小时接满;容器(C):容积:接水面积=(20 X 0X 10-10 X 0X 10):(10 1>)=30:1,需3小时接满; 容器(D):容积:接水面积=(20 X 0X 10-10 X 0X 10):(20 1>)=15:1,需 1.5 小时接容器(E):容积:接水面积=20七:S=20:1(S 为底面积),接水时间为2小时.十三、立体图形(2)2 2 1 11 1 1 111 1 12 211211213. 截面的线在展开图中如右图的DA一、填空题1. 右图表示的长方体(单位:米),长和宽都是米•这个长方体的表面积是平方米.2. 把两个相同的正方体拼在一起成一个长方体,这个长方体的表面积是两个正方体表面积之和的分之.3. —个长6分米、宽4分米、高2分米的木箱.用三根铁丝捆起来(如右图), 打结处要用1分米铁丝.这根铁丝总长至少为分米.4. 一个长方体的底面、侧面和前面的面积分别是12平方厘米、8平方厘米和6平方厘米.那么它的体积是.5. 如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是立方厘米.6. 将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是.( 3.14)7. 把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积之和最大.这时表面积之和是平方厘米.8. —个圆柱形玻璃杯中盛有水,水面高2.5厘米,玻璃内侧的底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体的铁块后,水面没有淹没铁块,这时水面高厘米.年级班姓名得分13r1——L J9U3?5 米厂丄IJ—丄p1米才141米9•正方体的每一条棱长是一个一位数;表面的每个正方形面积是一个两位数整个表面积是一个三位数.而且若将正方形面积的两位数中两个数码调过来恰好是三位数的十位上与个位上的数码.这个正方形的体积是.10.如图所示,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘)•这个多面体的面数、顶点数和棱数的总和是•二、解答题11在底面边长为60厘米的正方形的一个长方体的容器里,直立着一个长1米, 底面为正方形,边长15厘米的四棱柱铁棍.这时容器里的水半米深,现在把铁棍轻轻地向正上方提起24厘米,露出水面的四棱柱铁棍浸湿部分长多少厘米?12.一个长、宽和高分别为21厘米、15厘米和12厘米的长方体,现从它的上面尽可能大地切下一个正方体,然后从剩余的部分再尽可能大地切下一个正方体最后再从第二次剩余的部分尽可能大地切下一个正方体,剩下的体积是多少立方厘米?三个长,宽为1cm,高为3cm的长方体.下列图是把这五个立体图形合并成某一立体图形时,从上面,前面,侧面所看到的图形•试利用下面三个图形把合并成的立体图形如(例)的样子画出来,并求出其表面积•---------------------------- 答案-----------------------------------------------1. 50.长方体的底面积为3X3=9(米2),故其高为24 9 2彳(米),从而其表面积为2 2 23 3 3 2 3 2 2 50(米2)3 32. 六分之五.设一个正方体的一个面积为1,则两个正方体表面积为1X6X2=12.而将两个正方体拼成一个长方体之后,这个长方体的表面积是10,它是12的5.63. 43.铁丝总长等于长方体长的2倍,宽的4倍与高的6倍之和,再加上三个打结处所用铁丝长,即(6 X+2X6+4X4)+1 X=43(分米)4. 24平方厘米.设长方体的长宽高分别为x,y,z厘米,体积为V立方厘米,则xy =12, yz=8, xz=6, 将上面三式相乘,有x2y2z212 8 6 576,故xyz 24 ,即V 24.5. 90.长方体容器的长为13-2 X=9(厘米),宽为9-2 X=5(厘米),高为2厘米,故体积9X5 ^=90(立方厘米).6. 32.97平方米.上面所看到的图形前面所看到的图形到的图形363这个物体的表面积是大圆柱的表面积加上中、小圆柱的侧面积 ,故它的表面积为:1.52 2 2 1.5 1 2 1 1 2 0.5 1 10.5 32.97(平方米).7. 298.把一个长方体截成两个长方体,只截一次,增加两个横截面,由题意应增加面 积为70=42(平方厘米)的横截面,其表面之和最大,最大面积为 (7)6+7>5+6X5) 乂+70X2=298(平方厘米). 8. 5.水的体积为72>2.5=180(cm 2),放入铁块后可以将水看作是底面积为 72-6 X =36(cm 2)的柱体,所以它的高为180£6=5(cm ) 9. 343.根据正方体的每一条棱长是一个一位数,表面积的每个正方形面积是一个 两位数,整个表面积是一个三位数”的条件,可以判断正方体的棱长有 5,6,7,8,9这 五种可能性.由下表的数据及条件:将正方形面积的两位数中两个数码调过来恰好是三 位数的十位数上与个位数上的数码”可知这个正方体的棱长是7.棱长 5 6 7 8 9 正方形面积 25 36 49 64 81 全面积125216294384486因此,这个长方体的体积是777=343.10. 74.这个多面体的面数可以直接数出是 20,而棱数为 实线条数吃+虚线条数' 等于34吃+19=36.顶点数二棱数-面数+2(欧拉定理)是36-20+2=18所以这个多面体 的面数、顶点数和棱数的总和是 20+18+36=74. 11.水的体积为602 152 50 168750立方厘米.当将铁棍提起后,铁棍下方水的体积为602 24 86400 (立方厘米),所以浸湿部分 长为168750 86400602 15224.4 (厘米).12. 第一次切下的尽可能大的正方体的棱长是 12厘21921米,体积为1231728(立方厘米)这时剩余立体底面形状如图(1),其高是12厘米.这样第二次切下的尽可能大的正方体棱长为9厘米,其体积是93 929 (立方厘米).第二次切割后,剩下的立体可以看作是由两部分组成的一部分的底面形状如图(2),高为12厘米,另一部分底面形状如图3,高9 是3厘米.显然,第三次切下的尽可能大的正方体棱长为6厘米,其体积为63 2 1 6 (立方厘米).所以,剩下的体积为21 X15X12-1728-729-216=1107立方厘米).13. 这个立体图形是一个圆柱的四分之一(如图),圆柱的底面半径为10厘米,高为8厘米.它的全面积为:1 2 12 3.14 10 2 3.14 10 8 2 10 84 4157 125.6 160 442.6 (平方厘米).1 2它的体积为:—3.14 10 8 628(立方厘米).414. 立体图形的形状如右图所示.从上面和下面看到的形状面积都是9 cm2,共cm2; 从两个侧面看到的形状面积都为7 cm2,共14 cm2;从前面和后面看到的形状面积都为 6 cm2,共12 cm2. 隐藏着的面积有2 cm2.一共有18+16+12+2=46(cm2).。

小学六年级名师精编奥林匹克数学基础教程 14 立体图形(二)

小学六年级名师精编奥林匹克数学基础教程 14 立体图形(二)

小学数学奥数基础教程立体图形(二)本讲主要讲长方体和立方体的展开图,各个面的相对位置,提高同学们的看图能力和空间想象能力。

例1在下面的三个图中,有一个不是右面正四面体的展开图,请将它找出来。

分析与解:观察四面体容易看出,每个顶点都是三个面的交点,即四面体的每个顶点只与三个面相连,而在图2中,“中心点”与四个面相连,所以图2不是正四面体的展开图。

例2在下面的四个展开图中,哪一个是右图所示立方体的展开图?分析与解:观察立方体图形,A,B,C三个面两两相邻,即三个面有一个公共顶点。

再看四个展开图,图1中A与C不相邻,是相对的两个面,不合题意;图3中C与B是相对的两个面,也不合题意;图2、图4中A,B,C三个面都相邻,还需进步判别。

我们看下面的两个立方体图形:这两个图虽然相似,但是A,B,C三个面的相对位置不同。

我们可以借助一个现成工具——右手,帮助判断三个面的相对位置。

伸出右手,让除大姆指外的四指从A向B弯曲,此时,左上图中C位于大姆指指向的方向,右上图中C位于大姆指指向的相反方向。

所以两个图A,B,C三个面的相对位置不同。

用这种方法判断三个面相对位置的方法称为右手方法。

(这也是建立空间坐标系的方法)。

用右手方法很容易判断出,图4是所求的展开图。

例3右图是一个立方体纸盒的展开图,当折叠成纸盒时,1 点与哪些点重合?分析与解:直接想象将展开图折叠成纸盒时的情景,也可以得到答案。

现在我们从另一个角度来分析。

在左下图所示的立方体上观察8个顶点,其中与A点不在一个表面上的只有B点,也就是说,沿着表面走,这两个点的路程最远。

在展开图上,这两个点恰好是相邻两个小正方形所构成的长方形的对角线上的两个端点。

在上页右下图中,1,2,6点都距9点最远,也就是说,1,2,6点都与9点不在一个表面上。

而与9点不在一个表面上的只有一个点,所以1,2,6点是同一个点,即折叠成纸盒时,1,2,6点重合。

例4有两块六个面上分别写着1~6的相同的数字积木,摆放如下图。

(完整word版)六年级奥数-第五讲.几何-立体部分.教师版

(完整word版)六年级奥数-第五讲.几何-立体部分.教师版

第五讲几何一一立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.知识点拨:、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形. )②长方体的表面积和体积的计算公式是:长方体的表面积:S长方体2(ab be ca);长方体的体积:V长方体abc .③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a,那么:S正方体6a2, V正方体a3.、圆柱与圆锥立体图形表面积体积圆柱匕S圆柱侧面积2个底面积 2 n h 2 n2圆柱n hA /I'S圆锥侧面积底面积—n2n2360注:1是母线,即从顶点到底面圆上的线段长1 2V a锥体—n h3例题精讲:C如右图,在一个棱长为10的立方体上截取一个长为 8,宽为3, 高为2的小长方体,那么新的几何体的表面积是多少?我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍 为原立方体的表面积:10 10 6 600.右图是一个边长为 4厘米的正方体,分别在前后、左右、上下 各面的中心位置挖去一个边长 I 厘米的正方体,做成一种玩具.它的表面积是多少平方厘米 ?(图中只画出了前面、右面、 上面挖去的正方体) 原正方体的表面积是 4 4 696(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了 5个边长是1厘米 的正方体作为玩具的表面积的组成部分. 总的来看,每一个面都增加了 4个边长是1厘米的正方形. 从而,它的表面积是: 96 4 6 120平方厘米.在一个棱长为50厘米的正方体木块, 在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?对于和长方体相关的立体图形表面积,一般从上下、左右、前后 3个方向考虑.变化前后的表面积不变:50 50 615000(平方厘米).F 图是一个棱长为 2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为洞,接着在小洞的底面正中向下挖一个棱长为-厘米的正方形2小洞,第三个正方形小洞的挖法和前两个相同为 -厘米,那么4最后得到的立体图形的表面积是多少平方厘米? 我们仍然从3个方向考虑•平行于上下表面的各面面积之和: 22 2 8(平方厘米);左右方向、前后方向:2 2 4 16(平 1 1 方厘米),1 1 4 4(平方厘米), 4 1(平方厘米),22114丄(平方厘米),这个立体图形的表面积为:444一个正方体木块,棱长是 1米,沿着水平方向将它锯成 块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数 2增加的面数.【例1】【解析】【例2】 【解析】【巩固】 【解析】【例3】 【解析】【例4】厂—丿O丿8 16 4 1 -29-(平方厘米). 4 42片,每片又锯成 3长条,每条又锯成 4小1厘米的正方体小原正方体表面积:1 1 6 6(平方米),一共锯了(2 1)(3 1)(4 1) 6次, 6 112 6 18(平方米).其中表面积最小的包装方法如图所示,表面积为 1034.【巩固】(2008年走美六年级初赛)一个表面积为56cm 2的长方体如图切成 27个小长方体,这27个小长方体__ 2表面积的和是 _________ cm .【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的 3倍,即表面积的和为 56 3 168(cm 2).【例5】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【解析】当小积木互相重合的面最多时表面积最小 •设想27块边长为1的正方形积木,当拼成一个 小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增 加,该几何体表面积为 54.【例6】 要把12件同样的长a 、宽b 、高h 的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b 2h 时,如何打包? ⑵当b 2h 时,如何打包? ⑶当b 2h 时,如何打包?【解析】图2和图3正面的面积相同,侧面面积正面周长 长方体长,所以正面的周长愈大表面积越大,图2的正面周长是 8h 6b ,图3的周长是12h 4b •两者的周长之差为 2 ( b 2h ).当b 2h 时,图2和图3周长相等,可随意打包;当 b 2h 时,按图2打包;当b 2h 时,按图3 打包•【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?第一种按长宽高1 1 6拼接,重叠面有三种选择,共 3种包装方法•第二种按长宽高1 2 3拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向3 3 3的正方体时,表面积最小,现在要去掉【解析】考虑所有的包装方法,因为 6 12 3,所以一共有两种拼接方式:的重叠面剩下2种选择,一共有6种包装方法•其中表面积最小的包装方法如图所示,表面积为 1034.【例7】 如图,在一个棱长为5分米的正方体上放一个棱长为 4分米的小正方体,求这个立体图形的表面积.7/我们把上面的小正方体想象成是可以向下“压缩”的, “压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面 •这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向 (左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:5 5 2 50 (平方分米);侧面:5 5 4 100(平方分米),4 4 4 64(平方分米).这个立体图形的表面积为:50 100 64 214(平方分米).体紧贴在一起,则所得到的多面体的表面积是 ___________ 平方厘米.【解析】(法1)四个正方体的表面积之和为: (12 2232 52) 6 39 6234(平方厘米),重叠部分的面积为:123 (22 2 12) (32 22 12) (32 22 12)3 914 1440 (平方厘米),所以,所得到的多面体的表面积为:234 40 194(平方厘米).(法2)三视图法.从前后面观察到的面积为 52 32 22 38平方厘米,从左右两个面观察到的面积为52 32 34平方厘米,从上下能观察到的面积为 扌25平方厘米.表面积为 38 34 252 194 (平方厘米).【例9】 把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形•,求这个立体图形的表面积.【解析】【例8】(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方【解析】 从上下、左右、前后观察到的的平面图形如下面三图表示•因此,这个立体图形的表面积为:上面2个左面 2个前面•上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米•因此,这个立体图形的总表面积为:(9 8 10) 2 54 (平方厘米)•【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米£ X._X、〈【解析】该图形的上、左、前三个方向的表面分别由 9、7、7块正方形组成.该图形的表面积等于(9 7 7) 2 46个小正方形的面积,所以该图形表面积为46平方厘米.【例10】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【例11】棱长是m 厘米(m 为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为 13:12 ,此时m 的最小值是多少?【解析】 4 4 (1 2 3 4) 4 56(平方米).其中表面积最小的包装方法如图所示,表面积为1034.【解析】切割成棱长是1厘米的小正方体共有m3个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12,而13 12 25,所以小正方体的总数是25的倍数,即m3是25的倍数,那么m是5的倍数.当m 5时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有 5 5 5 4 2 65个,表面没有红色的小正方体有125 65 60个,个数比恰好是13:12,符合题意•因此,m的最小值是5.【例12】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个4 4 4的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【解析】要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有(4 2)3 8(个),用黑色的;在面上但不在边上的小正方体有(4 2)2 6 24 (个),其中30 8 22个用黑色.这样,在表面的4 4 6 96个1 1的正方形中,有22个是黑色,96 22 74(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【例13】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【解析】每个长方体的棱长和是288 3 96厘米,所以,每个长方体长、宽、高的和是96 4 24厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少•所以,涂一面的长方体应涂一个8 7面,有8 7 56个;涂两面的长方体,若两面不相邻,应涂两个8 7面,有8 7 2 112个;若两面相邻,应涂一个8 7 面和一个9 7面,此时有7 8 9 2 105个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个8 7面、一个9 7面,有7 8 8 9 4 147个;若三面两两相邻,有7 1 8 1 7 1 9 1 8 1 9 1 146个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有56 105 146 307个.【例14】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【解析】设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些. 因为有两个面涂上红色的小正方体恰好是100块,设100 a b,那么分成的小正方体个数为a 2b 2 1 ab 2 a b 4 2 a b 104,为了使小正方体的个数尽量少,应使 a b最小,而两数之积一定,差越小积越小,所以当a b 10时它们的和最小,此时共有10 2 10 2 144个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是100 4 2 3 31.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312 2 27,此时共有2 2 27 108个小正方体.因为108 144,所以至少要把这个大长方体分割成 108个小正方体.□ 红 □ 红 □红□ _红□□ 红 □□ □ □ □ _红□其余四个面中,每个面的四个角上的方格不能再染成红色,至多能4个红色方格(见上中图).因4个红色方格.最后.所以,红色方格最多有 ©I⑴⑴如图,每个角上三个方向的 3个方格必须染成不同的三种颜色,所以8个角上最多只能有 8个方格染成红色.⑵如图,阴影部分是首尾相接由 9个方格组成的环,这9个方格中只能有4个方格能染成同一种颜色 (如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的 然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的18个方格中最多能有8个可染成红色. ⑶剩下6 3 3 8 3 9 2 12个方格,分布在6条棱上,这12个格子中只能有6个能染成红色. 综上所述,能被染成红色的方格最多能有 8 8 6 22个格子能染成红色,第一种解法中已经给出 22 个红方格的染色方法,所以 22个格子染成红色是最多的情况.【例16】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形•现从它的上面尽可能大的切下一个正方【例15】把正方体的六个表面都划分成 9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【解析】一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成 5个红色方格. ⑵体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【解析】本题的关键是确定三次切下的正方体的棱长•由于21:15:12 7:5:4,为了方便起见•我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体•因为7 5 4,容易知道第一次切下的正方体棱长应该是4厘米,第二次切时,切下棱长为3厘米的正方体符合要求•第三次切时,切下棱长为2厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体【例17】有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻标A的为黑色,图中共有黑色积木多少块?(有公共面)的积木颜色不同,积应是:21 15 12 12393631107 (立方厘米)•66【解析】分层来看,如下图(切面平行于纸面)共有黑色积木17块•【巩固】这个图形,是否能够由 1 1 2的长方体搭构而成?【解析】每一个1 1 2的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由1 1 2的长方体搭构而成•【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图)•依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?【解析】第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图)•上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27 •同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是(27 45) 3 216 •【例18】(05年武汉明心杯数学挑战赛)如图所示,一个5 5 5的立方体,在一个方向上开有1 1 5的孔, 在另一个方向上开有2 1 5的孔,在第三个方向上开有 3 1 5的孔,剩余部分的体积是多少?表面积为多少?【解析】求体积:开了3 1 5的孔,挖去3 1 5 15,开了1 1 5的孔,挖去115 1 4;开了2 1 5的孔,挖去 2 1 5 (2 2) 6 , 剩余部分的体积是: 5 5 5 (15 4 6) 100 .(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:求表面积:表面积可以看成外部和内部两部分.外部的表面积为 5 5 6 12 138,内部的面积可以分为前后、左右、上下三个方向,面积分别为 2 2 5 1 5 1 2 1 3 20、2 1 53 5 1 3 1 32、2 15 15 112 14,所以总的表面积为138 20 32 14 204.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:32上下方向:30 左右方向:40【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分 •请问剩下的部分共有多少个小正方体?【解析】对于这一类从立体图形中间挖掉一部分后再求体积曾或小正方体数目)的题目一般可以采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的) ,然后分别计算每一片或每一层的体积或小正方体数目,最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.1、2、3、4、5层剩下的小正方体分别有 22个、 11 11 6 22 72 (个)小正方体.【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方 体中相对的两面打通,右图就是抽空的状态•右图中剩下的小正方体有多少个?1 12 1 11 12 1 1 1 1 1 2 1 /12 2 2 2 2 2 22 2 22 21 1*21 尺12 2 2 2 2 / 1 21 1/ 1 2 1 1从图中可以看出,第 11个、11个、6个、22个,【解析】解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有 5 5 25个,由侧面图形抽出的小正方体有5 5 25个,由底面图形抽出的小正方体有 4 5 20个,正面图形和侧面图形重合抽出的小正方体有1 2 2 1 2 2 8个,正面图形和底面图形重合抽出的小正方体有 1 3 2 2 7个,底面图形和侧面图形重合抽出的小正方体有 1 2 1 1 2 2 7个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,25 25 20 8 7 7 4 52 ,所以共抽出了52个小正方体.125 52 73,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙” 这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走. (请注意挖通的效果就是成线挖去),如图: 第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【例19】(2009年迎春杯高年级组复赛)右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,(11)是正方形•那么,以⑸⑹⑺⑻⑼⑽(11)为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的_________ 倍.其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽(11)为平面展开图的立体图形,是一个不规则图形,底面是(11),四个侧面是⑺⑻⑼⑽, 两个斜面是⑸⑹. 对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一 些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去 4个角后得到(如下左图,切去ABD"、CBDC i 、D i ACQ 、 B 1A C 1B);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去 BACB i 、DACD 1).【解析】 本题中的两个图都是立体图形的平面展开图,假设左图中的立方体的棱长为 形的体积为:a 3丄a 2 a2右图中的立方体的棱长为 1 3-a ,3则以⑴⑵⑶⑷为平面展开图的立体图⑸ ⑺⑻ ⑹ (11) ⑼ ⑽1b ,以⑸⑹⑺⑻⑼⑽(11)为平面展开图的立体图形的体积为由于右图中的立方体的棱长即是题中正方形1的边长, 是正三角形⑴的边长,通过将等腰直角三角形⑺分成 的立方体的棱长是左图中的立方体的棱长的 2倍,即b 2a .那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽(11)为平面展开图的立体图形的体1 2 3 b — 2 b . 3 3而左图中的立方体的每一个面的对角线恰好4个相同的小等腰直角三角形可以得到右图中积的比为:1a 3:-b 3 [a 3:2 2a 3 1:16,也就是说以⑸⑹⑺⑻⑼⑽(11)为平面展开图的立体图形3 3 3 3的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【例20】图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同•请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?【解析】 首先,我们把展开图折成立体图形,见下列示意图:对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面, 那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微 妙关系:11111 1丄丄1 1丄—,所以切掉8个角后的2 2 2 23 481 5体积是1 — 8 — •48 6 1再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为-21由图⑷可见,图⑴这个立体的体积与图 ⑶这个被切去了 8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是 图⑶1图⑷的立方体来套•如果把图⑵的立体图形放入边长为-的立方体里的话是可以放进去的.21这是切去了四个角后的图形,从上面的分析可知一个角的体积为 一,所以图⑵的体积是:48---丄4丄,那么前者的体积是后者的 5丄20倍. 2 2 2 48 246 24【例21】如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体•问这个物体的表面积是多少平方米?( n 取3.14)从上面看到图形是右上图,所以上下底面积和为2 3.14 1.52 14.13 (立方米),侧面积为2 3.14 (0.5 1 1.5) 1 18.84 (立方米),所以该物体的表面积是14.13 18.84 32.97(立方米).【例22】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直 径是4厘米,孔深5厘米(见右图)•如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多 少平方厘米?【解析】涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为6 26 n 10 n (一) 2 4 n 5 60 n 18n 20 n 98 n 307.72 (平方厘米)•2【例23】(第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是 立方厘米. (结果用n 表示) 【解析】当圆柱的高是 12厘米时体积为(10\2 12n ( )12 2 n300 “(立方厘米) 冗 当圆柱的高是 12厘米时体积为,12 .2 “ n ( ) 102 n360 (立方厘米)•所以圆柱体的体积为300立方厘米 7t 7t或360立方厘米.【解析】1n【例24】如右图,是一个长方形铁皮,禾U用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(n 3.14)XJ丿V ---------------- ——16.56m——- •【解析】圆的直径为:16.56 1 3.14 4(米),而油桶的高为2个直径长,即为:4 2 8(m),故体积为100.48立方米.【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(n 3.14)【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为: 2 n 10 62.8(厘米),原来的长方形的面积为:(10 4 62.8)(10 2)2056(平方厘米).【例25】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米•原来的圆柱体的体积是多少立方厘米?【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.56 2 6.28厘米,底面半径为6.28 3.14 2 1厘米,所以原来的圆柱体的体积是n 12 8 8n 25.12(立方厘米).【例26】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米?(n 3.14)【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为50.24 3.14 224(厘米),所以增加的表面积为2 4 2 16(平方厘米);(法2)根据长方体的体积公式推导. 增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.14 2 6.28厘米,所以侧面长方形的面积为50.24 6.28 8平方。

六年级奥数-第五讲[1].几何-立体部分.教师版.

六年级奥数-第五讲[1].几何-立体部分.教师版.

第五讲几何——立体部分—、长方体和正方体如右图,长方体共有六个面(每个面都是长方形,八个顶点■十二条棱.cF①在六个面中,两个对面是全等的•即三组对面两两全等.(S 放在一起能够完全 重合的两个图形称为全等图形•②长方体的表面积和体积的计算公式是:长方体的 表面积:2( S ab be ca 二++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体•它是长方体的特例,它的六个面都是正方形•如果 它的棱长为a ,那么:26S a 二正方体,3V a 二正方体-例题精讲:2【解析】原正方体的表面积是4X 4X 6=96(平方厘米•每一个面被挖去一个边长是1厘米的正方形,同时又増加了5个边长是1厘米的正方体作为玩具的表面积的组成部分•总的来看■每一个面都増加了4个边长是1厘米的正方形.从而•它的表面积是:96+4x 6=120平方厘米【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【解析】对于和长方体相关的立体图形表面积9一般从上下.左右.前后3个方向考虑•变化前后的表面积不变:50x 50x6=15000(平方厘米•【例3]下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1厘米的正方形小洞•第三个正方形小洞的挖法和前两个相同为1 2厘米•那么最后得到的立体图形的表面积是多少平方厘米?【解析】我们仍然从3个方向考虑•平行于上下表面的各面面积之和: 2X2X2=8(平方厘米;左右方向.前后方向:2X2X4=16(平方厘米.lxlx4=4(平方厘米,1 2 XX 4=1(平方厘米.x4=(平方厘米•这个立体图形的表面积为:816++4+1+ 1429(平方厘米・【例4]-个正方体木块9棱长是1米■沿着水平方向将它锯成2片,每片又锯成3长条■每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】锯一次増加两个面•锯的总次数转化为增加的面数的公式为:锯的总次数X2二增加的面数•原正方体表面积:lx lx6=6(平方米L共锯了(2-1 +(3-1 +(4-1 =6次, 6+1 X I x2x6=18(平方米•【巩固】(2008年走美六年级初赛一个表面积为256cm的长方体如图切成27个小长方体•这27个小长方体表面积的和是2【解析J每一刀増加两个切面•增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cmx=・【例5]如图,25块边长为1的正方体积木拼成一个几何体•表面积最小是多少?【解析J当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333X X的正方体时,表面积最小■现在要去掉2块小积木,只有在两个角上各去掉一块小积木9或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54・【例6】要把12件同样的长Q、宽b.高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b=2h时•如何打包?⑵当b<2h时•如何打包?⑶当b:>2h时•如何打包?【解析】图2和图3正面的面积相同■侧面面积二正面周长X长方体长■所以正面的周长愈大表面积越大,图2的正面周长是8h +6b,图3的周长是12h +4b .两者的周长之差为2(b・2h・当b =2h时,图2和图3周长相等,可随意打包;当b <2h时,按图2打包;当b >2h 时,按图3打包【巩固】要把6件同样的长17.宽人高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】考虑所有的包装方法,因为6=I X2X3,所以一共有两种拼接方式:第一种按长宽高1x1x6拼接•重叠面有三种选择•共3种包装方法•第二种按长宽高1x2x3拼接,有3个长方体并列方向的重叠面有三种选择•有2个长方体并列方向的重S面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034【例7】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【解析】我们把上面的小正方体想象成是可以向下“压缩'‘的「压缩'‘后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起9正好是大正方体的上面•这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向:小正方体的四个侧面,大正方体的四个侧面•上下方向:55250xx={平方分米;侧面:554100xx=(平方分米,44464xx={平方分米.这个立体图形的表面积为:5010064214++={平方分米-【例8】(2008年“希望杯,,五年级第2试如图•棱长分别为1厘米、2厘米、3厘米.5厘米的四个正方【解析】(法1四个正方体的表面积之和为:2(1235 6396234+++x=x=(平方厘米,重叠部分的面积为:22222222213(221 (321 (32139141440X + X+++++++=+++=(平方厘米,所以,所得到的多面体的表面积为:23440194-=(平方厘米.(法2三视图法•从前后面观察到的面积为22253238卄二平方厘米,从左右两个 面观察到的面积为225334+二平方厘米•从上下能观察到的面积为2525二平方厘米•表面积为(3834252194++x=(平方厘米•【例9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个 立体图形•,求这个立体图形的表面积.丿. 体紧贴在一起,则所得到的多面体的表面积是 平方厘米.二葺丿.r~h【解析】从上下、左右、前后观察到的的平面图形如下面三图表示•因此,这个立体图形的表面积为:2个上面2+个左面2+个前面•上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:iO平方厘米.因此,这个立体图形的总表面积为:(9810254++x=(平方厘米・上下面左右面前后面【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【解析】该图形的上.左、前三个方向的表面分别由9、7. 7块正方形组成.该图形的表面积等于(977 246卄X二个小正方形的面积•所以该图形表面积为46 平方厘米.【例10]有30个边长为1米的正方体•在地面上摆成右上图的形式,然后把露出的表面涂成红色•求被涂成红色的表面积.【解析】44( 1234 456x ++++ x =(平方米•【例11】棱长是m厘米(m为整数的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体•至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为!3订2,此时m的最小值是多少?【解析】切割成棱长是I厘米的小正方体共有3m个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为13:12而131225+m所以小正方体的总数是25的倍数即3m是25 的倍数,那么m是5的倍数.当5m =时,要使得至少有一面的小正方体有65个,可以将原正方体的正面.上面和下面涂色,此时至少一面涂红色的小正方体有5554265x+xx=个,表面没有红色的小正方体有1256560•二个,个数比恰好是13:12,符合题意•因此m的最小值是5.【例12】有64个边长为1厘米的同样大小的小正方体•其中34个为白色的,30个为黑色的现将它们拼成-个444X X的大正方体•在大正方体的表面上白色部分最多可以是多少平方厘米?【解析】要使大正方体的表面上白色部分最多•相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有3(42 &=(个,用黑色的;在面上但不在边上的小正方体有2(42 624-x=(个,其中30822-=个用黑色.这样•在表面的44696X "个H X的正方形中,有22个是黑色.962274=(个是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【例13】三个完全一样的长方体,棱长总和是288厘米9每个长方体相交于个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色■-个涂一面,一个涂两面,一个涂三面•涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【解析J每个长方体的棱长和是288396十二厘米,所以■每个长方体长、宽.高的和是96424=厘米因为9每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数•所以•每个长方体的长、宽、高分别是9厘米、8厘米.7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个87x面■有8756X =个;涂两面的长方体,若两面不相邻■应涂两个87x面,有872112x X二个;若两面相邻,应涂一个87x面和一个97x面,此时有(7892105x+-=个, 所以涂两面的最少有105个;涂三面的长方体9若三面不两两相邻,应涂两个87x面.一个97x面9有(78894147 x++-=个;若三面两两相邻•有((((((718171918191146-x-+-x-+-x-=个■所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有56105146307++=个.【例14]把一个大长方体木块表面上涂满红色后•分割成若干个同样大小的小正方体•其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【解析】设小正方体的棱长为1•考虑两种不同的情况•一种是长方体的长.宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽.高中有一个是1时■分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设100a b二X,那么分成的小正方体个数为((((221242104a b ab a b a b +x+x二+++=++,为了使小正方体的个数尽量少■应使(a b + 最小,而两数之积一定•差越小积越小,所以当10a b =时它们的和最小,此时共有((102102144+X +二个小正方体.当长方体的长、宽、高都大于I时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是10042331++X二.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令312227=++,此时共有2227I08xx=个小正方体.因为108144<,所以至少要把这个大长方体分割成108个小正方体.【例15】把正方体的六个表面都划分成9个相等的正方形•用红、黄.蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色•那么•用红色染的正方形最多有多少个?【解析】一个面最多有5个方格可染成红色(见左下图•因为染有5个红色方格的面不能相邻,可以相对•所以至多有两个面可以染成5个红色方格.红红红红其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图•因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图•所以,红色方格最多有52422222X +X +X二(个.(另解事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明22是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色•但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由9个方格组成的环, 这9个方格中只能有4个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格、剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格,像这样的环,在正方体表面最多能找129到不重叠的两道(关于正方体中心对称的两道,涉及的18个方格中最多能有8个可 染成红色•⑶剩下6338392I2xx-x-x=个方格,分布在6条棱上,这12个格子中只能 有6个能染成红色.综上所述.能被染成红色的方格最多能有88622++二个格子能染 成红色.第一种解法中已经给出22个红方格的染色方法,所以22个格子染成红色是 最多的情况.【例16】一个长、宽.高分别为21厘米.15厘米.12厘米的长方形•现从它的上面尽可能大的切下一个正方体•然后从剩余的部分再尽可能大的切下一个正方体•最后再从第二次剩余的 部分尽可能大的切下一个正方体•剩下的体积是多少立方厘米?【解析】本题的关键是确定三次切下的正方体的棱长•由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754»,容易知道第一次切下的正方体棱长应该是4厘米,第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要 求・那么对于原长方体来说•三次切下的正方体的棱长分别是12厘米.9厘米和6厘米,所以剩下的体积应是:(33321I5I2I296I107xx-++={立方厘米.1299663 454 12126312【例17】有黑白两种颜色的正方体积木•把它摆成右图所示的形状,已知相邻(有公共面的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?【解析】分层来看,如下图(切面平行于纸面共有黑色积木17块【巩固】这个图形•是否能够由112XX 的长方体搭构而成?【解析】每一个H2X X 的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由112X X 的长方体搭构而成・【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图.依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?232311【解析】第一层如下图•第二层.第三层依次比上面一层每格都多1(见下图.76543565第三层65432第二层第一层34323454 2345上面的9个数之和是27•由对称性知,上面、前面.右面的所有数之和都是27・ 同理,下面的9个数之和是45,下面.左面.后面的所有数之和都是45•所以六个面上所有数之和是(2745 3216+x=.【例18] (05年武汉明心杯数学挑战赛如图所示,一个555X X 的立方体,在一 个方向上开有115x X 的孔,在另一个方向上开有215X X 的孔•在第三个方向上开有315X X 的孔,剩余部分的体积是多少?表面积为多少?【解析】求体积:开了 315x X 的孔■挖去31515X x=,开了 115xx 的孔■挖去11514xx ・=;开了215X X 的孔,挖去 215(22 6xx-+=,剩余部分的体积&555(1546 lOOx x ・++二.(另解将整个图形切片•如果切面平行于纸面■那么五个切片分别如图:得到总体积为:22412100x+=求表面积:表面积可以看成外部和内部两部分•外部的表面积为556I2138X 内部的面积可以分为前后、左右.上下三个方向,面积分别为(22515121320X x+x-x-x=.(2153513132* x + x-x-=(2I5I511214x x + x-x-=,所以总的表面积为13820321+++=.(另解运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:32总表面积为(2323040204x++=・【总结】“切片法J全面打洞(例如本题,五层一样,挖块成线(例如本题,在前一层的基础上,一条线一条线地挖,这里体现的思想方法是:化整为零•有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分•请问剩下的部分共有多少个小正方体?【解析J对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数目的题目一般可以采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的,然后分别计算每一片或每一层的体积或小正方体数目、最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.第3层从图中可以看出,第1、2、3、4、5层剩下的小正方体分别有22个.11个.11个.6个、22个,所以总共还剩下22111162272++++=(个小正方体.【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方【解析】解法一:(用'喀斥原理"来解由正面图形抽出的小正方体有5525X二个,由侧面图形抽出的小正方体有5525X二个,由底面图形抽出的小正方体有4520X二个,正面图形和侧面图形重合抽出的小正方体有1221228x + x + x=个,正面图形和底面图形重合抽出的小正方体有13227X + X二个,底面图形和侧面图形重合抽出的小正方体有1211227x + x + e个,三个面的图形共同重合抽出的小正方体有4个•根据容斥原理■252520877452++"=>所以共抽出了52个小正方体・1255273•三所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块■这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型9再由第三个方向来穿过“花墙".这里,化虚为实的思想方法很重要.解法二:(用“切片法"来解可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者•从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层•首先都应该有第一层的空四块的情况•即如果挖第二层:第(1步,把中间这些位置的四块挖走如图:第(2步•把从右向左的两块成线地挖走•(请注意挖通的效果就是成线挖去,如图:第(3步,把从前向后的一块(请注意跟第二层有关的只是一块!挖成线!如图:【例19】(2009年迎春杯高年级组复赛右图中的⑴⑵⑶⑷是同样的小等边三角形,(5)⑹也是等边三角形且边长为⑴的2倍/7)(8)(9)(10)是同样的等腰直角三角形,(11) 是正方形.那么,以⑸⑹⑺⑻⑼(10)(11)为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的倍.(11)CIO)(7) (6)【解析】本题中的两个图都是立体图形的平面展开图9将它们还原成立体图形, 可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼(10)(11)为平面展开图的立体图形,是一个不规则图形,底面是(11)•四个侧面是(7X8X9X10),两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形9右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套•对于左图来说,相当于由一个正方体切去4个角后得到(如下左图, 切去 1 ABDA . 1CBDC . 11 ID A C D、IIIB ACB;而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去1BACB ,1DACD ・假设左图中的立方体的棱长为。

小学六年级奥数--立体几何综合

小学六年级奥数--立体几何综合

学科培优 数学立体几何综合学生姓名 授课日期 教师姓名授课时长知识定位本讲复习已经学过的立体图形的相关知识和解题技巧,主要有:长方体、立方体、圆柱、圆锥的体积及表面积求解,立体几何计数及多面体顶点与棱以及表面的关系。

重难点在于:1.不规则立体图形的表面积或体积求解2.多面体的顶点与棱数计数 3.体积的等量代换主要的考点:1.规则立体图形的表面积(侧面积)与体积计算2.不规则立体图形的表面积与体积计算 3.染色问题4.立体图形的三视图与展开图知识梳理主要知识点 立体几何⑴规则立体图形的表面积和体积公式长方体:体积:长宽高 表面积:(长宽+宽高+长高) 立方体:体积:棱长的立方 表面积:棱长的平方6 圆柱: 体积:2r h π 侧面积:2rh π 圆锥: 体积:213r h π⑵不规则立体图形的表面积整体观照法⑶体积的等积变形①水中浸放物体:V 升水=V 物 ②测啤酒瓶容积:V=V 空气+V 水⑷三视图与展开图最短线路与展开图形状问题⑸染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。

例题精讲【试题来源】【题目】一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.【试题来源】 【题目】右图是一个棱长为2厘米的正方体,在正方体上面的正中向下挖一个棱长为1厘米的正方形小洞;接着在小洞的底面正中再挖一个棱长为21厘米的小洞;第三个小洞的挖法与前两个相同,棱长为41厘米.那么最后得到的立体图形的表面积是 平方厘米【试题来源】【题目】把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是_____平方厘米。

【试题来源】【题目】右图是3层没有缝隙的小立方块组成的.如果它的外表面(包括底面)全都被涂成红色,那么把它们再分开成一个个小立方块时,有多少个小立方块恰有三面是红色的?【试题来源】【题目】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是( ).【试题来源】【题目】把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.【试题来源】【题目】用棱长是1厘米的立方体拼成右图所示的立体图形.求这个立体图形的表面积.【试题来源】【题目】把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成个小正方体.【试题来源】【题目】用10块长7厘米,宽5厘米,高3厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?【试题来源】【题目】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【试题来源】【题目】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【试题来源】【题目】将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.求这个物体的表面积.【试题来源】【题目】这里有一个圆柱和一个圆锥(下图),它们的高和底面直径都标在图上,单位是厘米.请回答:圆锥体积与圆柱体积的比是多少?【试题来源】【题目】一个长、宽、高分别为21厘米、15厘米、12厘米的长方体.现从它的上面尽可能大的切下一个正方体.然后从剩余的部分再尽可能大的切下一个正方体.最后再从第二次剩余的部分尽可能大的切下一个正方体.剩下的体积是平方厘米.【试题来源】【题目】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【试题来源】【题目】图1是下面的表面展开图①甲正方体;②乙正方体;③丙正方体;④甲正方体或丙正方体.【试题来源】【题目】如图,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).这个多面体的面数、顶点数和棱数的总和是多少?【试题来源】【题目】下面是一辆汽车模型纸工平面展开图,中轴线上面的一半标出了尺寸.将该图剪下折叠粘合(相同字母标记处粘合在一起)做成汽车模型的体积为V .请回答:①403<v<445②473<V<500,哪一个正确,为什么?【试题来源】【题目】现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【试题来源】【题目】如图,在一个立方体的两对侧面的中心各打通一个长方体的洞在上下侧面的中心打通一个圆柱形的洞,已知立方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求该立方体的表面积和体积(取 =3.14).【试题来源】【题目】用大小相等的无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体ABCD —1A 1B 1C 1D (如图),大正方体内的对角线A 1C ,B 1D ,C 1A ,D 1B 所穿的小正方体都是红色玻璃小正方体,其它部分都是无色透明玻璃小正方体,小红正方体共用了401个,问:无色透明小正方体用了多少个?习题演练【试题来源】【题目】一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是______ 立方厘米【试题来源】【题目】右图是一个表面被涂上红色的棱长为lO厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是_____平方厘米【试题来源】【题目】张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用了长3米、宽2米的长方形苇席围成容积最大的圆柱形粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍?【试题来源】【题目】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面涂上红色的小长方体恰好是12块.那么至少要把这个大长方体分割成个小长方体.【试题来源】【题目】六个立方体A、B、C、D、E、F的可见部分如下图,下边是其中一个立体的侧面展开图,那么它是立方体____的侧面展开图.2。

六年级奥数立体图形知识点

六年级奥数立体图形知识点

测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆 锥的顶点上面,竖直地量出平板和底面之间的距离。
把圆锥的侧面展开得到一个扇形。 2 计算公式 v=sh/3 (五)球 1 认识 球的外表是一个曲面,这个曲面叫做球面。 球和圆类似,也有一个球心,用 O 表示。 从球心到球面上任意一点的线段叫做球的半径,用 r 表示,每条 半径都相等。 通过球心并且两端都在球面上的线段,叫做球的直径,用 d 表示, 每条直径都相等,直径的长度等于半径的 2 倍,即 d=2r。 2 计算公式

第1页共3页本文Βιβλιοθήκη 式为 Word 版,下载可任意编辑
圆柱的上下两个面叫做底面。 圆柱有一个曲面叫做侧面。 圆柱两个底面之间的距离叫做高。 进一法:实际中,使用的材料都要比计算的结果多一些,因此,要 保存数的时候,省略的位上的是 4 或者比 4 小,都要向前一位进 1。这 种取近似值的方法叫做进一法。 2 计算公式 s 侧=ch s 表=s 侧+s 底×2 v=sh/3 (四)圆锥 1 圆锥的认识 圆锥的底面是个圆,圆锥的侧面是个曲面。 从圆锥的顶点到底面圆心的距离是圆锥的高。
本文格式为 Word 版,下载可任意编辑
六年级奥数立体图形知识点
V=sh V=abh
(二)正方体
(一)长方体
1 特征
1 特征
六个面都是正方形
六个面都是长方形(有时有两个相对的面是正方形)。
六个面的面积相等
相对的面面积相等,12 条棱相对的 4 条棱长度相等。
12 条棱,棱长都相等
有 8 个顶点。
有 8 个顶点

第2页共3页
本文格式为 Word 版,下载可任意编辑
d=2r 以上就是由为您提供的六年级奥数立体图形学问点精选,盼望给您 带来关心!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十三、立体图形(2)
年级 班 姓名 得分 一、填空题
1.右图表示的长方体(单位:米),长和宽都是3米,体积是24立方米.这个长方体的表面积是 平方米.
2.把两个相同的正方体拼在一起成一个长方体,这个长方体的表面积是两个正方体表面积之和的 分之 .
3.一个长6分米、宽4分米、高2分米的木箱.用三根铁丝捆起来(如右图),打结处要用1分米铁丝.这根铁丝总长至少为 分米.
4.一个长方体的底面、侧面和前面的面积分别是12平方厘米、8平方厘米和6平方厘米.那么它的体积是 .
5.如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是 立方厘米.
6.将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是 .(14.3=π)
7.把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积之和最大.这时表面积之和是平方厘米.
8.一个圆柱形玻璃杯中盛有水,水面高2.5厘米,玻璃内侧的底面积是72平方厘米,在这个杯中放进棱长6厘米的正方体的铁块后,水面没有淹没铁块,这时水面高厘米.
9.正方体的每一条棱长是一个一位数;表面的每个正方形面积是一个两位数,整个表面积是一个三位数.而且若将正方形面积的两位数中两个数码调过来恰好是三位数的十位上与个位上的数码.这个正方形的体积是 .
10.如图所示,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).这个多面体的面数、顶点数和棱数的总和是 .
二、解答题
11.在底面边长为60厘米的正方形的一个长方体的容器里,直立着一个长1米,底面为正方形,边长15厘米的四棱柱铁棍.这时容器里的水半米深,现在把铁棍轻轻地向正上方提起24厘米,露出水面的四棱柱铁棍浸湿部分长多少厘米?
12.一个长、宽和高分别为21厘米、15厘米和12厘米的长方体,现从它的上面尽可能大地切下一个正方体,然后从剩余的部分再尽可能大地切下一个正方体,最后再从第二次剩余的部分尽可能大地切下一个正方体,剩下的体积是多少立方厘米?
13.如图是一个立体图形的侧面展开图,求它的全面积和体积.
14.现有一个长,宽,高都为1cm的正方体,一个长,宽,为1cm,高为2cm的长
方体,三个长,宽为1cm ,高为3cm 的长方体.下列图是把这五个立体图形合并成某一立体图形时,从上面,前面,侧面所看到的图形.试利用下面三个图形把合并成的立体图形如(例)的样子画出来,并求出其表面积.
———————————————答 案——————————————————————
1. 50.
长方体的底面积为3×3=9(米2),故其高为3
2
2924=÷(米),从而其表面积
为5023223322333=⨯⎪⎭⎫ ⎝

⨯+⨯+⨯(米2)
2. 六分之五.
设一个正方体的一个面积为1,则两个正方体表面积为1×6×2=12.而将两
个正方体拼成一个长方体之后,这个长方体的表面积是10,它是12的6
5
.
3. 43.
铁丝总长等于长方体长的2倍,宽的4倍与高的6倍之和,再加上三个打结处所用铁丝长,即(6×2+2×6+4×4)+1×3=43(分米)
4. 24平方厘米.
设长方体的长宽高分别为x ,y ,z 厘米,体积为V 立方厘米,则xy =12, yz=8, xz=6,将上面三式相乘,有5766812222=⨯⨯=z y x ,故24=xyz ,即24=V .
5. 90.
长方体容器的长为13-2×2=9(厘米),宽为9-2×2=5(厘米),高为2厘米,故体积9×5×2=90(立方厘米).
6. 32.97平方米.
前面所看
到的图形
这个物体的表面积是大圆柱的表面积加上中、小圆柱的侧面积,故它的表面积为:
97.325.1015.0211215.1225.12≈=⨯⨯+⨯⨯+⨯⨯+⨯⨯πππππ(平方米).
7. 298.
把一个长方体截成两个长方体,只截一次,增加两个横截面,由题意应增加面积为7×6=42(平方厘米)的横截面,其表面之和最大,最大面积为(7×6+7×5+6×5)×2+7×6×2=298(平方厘米).
8. 5.
水的体积为72×2.5=180(cm 2),放入铁块后可以将水看作是底面积为72-6
×6=36(cm 2
)的柱体,所以它的高为180÷36=5(cm )
9. 343.
根据“正方体的每一条棱长是一个一位数,表面积的每个正方形面积是一个两位数,整个表面积是一个三位数”的条件,可以判断正方体的棱长有5,6,7,8,9这五种可能性.
由下表的数据及条件: “将正方形面积的两位数中两个数码调过来恰好是三位数的十位数上与个位数上的数码”可知这个正方体的棱长是7.
因此,这个长方体的体积是7×7×7=343.
10. 74.
这个多面体的面数可以直接数出是20,而棱数为“实线条数÷2+虚线条数”,等于34÷2+19=36.顶点数=棱数-面数+2(欧拉定理)是36-20+2=18,所以这个多面体的面数、顶点数和棱数的总和是20+18+36=74.
11. 水的体积为()16875050156022=⨯-立方厘米.当将铁棍提起后,铁棍下方水的体积为8640024602=⨯(立方厘米),所以浸湿部分长为
()()4.2415608640016875022=-⨯-(厘米).
12. 第一次切下的尽可能大的正方体的棱长是12
3
15
21
3
6
3
9
( 2 )
厘米,体积为1728123=(立方厘米)
这时剩余立体底面形状如图(1),其高是12厘米.这样第二次切下的尽可能大的正方体棱长为9厘米,其体积是92993=(立方厘米). 第二次切割后,剩下的立体可以看作是由两部分组成的:一部分的底面形状如图(2),高为12厘米,另一部分底面形状如图3,高是3厘米.显然,第三次切下的尽可能大的正方体棱长为6厘米,其体积为21663=(立方厘米).
所以,剩下的体积为21×15×12-1728-729-216=1107(立方厘米).
13. 这个立体图形是一个圆柱的四分之一(如图),圆柱的底面半径为10厘米,高为8厘米. 它的全面积为:
810281014.324
1
1014.34122⨯⨯+⨯⨯⨯⨯+⨯⨯⨯
6.4421606.125157=++=(平方厘米).
它的体积为:62881014.34
1
2=⨯⨯⨯(立方厘米).
14. 立体图形的形状如右图所示.
从上面和下面看到的形状面积都是9 cm 2,共cm 2; 从两个侧面看到的形状面积都为7 cm 2,共14 cm 2; 从前面和后面看到的形状面积都为6 cm 2,共12 cm 2
隐藏着的面积有2 cm 2.
一共有18+16+12+2=46(cm 2).
9
( 3 )
9。

相关文档
最新文档