LED电源输入滤波电容的选择计算方法
LED驱动电源恒流方案大全
恒流方案大全恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。
恒流源分为流出(Current Source)和流入(Current Sink)两种形式。
最简单的恒流源,就是用一只恒流二极管。
实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。
最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。
这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。
缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。
同时不同的工作电流下,这个电压也会有一定的波动。
因此不适合精密的恒流需求。
为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。
典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。
电流计算公式为:I = Vin/R1这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。
只不过其中的Vin还需要用户额外提供。
从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。
有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。
最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。
如图(3)所示:电流计算公式为:I = (Vd-Vbe)/R1TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。
TL431组成流出源的电路,暂时我还没想到:)TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》电流计算公式为:I = 2.5/R1事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。
LED驱动电源电路分析
LED驱动电源电路分析今天给大家简单分析一个(LED驱动)电路,供大家学习。
一,先从一个完整的LED驱动(电路原理)图讲起。
本文所用这张图是从网上获取,并不代表具体某个(产品),主要是想从这个图中,跟大家分享目前典型的恒流驱动电源原理,同时跟大家一起分享大牛对它的理解,希望可以帮到大家。
那么本文只做定性分析,只讨论(信号)的过程,对具体电压(电流)的参数量在这里不作讨论。
图1某款LED驱动电路原理图二、原理分析为了方便分析,把图1分成几个部分来讲1:输入过压保护主要是雷击或者市冲击带来的浪涌。
如果是(DC)电压从“+48V、GNG”两端进来通过R1的电阻,此电阻的作用是限流,若后面的线路出现短路时,R1流过的电流就会增大,随之两端压降跟着增大,当超过1W时就会自动断开,阻值增加至无穷大,从而达到保护输入电路+48V不受到负载的影响)限流后进入整流桥。
图2输入过压(保护电路)R1与RV构成了一个简单过压保护电路,RV是一个压敏元件,是利用具有非线性的(半导体)材料制作的而成,其伏安特性与稳压(二极管)差不多,正常情况显高阻抗状态,流过的电流很少,当电压高到一定的时候(主要是指尖峰浪涌,如打雷的时候高脉冲串通过市电串入进来),压敏RV会显现短路状态,直接截取整个输入总电流,使后面的电路停止工作,此时,由于所有电流将流过R1和RV,因R1只有1W的功率,所以瞬间可以开路,从而保护了整个电路不被损坏。
2、整流滤波电路当交流AC输入时,则桥式整流器是利用二极管的单向导通性进行整流的最常用的电路,将交流电转变为直流电。
当直流DC(+48V)电压直接进入整流桥BD时,输出一个上正下负的直流电压,如果+48V(电源)本身也是直流的,那整流桥的作用就是对输入起到的是极性保护作用,无论输入是上正下负还是上负下正都不会损坏驱动电源,通过C1C2L1进行滤波,图3是一个LCΠ型滤波电路,目的是将整流后的电压波形平滑的直流电。
阻容降压原理和计算公式及LED照明应用原理基础
阻容降压原理和计算公式及LED照明应用原理基础作者:113007060提交日期:2010-5-2 17:52:00 | 分类:照明技术应用 | 访问量:234阻容降压原理和计算公式这一类的电路通常用于低成本取得非隔离的小电流电源。
它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。
所能提供的电流大小正比于限流电容容量。
采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C=0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mAf为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆.如果采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C=0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。
使用这种电路时,需要注意以下事项:1、未和220V交流高压隔离,请注意安全,严防触电!2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。
3、注意齐纳管功耗,严禁齐纳管断开运行。
电容降压式电源将交流式电转换为低压直流电容降压原理电容降压的工作原理并不复杂。
他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。
例如,在50Hz的工频条件下,一个1uF 的电容所产生的容抗约为3180欧姆。
当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。
虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。
EMC电源谐波整改
LED电源总谐波失真(THD)分析及对策1.总谐波失真THD 与功率因数PF 的关系市面上很多的LED 驱动电源,其输入电路采用简单的桥式整流器和电解电容器的整流滤波电路,见图1.图1该电路只有在输入交流电压的峰值附近,整流二极管才出现导通,因此其导通角θ比较小,大约为60°左右,致使输入电流波形为尖状脉冲,脉宽约为3ms,是半个周期(10ms)的1/3.输入电压及电流波形如图2 所示。
由此可见,造成LED 电源输入电流畸变的根本原因是使用了直流滤波电解电容器的容性负载所致。
图2对于LED 驱动电源输入电流产生畸变的非正弦波,须用傅里叶(Fourier)级数描述。
根据傅里叶变换原理,瞬时输入电流可表为:式中,n 是谐波次数,傅里叶系数an 和bn 分别表为:每一个电流谐波,通常会有一个正弦或余弦周期,n 次谐波电流有效值In 可用下式计算:输入总电流有效值上式根号中,I1 为基波电流有效值,其余的I2,3,分别代表2,3,…n 次谐波电流有效值。
用基波电流百分比表示的电流总谐波含量叫总谐波失真(THD),总谐波含量反映了波形的畸变特性,因此也叫总谐波畸变率。
定义为根据功率因数PF 的定义,功率因数PF 是指交流输入的有功功率P 与输入视在功率S 之比值,即其中,为输入电源电压;U cosΦ1 叫相移因数,它反映了基波电流i1 与电压u 的相位关系,Φ1 是基波相移角;输入基波电流有效值I1 与输入总电流有效值Irms 的百分比即K=I1 / Irms 叫输入电流失真系数。
上式表明,在LED 驱动电源等非线性的开关电源电路中,功率因数PF 不仅与基波电流i1 电压u 之间的相位有关,而且还与输入电流失真系数K 有关。
将式(6)代入式(7),则功率因数PF 与总谐波失真THD 有如下关系:上式说明,在相移因数cosΦ1 不变时,降低总谐波失真THD,可以提高功率因数PF;反之也能说明,PF 越高则THD 越小。
CPC2123 LED驱动器 数据手册说明书
CHIPHOMER TECHNOLOGY (SHANGHAI) LIMITED CPC2123数据手册升压型LED驱动器1 描述CPC2123是一款为LED驱动而设计的升压型DC/DC转换器。
CPC2123采用高达1.1MHz 的工作频率,允许采用小巧的外部电感和电容元件。
LED采用串联的连接形式,这样保证流过每个LED的电流相同,从而可以获得一致的亮度。
CPC2123的开关管的峰值电流可达1200mA,并且可承受高达40V的电压。
在单节锂离子电池供电情况下,CPC2123可驱动最多达30颗LED。
随着供电电压升高,CPC2123可以驱动更多LED,非常适合于中大LCD屏背光应用。
CPC2123内置软启动功能,限制启动时的浪涌电流。
CPC2123内置过流和过热保护,增强了应用的安全性。
CPC2123为PWM调光。
CPC2123采用纤小的SOT23-6L封装。
特性单节锂离子电池可驱动单串12颗白光LED单节锂离子电池可驱动10串,每串3颗白光LED高电压(10~24V)供电最多可驱动6串,每串10颗LED内置软启动功能,限制启动时浪涌电流1.1MHz开关频率PWM调光占空比支持低至1%PWM调光频率1kHz以上独创的SW沿处理技术,防止EMI干扰同时具备较高效率300mV反馈电压(CPC2120为200mV反馈电压)开关管峰值限流1200mA内置过流保护,过热保护关机电流:<1μA采用纤小的SOT23-6L封装应用•手机•平板•LCD 背光•红外LED驱动•夜视摄像头•OTG•升压输出应用•电压偏置应用2 封装引脚 2.1 封装CPC2123SOT23-6LSW 1GND 2FB 36 VIN4 SHDN5 OVPFigure 1 CPC2123 封装引脚图2.2 引脚描述名称 序号 说明SW 1 开关引脚,外部连接电感和肖特基管,设计时应注意最大限度的缩小该引脚连线的长度以降低EMI 。
GND 2 接地引脚。
LED灯恒流驱动电源设计指导书(新)
LED高效恒流驱动电源的设计指导书第1章绪论1.1 LED工作原理1.1.1 LED发光原理发光二极管(LED)是一种将把电能变成光能的器件,发光二极管的主要部份是由p型半导体和n型半导体组成的晶片,在P型半导体中,空穴占有绝对地位,而在N型半导体中电子占绝大多数。
在这两者之间是p-n结。
的大体工作过程是一个电变光的过程,当LED的p-n结由外部电路加上正向偏压时,P区的正电荷将向N区扩散,同时N区的电子也向P区扩散,电子与空穴结合然后释放能量,一部分能量由光的形式散发出来,这就是发光的原因。
不同大小的能量水平的差异,频率和波长的光的不同,相应的光的颜色是不同的,这便是LED发光原理。
1.1.2 LED光源的特点1超低能耗比起传统的白炽灯为首的白炽灯,至少节省20%以上的电量,节约了资源。
2超长寿命传统的节能灯的寿命是2000~8000小时,而LED照明灯寿命可达5万~10万小时。
3响应时间短LED灯的响应时间比传统的照明灯快几个数量级。
4工作电压低LED的驱动电源既可以是高压电源又可以是低压电源,相比传统的照明灯,它更加适应电压的变化,电压发生变化的时候不容易损坏。
5绿色环保符合欧盟标准,不会造成环境污染,并且LED可以被回收利用。
6坚固可靠LED完全封装在循环氧树脂里面的LED,它比传统照明灯更加坚固不易损坏。
7不招蚊虫因LED用二极管发光技术,使用的冷光源,所以不招蚊虫。
8自选颜色可以通过不同的设计以及电流的大小来改变LED的颜色。
如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。
目前白色LED发光效率已经突破120LM/W,是白炽灯15LM/W的8倍,是荧光灯50LM/W的2倍多。
LED的光谱中没有紫外线和红外线成分,所以有害辐射小。
在散热良好的情况下,LED的光通量半衰期大于5万小时以上,可以正常使用20年,器件寿命一般都在10万小时以上,是荧光灯寿命的10倍,是白炽灯的100倍。
电容降压电源原理和计算公式-5V直流稳压电源
电容降压电源原理和计算公式用电容降压的电路里,给电容并联的电阻起什么作用最佳答案刚接通电路时,电容是没有初始储能的,电容相当于短路,所以会对后面电路产生危害,所以并联电阻降压。
等电容储能完毕,电容上就分担了大部分电流,等于把电阻开路了。
在电源关闭后,电容可以通过电阻释放储存的能量。
我是这么理解的。
这一类的电路通常用于低成本取得非隔离的小电流电源.它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管.所能提供的电流大小正比于限流电容容量.采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mA如果采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少.使用这种电路时,需要注意以下事项:1、未和220V交流高压隔离,请注意安全,严防触电!2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻.3、注意齐纳管功耗,严禁齐纳管断开运行.C1取值大小应根据负载电流来选择,比如负载电路需要9V工作电压,负载平均电流为75毫安,由于Id=0.62C1,可以算得C1=1.2uF.考虑到稳压管DZ1的损耗,C1可以取1.5uF,此时电源实际提供的电流为Id=93毫安.稳压管的稳压值应等于负载电路的工作电压,其稳定电流的选择也非常重要.由于电容降压电源提供的的是恒定电流,近似为恒流源,因此一般不怕负载短路,但是当负载完全开路时,R2(串在整流电路后,做限流)及DZ1回路中将通过全部的93毫安电流,所以DZ1的最大稳定电流应该取100毫安为宜.由于RL与DZ1并联,在保证RL 取用75毫安工作电流的同时,尚有18毫安电流通过DZ1,所以其最小稳定电流不得大于18毫安,否则将失去稳压作用.电工原理:整流后的直流电流平均值Id,与交流电平均值I的关系为Id=V/XC1.C1以uF为单位,则Id为毫安单位问:谈到电容降压,我有点小问问题想请各位指教.我公司有多款产品都用到电容降压,但都没有用齐纳管也没有任何事发生,照常出货.前不久,我们生产一批产品,是黄色LED灯,却出现大量死灯,而且是一死灯就是整块板的灯全开路死灯,到现在也没有搞清楚是怎么回事(其它颜色的灯没有出现这样的情况).今天看到你们的贴子这么好,也想借此机会向各位请教.答:一是你的CBB选大了, 二是你CBB选的是对的,但是客户的输入电压肯定不是咱们的220 有可能高出几伏或者十几伏, 所以会开路死灯,发表我的看法.我认为,inherit先生的计算公式是错误的,连近似公式都不是.还有,画的电路也不完整.我认为,完整的电路应该是:1.输入端应串接浪涌限制电阻.2.稳压管上应并联滤波电容(如果没有电容的话,纹波大,稳压管也容易损坏).3.输出端应接入稳压器件,例如78系列的78X05之类.4.半波整流的情况下,整流二极管应挪到稳压管后面.我认为,平均电流的计算公式中不应有0.44,0.89,Pi.在有效值电流和视在功率的式子中可能出现0.44(半波),0.89(全波).sqrt(Pi)/4=0.44(近似),sqrt(Pi)/2=0.89(近似).很抱歉,因为有效值电流和视在功率的近似式子中出现sqrt(Pi)项,我用除4或除8的方法,主观硬凑出0.44和0.89的.前几年,我是建立数学模型,用解微分方程的方法得出了近似式子,费了不功夫,向公司递交了技术报告.当时看到公司的人用实验方法确定降压电容,很挠心.得出的近似式子如下:1.半波:I(AV)=2*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)2.全波:I(AV)=4*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)其实,若考虑稳压管的电压、整流二极管的压降、导通角,上面的式子非常复杂,我没法输入,只好在此省略了,很抱歉.这种电路有以下优点:1.电路简单、元件少2.噪声小3.可防磁场干扰这种电路有以下缺点:1.功率因数低,无功功率大.2.不适合于负载电流稍大的电源,不适合于宽输入电压、负荷电流变动很大的电源.因为降压电容是在最低输入电压、最低工作频率、最大负荷电流的条件下确定的.当输入电压和工作频率较高、负荷电流较小时,多余的电流会流向稳压管,导致稳压管发热.3.因为是非绝缘型电源,电路带电,电路的使用范围受到限制.不能有一端接了零线就安全的想法.设计时,1.根据输入电压的最小值、最低工作频率、最大负荷电流、电容的误差和温度变化率计算出降压电容容量.2.根据输入电压的最大值、降压电容的容量(应考虑误差和温度变化率)、并参照有关电气规定确定放电电阻的阻值.3.根据输入电压的最大值、最高工作频率、最小负荷电流、降压电容的容量(应考虑误差和温度变化率)、稳压管的最大容许功率和热阻抗(应考虑最高环境温度),确定稳压管的型号.从成本的角度看,我个人认为,这种电路不太适合于200V-240V电网,是适合于100V电网.因为输入电压很高时,要想采用可靠的降压电容,电容的成本太高.另,特别要注意稳压管的安全.其实,稳压管的稳压值和损失的关系曲线成抛物线.电容器使用说明1)名称:聚酯(涤纶)电容符号:(CL)电容量:40p--4uf额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路2)名称:聚苯乙烯电容符号:(CB)电容量:10p--1uf额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路3)名称:聚丙烯电容符号:(CBB)电容量:1000p--10uf额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路4)名称:云母电容符号:(CY)电容量:10p--0.1uf额定电压:100V--7kV主要特点:高稳定性,高可*性,温度系数小应用:高频振荡,脉冲等要求较高的电路5)名称:高频瓷介电容符号:(CC)电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路6)名称:低频瓷介电容符号:(CT)电容量:10p--4.7uf额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路7)名称:玻璃釉电容符号:(CI)电容量:10p--0.1uf额定电压:63--400V主要特点:稳定性较好,损耗小,耐高温(200度)应用:脉冲、耦合、旁路等电路8)名称:铝电解电容符号:(CD)电容量:0.47--10000uf额定电压:6.3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等9)名称:钽电解电容符号:(CA)铌电解电容(CN)电容量:0.1--1000uf额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容10)名称:空气介质可变电容器符号:可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等11)名称:薄膜介质可变电容器符号:可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等12)名称:薄膜介质微调电容器符号:可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿13)名称:陶瓷介质微调电容器可变电容量:0.3--22p主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路14)名称:独石电容电容量大、体积小、可*性高、电容量稳定,耐高温耐湿性好等.应用范围:广泛应用于电子精密仪器.各种小型电子设备作谐振、耦合、滤波、旁路.容量范围:0.5PF--1UF耐压:二倍额定电压.独石又叫多层瓷介电容,分两种类型,1型性能挺好,但容量小,一般小于0.2Uf,另一种叫II型,容量大,但性能一般.独石电容最大的缺点是温度系数很高,做振荡器的频漂让人受不了,我们做的一个555振荡器,电容刚好在7805旁边,开机后,用示波器看频率,眼看着就慢慢变化,后来换成涤纶电容就好多了.就温漂而言:独石为正温糸数+130左右,CBB为负温系数-230,用适当比例并联使用,可使温漂降到很小.就价格而言:钽,铌电容最贵,独石,CBB较便宜,瓷片最低,但有种高频零温漂黑点瓷片稍贵.云母电容Q值较高,也稍贵.15)安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全.安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)X1 >2.5kV ≤4.0kVⅢX2 ≤2.5kVⅡX3 ≤1.2kV——16)安规电容安全等级绝缘类型额定电压范围Y1 双重绝缘或加强绝缘≥ 250VY2 基本绝缘或附加绝缘≥150V ≤250VY3 基本绝缘或附加绝缘≥150V ≤250VY4 基本绝缘或附加绝缘 <150VY电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统EMC性能影响的目的.GJB151规定Y电容的容量应不大于0.1uF.Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y电容的耐压性能对保护人身安全具有重要意义安规电容的参数选择X电容,聚苯乙烯(薄膜乙烯)电容,从上面的贴子里也可以看到,聚苯乙烯的耐电压较高,适合EMI 电路的高压脉冲吸收作用.2.容量计算:一般两级X电容,前一级用0.47uF,第二基用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法.(电容容量的大小和电源的功率无直接关系)电解电容的设计,一点小经验:1.电解电容在滤波电路中根据具体情况取电压值为噪声峰值的1.2--1.5倍,并不根据滤波电路的额定值;2.电解电容的正下面不得有焊盘和过孔.3.电解电容不得和周边的发热元件直接接触.电路设计(4)铝电解电容分正负极,不得加反向电压和交流电压,对可能出现反向电压的地方应使用无极性电容.(5)对需要快速充放电的地方,不应使用铝电解电容器,应选择特别设计的具有较长寿命的电容器.(6)不应使用过载电压1.直流电压玉文博电压叠加后的缝制电压低于额定值.2.两个以上电解电容串联的时候要考虑使用平衡电阻器,使得各个电容上的电压在其额定的范围内.(9)设计电路板时,应注意电容齐防爆阀上端不得有任何线路,,并应留出2mm以上的空隙.(10)电解也主要化学溶剂及电解纸为易燃物,且电解液导电.当电解液与pc板接触时,可能腐蚀pc板上的线路.,以致生烟或着火.因此在电解电容下面不应有任何线路.(11)设计线路板向背应确认发热元器件不靠近铝电解电容电容的型号命名:1) 各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C.第二部分:用字母表示材料.第三部分:用数字表示分类.第四部分:用数字表示序号.2) 电容的标志方法:(1) 直标法:用字母和数字把型号、规格直接标在外壳上.(2) 文字符号法:用数字、文字符号有规律的组合来表示容量.文字符号表示其电容量的单位:P、N、u、m、F 等.和电阻的表示方法相同.标称允许偏差也和电阻的表示方法相同.小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF.(3) 色标法:和电阻的表示方法相同,单位一般为pF.小型电解电容器的耐压也有用色标法的,位置*近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压 4V 6.3V 10V 16V 25V 32V 40V 50V 63V(4) 进口电容器的标志方法:进口电容器一般有6项组成.第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系.第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色允许偏差字母颜色温度系数1 A 金 +100 R 黄 -2202 B 灰 +30 S 绿 -3303 C 黑 0 T 蓝 -4704 G ±30 U 紫 -7505 H 棕 -30 ±60 V -10006 J ±120 W -15007 K ±250 X -22008 L 红 -80 ±500 Y -33009 M ±1000 Z -470010 N ±2500 SL +350~-100011 P 橙 -150 YN -800~-5800备注:温度系数的单位10e -6/℃;允许偏差是 % .第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂.第五项:标称容量,用三位数字表示,前两位为有效数值,第三为是10的幂.当有小数时,用R或P表示.普通电容器的单位是pF,电解电容器的单位是uF.第六项:允许偏差.用一个字母表示,意义和国产电容器的相同.也有用色标法的,意义和国产电容器的标志方法相同.3.电容的主要特性参数:(1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围.一般分为3级:I级±5%,II级±10%,III级±20%.在有些情况下,还有0级,误差为±20%.精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级.常用的电容器其精度等级和电阻器的表示方法相同.用字母表示:D——005级——±0.5%;F——01级——±1%;G——02级——±2%;J——I级——±5%;K——II 级——±10%;M——III级——±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可*工作,所承受的最大直流电压,又称耐压.对于结构、介质、容量相同的器件,耐压越高,体积越大.(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值.温度系数越小越好.(4) 绝缘电阻:用来表明漏电大小的.一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越大越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通常用损耗角正切值来表示.(6) 频率特性:电容器的电参数随电场频率而变化的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能.所有这些,使得电容器的使用频率受到限制.不同品种的电容器,最高使用频率不同.小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ① 铝电解电容与钽电解电容铝电解电容的容体比较大,串联电阻较大,感抗较大,对温度敏感.它适用于温度变化不大、工作频率不高(不高于25kHz)的场合,可用于低频滤波.铝电解电容具有极性,安装时必须保证正确的极性,否则有爆炸的危险.与铝电解电容相比,钽电解电容在串联电阻、感抗、对温度的稳定性等方面都有明显的优势.但是,它的工作电压较低.② 纸介电容和聚酯薄膜电容其容体比较小,串联电阻小,感抗值较大.它适用于电容量不大、工作频率不高(如1MHz以下)的场合,可用于低频滤波和旁路.使用管型纸介电容器或聚酯薄膜电容器时,可把其外壳与参考地相连,以使其外壳能起到屏蔽的作用而减少电场耦合的影响.③ 云母和陶瓷电容其容体比很小,串联电阻小,电感值小,频率/容量特性稳定.它适用于电容量小、工作频率高(频率可达500MHz)的场合,用于高频滤波、旁路、去耦.但这类电容承受瞬态高压脉冲能力较弱,因此不能将它随便跨接在低阻电源线上,除非是特殊设计的.④ 聚苯乙烯电容器其串联电阻小,电感值小,电容量相对时间、温度、电压很稳定.它适用于要求频率稳定性高的场合,可用于高频滤波、旁路、去耦.电容降压应用一种常见LED驱动电路的分析--转伟纳电子采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。
LED驱动电源介绍_常用的LED驱动电源电路图
LED驱动电源介绍_常用的LED驱动电源电路图LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。
本文为大家介绍常用的LED驱动电源电路图。
LED驱动电源电路图一----电容降压式电源C1为降压电容器(采用金属化聚丙烯电容),R1为C1提供放电回路。
电容C1为整个电路提供恒定的工作电流。
电容C2为电解电容,其耐压值取决于所串联的LED的个数(约为其总电压的1.5倍以上),它的主要作用是抑制通电瞬间引起的电压突变,从而降低电压冲击对LED寿命的影响。
R4为电容C2的泄流电阻,其阻值应随着LED个数的增加适当增加。
需要注意的是,该电路必须根据负载的电流大小选取适当的电容,而不是依据负载的电压和功率,通常降压电容C1的容量C与负载电流IO的关系可近似认为:C=14.5IO,其中C 的容量单位是uF,Io的单位是A。
限流电容必须采用无极性电容,而且电容的耐压值须在630V以上。
LED驱动电源电路图二----传统的低效率电路下图是传统的低效率电路,电网电源通过降压变压器降压;桥式整流滤波后,通过电阻限流来使3个LED稳定工作,这种电路的致命缺点是:电阻R的存在是必须的,R上的有功损耗直接影响了系统的效率,当R分压较小时,R的压降占总输出电压的40%,输出电路在R上的有功损耗已经占40%,再加上变压器损耗,系统效率小于50%。
当电源电压在10%的范围内变动时,流过LED的电流变化将25%,LED上的功率变化将达到30%。
当R分压较大时,在电源电压在10%的范围内变动时,虽说能使输出到LED的功率变化减少,但系统效率将更低。
下图电路是直接采用电容作为限流元件,在此电路中,由于电容上的分压几乎达到了全部电源电压,所以具有良好的限流特性,当电源电压在10%波动时,输出电流也在10%内波动,只要在设计中把LED的额定值留有一定的裕量,就能保证在电源电压波动时LED。
led灯电源 y电容 安规
led灯电源 y电容安规
Y电容是一种陶瓷类电容器,通常成对出现,多数是扁圆形外观,颜色呈现蓝色,能够抑制共模干扰。
在LED灯电源中,Y电容用于保证设备的电气安全性,属于安规电容的一种。
Y电容的容量通常为nF级,由于漏电流的制约,其容量不可过大。
按照IEC标准,Y1产品电气间隙最小为8.0㎜,Y2产品电气间隙不低于6.3㎜,作为隔离产品,安全距离要足够,避免高压通电发生拉弧现象。
Y电容在电路中的主要作用是滤波,一方面可以滤除部分从外部来的干扰,另一方面也可以滤除LED开关电源对电网的干扰。
这些滤波还需要其它器件的配合,比如共模电感等,以达到EMC的要求。
在使用LED灯电源时,建议选择符合安规标准的Y电容,并按照规定的操作步骤进行安装和维护,以确保设备和人员的安全。
5 LED反激式恒流开关电源设计(10)
内容提要
3 1 概述
3 整流滤波电路及输入电容选择 2 3 高频变压器设计与实例 3 3 高频变压器计算软件 4 3 5 3 6 3 7 3 8 恒流反馈电路设计 PFC 变换器设计 安规元件:NTC电阻 压敏电阻 EMI元件 安森美 NCL30051带PFC 半桥谐振离线式LED恒流源
法1实例:反激变压器EXCEL 自动计算表
PIExpertSuiteSetup8.5 :软件
反激变压器设计法2:基于电流纹波系数设计(如《精通开关电源》)
反激变压器的电流变换关系
反激变压器一次边和二次边的电流不同时出现。 根据能量守恒,变压器的电流变换关系成立,即 n=IS/IP(=NP/NS)
基于电流纹波系数设计步骤及实例
步骤6:据截止变比n = VOR/Vo,算副边匝数
步骤7:占空比校正及磁饱和验证
步骤8:计算线径
法2实例
课后作业:自学教材 P96例题
高频变压器材料
磁芯形状 特点 适用情况
EE,ER,EC 常规铁心,低廉,窗口面积 大功率、辅助电源,功率密 ,ETD 大,大功率时易作安规. 度较低的场合 EFD PQ,RM 平面化的EE类铁心 应用情况同上,且要求Low Profile,表贴或沉降式结构
(3)恒流反馈电路设计实例(演示)
过压保护: R47= 0-3K,故过载电压VO=2.5V*(R47+R48+R49)/R49=27.5-37.5V。
PF及其原理
功率因数 PF(Power Factor) :定义为有功功率P与视在功率S 之比, PF = P/S。 当电源输入正弦电压与正弦电流的相位差为ϕ 时, PF= cos ϕ。 PF越大,电力利用率越高,因此 PF越接近1 越好。 无PFC电路开关电源的PF<0.6: 整流电路后面有一个大滤波电解 电容(容性负载),使输出电压 平滑,但使整流器的输入电流严 重畸变而变为尖脉冲,产生许多 奇次谐波,对电网污染。
LED驱动电源中电容作用详解
不要轻视小小电容哦。
他的作用很大,你看有没有用过他的电子产品不。
什么地方都有假如用得不好,死得难看的,所以首先介绍电容的作用作为无源元件之一的电容,其作用不外乎•以下几种:1、应用于电源电路,实现旁路、去藕、滤波和储能方面电容的作用,下面分类详述之:1)滤波滤波是电容的作用中很重要的一部分。
几乎全部的电源电路中都会用到。
从理论上(即假设电容为纯电容》说,电容越大,阻抗越小,通过的频率也越高。
但事实上超过IUF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。
有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。
电容的作用就是通高阻低,通高频阻低频。
电容越大低频越简单通过,电容越大高频越简单通过。
详细用在滤波中,大电容(100oUF)滤低频,小电容(20PF)滤高频。
曾有网友将滤波电容比作“水塘”。
由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的改变。
它把电压的变动转化为电流的改变,频率越高,峰值电流就越大,从而缓冲了电压。
滤波就是充电,放电的过程。
2)旁路旁路电容是为本地器件供应能量的储能器件,它能使稳压器的输出匀称化,降低负载需求。
就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量削减阻抗,旁路电容要尽量匏近负载器件的供电电源管脚和地管脚。
这能够很好地防止输入值过大而导致的地电位抬高和唤声。
地弹是地连接处在通过大电流毛刺时的电压降。
3)去藕去藕,又称解藕。
从电路来说,总是可以区分为驱动的源和被驱动的负载。
假如负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会汲取很大的电源电流,由于电路中的电感,电阻(特殊是芯片管脚上的电感,会产生反弹),这种电流相对于正常状况来说事实上就是一种噪声,会影响前级的正常工作。
LED 驱动电源总谐波失真(THD)分析及对策
THD =
2 2 2 I2 + I3 + ... + I n
上式说明,在相移因数 cosΦ1 不变时,降低总谐波失真 THD,可以提高功率因数 PF;反之 也能说明, PF 越高则 THD 越小。 例如,通过计算,当相移角 Φ1=0 时,THD=30% @ PF=0.9578;THD=10% @ PF=0.9950。 2.谐波 2.谐波测量与 谐波测量与分析 测量与分析 为了很好地分析如图 1 所示的 LED 驱动电源的谐波含量,介绍一种使用示波器测量输 入电流的方法。先在电源输入回路串接一个 10-20W 或以上的大功率电阻如 R=10 OHM,通电 后测量大功率电阻上两端的电压波形,由于纯功率电阻上两端的电压与电流始终是同相位, 因此电阻上的脉冲电压波形亦即代表了输入电流的脉冲波形,但数值大小不同。由波形显 示可知,其脉冲电流 i(t)与图 2 的电流波形是一致的,见图 3。
π πτn π πτn sin − sin + 8 8I πt 3m 2 2 T T .........(13) + an = ∫ I m cos cos nωtdt = T 0 T π τ π 2 − nω 2 + nω
上式中,余弦脉冲电流幅值 Im 可由示波器显示的电压幅值与电阻值之比而算出,即 Im=Um/R,已知测得 Um=1.5V,则 Im=1.5/10=0.15A。图中脉冲宽度τ=3ms。 对于图 2 所示的输入电流波形,是关于前后半波上下对称的奇次对称波,因而只含有 a1、a3、a5……等奇次谐波分量,而直流分量 a0 和偶次谐波分量 a2、a4、a6……均为零。 将式(10)的输入电流波形进行傅里叶分解得:
LM3404中文资料
凡是涉及到图表,典型应用的,请大家在TI 官网下载原英文资料自行参考。
应用信息操作方法LM3404/LM3404HV 是BUCK 调整器,具有宽电压输入范围,低的电压参考,快速的输出 使能/除能 功能。
这使得它可以非常理想的运用于驱动LED 的连续电流源,并可输出正向电流高达1.2A 。
COT (controlled on-time ,开启时间控制)结构由迟滞控制模式和与输入电压变化相反的一次开启时间构成。
迟滞控制使得小信号控制回路补偿不再需要。
具有快速的瞬态响应,PWM 调光,低电压关断,输出过压保护。
COT 概述Figure19 显示了用于控制LED 阵列电流的反馈系统。
电压信号Vsns 是LED 电流流过Rsns 产生的。
Vsns 反馈到CS 引脚和内部200mV 的参考电压Vref 比较。
当Vsns 低于200mV 时,会打开内部的MOSFET ,该功率MOSFET 会在ON t 时间内导电,ON t 由外部电阻ON R 和输入电压IN V 决定,且满足以下关系:ON t 这段时间结束后,MOSFET 会关断一个最小时间MIN OFF t -,300ns 。
等MIN OFF t -结束后,CS comparator 会再次比较Vsns 和Vref 并开始下次循环。
LM3404/LM3404HV 必须工作在连续导电模式(CCM ,continuous conduction mode ,有兴趣具体参见开关电源有关书籍)。
在CCM 稳定状态下,转换器维持连续的开关频率,且由下式决定F V 代表每个LED 的正向压降,n 表示串联的LED 数目。
可见,开关频率有ON R 和LED 的正向压降和LED 数目决定。
平均LED 电流COT 结构调整Vsns ∆,就是Vsns 的交流分量。
LED 的平均电流也就是电感的平均电流,电感电流的最低值可由下式计算式中,SNS t 是CS 比较器的延迟时间,大约为220ns ,平均电流等于MIN L I -加上电感纹波电流L i ∆的一半关于L i ∆的计算在设计考虑一部分讲解。
阻容降压电路:每个元器件计算选型
LED灯阻容降压是怎么计算电容和电阻准确的说不是降压,而是限流。
如果是桥式整流,可以按照每个uF电容量提供60mA直流电流计算;如果是半波整流,可以按照每个uF电容量提供30mA直流电流计算。
根据LED灯需要的电流即可算出电容量。
电阻是用于对电容放电用的,以免插头拔出时电容的残余电压电人,取值大约几百kΩ即可。
LED阻容降压电路中电阻,电容的选用1、R2主要作用是断电后,给C1一个放电回路2、R3在负载开路时,起到分压作用,避免输出电压过高。
3、电容C1电阻R4在直流回路中。
两者的作用类似,都是限流作用。
C1的限流作用通过容抗反映,R4的限流作用通过阻值反映。
C1的容抗:XC=1/2πfC1≈1/314C14、根据LED的数量N计算出LED的总压降U1:U1=N*Uled(Uled为每个LED上工作电压,约3V)再根据运行电流I计算出R4的压降U2:U2=I*R4直流侧电压:U=U1+U2折算为交流电压:U3=(U1+U2)/1.414电容C1两端的电压:U4=220V-U3=220-(N*Uled+I*R4)/1.414U4除以二极管运行电流就是C1的容抗XC,根据XC即可计算出C1。
根据上述原理,你自己可以验证自己的提问了。
问:1.当LED数量为9只,23只,35只时电阻是否可以相同,C1根据LED数量是否需要变化,应该如何变化?答:LED数量变化时C1也要变的,C1可以算出来的。
I={220-(N*3.3/1.414)}*2*3.14*50*C1/1000000={220-(N*3.3/1.414)}*314*C1/1000000C1=4503×I/[311-N×Uled -I×(R4+R8)](C1为限流降压电容,单位μf 。
I为灯珠上面的电流,单位A。
N代表灯珠数。
Uled为每个LED上工作电压,约3V 。
R4、R8为限流电阻)算出来的结果不会差到那里去的。
LED电源检验方法与规范
文件名称: 开关电源检验规范编号版次页码QI-QA-011A/11/30耐压测试仪、功率测试仪、电压表、电流表等5.1.1 以《检验规范》、《产品规格书》依据,以测试数据为准则。
5.1.2 检验过程中若发现问题比较严重且比较多,需即将住手并及时向上级汇报。
5.1.3 检验过程中,若抽样产品浮现问题,但不影响测试的正常进行,则需测完样机的全部项目。
5.2.1 致命问题安规测试不合格;导致电源损坏的所有项目。
5.2.2 严重问题技术指标未达到规格的要求;抗干扰性指标未达到规格要求。
5.2.3 普通问题测试中指标的裕量不足。
5.2.4 讨论问题研究性测试未合格项目;产品规格书中未界定的项目。
制定时间审核时间核准时间文件名称: 开关电源系列检验规范编号版次页码QI-QA-011A/12/30以下检验方法,参照IEC、GB、CE、UL 等标准的通用检验方法;检验项目以产品规格书规定的为准,产品规格书有要求的项目为必检项目,产品规格书未要求的项目可不检验;检验条件如果产品规格书有规定,则以产品规格书为准;当客户对检验项目和检验方法等有特殊要求时,以客户的要求为准。
输入全电压范围是指输入由最低输入电压到最高输入电压连续调节,但数据只需记录最低输入电压,额定输入电压,最高输入电压的情况。
输出全负载范围是指输出负载由最小负载到额定负载连续调节,但数据只需记录最小负载,半载,额定负载的情况。
高温低温分别指产品的工作温度或者存储温度的上限和下限。
输入电源的频率要求为最小输入电压时47Hz (当设备能力达不到47 Hz 时按设备能达到的最小频率输入)、最大输入电压时63Hz、额定高电压输入时为50 Hz、额定低电压输入时为60 Hz。
6.1 电气性能测试:空/负载输入输出电压、负载输入输出电压/电流/功率、效率、纹波&噪声、功率因素、动态响应、开机时间、异常保护,耐压绝缘、漏电、接地、老化、温升等测试。
6.2 环境适应性检验:高温、低温启动,高温、低温ON/OF 循环冲击,高温、低温储存等试验。
LED电源输入滤波电容的选择计算方法
LED 电源输入滤波电容的选择计算方法对于中小功率电源来说,一般采用单相或三相交流经过全桥整流后得到的脉动直流电压,输入滤波电容C in 用来平滑这个直流电压,使其脉动减小,电容的选择是比较重要的,如果过小,直流电压脉动过大,为了得到输出电压,需要过大的占空比调节范围及过高的控制闭环增益。
电容过大,其充电电流脉冲宽度变窄,幅值增高,导致输入功率因数降低,EMI 增大。
在有些场合,为了提高功率因数,交流整流后采用电感电容的LC 滤波方式,设计比较复杂,不在下面的计算范围内。
一般而言,在最低输入交流电时,整流滤波后的直流电压的脉动值V PP 是最低输入交流电压峰值的20%~25%假如已知交流输入电压的变化范围为V lin(min )~V lin(max),按照下面的步骤来计算C in 的容量1)线电压有效值: V lin(min )~V lin(max)2)线电压峰值:2 V lin(min )~2V lin(max)3)整流滤波后直流电压的脉动值V PP =2 V lin(min )×(20%~25%) (单相输入)V PP =2 V lin(min )×(7%~10%) (三相输入)4)整流滤波后的直流电压:V inV in =(2 V lin(min )- V PP )~2V lin(in)由于保证直流电压最小值符合要求,每个周期中C in 所提供的能力W in 为 W in =FA Pin ⨯ A 是交流输入的相数,单相为1三相为3,F 为频率,每个半周期输入滤波电容的能量为2(min)2(min))2()2[212pp lin lin V V V Cin Win --⨯⨯=(] 根据上式就可以计算出需要的电容的容量。
开关电源滤波电容容量计算
开关电源滤波电容容量计算
开关电源是一种常见的电源供应方式,广泛应用于各种电子设备中。
为了保证开关电源输出的直流电稳定,必须对其进行滤波处理。
而滤波电容作为滤波电路中的重要组成部分,起到了平滑电流的作用。
那么,如何计算开关电源滤波电容的容量呢?
我们需要明确开关电源滤波电容的主要作用是平滑电流,将脉动电流转换为稳定的直流电流。
滤波电容的容量越大,其存储电荷的能力越强,对电流的平滑效果也就越好。
计算滤波电容的容量需要考虑以下几个因素:
1. 输出电流需求:首先需要确定开关电源的输出电流需求。
不同的电子设备对电流的需求是不同的,因此滤波电容的容量也会有所差异。
2. 输出电压波动:开关电源输出的直流电压会存在一定的波动,滤波电容的容量需要足够大,以便能够平衡这种波动,使输出电压更加稳定。
3. 脉动电流频率:开关电源输出的脉动电流频率通常是开关频率的倍数,滤波电容的容量需要根据脉动电流的频率来选择,以确保滤波效果良好。
综合考虑以上因素,可以使用以下公式来计算滤波电容的容量:
C = (I * ΔV) / (f * ΔV)
其中,C表示滤波电容的容量,单位为法拉(F);I表示输出电流需求,单位为安培(A);ΔV表示输出电压波动的允许范围,单位为伏特(V);f表示脉动电流的频率,单位为赫兹(Hz)。
需要注意的是,以上公式仅为一个大致的计算公式,实际应用中还需要考虑其他因素的影响,如开关电源的工作环境、散热条件等。
计算开关电源滤波电容的容量需要考虑输出电流需求、输出电压波动、脉动电流频率等因素,并使用相应的公式进行计算。
通过合理选择滤波电容的容量,可以提高开关电源的工作效果,保证电子设备的正常运行。
滤波电容如何取值
滤波电容如何取值滤波电容是电子电路中常用的元件,用于滤除直流信号或高频噪声。
它的取值需要考虑到电路的要求和特性,包括信号频率、电流负载、滤波效果以及稳定性等因素。
首先,滤波电容的取值与信号频率有关。
通常来说,滤波电容的容值越大,对低频信号的滤波效果越好。
而对于高频信号,则需要容值较小的电容才能有效滤波。
基于信号频率的需求,可以通过计算或经验选择合适的滤波电容。
其次,电流负载是另一个决定滤波电容取值的重要因素。
当电流负载较大时,滤波电容需要具备较大的容值以保证滤波效果。
而对于电流负载较小的电路,容值较小的滤波电容就可以满足要求。
此外,滤波电容的取值还需考虑到滤波效果的需求。
对于要求较高的滤波效果,例如在音频放大器或电源滤波电路中,通常需要采用较大容值的滤波电容。
而在一些简单的应用中,容值较小的滤波电容也能满足基本要求。
除了以上因素,滤波电容的取值还应考虑与其他电路元件的匹配。
在设计电路时,应根据电路的特性和性能需求选择合适的滤波电容。
需要注意的是,滤波电容的取值不仅仅依赖于容值,还与电容器的材料、结构和制造工艺等有关,这些因素也需要综合考虑。
最后,滤波电容在选择时还需要考虑其稳定性。
一些特殊要求的电路,例如在工作温度变化较大的环境下,需要选择具有较好稳定性的滤波电容,以保证电路的性能和可靠性。
总的来说,滤波电容的取值需要综合考虑多方面因素,包括信号频率、电流负载、滤波效果、与其他元件匹配以及稳定性等。
根据具体的电路需求和设计要求,结合实际情况进行合理选择,以达到滤波效果和性能上的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED 电源输入滤波电容的选择计算方法
对于中小功率电源来说,一般采用单相或三相交流经过全桥整流后得到的脉动直流电压,输入滤波电容C in 用来平滑这个直流电压,使其脉动减小,电容的选择是比较重要的,如果过小,直流电压脉动过大,为了得到输出电压,需要过大的占空比调节范围及过高的控制闭环增益。
电容过大,其充电电流脉冲宽度变窄,幅值增高,导致输入功率因数降低,EMI 增大。
在有些场合,为了提高功率因数,交流整流后采用电感电容的LC 滤波方式,设计比较复杂,不在下面的计算范围内。
一般而言,在最低输入交流电时,整流滤波后的直流电压的脉动值V PP 是最低输入交流电压峰值的20%~25%假如已知交流输入电压的变化范围为V lin(min )~V lin(max),按照下面的步骤来计算C in 的容量
1)线电压有效值: V lin(min )~V lin(max)
2)线电压峰值:2 V lin(min )~2V lin(max)
3)整流滤波后直流电压的脉动值
V PP =2 V lin(min )×(20%~25%) (单相输入)
V PP =2 V lin(min )×(7%~10%) (三相输入)
4)整流滤波后的直流电压:V in
V in =(2 V lin(min )- V PP )~2V lin(in)
由于保证直流电压最小值符合要求,每个周期中C in 所提供的能力W in 为 W in =F
A Pin ⨯ A 是交流输入的相数,单相为1三相为3,F 为频率,
每个半周期输入滤波电容的能量为
2(min)2(min))2()2[2
12pp lin lin V V V Cin Win --⨯⨯=(] 根据上式就可以计算出需要的电容的容量。