数学竞赛专题讲座平面几何

合集下载

数学奥赛平面几何

数学奥赛平面几何

《竞赛数学解题研究》之平面几何专题一、平面几何中的一些重要定理:1、梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。

2、塞瓦定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则AF 、BE 、CD 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。

3、托勒密定理:四边形ABCD 内接于圆的充要条件是CD BC CD AB BD AC ⋅+⋅=⋅4、西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

5、斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅2226、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆7、共边定理:设ABC ∆和C B A '''∆中有一个边相等,则CA B A ACAB S S C B A ABC ''⋅''⋅='''∆∆举例说明:1、设M 、N 分别是正六边形ABCDEF 的对角线AC 、CE 上的点,且AM:AC=CN:CE=k,如果BMN 三点共线,试求k 。

(IMO23,1982)2、在四边形ABCD 中,ABD ∆、BCD ∆、ABC ∆的面积之比为3:4:1,点M 、N 分别 是AC 、CD 上的点,且AM:AC=CN:CD, 并且BMN 三点共线,求证:M 、N 分别是AC 、 CD 的中点。

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
2
(第 3 题图)
(第 4 题图)
4.如图,正△ABO 的高等于⊙O 的半径,⊙O 在 AB 上滚动,切点为 T,⊙O 交 AO,BO 于 M,N,则 弧 MTN( )
A.在 0°到 30°变化
B.在 30°到 60°变化
C.保持 30°不变
D.保持 60°不变
5.如图,AB 是⊙O 的直径,且 AB=10,弦 MN 的长为 8.若 MN 的两端在圆上滑动时,始终与 AB 相交, 记点 A,B 到 MN 的距离分别为 h1,h2,则∣h1-h2∣等于( )
A
C
(P) O
D
B

D
A
C P O
B D ①
D
C
PB O
D ①
O
C A
P

B
O
C
P
A (B)

O
(D)C
A(B)
P ①
(2)已知⊙O 的半径为一定值 r,若点 P 是不在⊙O 上的一个定点,请你过点 P 任作一直线交⊙O 于 不重合的两点 E,F. PE·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文 字叙述出来.
(第 7 题图)
(第 8 题图)
8.如图,设 H 是等腰三角形 ABC 两条高的交点,在底边 BC 保持不变的情况下让顶点 A 至底边 BC 的 距离变小,这时乘积 S△ABC·S△HBC 的值变小、变大,还是不变?证明你的结论.
9.如图,在平面直角坐标系 xOy 中,抛物线 y 1 x 2 4 x 10 与 x 轴的交点为点 A,与 y 轴的交点 18 9
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
【例 1】 如图,已知 P 为正方形 ABCD 的外接圆的劣弧A⌒D上任意一点.求证: PA PC 为定值. PB

数学竞赛平面几何讲座:四点共圆问题

数学竞赛平面几何讲座:四点共圆问题

数学竞赛平面几何讲座:四点共圆问题第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1 “四点共圆”作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆.分析:设PQ,MN交于K点,连接AP,A欲证M,N,P,Q四点共圆,须证MKKN=PKKQ,即证(MC′-KC′)(MC′+KC′)=(PB′-KB′)(PB′+KB′)或MC′2-KC′2=PB′2-KB′2 . ①不难证明 AP=AM,从而有AB′2+PB′2=AC′2+MC′2.故MC′2-PB′2=AB′2-AC′2=(AK2-KB′2)-(AK2-KC′2)′2-KB′2. ②由②即得①,命题得证.例2.A、B、C三点共线,O点在直线外,O1,O2,O3分别为△OAB,△OBC,△OCA的外心.求证:O,O1,O2,O3四点共圆.分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC及其外接圆,立得∠OO2O1= ∠OO2B=∠OCB.观察△OCA及其外接圆,立得∠OO3O1=∠OO3A=∠OCA.由∠OO2O1=∠OO3O1 O,O1,O2,O3共圆.利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证.2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面.(1)证角相等例3.在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK.求证:∠DMA=∠CKB.分析:易知A,B,M,K四点共圆.连接KM,有∠DAB=∠CMK.∵∠DAB+∠ADC=180°,∴∠CMK+∠KDC=180°.故C,D,K,M四点共圆∠CMD=∠D但已证∠AMB=∠BKA,∴∠DMA=∠CKB.(2)证线垂直例4.⊙O过△ABC顶点A,C,且与AB,BC交于K,N(K与N不同).△ABC外接圆和△BKN外接圆相交于B和M.求证:∠BMO=90°.分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的.连接OC,OK,MC,MK,延长BM到G.易得∠G∠BAC=∠BNK=∠BMK.而∠COK=2∠BAC=∠GMC+ ∠BMK=180°-∠CMK,∴∠COK+∠CMK=180° C,O,K,M四点共圆.在这个圆中,由∠OMC=∠但∠GMC=∠BMK,故∠BMO=90°.(3)判断图形形状例5.四边形ABCD内接于圆,△BCD,△ACD,△ABD,△ABC的内心依次记为IA,IB,IC,ID.试证:IAIBICID是矩形.分析:连接AIC,AID,BIC,BID和DIB.易得∠AICB=90°+ ∠ADB=90°+∠ACB=∠AIDB A,B,ID,IC四点共圆.同理,A,D,IB,IC四点共圆.此时∠AICID=180°-∠ABID =180°- ∠ABC,∠AICIB=180°-∠ADIB=180°- ∠ADC,∴∠AICID+∠AICIB0°- (∠ABC+∠ADC)0°-×180°=270°.故∠IBICID=90°.同样可证IAIBICID其它三个内角皆为90°.该四边形必为矩形.(4)计算例6.正方形ABCD的中心为O,面积为1989㎝2.P 为正方形内一点,且∠OPB=45°,PA:PB=5:14.则PB=__________分析:答案是PB=42㎝.怎样得到的呢?连接OA,OB.易知O,P,A,B四点共圆,有∠APB=∠AOB=90°.故PA2+PB2=AB2由于PA:PB=5:14,可求PB.(5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F,G两点在正方形的一组对边上.作正△EFG的高EK,易知E,K,G,D四点共圆∠KDE=∠KGE=60°.同理,∠KAE=60°.故△KAD也是一个正三角形,K必为一个定点.又正三角形面积取决于它的边长,当KF丄AB时,边长为1,这时边长最小,而面积S= 也最小.当KF通过B点时,边长为2 ,这时边长最大,面积S=2 -3也最大.例8.NS是⊙O的直径,弦AB丄NS于M,P为ANB上异于N的任一点,PS交AB于R,PM的延长线交⊙O于Q.求证:RS>MQ.分析:连接NP,NQ,NR,NR的延长线交⊙O于Q′.连接MQ′,SQ′.易证N,M,R,P四点共圆,从而,∠SNQ′=∠MNR=∠MPR=∠SPQ=∠SNQ.根据圆的轴对称性质可知Q与Q′关于NS成轴对称MQ′=MQ.又易证M,S,Q′,R四点共圆,且RS是这个圆的直径(∠RMS=90°),MQ′是一条弦(∠MSQ′<90°),故RS>MQ′.但MQ=MQ′,所以,RS>MQ.练习题1.⊙O1交⊙O2 于A,B两点,射线O1A交⊙O2 于C 点,射线O2A交⊙O1 于D点.求证:点A是△BCD的内心.(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2四点共圆,从而知C,D,O1,B,O2五点共圆.)2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C¬1,C2.求证:A1A2=B1B2=C1C2.(提示:设法证∠ABA1与∠ACA1互补造成A,B,A1,C四点共圆;再证A,A2,B,C四点共圆,从而知A1,A2都是△ABC的外接圆上,并注意∠A1AA2=90°.)3.设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3也是正三角形在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆) 5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

高中数学竞赛专题讲座课件:平面几何

高中数学竞赛专题讲座课件:平面几何
三角形中的几个特殊点:旁心、费马点,欧拉线. 几何不等式. 几何极值问题. 几何中的变换:对称、平移、旋转. 圆的幂和根轴. 面积方法,复数方法,向量方法,解析几何方法.
(一)、平面几何的几个重要的定理 1、梅涅劳斯定理及其逆定理
若一条直线截△ABC 的三条边 AB、BC、CA (或他们的延长线),所得交点分别为 P、Q、R,
数学竞赛 专题讲座
平面几何初步
一.平面几何主要知识点
平面几何是培养严密推理能力的很好数学分支,且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、向量法等许多证法,这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题.
平面几何的知识竞赛要求:三角形的边角不等关系;面积 及等积变换;三角形的心(内心、外心、垂心、重心)及其性 质; 四个重要定理;几个重要的极值:到三角形三顶点距离之 和最小的点--费马点,到三角形三顶点距离的平方和最小的点 --重心,三角形内到三边距离之积最大的点-----重心;简单的 等周问题。
(三)面积法与等积变换
主要知识:
1.面积公式
S△ ABC

1 2 aha

1 2
ab sin C

2R2
sin
Asin B p b)( p c) pr (p 是周长的一半) 2.面积定理
等底等高的三角形的面积相等.
等高(比)的两个三角形的面积之经等于底(高)之比.
=( 90 -∠1)+( 90 +∠2) =∠ABF+∠BAE=∠QFP+∠QEP, 又由 PK=PE=PF 知∠K=∠PFK,
∴∠EQF+∠K=∠QFK+∠QEK= 180 , 从而 E、Q、F、K 四点共圆. 由 PK=PF=PE 知,P 为△EFK 的外心,显然 PQ=PE=PF.于 是∠1+∠AQH=∠1+PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ ABF=90º.由此知 QH⊥AH,即 PQ⊥AB.

平面几何竞赛讲座

平面几何竞赛讲座

平面几何中的著名定理1.梅涅劳斯定理:若一条直线和△ABC 的三边BC 、CA 、AB 分别交于D 、E 、F ,则AF FB ·BD DC ·CEEA =1。

其逆定理也成立。

2.塞瓦定理:对于△ABC 所在平面内一点O ,AO 、BO 、CO (或其延长线)交三角形另一边于点D 、E 、F ,则AF FB ·BD DC ·CEEA=1。

其逆定理也成立。

3.托勒密定理:圆内接四边形ABCD 的两组对边乘积的和等于它的两条对角线的乘积。

其逆定理也成立。

4.西姆松定理:以△ABC 的外接圆上任意一点P 向BC 、CA 、AB 或它们的延长线引垂线,垂足分别为D 、E 、F ,则D 、E 、F 三点共线。

其逆定理也成立。

5.斯特瓦德定理:设P 为△ABC 的BC 边上任一点,则有AB 2·PC +AC 2·BP=AP 2·BC+BP·PC·BC 。

例1 如图,⊙O 1和⊙O 2与△ABC 的三边所在的三条直线都相切,E 、F 、G 、H 为切点,并且EG 、FH 的延长线交于P 点。

求证:直线P A 与BC 垂直。

例2 四边形ABCD 的内切圆分别切AB 、BC 、CD 、DA 于点E 、F 、G 、H 。

求证:HE 、DB 、GF 三线共点。

例3 如图,锐角△ABC 中,AD 是BC 边上的高,H 是线段AD 内任一点,BH 和CH 的延长线分别交AC 、AB 于E 、F 。

求证:∠EDH=∠FDH 。

例4 在四边形ABCD 中,对角线AC 平分∠BAD 。

在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G 。

求证:∠GAC=∠EAC 。

例5 如图,设C 1、C 2是同心圆,C 2的半径是C 1的半径的2倍。

四边形A 1A 2A 3A 4内接于C 1,将A 4A 1延长交圆C 2于B 1,A 1A 2延长交圆C 2于B 2,A 2A 3延长交圆C 2于B 3,A 3A 4延长交圆C 2于B 4。

高中数学竞赛平面几何讲座(非常详细)

高中数学竞赛平面几何讲座(非常详细)

第一讲注意添加平行线证题之蔡仲巾千创作在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况.1、为了改变角的位置年夜家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1、设P、Q为线段BC上两点,且BP=CQ,A为BC外一动点(如图1).当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论.答:当点A运动到使∠BAP=∠CAQ时,△ABC为等腰三角形.证明:如图1,分别过点P、B作AC、AQ的平行线得交点D.连结DA.在△DBP=∠AQC中,显然∠DBP=∠AQC,∠DPB=∠C.由BP=CQ,可知△DBP≌△AQC.有DP=AC,∠BDP=∠QAC.于是,DA∥BP,∠BAP=∠BDP.则A、D、B、P四点共圆,且四边形ADBP为等腰梯形.故AB=DP.所以AB=AC.这里,通过作平行线,将∠QAC“平推”到∠BDP的位置.由于A、D、B、P四点共圆,使证明很顺畅.ADB P Q C图1例2、如图2,四边形ABCD 为平行四边形,∠BAF=∠BCE.求证:∠EBA=∠ADE.证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由ABCD,易知△PBA≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE=∠BPE,∠APE=∠ADE.由∠BAF=∠BCE,可知 ∠BAF=∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EB A =∠APE.所以,∠EBA=∠ADE.这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ.证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的平行线分别交PQ 、AC 于K 、G,连PG.由BD 平行∠ABC,可知点F 到AB 、BC两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG∥EC.由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ.这里,通过添加平行线,将PQ“掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷.3 、为了线段比的转化∥=P E D G A B F C 图2A N E B Q K G C D M F P 图3由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.例4设M1、M2是△ABC 的BC 边上的点,且BM1=CM2.任作一直线分别交AB 、AC 、AM1、AM2于P 、Q 、N1、N2.试证:AP AB +AQ AC =11AN AM +22AN AM . 证明:如图4,若PQ∥BC,易证结论成立. 若PQ 与BC 不服行,设PQ 交直线BC 于D.过点A 作PQ 的平行线交直线BC 于E.由BM1=CM2,可知BE +CE =M1E +M2E,易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DEE M 2. 则AP AB +AQ AC =DECE BE +=DE E M E M 21+=11AN AM +22AN AM . 所以,AP AB +AQ AC =11AN AM +22AN AM . 这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解. 例5、AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E,CK 交AB 于F.求证:∠FDA=∠EDA.证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M.显然,AN BD =KA KD =AMDC .有BD·AM=DC·AN. (1) 由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2)A P E DM 2M 1B Q N 1N 2图4图5M P A Q N F B D CE K由DC AQ =EC AE =BC AN ,有AQ =BC AN DC ·.(3)比较(1)、(2)、(3)有AP =AQ.显然AD 为PQ 的中垂线,故AD 平分∠PDQ.所以,∠FDA =∠EDA.这里,原题并未涉及线段比,添加BC 的平行线,就有年夜量的比例式发生,恰本地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,而且∠MDN=90°.如果BM2+CN2=DM2+DN2,求证:AD2=41(AB2+AC2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E.连ME. 由BD =DC,可知ED =DN.有△BED≌△CND. 于是,BE =NC.显然,MD 为EN 的中垂线.有 EM =MN.由BM2+BE2=BM2+NC2=MD2+DN2=MN2=EM2,可知△BEM 为直角三角形,∠MBE=90°.有∠ABC+∠ACB =∠ABC+∠EBC=90°.于是,∠BAC=90°. 所以,AD2=221⎪⎭⎫ ⎝⎛BC =41(AB2+AC2). 这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN,使解题找到前途.图6A N CDEB M例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F,使EA =DA,FB =DB.过D 作AB 的垂线,交半圆于C.求证:CD 平分EF.证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB.易知DB2=FB2=AB·HB,AD2=AE2=AG·AB.二式相减,得DB2-AD2=AB·(HB-AG),或 (DB -AD)·AB=AB·(HB-AG).于是,DB -AD =HB -AG,或DB -HB =AD -AG.就是DH =GD.显然,EG∥CD∥FH.故CD 平分EF.这里,为证明CD 平分EF,想到可先证CD 平分GH.为此添加CD 的两条平行线EG 、FH,从而获得G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即BN DM =NC ME 或ME DM =NCBN . 此式标明,DM =ME 的充要条件是BN =NC. 利用平行线的这一性质,解决某些线段相等的问题会很漂亮.例8如图9,ABCD 为四边形,两组对边延长后得交点E 、F,对角线BD∥EF,AC 的延长线交EF 于G.求证:EG =GF.证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N.由BD∥EF, 可知MN∥BD.易知 S△BEF=S△DEF.有S△BEC=S△ⅡKG- *5ⅡDF C.可得MC =CN.所以,EG =GF. A G D O H B F C E 图7图8A D B NC E M 图9A B M E FN D C G例9如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB的切点.若OD 与EF 相交于K,求证:AK 平分BC. 证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF.由OD⊥BC,可知OK⊥PQ.由OF⊥AB,可知O 、K 、F 、Q 四点共圆,有∠FOQ=∠FKQ.由OE⊥AC,可知O 、K 、P 、E 四点共圆.有∠EOP=∠EKP.显然,∠FKQ=∠EKP,可知∠FOQ=∠EOP.由OF =OE,可知Rt△OFQ≌Rt△OEP.则OQ =OP.于是,OK 为PQ 的中垂线,故 QK =KP.所以,AK 平分BC.综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E,延长CD 交直线NM 于F.求证:∠BEN=∠CFN.(提示:设P 为AC 的中点,易证PM =PN.)2. 设P 为△ABC 边BC 上一点,且PC =2PB.已知∠ABC =45°,∠AP C =60°.求∠ACB.(提示:过点C 作PA 的平行线交BA 延长线于点D.易证△ACD∽△PBA.答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC,∠EBD=60°,S△EBD=60cm2.求六边形ABCDEF 的面积.O 图10(提示:设EF 、DC 分别交直线AB 于P 、Q,过点E 作DC 的平行线交AB 于点M.所求面积与EMQD 面积相等.答:120cm2)4. AD 为Rt△ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E.已知AC:AB =k.求AE:EC. (提示:过点A 作BC 的平行线交BE 延长线于点F.设BC =1,有AD =k,DC =k2.答:211k ) 5. AB 为半圆直径,C 为半圆上一点,CD⊥AB 于D,E 为DB 上一点,过D 作CE 的垂线交CB 于F.求证:DE AD =FB CF .(提示:过点F 作AB 的平行线交CE 于点H.H 为△CDF 的垂心.)6. 在△ABC 中,∠A:∠B:∠C=4:2:1,∠A、∠B、∠C 的对边分别为a 、b 、c.求证:a 1+b 1=c1.(提示:在BC 上取一点D,使AD =AB.分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G.求证:FH =HG.(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N.)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N.求证:OM =ON. (提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F.过O 作BP 的垂线,G 为垂足.AB∥GF.)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1、挖掘隐含的辅助圆解题有些问题的题设或图形自己隐含着“点共圆”,此时若能掌控问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1 如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.分析:关键是寻求∠BED=2∠CED与结论的联系.容易想到作∠BED的平分线,但因BE≠ED,故不能直接证出BD=2CD.若延长AD交△ABC的外接圆于F,则可得EB=EF,从而获取.证明:如图1,延长AD与△ABC的外接圆相交于点F,连结CF与BF,则∠BFA=∠BCA=∠ABC=∠AFC,即∠BFD=∠CFD.故BF:CF=BD:DC.又∠BEF=∠BAC,∠BFE=∠BCA,从而∠FBE=∠ABC=∠ACB=∠BFE.故EB=EF. 作∠BEF的平分线交BF于G,则BG=GF.因∠GEF=21∠BEF=∠CEF,∠GFE=∠CFE,故△FEG≌△FEC.从而GF=FC.于是,BF=2CF.故BD=2CD.1.2 利用四点共圆例2 凸四边形ABCD中,∠ABC=60°,∠BAD=∠BCD =90°,AB=2,CD=1,对角线AC、BD交于点O,如图2.则sin∠AOB=____.ABGCDFE图1ABCDPO图2分析:由∠BAD=∠BCD=90°可知A 、B 、C 、D四点共圆,欲求sin∠AOB,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD=∠BCD=90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P,则∠ADP=∠ABC=60°. 设AD =x,有AP =3x,DP =2x.由割线定理得(2+3x)3x =2x(1+2x).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD·CA=(4-3)(23-2)+2×1=103-12.又SABCD =S△ABD+S△BCD=233. 故sin∠AOB =263615 . 例3 已知:如图3,AB =BC =CA =AD,AH⊥CD 于H,CP⊥BC,CP 交AH 于P.求证:△ABC 的面积S =43AP·BD. 分析:因S△ABC=43BC2=43AC·BC,只须证AC·BC=AP·BD, 转化为证△APC∽△BCD.这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q,则由AC =AD,AH⊥CD 得∠ACQ=∠ADQ.又AB =AD,故∠AD Q =∠ABQ.从而,∠ABQ=∠ACQ.可知A 、B 、C 、Q 四点共圆. ∵∠APC=90°+∠PCH=∠BCD,∠CBQ=∠CAQ, ∴△APC∽△BCD.∴AC·BC=AP·BD.于是,S =43AC·BC=43AP·BD. A 图3B P Q D HC2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可年夜胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.2.1 联想圆的界说构造辅助圆例4 如图4,四边形ABCD 中,AB∥CD,AD=DC =DB =p,BC =q.求对角线AC 的长.分析:由“AD=DC =DB =p”可知A 、B 、C 在半径为p 的⊙D 上.利用圆的性质即可找到AC 与p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE.显然A 、B 、C 在⊙D 上.∵AB∥CD,∴BC=AE.从而,BC =AE =q.在△ACE 中,∠CAE=90°,CE=2p,AE =q,故AC =22AE CE -=224q p -.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x2+2x +8与x 轴交于B 、C 两点,点D 平分BC.若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____. 分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的极点为A0(1,9),x =1,与x 轴交于两点B(-2,0)、C(4,0).分别以BC 、DA 交于两点P(1-22,1)、Q(1+22,1). A E D C B 图4图5可知,点A 在不含端点的抛物线PA0Q 内时,∠BAC<90°.且有3=DP =DQ <AD≤DA0=9,即AD 的取值范围是3<AD≤9.2.3 联想圆幂定理构造辅助圆例6AD 是Rt△ABC 斜边BC 上的高,∠B 的平行线交AD 于M,交AC 于N.求证:AB2-AN2=BM·BN.分析:因AB2-AN2=(AB +AN)(AB -AN)=BM·BN,而由题设易知AM =AN,联想割线定理,构造辅助圆即可证得结论.证明:如图6,∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN. 以AM 长为半径作⊙A,交AB 于F,交BA 的延长线于E. 则AE =AF =AN.由割线定理有BM·BN=BF·BE=(AB +AE)(AB -AF)=(AB +AN)(AB -AN)=AB2-AN2,即 AB2-AN2=BM·BN.例7 如图7,ABCD是⊙O 的内接四边形,延长AB 和DC 相交于E,延长AB 和DC 相交于E,延长AD 和BC 相交于F,EP 和FQ 分别切⊙O 于P 、Q.求证:EP2+FQ2=EF2.分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G,连结CG. 因∠FDC=∠ABC=∠CGE,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF2=(EG +GF)·EF =EG·EF+GF·EF =EC·ED+FC·FB=EC·ED+FC·FB=EP2+FQ2, 即 EP2+FQ2=EF2.2.4 联想托勒密定理构造辅助圆 E A N C D B FM12345图6例8 如图8,△ABC 与△A'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B=∠B',∠A+∠A'=180°.试证:aa '=bb '+cc '. 分析:因∠B=∠B',∠A+∠A'=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD∥AB 交圆于D,连结AD 和BD,如图9所示.∵∠A+∠A'=180°=∠A+∠D,∠BCD=∠B=∠B',∴∠A'=∠D,∠B'=∠BCD.∴△A'B 'C '∽△DCB. 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab . 又AB∥DC,可知BD =AC =b,BC =AD =a.从而,由托勒密定理,得AD·BC=AB·DC+AC·BD,即 a2=c·''a ac +b·''a ab . 故aa '=bb '+cc '.练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A,则AC AB =DCBD . (提示:无妨设AB≥AC,作△ADC 的外接圆交AB 于E,证△ABC∽△DBE,从而AC AB =DE BD =DCBD .) 2. 已知凸五边形ABCDE 中,∠BAE=3a,BC =CD =DE,∠BCD=∠CDE=180°-2a.求证:∠BAC=∠CAD =∠DAE.(1)(2)图8AB CA'B'C'c a b a'c'b'A B C D a b b c 图9(提示:由已知证明∠BCE=∠BDE=180°-3a,从而A 、B 、C 、D 、E 共圆,得∠BAC=∠CAD=∠DAE.)3. 在△ABC 中AB =BC,∠ABC=20°,在AB 边上取一点M,使BM =AC.求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC,连结KM,证B 、M 、C 共圆,从而∠BCM=21∠BKM=10°,得∠AMC=30°.)4.如图10,AC 是ABCD 较长的对角线,过C 作CF⊥AF,CE⊥AE.求证:AB·AE +AD·AF=AC2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H.则CG =AH,由割线定理可证得结论.)5. 如图11.已知⊙O1和⊙O2相交于A 、B,直线 CD 过A 交⊙O1和⊙O2于C 、D,且AC =AD,EC 、ED 分别切两圆于C 、D.求证:AC2=AB·AE.(提示:作△BCD 的外接圆⊙O3,延长BA 交⊙O3于F,证E 在⊙O3上,得△ACE≌△ADF,从而AE =AF,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB·AC=AE2-BE2.(提示:以BE 为半径作辅助圆⊙E,交AE 及其延长线于N 、M,由△ANC∽△ABM 证AB·AC=AN·AM.)7. 若正五边形ABCDE 的边长为a,对角线长为b,试证:a b -b a=1.(提示:证b2=a2+ab,联想托勒密定理作出五边形的外接圆即可证得.)第三讲 点共线、线共点FD A BE C图10图11在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用.1、点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等.n(n≥4)点共线可转化为三点共线. 例1、如图,设线段AB 的中点为C,以AC 和CB 为对角线作平行四边形AECD,BFCG.又作平行四边形CFHD,CGKE.求证:H,C,K 三点共线.证:连AK,DG,HB. 由题意,AD EC KG,知四边形AKGD 是平行四边形,于是AK DG.同样可证AK HB.四边形AHBK 是平行四边形,其对角线AB,KH 互相平分.而C 是AB 中点,线段KH过C 点,故K,C,H 三点共线.例2 如图所示,菱形ABCDO 为△ABC 外接圆,M 为其上一点,连接MC 交AB 于E,AM 交CB 延长线于F.求证:D,E,F 三点共线. 证:如图,连AC,DF,DE.因为MO 上, 则∠AMC=60°=∠ABC=∠ACB, 有△AMC∽△ACF,得CD CF CA CF MA MC ==. 又因为∠AMC=BAC,所以△AMC∽△EAC,得AEAD AE AC MA MC ==. 所以AEAD CD CF =,又∠BAD=∠BCD=120°,知△CFD∽△ADE.所以∠ADE=∠DFB.因为AD∥BC,所以∠ADF=∠DFB=∠ADE,于是F,E,D 三点共线.例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P,AD 与BC 的延长线交于点Q.由Q作该圆的A C D E F H K G两条切线QE 和QF,切点分别为E,F ;求证:P,E,F 三点共线.证:如图:连接PQ,并在PQ 上取一点M,使得B,C,M,P 四点共圆,连CM,PF.设PF 与圆的另一交点为E’,并作QG 丄PF,垂足为G.易如QE2=QM·QP=QC·QB①∠PMC=∠ABC=∠PDQ. 从而C,D,Q,M 四点共圆,于是PM·PQ=PC·PD② 由①,②得PM·PQ+QM·PQ=PC·PD+QC·QB, 即PQ2=QC·QB+PC·PD.易知PD·PC=PE’·PF, 又QF2=QC·QB,有PE’·PF+QF2=PD·PC+QC·AB=PQ2, 即PE’·PF=PQ2-QF2.又PQ2-QF2=PG2-GF2=(PG+GF)·(PG-GF)=PF·(PG-GF),从而PE’=PG-GF=PG -GE’,即GF=GE’,故E’与E 重合. 所以P,E,F 三点共线.例4 以圆O 外一点P,引圆的两条切线PA,PB,A,B 为切点.割线PCD 交圆O 于C,D.又由B 作CD 的平行线交圆O 于E.若F 为CD 中点,求证:A,F,E 三点共线. 证:如图,连AF,EF,OA,OB,OP,BF,OF,延长FC 交BE 于G.易如OA 丄AP,OB 丄BP,OF 丄CP,所以P,A,F,O,B五点共圆,有∠AFP=∠AOP=∠POB=∠PFB.又因CD∥BE,所以有∠PFB=∠FBE,∠EFD=∠FEB, 而FOG 为BE 的垂直平分线,故EF=FB,∠FEB=∠EBF, 所以∠AFP=∠EFD,A,F,E 三点共线.2、线共点的证明证明线共点可用有关定理(如三角形的3条高线交于一点),或证明第3条直线通过另外两条直线的交点,也可转化成点共线的问题给予证明.C E (E ')A BD F P M QGM E D FK G A例5 以△ABC 的两边AB,AC 向外作正方形ABDE,ACFG.△ABC 的高为AH.求证:AH,BF,CD 交于一点.证:如图.延长HA 到M,使AM=BC.连CM,BM. 设CM 与BF 交于点K.在△ACM 和△BCF 中,AC=CF,AM=BC,∠MAC+∠HAC=180°,∠HAC+∠HCA=90°,而且∠BCF=90°+∠HCA,因此∠BCF+∠HAC=180°∠MAC=∠BCF.从而△MAC≌△BCF,∠ACM=∠CFB.所以∠MKF=∠KCF+∠KFC=∠KCF+∠MCF=90°,即 BF 丄MC.同理CD 丄MB.AH,BF,CD 为△MBC 的3条高线,故AH,BF,CD 三线交于一点.例6 设P 为△ABC 内一点,∠APB-∠ACB=∠APC-∠ABC.又设D,E 分别是△APB 及△APC 的内心.证明:AP,BD,CE 交于一点.证:如图,过P 向三边作垂线,垂足分别为R,S,T.连RS,ST,RT,设BD 交AP 于M,CE 交AP 于N. 易知P,R,A,S ;P,T,B,R ;P,S,C,T 分别四点共圆,则∠APB-∠ACB=∠PAC+∠PBC=∠PRS+∠PRT=∠SRT.同理,∠APC-∠ABC=∠RST,由条件知∠SRT=∠RST,所以RT=ST.又RT=PBsinB,ST=PCsinC,所以PBsinB=PCsinC,那么ACPC AB PB =. 由角平分线定理知MP AM PB AB PC AC NP AN ===.故M,N 重合,即AP,BD,CE 交于一点.例7 O1O2外切于P 点,QR 为两圆的公切线,其中Q,RO2上的切点,过Q 且垂直于QO2的直线与过R 且垂直于RO1的直线交于点I,IN 垂直于O1O2,垂足为N,IN 与QR 交于点M.证明:PM,RO1,QO2三条直线交于一点.证:如图,设RO1与QO2交于点O,连MO,PO.因为∠O1QM=∠O1NM=90°,所以Q,O1,N,M 四点共圆,有∠QMI=∠QO1O2. 而∠IQO2=90°=∠RQO1,所以∠IQM=∠O2QO1, 故△QIM∽△QO2O1,得MI O O QM QO 211=同理可证MI O O RM RO 212=.因此21RO QO MR QM =①因为QO1∥RO2,所以有211RO QO OR O O =②由①,②得MO∥QO1. 又由于O1P=O1Q,PO2=RO2,所以 21211PO P O RO Q O OR O O ==, 即OP∥RO2.从而MO∥QO1∥RO2∥OP,故M,O,P 三点共线,所以PM,RO1,QO2三条直线相交于同一点.3、 塞瓦定理、梅涅劳斯定理及其应用定理1 (塞瓦(Ceva)定理):设P,Q,R 分别是△ABC 的BC,CA,AB 边上的点.若AP,BQ,CR 相交于一点M,则1=⋅⋅RB AR QA CQ PC BP . 证:如图,由三角形面积的性质,有BMC AMC S S RB AR ∆∆=, AMCAMB S S PC BP ∆∆=, AMB BMC S S QA CQ ∆∆=.以上三式相乘,得1=⋅⋅RB AR QA CQ PC BP . 定理2 (定理1的逆定理):O 1O 2N P I Q R MOA R QBC P设P,Q,R 分别是△ABC 的BC,CA,AB 上的点.若1=⋅⋅RB ARQA CQPC BP,则AP,BQ,CR 交于一点.证:如图,设AP 与BQ 交于M,连CM,交AB 于R’. 由定理1有1''=⋅⋅B R AR QA CQ PC BP . 而1=⋅⋅RB ARQA CQ PC BP ,所以RB ARB R AR =''.于是R’与R 重合,故AP,BQ,CR 交于一点.定理3 (梅涅劳斯(Menelaus)定理):一条不经过△ABC 任一极点的直线和三角形三边BC,CA,AB(或它们的延长线)分别交于P,Q,R,则1=⋅⋅RB ARQA CQPC BP证:如图,由三角形面积的性质,有BRP ARP S S RB AR ∆∆=, CPR BRP S S PC BP ∆∆=, ARPCRPS S QA CQ ∆∆=.将以上三式相乘,得1=⋅⋅RB ARQA CQ PC BP .定理4 (定理3的逆定理):设P,Q,R 分别是△ABC 的三边BC,CA,AB 或它们延长线上的3点.若1=⋅⋅RB ARQA CQ PC BP,则P,Q,R 三点共线.定理4与定理2的证明方法类似.塞瓦定理和梅涅劳斯定理在证明三线共点和三点共线以及与之有关的题目中有着广泛的应用.例8 如图,在四边形ABCD 中,对角线AC 平分∠BAD.在CD 上取一点E,BE 与AC 相交于F,延长DF 交BC 于G.求证:∠GAC=∠EAC.证:如图,连接BD 交AC 于H,过点C 作AB 的平行线交AG 的延长线于I,过点C 作AD 的平行线交AE 的延长线于J.对△BCD 用塞瓦定理,可得1=⋅⋅ECDE HD BH GB CG ① 因为AH 是∠BAD 的角平分线, 由角平分线定理知ADAB HD BH =,代入①式1=⋅⋅ECDE AD AB GB CG ② 因为CI∥AB,CJ∥AD,则AB CI GB CG =,CJAD EC DE =.代入②式得1=⋅⋅CJ AD AD AB AB CI .从而CI=CJ.又由于∠ACI=180°-∠BAC=180°-∠DAC=∠ACJ,所以△ACI≌△ACJ,故∠IAC=∠JAC,即∠GAC=∠EAC. 例9 ABCD 是一个平行四边形,E 是AB 上的一点,F 为CD 上的一点.AF 交ED 于G,EC 交FB 于H.连接线段GH 并延长交AD 于L,交BC 于M.求证:DL=BM.证:如图,设直线LM 与BA 的延长线交于点J,与DC 的延长线交于点I.在△ECD 与△FAB 中分别使用梅涅劳斯定理,得1=⋅⋅HE CH IC DI GD EG , 1=⋅⋅JABJ HB FH GF AG . 因为AB∥CD,所以GF AG GD EG =, HB FH HE CH =.从而JABJ IC DI =,即=+CI CI CD AJ AJ AB +,故CI=AJ. 而LA DL AJ DI CI BJ MC BM ===, 且BM+MC=BC=AD=AL+LD. 所以BM=DL.例10 在直线l 的一侧画一个半圆T,C,D 是T 上的两点,T 上过C 和D 的切线分别交l 于B 和A,半圆的H C A D BG IJ E F G A E B JL D F C I M H D EC P圆心在线段BA 上,E 是线段AC 和BD 的交点,F 是l 上的点,EF 垂直l.求证:EF 平分∠CFD.证:如图,设AD 与BC 相交于点P,用O 暗示半圆T 的圆心.过P 作PH 丄l 于H,连OD,OC,OP.由题意知Rt△OAD∽Rt△PAH,于是有DOHP AD AH =. 类似地,Rt△OCB∽Rt△PHB, 则有COHP BC BH =. 由CO=DO,有BC BH AD AH =,从而1=⋅⋅DAPD CP BC HB AH . 由塞瓦定理的逆定理知三条直线AC,BD,PH 相交于一点,即E 在PH 上,点H 与F 重合.因∠ODP=∠OCP=90°,所以O,D,C,P 四点共圆,直径为OP. 又∠PFC=90°,从而推得点F 也在这个圆上,因此∠DFP=∠DOP=∠COP=∠CFP,所以EF 平分∠CFD.例11 如图,四边形ABCD 内接于圆,AB,DC 延长线交于E,AD 、BC 延长线交于F,P 为圆上任意一点,PE,PF 分别交圆于R,S. 若对角线AC 与BD 相交于T. 求证:R,T,S 三点共线. 先证两个引理.引理1:A1B1C1D1E1F1为圆内接六边形,若A1D1,B1E1,C1F1交于一点,则有1111111111111=⋅⋅A F F E E D D C C B B A .如图,设A1D1,B1E1,C1F1交于点O,根据圆内接多边形的性质易知△ OA1B1∽△OE1D1,△OB1C1∽△OF1E1,△OC1D1∽△OA1F1,从而有O D O B E D B A 111111=,O B O F C B F E 111111=,OF O D A F D C 111111=.将上面三式相乘即得1111111111111=⋅⋅A F F E E D D C C B B A ,E B R C T AP S D F引理2:圆内接六边形A1B1C1D1E1F1,若满足1111111111111=⋅⋅A F F E E D D C C B B A 则其三条对角线A1D1,B1E1,C1F1交于一点.该引理与定理2的证明方法类似,留给读者.例11之证明如图,连接PD,AS,RC,BR,AP,SD.由△EBR∽△EPA,△FDS∽△FPA,知EP EB PA BR =,FD FP DS PA =.两式相乘,得FD EP FP EB DS BR ⋅⋅=. ① 又由△ECR∽△EPD,△FPD∽△FAS,知EP EC PD CR =,FA FP AS PD =. 两式相乘,得FAEP FP EC AS CR ⋅⋅=② 由①,②得FDEC FA EB CR DS AS BR ⋅⋅=⋅⋅. 故=⋅⋅AB SA DS CD RC BR CEDC FD AF BA EB ⋅⋅. ③ 对△EAD 应用梅涅劳斯定理,有1=⋅⋅CEDC FD AF BA EB ④ 由③④得1=⋅⋅ABSA DS CD RC BR .由引理2知BD,RS,AC 交于一点,所以R,T,S 三点共线.练 习A 组1. 由矩形ABCD 的外接圆上任意一点M 向它的两对边引垂线MQ 和MP,向另两边延长线引垂线MR,MT.证明:PR 与QT 垂直,且它们的交点在矩形的一条对角线上.2. 在△ABC 的BC 边上任取一点P,作PD∥AC,PE∥AB,PD,PE 和以AB,AC 为直径而在三角形外侧所作的半圆的交点分别为D,E.求证:D,A,E 三点共线.B F A E 1OC D 111113. 一个圆和等腰三角形ABC的两腰相切,切点是D,E,又和△ABC的外接圆相切于F.求证:△ABC的内心G和D,E在一条直线上.4. 设四边形ABCD为等腰梯形,把△ABC绕点C旋转某一角度酿成△A’B’C’.证明:线段A’D, BC和B’C的中点在一条直线上.5. 四边形ABCD内接于圆O,对角线AC与BD相交于P.设三角形ABP,BCP,CDP和DAP的外接圆圆心分别是O1,O2,O3,O4.求证:OP,O1O3,O2O4三直线交于一点.6. 求证:过圆内接四边形各边的中点向对边所作的4条垂线交于一点.7. △ABC为锐角三角形,AH为BC边上的高,以AH为直径的圆分别交AB,AC于M,N;M,N与A分歧.过A作直线lA垂直于MN.类似地作出直线lB与lC.证明:直线lA,lB,lC共点.8. 以△AB C的边BC,CA,AB向外作正方形,A1,B1,C1是正方形的边BC,CA,AB的对边的中点.求证:直线AA1,BB1,CC1相交于一点.B组9. 设A1,B1,C1是直线l1上的任意三点,A2,B2,C2是另一条直线l2上的任意三点,A1B2和B1A2交于L,A1C2和A2C1交于M,B1C2和B2C1交于N.求证:L,M,N三点共线.10. 在△ABC,△A’B’C’中,连接AA’,BB’,CC’,使这3条直线交于一点S.求证:AB与A’B’、BC与B’C’、CA与C’A’的交点F,D,E在同一条直线上(笛沙格定理).11. 设圆内接六边形ABCDEF的对边延长线相交于三点P,Q,R,则这三点在一条直线上(帕斯卡定理).第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常呈现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平路途.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P89定理和P93例3),由这两种基本方法推导出来的其他判别方法也可相机采纳.1、“四点共圆”作为证题目的例1.给出锐角△AB C,以AB 为直径的圆与AB 边的高CC′及其延长线交于M,N.以AC 为直径的圆与AC 边的高BB′及其延长线将于P,Q.求证:M,N,P,Q 四点共圆. (第19届美国数学奥林匹克) 分析:设PQ,MN 交于K 点,连接AP,AM.欲证M,N,P,Q 四点共圆,须证MK·KN=PK·KQ,即证(MC′-KC′)(MC′+KC′)=(PB′-KB′)·(PB′+KB′)或MC′2-KC′2=PB′2-KB′2 . ①不难证明 AP=AM,从而有AB′2+PB′2=AC′2+MC′2. 故 MC′2-PB′2=AB′2-AC′2 =(AK2-KB′2)-(AK2-KC′2)=KC′2-KB′2. ②由②即得①,命题得证. 例2.A 、B 、C 三点共线,O 点在直线外,O1,O2,O3分别为△OAB,△OBC,△OCA 的外心.求证:O,O1,O2,O3四点共圆.(第27届莫斯科数学奥林匹克) 分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC 及其外接圆,立得∠OO2O1=21∠OO2B=∠OCB.观察△OC A 及其外接圆,立A B C K M N P Q B ′C ′A B C O O O O 123??得∠OO3O1=21∠OO3A=∠OCA.由∠OO2O1=∠OO3O1⇒O,O1,O2,O3共圆.利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证.2、以“四点共圆”作为解题手段这种情况不单题目多,而且结论幻化莫测,可年夜体上归纳为如下几个方面.(1)证角相等例3.在梯形ABCD 中,AB∥DC,AB>CD,K,M 分别在AD,BC 上,∠DAM=∠CBK.求证:∠DMA=∠CKB.(第二届袓冲之杯初中竞赛)分析:易知A,B,M,K 四点共圆.连接KM,有∠DAB=∠CMK.∵∠DAB+∠ADC=180°,∴∠CMK+∠KDC=180°. 故C,D,K,M 四点共圆⇒∠CMD=∠DKC. 但已证∠AMB=∠BKA,∴∠DMA=∠CKB.(2)证线垂直例4.⊙O 过△ABC 极点A,C,且与AB,BC 交于K,N(K 与N 分歧).△ABC外接圆和△BKN 外接圆相交于B 和M.求证:∠BMO=90°.(第26届IMO 第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要掌控已知条件和图形特点,借助“四点共圆”,问题是不难解决的.连接OC,OK,MC,MK,延长BM 到G.易得∠GMC=∠BAC=∠BNK=∠BMK.而∠COK=2·∠BAC=∠GMC+∠BMK=180°-∠CMK, ∴∠COK+∠CMK=180°⇒C,O,K,M 四点共圆. A B C D K M ··A B O K N CM GA B CD E F K G······在这个圆中,由OC=OK ⇒OC=OK ⇒∠OMC=∠OMK.但∠GMC=∠BMK,故∠BMO=90°.(3)判断图形形状例5.四边形ABCD 内接于圆,△BCD,△ACD,△ABD,△ABC 的内心依次记为IA,IB,IC,ID.试证:IAIBICID 是矩形.(第一届数学奥林匹克国家集训选拔试题)分析:连接AIC,AID,BIC,BID 和DIB.易得∠AICB=90°+21∠ADB=90°+21∠ACB=∠AIDB ⇒A,B,ID,IC 四点共圆.同理,A,D,IB,IC 四点共圆.此时∠AICID=180°-∠ABID =180°-21∠ABC,∠AICIB=180°-∠ADIB=180°-21∠ADC, ∴∠AICID+∠AICIB=360°-21(∠ABC+∠ADC)=360°-21×180°=270°.故∠IBICID=90°. 同样可证IAIBICID 其它三个内角皆为90°.该四边形必为矩形.(4)计算例6.正方形ABCD 的中心为O,面积为1989㎝2.P 为正方形内一点,且∠OPB=45°,PA:PB=5:14.则PB=__________(1989,全国初中联赛)分析:谜底是PB=42㎝.怎样获得的呢?连接OA,OB.易知O,P,A,B 四点共圆,有∠APB=∠AOB=90°.故PA2+PB2=AB2=1989.由于PA:PB=5:14,可求PB. (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出头具名积最年夜的和一个面积最A B C D I C I D A I I B ··P O A B C D小的,并求出这两个面积(须证明你的论断).(1978,全国高中联赛)分析:设△EFG为正方形ABCD 的一个内接正三角形,由于正三角形的三个极点至少必落在正方形的三条边上,所以无妨令F,G两点在正方形的一组对边上.作正△EFG的高EK,易知E,K,G,D四点共圆⇒∠KDE=∠KGE=60°.同理,∠KAE=60°.故△KAD也是一个正三角形,K必为一个定点.又正三角形面积取决于它的边长,当KF丄AB时,边长3也最小.当KF通过B 为1,这时边长最小,而面积S=4点时,边长为2·32-,这时边长最年夜,面积S=23-3也最年夜.例8.NS是⊙O的直径,弦AB丄NS于M,P为ANB上异于N的任一点,PS交AB于R,PM的延长线交⊙O于Q.求证:RS>MQ.(1991,江苏省初中竞赛)分析:连接NP,NQ,NR,NR的延长线交⊙O于Q′.连接MQ′,SQ′.易证N,M,R,P四点共圆,从而,∠SNQ′=∠MNR=∠MPR=∠SPQ=∠SNQ.根据圆的轴对称性质可知Q与Q′关于NS成轴对称⇒MQ′=MQ.又易证M,S,Q′,R四点共圆,且RS是这个圆的直径(∠RMS=90°),MQ′是一条弦(∠MSQ′<90°),故RS>MQ′.但MQ=MQ′,所以,RS>MQ.练习题1.⊙O1交⊙O2 于A,B两点,射线O1A交⊙O2 于C点,射线O2A交⊙O1于D点.求证:点A是△BCD的内心.(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2四点共圆,从而知C,D,O1,B,O2五点共圆.)。

高中数学竞赛平面几何讲座非常详细

高中数学竞赛平面几何讲座非常详细

第一讲 留意添加平行线证题在同一平面内,不相交两条直线叫平行线.平行线是初中平面几何最根本,也是特别重要图形.在证明某些平面几何问题时,假设能根据证题须要,添加恰当平行线,那么能使证明顺畅、简洁. 添加平行线证题,一般有如下四种状况. 1、为了变更角位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角位置变更,以满意求解须要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 平行线得交点D .连结DA . 在△DBP =∠AQC 中,明显∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .那么A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推〞到∠BDP 位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC .明显,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使与未知中四个角通过P 、B 、A 、E 四点共圆,严密联络起来.∠APE 成为∠EBA 与∠ADE 相等媒介,证法很奇妙. 2、欲“送〞线段到当处利用“平行线间间隔 相等〞、“夹在平行线间平行线段相等〞这两条,常可通过添加平行线,将某些线段“送〞到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上随意一点.过P 分别作AC 、AB 、BC 垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 平行线交BD 于F ,过点F 作BC 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边间隔 相等.有KQ =PN . 明显,==,可知PG ∥EC .由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ .这里,通过添加平行线,将PQ “掐开〞成两段,证得PM =PK ,就有PM +PN =PQ .证法特别简捷.3 、为了线段比转化∥=ADBP QC图1PE D GA B FC图2A N E BQ K G CD M FP 图3由于“平行于三角形一边直线截其它两边,所得对应线段成比例〞,在一些问题中,可以通过添加平行线,实现某些线段比良性转化.这在平面几何证题中是会常常遇到.例4 设M 1、M 2是△ABCBC 边上点,且BM 1=CM 2.任作始终线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:+=+.证明:如图4,假设PQ ∥BC ,易证结论成立. 假设PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知=,=,=,=.那么+===+.所以,+=+.这里,仅仅添加了一条平行线,将求证式中四个线段比“通分〞,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA . 证明:如图5,过点A 作BC 平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M . 明显,==.有BD ·AM =DC ·AN . (1) 由==,有AP =. (2) 由==,有AQ =. (3)比照(1)、(2)、(3)有AP =AQ .明显AD 为PQ 中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 平行线,就有大量比例式产生,恰当地运用这些比例式,就使AP 与AQ 相等关系显现出来. 4、为了线段相等传递当题目给出或求证某点为线段中点时,应留意到平行线等分线段定理,用平行线将线段相等关系传递开去.例6 在△ABC 中,AD 是BC 边上中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.假如BM 2+CN 2=DM 2+DN 2,求证:AD 2=(AB 2+AC 2).证明:如图6,过点B 作AC 平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 明显,MD 为EN 中垂线.有 EM =MN .APEDM 2M 1BQ N 1N 2图4图5MP A Q NFBD CEK图6AN CD EBM由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°. 所以,AD 2==(AB 2+AC 2).这里,添加AC 平行线,将BC 以D 为中点性质传递给EN ,使解题找到出路.例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB .二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .明显,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点假设干直线称为一组直线束.一组直线束在一条直线上截得线段相等,在该直线平行直线上截得线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行直线.于是,有==,即=或=.此式说明,DM =ME 充要条件是 BN =NC .利用平行线这一性质,解决某些线段相等问题会很美丽.例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 边BC 外旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB切点.假设OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .明显,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 那么OQ =OP .于是,OK 为PQ 中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中应用.同学们在理论中应留意适时添加平行线,让平行线在平面几何证题中发挥应有作用.练习题AG D O H BFC E图7图8ADBN CEM 图9ABMEFN D C G AO EPC BF Q K 图101. 四边形ABCD中,AB=CD,M、N分别为AD、BC中点,延长BA交直线NM于E,延长CD交直线NM于F.求证:∠BEN=∠CFN.(提示:设P为AC中点,易证PM=PN.)2. 设P为△ABC边BC上一点,且PC=2PB.∠ABC=45°,∠APC=60°.求∠ACB.(提示:过点C作PA平行线交BA延长线于点D.易证△ACD∽△PBA.答:75°)3. 六边形ABCDEF各角相等,FA=AB=BC,∠EBD=60°,S△EBD=60cm2.求六边形ABCDEF面积. (提示:设EF、DC分别交直线AB于P、Q,过点E作DC平行线交AB于点M.所求面积与EMQD面积相等.答:120cm2)4. AD为Rt△ABC斜边BC上高,P是AD中点,连BP并延长交AC于E.AC:AB=k.求AE:EC. (提示:过点A作BC平行线交BE延长线于点F.设BC=1,有AD=k,DC=k2.答:)5. AB为半圆直径,C为半圆上一点,CD⊥AB于D,E为DB上一点,过D作CE垂线交CB于F.求证:=.(提示:过点F作AB平行线交CE于点H.H为△CDF垂心.)6. 在△ABC中,∠A:∠B:∠C=4:2:1,∠A、∠B、∠C对边分别为a、b、c.求证:+=.(提示:在BC上取一点D,使AD=AB.分别过点B、C作AD平行线交直线CA、BA于点E、F.)7. △ABC内切圆分别切BC、CA、AB于点D、E、F,过点F作BC平行线分别交直线DA、DE于点H、G.求证:FH=HG.(提示:过点A作BC平行线分别交直线DE、DF于点M、N.)8. AD为⊙O直径,PD为⊙O切线,PCB为⊙O割线,PO分别交AB、AC于点M、N.求证:OM =ON.(提示:过点C作PM平行线分别交AB、AD于点E、F.过O作BP垂线,G为垂足.AB∥GF.)第二讲巧添协助妙解竞赛题.1、挖掘隐含协助圆解题有些问题题设或图形本身隐含着“点共圆〞,此时假设能把握问题供应信息,恰当补出协助圆,并合理挖掘图形隐含性质,就会使题设和结论逻辑关系明朗化.1.1 作出三角形外接圆例1如图1,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.分析:关键是寻求∠BED=2∠CED与结论联络.简单想到作∠BED平分线,但因BE≠ED,故不能干脆证出BD=2CD.假设延长AD交△ABC外接圆于F,那么可得EB=EF,从而获得.证明:如图1,延长AD与△ABC外接圆相交于点F,连结CF与BF,那么∠BFA =∠BCA=∠ABC=∠AFC,即∠BFD=∠CFD.故BF:CF=BD:DC.ABGCDFE图1又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 平分线交BF 于G ,那么BG =GF . 因∠GEF =∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC .于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.那么sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、DBA 、CD 交于P ,那么∠ADP =∠ABC =60°. 设AD =x ,有AP =x ,DP =2x .由割线定理得(2+x )x =2x (1+2x ).解得AD =x =2-2,BC =BP =4-.由托勒密定理有 BD ·CA =(4-)(2-2)+2×1=10-12.又S ABCD =S △ABD +S △BCD =. 故sin ∠AOB =.例3 :如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 面积S =AP ·BD .分析:因S △ABC =BC 2=AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点). 证明:记BD 与AH 交于点Q ,那么由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =AC ·BC =AP ·BD .2 、构造相关协助圆解题有些问题貌似与圆无关,但问题题设或结论或图形供应了某些与圆性质相像信息,此时可大胆联想构造出与题目相关协助圆,将原问题转化为与圆有关问题加以解决. 2.1 联想圆定义构造协助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 长. 分析:由“AD =DC =DB =p 〞可知A 、B 、C 在半径为p ⊙D 用圆性质即可找到AC 与p 、q 关系.解:延长CD 交半径为p ⊙D 于E 点,连结AE .明显A 、B 、C 在⊙D 上.ABCDP O 图2A图3BP QD HCAEDCB图4∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC ==.2.2 联想直径性质构造协助圆例5 抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .假设在x 轴上侧A 点为抛物线上动点,且∠BAC 为锐角,那么AD 取值范围是____.分析:由“∠BAC 为锐角〞可知点A 在以定线段BC 为直径圆外,又点A 在x 轴上侧,从而可确定动点A 范围,进而确定AD 取值范围.解:如图5,所给抛物线顶点为A 0(1,9),对称轴为x =1,与x 轴交 于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,那么两圆与抛物线均交于两点P (1-2,1)、Q (1+2,1).可知,点A 在不含端点抛物线PA 0Q 内时,∠BAC <90°.且有 3=DP =DQ <AD ≤DA 0=9,即AD 取值范围是3<AD ≤9. 2.3 联想圆幂定理构造协助圆 例6 AD 是Rt △ABC 斜边BC 上高,∠B 平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造协助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 延长线于E .那么AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB-AN )=AB 2-AN 2, 即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.分析:因EP 和FQ 是⊙O 切线,由结论联想到切割线定理,构造协助圆使EP 、FQ 向EF 转化. 证明:如图7,作△BCE 外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造协助圆例8 如图8,△ABC 与△A 'B 'C '三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A+∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.A B D C P Q E yx0(1,9)(-2,0)(4,0)图5E ANC D B FM 12345图6O PC B GFD(1)(2)图8ABCA'B'C'ca b a'c'b'证明:作△ABC 外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD . ∴△A 'B 'C '∽△DCB . 有==,即==. 故DC =,DB =.又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·+b ·. 故aa '=bb '+cc '.练习题1. 作一个协助圆证明:△ABC 中,假设AD 平分∠A ,那么=.(提示:不妨设AB ≥AC ,作△ADC 外接圆交AB 于E ,证△ABC ∽△DBE ,从而==.)2. 凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =∠BKM=10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .那么CG =AH ,由割线定理可证得结论.)⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.) 6.E 是△ABC 外接圆之劣弧BC 中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作协助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 假设正五边形ABCD E 边长为a ,对角线长为b ,试证:-=1.A BCDa bb c图9F DAB EC图10EDA B O O 12图11(提示:证b 2=a 2+ab ,联想托勒密定理作出五边形外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点一般证明方法及梅涅劳斯定理、塞瓦定理应用。

高中数学竞赛 平面几何讲座第3讲 点共线、线共点

高中数学竞赛 平面几何讲座第3讲  点共线、线共点

第三讲点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

1.点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。

n(n≥4点共线可转化为三点共线。

例1如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD,BFCG。

又作平行四边形CFHD,CGKE。

求证:H,C,K三点共线。

证连AK,DG,HB。

由题意,AD EC KG,知四边形AKGD是平行四边形,于是AK DG。

同样可证AK HB。

四边形AHBK是平行四边形,其对角线AB,KH互相平分。

而C是AB 中点,线段KH过C点,故K,C,H三点共线。

例2如图所示,菱形ABCD中,∠A=120为△ABC外接圆,M为其上一点,连接MC交AB于E,AM交CB延长线于F。

求证:D,E,F三点共线。

证如图,连AC,DF,DE。

因为M在上,则∠AMC=60°=∠ABC=∠ACB有△AMC∽△ACF,得CDCFCA CF MA MC==。

又因为∠AMC=BAC,所以△AMC∽△EAC,得AEADAE AC MA MC==。

所以AEADCD CF=,又∠BAD=∠BCD=120°,知△CFD∽△ADE。

所以∠ADE=∠DFB。

因为AD∥BC,所以∠ADF=∠DFB=∠ADE,于是F,E,D三点共线。

ACD E FH K G例3四边形ABCD内接于圆,其边AB与DC的延长线交于点P,AD与BC的延长线交于点Q。

由Q作该圆的两条切线QE和QF,切点分别为E,F。

求证:P,E,F三点共线。

证如图。

连接PQ,并在PQ上取一点M,使得B,C,M,P四点共圆,连CM,PF。

设PF与圆的另一交点为E’,并作QG丄PF,垂足为G。

易如QE 2=QM·QP=QC·QB①∠PMC=∠ABC=∠PDQ。

从而C,D,Q,M四点共圆,于是PM·PQ=PC·PD②由①,②得PM·PQ+QM·PQ=PC·PD+QC·QB,即PQ 2=QC·QB+PC·PD。

高中数学竞赛-平面几何讲义(很详细)

高中数学竞赛-平面几何讲义(很详细)

HBC
(5)H 关于三边的对称点在△ABC 的外接圆上,关于三边中
点的对称点在△ABC 的外接圆上
(6)三角形任一顶点到垂心的距离
A
等于外心到对边的距离的 2 倍。 (7)设△ABC 的垂心为 H,外接圆
F
B'
半径为 R,
OH E
则 HA HB HC 2R B | cos A | | cos B | | cosC |
A
M
N
B
EF
C
D
证明:设∠BAE=∠CAF= ,∠EAF=

S AMDN

1 2
AM

AD sin

1 2
AD
AN sin(

)
= 1 AD[AF cos( )sin AF cos sin( )
2
= 1 AD AF sin(2 ) AF AD BC
从而 AB A' F = AC A' E ,又∠AFE=∠AEF

S△ABA’=
1 2
sin
AFE

AB

A'
F
=
1 2
s
in
A
EF

A
C

A'
E
=S△ACA’
由此式可知直线 AA’必平分 BC 边,即 AA’必过△
ABC 的重心
同理 BB’,CC‘必过△ABC 的重心,故结论成立。
例 3.设△ABC 的三条高线为 AD,BE,CF,自 A, B,C 分别作 AK EF 于 K,BL DF 于 L, CN ED 于 N,证明:直线 AK,BL,CN 相 交于一点。

高中数学竞赛平面几何讲座(非常详细).

高中数学竞赛平面几何讲座(非常详细).

第一讲 注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况. 1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知△DBP ≌△AQC .有DP =AC ,∠BDP =∠QAC .于是,DA ∥BP ,∠BAP =∠BDP .则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP .所以AB =AC .这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有∠BCE =∠BPE ,∠APE =∠ADE .由∠BAF =∠BCE ,可知∠BAF =∠BPE .有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE .所以,∠EBA =∠ADE .这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC∥=A D BP QC图1PE D G A B FC图2A N E BQ K G CD M FP 图3两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GDCG,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是,PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.3 、为了线段比的转化由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. 例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:AP AB+AQAC =11AN AM +22AN AM .证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行, 设PQ 交直线BC 于D .过点A 作PQ 的平行线交直线BC 于E . 由BM 1=CM 2,可知BE +CE =M 1E +M 2E , 易知AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DE E M 2.则AP AB +AQ AC =DECEBE +=DE E M E M 21+=11AN AM +22AN AM .所以,APAB+AQ AC =11AN AM +22AN AM .这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是问题迎刃而解.例5、 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、 BE 、CF 于Q 、P 、N 、M .显然,AN BD =KA KD =AMDC .有BD ·AM =DC ·AN . (1)由BD AP =FB AF =BC AM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BCAN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ .显然AD 为PQ 的中垂线,故AD 平分∠PDQ .所以,∠FDA =∠EDA .这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来. 4、为了线段相等的传递AP EDM 2M 1BQN 1N 2图4图5MP A Q NFB DC EK当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .由BD =DC ,可知ED =DN .有△BED ≌△CND . 于是,BE =NC . 显然,MD 为EN 的中垂线.有 EM =MN .由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC +∠ACB =∠ABC +∠EBC =90°.于是,∠BAC =90°.所以,AD 2=221⎪⎭⎫ ⎝⎛BC =41(AB 2+AC 2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB . 易知DB 2=FB 2=AB ·HB ,AD 2=AE 2=AG ·AB . 二式相减,得DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ). 于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD .显然,EG ∥CD ∥FH .故CD 平分EF .这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即 BN DM=NC ME 或ME DM =NC BN . 此式表明,DM =ME 的充要条件是 BN =NC .利用平行线的这一性质,解决某些线段相等的问题会很漂亮. 例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长线交EF 于G .求证:EG =GF .证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF , 可知MN ∥BD .易知 S △BEF =S △DEF .有S △BEC =S △ⅡKG - *5ⅡDFC . 可得MC =CN . 所以,EG =GF .例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB图6AN CDEB M AGD O HBFC E图7图8A DBN C EM图9ABM EF ND CG的切点.若OD 与EF 相交于K ,求证:AK 平分BC .证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有∠FOQ =∠FKQ . 由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有∠EOP =∠EKP .显然,∠FKQ =∠EKP ,可知∠FOQ =∠EOP .由OF =OE,可知Rt △OFQ ≌Rt △OEP . 则OQ =OP .于是,OK 为PQ 的中垂线,故 QK =KP .所以,AK 平分BC .综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.练习题1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2)4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:211k) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:DE AD =FBCF.(提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a1+b 1=c1.(提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F .)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG.O图10(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆 例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA=∠ABC =∠AFC,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.A BGCD FE图1ABCDPO 图2又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ .又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD .于是,S =43AC ·BC =43AP ·BD . 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利 用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上.∵AB ∥CD ,∴BC =AE .从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -. 2.2联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有A图3BPQDHC A EDCB图4图53=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°, 又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E . 则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2. 分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示.∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD .∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DBC A '', 即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab .E A NCD B FM 12345图6(1)(2)图8ABCA'C'cb a'c'b'A BCDabb c图9又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD ,即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '. 练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而ACAB=DE BD =DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.) 4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2.(提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE =AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2.(提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCD E 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)F DAEC图10图11第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

高中数学竞赛专题讲座---平面几何选讲

高中数学竞赛专题讲座---平面几何选讲

平面几何选讲 反演变换基础知识 一. 定义1. 设O 是平面π上的一个定点,k 是一个非零常数.如果平面π的一个变换,使得对于平面π上任意异于O 的点A 与其对应点'A 之间,恒有(1)',,A O A 三点共线;(2)'OA OA k ⋅=,则这个变换称为平面π的一个反演变换,记做(,)I O k .其中,定点O 称为反演中心,常数k 称为反演幂,点'A 称为点A 的反点.2. 在反演变换(,)I O k 下,如果平面π的图形F 变为图形'F ,则称图形'F 是图形F 关于反演变换(,)I O k 的反形.反演变换的不动点称为自反点,而反演变换的不变图形则称为自反图形.3. 设两条曲线u v 、相交于点A ,l 、m 分别是曲线u v 、在点A 处的切线(如果存在),则l 与m 的交角称为曲线u v 、在点A 处的交角;如果两切线重合,则曲线u v 、在点A 处的交角为0.特别地,如果两圆交于点,那么过点作两圆的切线,则切线的交角称为两圆的交角.当两圆的交角为90时,称为两圆正交;如果直线与圆相交,那么过交点作圆的切线,则切线与直线的交角就是直线与圆的交角.当这个交角为90时,称为直线与圆正交. 二. 定理定理1. 在反演变换下,不共线的两对互反点是共圆的四点.定理2. 在反演变换(,)I O k 下,设A B 、两点(均不同于反演中心O )的反点分别为''A B 、,则有''B A =''kA B AB OA OB=⋅.定理3. 在反演变换下,过反演中心的直线不变.定理 4. 在反演变换下,不过反演中心的直线的反形是过反演中心的圆;过反演中心的圆的反形是不过反演中心的直线.定理5. 在反演变换下,不过反演中心的圆的反形仍是不过反演中心的圆.定理6. 在反演变换下,两条曲线在交点处的交角大小保持不变,但方向相反.定理7. 如果两圆或一圆一直线相切于反演中心,则其反形是两条平行直线;如果两圆或一圆一直线相切于非反演中心,则其反形(两圆或一圆一直线)相切.定理8.典型例题一. 证明点共线例1. ABC 的内切圆与边BC 、CA 、AB 分别相切于点D 、E 、F ,设L 、M 、N 分别是EF 、FD 、DE 的中点.求证:ABC 的外心、B内心与LMN 的外心三点共线.证明:如图,设ABC 的内心为I ,内切圆半径为r .以内心I 为反演中心,内切圆为反演圆作反演变换2(,)I I r ,则A 、B 、C 的反点分别为L 、M 、N ,因而ABC 的反形是LMN的外接圆.故ABC 的外心、内心和LMN 的外心三点共线.二. 证明线共点 例2. 四边形ABCD 内接于O ,对角线AC 与BD 相交于P ,设外心分别为1O 、2O 、3O 、4O .求证:OP 、13O O 、24O O 证明:作反演变换(,)I P PC PA ⋅,则A 、C 互为反点,B 、D 互为反点,O 不变,直线1PO 不变,ABP 的外接圆的反形是直线CD .由于直线1PO 与ABP 的外接圆正交,因而1PO 与CD正交,即有1PO CD ⊥.又3OO CD ⊥,所以13//PO O O ;同理31//PO O O ,所以四边形13PO OO 为平行四边形,从而13O O 过PO 的中点;同理24O O 也过PO 的中点.故OP 、13O O 、24O O 三线共点. 三. 证明点共圆例3. 设半圆的直径为AB ,圆心为O ,一直线与半圆交于C 、D 两点,且与直线AB 交于M .再设AOC 与DOB 的外接圆的第二个交点为N .求证:ON MN ⊥.证明:以O 为反演中心作反演变换2(,)I O r ,其中,r 为半圆的半径,则半圆上的每一点都不变,()AOC 与()DOB 的反形分别为直线AC 、BD .且设M 、N 的反点分别为'M 、'N ,则'N 为直线AC 与BD 的交点,'M 在直径AB 上,直线MN 的反形为''OM N 的外接圆,直线CD 的反形为CDO的外接圆.而'ON NM ON ⊥⇔是''OM N 外接圆的直径'''M N OM ⇔⊥.于是问题转化为证明'''M N OM ⊥.因为'AD BN ⊥,'BC AN ⊥,O 是AB 的中点,所以过O 、C 、D 三点的圆是'N AB的九点圆,而'M 在九点圆上,又在边AB 上(不同于O 点),故''M N AB ⊥,因此ON MN ⊥.四. 证明一些几何(不)等式O4例 4. 设六个圆都在一定圆内,每一个圆都与定圆外切,并且与相邻的两个小圆外切,若六个小圆与大圆的切点依次为1A 、2A 、3A 、4A 、5A 、6A .证明:123456234561A A A A A A A A A A A A ⋅⋅=⋅⋅证明:如图以6A 为反演中心作反演变换6(,1)I A ,则O 与6O 的反形为两条平行线,其余5个圆的反形皆是与两条平行线中一条相切的圆;且反形中第一个圆与第五个圆均与两平行线相切,而其余三圆均与相邻的两圆相切.设1A 、2A 、3A 、4A 、5A 的反点分别为'1A 、'2A 、'3A 、'4A 、'5A,则其反形中的五个圆与两平行线中的一条(即O 的反形)依次切于'1A 、'2A 、'3A 、'4A 、'5A ;再设这五个圆的半径依次为1r 、2r 、3r 、4r、5r ,则由勾股定理可得''12A A==同理''23A A =,''34A A =''45A A =15r r =,于是''''''''12342345A A A A A A A A ⋅=⋅.但''12126162A A A A A A A A =⋅,''34346364A A A A A A A A =⋅,''23236263A A A A A A A A =⋅,''45456465A A A A A A A A =⋅.所以1234234561626364626364A A A A A A A A A A A A A A A A A A A A A A ⋅⋅=⋅⋅⋅⋅⋅342345636462636465A A A A A A A A A A A A A A A A A A ⋅=⋅⋅⋅⋅故123456234561A A A A A A A A A A A A ⋅⋅=⋅⋅.练习:1. (2002土耳其数学奥林匹克)两圆外切于点A ,且内切于另一Γ于点B 、C ,另D 是小圆内公切线割Γ的弦的中点,证明:当B 、C 、D 不共线时,A 是BCD 的内切圆圆心.2. (第30届IMO 预选题)双心四边形是指既有内切圆又有外接圆的四边形.证明双心四边形的两个圆心与对角线的交点共线.3. (1997全国高中数学联赛)已知两个半径不等的圆1O 与圆2O 相交于M 、N 两点,圆1O 与圆2O 分别于圆O 内切于S 、T .求证:OM MN ⊥的充分必要条件是S 、N 、T 三点共线.'5A 4A 3A '2A '1A。

竞赛讲座 06平面几何四个重要定理

竞赛讲座 06平面几何四个重要定理

平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是。

塞瓦(Ceva)定理(塞瓦点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。

托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。

西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

例题:1.设AD是△ABC的边BC上的中线,直线CF交AD于F。

求证:。

【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。

2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。

求证:。

【分析】连结并延长AG交BC于M,则M为BC的中点。

DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。

求S△LMN。

【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。

求证:AE、BF、CG相交于一点。

【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。

求证:AC2=AB2+AB·BC。

【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。

则CD=DA=AB,AC=BD。

由托勒密定理,AC·BD=AD·BC+CD·AB。

【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7。

求证:。

(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。

求证:BC·EF=BF·CE+BE·CF。

高中数学竞赛平面几何讲座(非常详细)之欧阳语创编

高中数学竞赛平面几何讲座(非常详细)之欧阳语创编

第一讲注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况.1、为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1、设P、Q为线段BC上两点,且BP=CQ,A 为BC外一动点(如图1).当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论.答:当点A运动到使∠BAP=∠CAQ时,△ABC 为等腰三角形.ADB P Q C图1证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA.在△DBP=∠AQC 中,显然∠DBP=∠AQC,∠DPB =∠C.由BP =CQ,可知△DBP≌△AQC.有DP =AC,∠BDP=∠QAC.于是,DA∥BP,∠BAP=∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC.这里,通过作平行线,将∠QAC“平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.例2、如图2,四边形ABCD 为平行四边形,∠BAF=∠BCE.求证:∠EBA=∠ADE.证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE.由ABCD,易知△PBA≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE=∠BPE,∠APE=∠ADE.由∠BAF=∠BCE,可知∠BAF=∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA=∠APE.所以,∠EBA=∠ADE. ∥=P E D G A B F C图2这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙.2、欲“送”线段到当处利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ.证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG∥EC.由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ.这里,通过添加平行线,将PQ“掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷. 3 、为了线段比的转化A N EB Q K GCD M F P 图3由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.例4设M1、M2是△ABC 的BC 边上的点,且BM1=CM2.任作一直线分别交AB 、AC 、AM1、AM2于P 、Q 、N1、N2.试证:AP AB +AQ AC =11AN AM +22AN AM . 证明:如图4,若PQ∥BC,易证结论成立. 若PQ 与BC 不平行,设PQ 交直线BC 于D.过点A 作PQ 的平行线交直线BC 于E.由BM1=CM2,可知BE +CE =M1E +M2E, 易知 AP AB =DE BE ,AQ AC =DE CE ,11AN AM =DE E M 1,22AN AM =DEE M 2. 则APAB +AQ AC =DE CE BE +=DE E M E M 21+=11AN AM +22AN AM . 所以,AP AB +AQ AC =11AN AM +22AN AM . 这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE,于是问题迎刃而解.A P EDM 2M 1B Q N 1N 2图4例5、AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E,CK 交AB 于F.求证:∠FDA=∠EDA. 证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M.显然,AN BD =KA KD =AMDC .有BD·AM=DC·AN. (1) 由BD AP =FB AF =BCAM ,有AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有AQ =BC AN DC ·. (3) 对比(1)、(2)、(3)有AP =AQ.显然AD 为PQ 的中垂线,故AD 平分∠PDQ.所以,∠FDA=∠EDA.这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来.4、为了线段相等的传递当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.例6在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN=90°.如图5M P A Q N F B D C E K 图6A N CD E BM果BM2+CN2=DM2+DN2,求证:AD2=41(AB2+AC2).证明:如图6,过点B 作AC 的平行线交ND 延长线于E.连ME.由BD =DC,可知ED =DN.有△BED≌△CND. 于是,BE =NC.显然,MD 为EN 的中垂线.有 EM =MN.由BM2+BE2=BM2+NC2=MD2+DN2=MN2=EM2,可知△BEM 为直角三角形,∠MBE =90°.有∠ABC+∠ACB=∠ABC+∠EBC=90°.于是,∠BAC=90°.所以,AD2=221⎪⎭⎫⎝⎛BC =41(AB2+AC2).这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN,使解题找到出路.例7、如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F,使EA =DA,FB =DB.过D 作AB 的垂线,交半圆于C.求证:CD 平分EF.证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB.易知DB2=FB2=AB·HB,AD2=AE2=AG·AB.A G D O H F C E 图7二式相减,得DB2-AD2=AB·(HB-AG),或 (DB -AD)·AB=AB·(HB-AG).于是,DB -AD =HB -AG,或DB -HB =AD -AG.就是DH =GD.显然,EG∥CD∥FH.故CD 平分EF. 这里,为证明CD 平分EF,想到可先证CD 平分GH.为此添加CD 的两条平行线EG 、FH,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有BN DM =AN AM =NC ME ,即BN DM =NC ME 或ME DM =NCBN . 此式表明,DM =ME 的充要条件是BN =NC. 利用平行线的这一性质,解决某些线段相等的问题会很漂亮.例8如图9,ABCD 为四边形,两组对边延长后得交点E 、F,对角线BD∥EF,AC 的延长线交EF 于G.求证:EG =GF.证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N.由BD∥EF, 图8A D B NC E M 图9A B M E FN D C G可知MN∥BD.易知S△BEF=S△DEF.有S△BEC =S△ⅡKG-*5ⅡDFC.可得MC=CN.所以,EG=GF.例9如图10,⊙O是△ABC的边BC外的旁切圆,D、E、F分别为⊙O与BC、CA、AB的切点.若OD与EF相交于K,求证:AK平分BC.证明:如图10,过点K作BC的行平线分别交直线AB、AC于Q、P两点,连OP、OQ、OE、OF.由OD⊥BC,可知OK⊥PQ.由OF⊥AB,可知O、K、F、Q四点共圆,有∠FOQ=∠FKQ.由OE⊥AC,可知O、K、P、E四点共圆.有∠EOP=∠EKP.显然,∠FKQ=∠EKP,可知∠FOQ=∠EOP.由OF =OE,可知Rt△OFQ≌Rt△OEP.则OQ=OP.于是,OK为PQ的中垂线,故 QK=KP.所以,AK平分BC.综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.O 图10练习题1. 四边形ABCD 中,AB =CD,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E,延长CD 交直线NM 于F.求证:∠BEN=∠CFN. (提示:设P 为AC 的中点,易证PM =PN.)2. 设P 为△ABC 边BC 上一点,且PC =2PB.已知∠ABC=45°,∠APC=60°.求∠ACB.(提示:过点C 作PA 的平行线交BA 延长线于点D.易证△ACD∽△PBA.答:75°)3. 六边形ABCDEF 的各角相等,FA =AB =BC,∠EBD=60°,S△EBD=60cm2.求六边形ABCDEF 的面积.(提示:设EF 、DC 分别交直线AB 于P 、Q,过点E 作DC 的平行线交AB 于点M.所求面积与EMQD 面积相等.答:120cm2)4. AD 为Rt△ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E.已知AC:AB =k.求AE:EC.(提示:过点A 作BC 的平行线交BE 延长线于点F.设BC =1,有AD =k,DC =k2.答:211k ) 5. AB 为半圆直径,C 为半圆上一点,CD⊥AB 于D,E 为DB 上一点,过D 作CE 的垂线交CB 于F.求证:DE AD =FBCF .(提示:过点F 作AB 的平行线交CE 于点H.H 为△CDF 的垂心.)6. 在△ABC 中,∠A:∠B:∠C=4:2:1,∠A、∠B、∠C 的对边分别为a 、b 、c.求证:a 1+b 1=c1.(提示:在BC 上取一点D,使AD =AB.分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F.)7. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G.求证:FH =HG.(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N.)8. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N.求证:OM =ON.(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F.过O 作BP 的垂线,G 为垂足.AB∥GF.)第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1、挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化.1.1 作出三角形的外接圆例1 如图1,在△ABC中,AB=AC,D是底边BC 上一点,E是线段AD上一点且∠BED=2∠CED =∠A.求证:BD=2CD.分析:关键是寻求∠BED=2∠CED与结论的联系.容易想到作∠BED的平分线,但因BE≠ED,故不能直接证出BD=2CD.若延长AD交△ABC的外接圆于F,则可得EB=EF,从而获取.证明:如图1,延长AD与△ABC的外接圆相交于点F,连结CF与BF,则∠BFA=∠BCA=∠ABC =∠AFC,即∠BFD=∠CFD.故BF:CF=BD:DC.又∠BE F=∠BAC,∠BFE=∠BCA,从而∠FBE=∠ABC=∠ACB=∠BFE.故EB=EF. 作∠BEF的平分线交BF于G,则BG=GF.因∠GEF=21∠BEF=∠CEF,∠GFE=∠CFE,故△FEG≌△FEC.从而GF=FC.ABGCDFE图1于是,BF=2CF.故BD=2CD.1.2 利用四点共圆例2 凸四边形ABCD中,∠ABC=60°,∠BAD=∠BCD=90°,AB=2,CD=1,对角线AC、BD交于点O,如图2.则sin∠AOB=____.分析:由∠BAD=∠BCD=90°可知A、B、C、D四点共圆,欲求sin∠AOB,联想到托勒密定理,只须求出BC、AD即可.解:因∠BAD=∠BCD=90°,故A、B、C、D四点共圆.延长BA、CD交于P,则∠ADP=∠ABC =60°.设AD=x,有AP=3x,DP=2x.由割线定理得(2+3x)3x=2x(1+2x).解得AD=x=23-2,BC=21BP=4-3.由托勒密定理有BD·CA=(4-3)(23-2)+2×1=103-12.又SABCD=S△ABD+S△BCD=233. 故sin∠AOB=2636 15 .AB CDPO图2例3 已知:如图3,AB =BC =CA =AD,AH⊥CD 于H,CP⊥BC,CP 交AH 于P.求证:△ABC 的面积S =43AP·BD. 分析:因S△ABC=43BC2=43AC·BC,只须证AC·BC=AP·BD, 转化为证△APC∽△BCD.这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q,则由AC =AD,AH⊥CD 得∠ACQ=∠ADQ.又AB =AD,故∠ADQ=∠ABQ.从而,∠ABQ=∠ACQ.可知A 、B 、C 、Q 四点共圆.∵∠APC=90°+∠PCH=∠BCD,∠CBQ=∠CAQ, ∴△APC∽△BCD.∴AC·BC=AP·BD.于是,S =43AC·BC=43AP·BD. 2 、构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可A 图3B P Q D HC大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决.2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB∥CD,AD=DC =DB =p,BC =q.求对角线AC 的长.分析:由“AD=DC =DB =p”可知A 、B 、C 在半径为p 的⊙D 上.利用圆的性质即可找到AC 与p 、q 的关系. 解:延长CD 交半径为p 的⊙D 于E 点,连结AE.显然A 、B 、C 在⊙D 上.∵AB∥CD,∴BC=AE.从而,BC =AE =q.在△ACE 中,∠CAE=90°,CE =2p,AE =q,故AC =22AE CE -=224q p -.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x2+2x +8与x 轴交于B 、C 两点,点D 平分BC.若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.A D CB 图4解:如图5,所给抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(-2,0)、C(4,0).分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1-22,1)、Q(1+22,1).可知,点A在不含端点的抛物线PA0Q内时,∠BAC<90°.且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.2.3 联想圆幂定理构造辅助圆例6AD是Rt△ABC斜边BC上的高,∠B的平行线交AD于M,交AC于N.求证:AB2-AN2=BM·BN.分析:因AB2-AN2=(AB+AN)(AB-AN)=BM·BN,而由题设易知AM=AN,联想割线定理,构造辅助圆即可证得结论.证明:如图6,∵∠2+∠3=∠4+∠5=90°,又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM=AN.以AM长为半径作⊙A,交AB于F,交BA的延长线于E.则AE=AF=AN.EANDBFM12345图6由割线定理有BM·BN=BF·BE=(AB +AE)(AB -AF)=(AB +AN)(AB -AN)=AB2-AN2, 即 AB2-AN2=BM·BN.例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E,延长AB 和DC 相交于E,延长AD 和BC 相交于F,EP 和FQ 分别切⊙O 于P 、Q.求证:EP2+FQ2=EF2.分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G,连结CG.因∠FDC=∠ABC=∠CGE,故F 、D 、C 、G 四点共圆.由切割线定理,有EF2=(EG +GF)·EF =EG·EF+GF·EF=EC·ED+FC·FB=EC·ED+FC·FB=EP2+FQ2, 即 EP2+FQ2=EF2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A'B 'C '的三边分别为a 、b 、c 与a '、b'、(1)(2)图8A B C A'B'C'c ab a'c'b'c ',且∠B=∠B',∠A+∠A'=180°.试证:aa '=bb '+cc '.分析:因∠B=∠B',∠A+∠A'=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明. 证明:作△ABC 的外接圆,过C 作CD∥AB 交圆于D,连结AD 和BD,如图9所示.∵∠A+∠A'=180°=∠A+∠D,∠BCD=∠B=∠B',∴∠A'=∠D,∠B'=∠BCD.∴△A'B 'C '∽△DCB. 有DC B A ''=CB C B ''=DB C A '',即 DC c '=a a '=DB b '. 故DC =''a ac ,DB =''a ab .又AB∥DC,可知BD =AC =b,BC =AD =a.从而,由托勒密定理,得AD·BC=AB·DC+AC·BD,即 a2=c·''a ac +b·''a ab .故aa '=bb '+cc '.练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A,则AC AB =DC BD .(提示:不妨设AB≥AC,作△ADC 的外接圆交AB 于E,证△ABC∽△DBE,从而AC AB =DE BD =DC BD .)A B D a b b c 图92. 已知凸五边形ABCDE 中,∠BAE=3a,BC =CD =DE,∠BCD =∠CDE=180°-2a.求证:∠BAC=∠CAD=∠DAE.(提示:由已知证明∠BCE=∠BDE=180°-3a,从而A 、B 、C 、D 、E 共圆,得∠BAC=∠CAD=∠DAE.)3. 在△ABC 中AB =BC,∠ABC=20°,在AB 边上取一点M,使BM =AC.求∠AMC 的度数.(提示:以BC 为边在△ABC 外作正△KBC,连结KM,证B 、M 、C 共圆,从而∠BCM=21∠BKM=10°,得∠AMC=30°.)4.如图10,AC 是ABCD 较长的对角线,过C 作CF⊥AF,CE⊥AE.求证:AB·AE+AD·AF=AC2. (提示:分别以BC 和CD 为直径作圆交AC 于点G 、H.则CG =AH,由割线定理可证得结论.)5. 如图11.已知⊙O1和⊙O2相交于A 、B,直线CD 过A 交⊙O1和⊙O2于C 、D,且AC =AD,EC 、ED 分别切两圆于C 、D.求证:AC2=AB·AE.F D A B E C图10图11(提示:作△BCD 的外接圆⊙O3,延长BA 交⊙O3于F,证E 在⊙O3上,得△ACE≌△ADF,从而AE =AF,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB·AC=AE2-BE2.(提示:以BE 为半径作辅助圆⊙E,交AE 及其延长线于N 、M,由△ANC∽△ABM 证AB·AC=AN·AM.)7. 若正五边形ABCDE 的边长为a,对角线长为b,试证:a b -b a =1.(提示:证b2=a2+ab,联想托勒密定理作出五边形的外接圆即可证得.)第三讲 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.
关于三角形的五心,主要掌握三个方面的问题: 一.这五心是怎么来的 二.与五心有关的性质
三.与三角形的五心有关的几何竞赛题.
重心:三角形三条中线的交点.△ABC 的重心一般用字 母 G 表示,它有如下的性质:
(1)顶点与重心 G 的连线(中线)必平分对边.中线
内心: 三角形三条角平分线的交点叫做三角形的内心,即内切圆
圆心.△ABC 的内心一般用字母 I 表示,它具有如下性质:
(1)内心到三角形三边等距,且顶点与内心的连线平分顶角.
(2)∠A 的平分线和△ABC 的外接圆相交于点 D,则 D 与顶点 B、C、
内心 I 等距(即 D 为△BCI 的外心).
三角形中的几个特殊点:旁心、费马点,欧拉线. 几何不等式. 几何极值问题. 几何中的变换:对称、平移、旋转. 圆的幂和根轴. 面积方法,复数方法,向量方法,解析几何方法.
(一)、平面几何的几个重要的定理 1、梅涅劳斯定理及其逆定理
若一条直线截△ABC 的三条边 AB、BC、CA (或他们的延长线),所得交点分别为 P、Q、R,
ABCD AD BC ≥ AC BD , 并且当 且仅当 四边形 ABCD 内接于圆时,等号成立.
证明:四边形 ABCD 内取点 E,
使BAE CAD,ABE ACD,ABE和ACD相似
AB BE AB CD AC BE又 AB AE
AC CD
AC AD
且BAC EAD ABC和AED相似
=( 90 -∠1)+( 90 +∠2) =∠ABF+∠BAE=∠QFP+∠QEP, 又由 PK=PE=PF 知∠K=∠PFK,
∴∠EQF+∠K=∠QFK+∠QEK= 180 , 从而 E、Q、F、K 四点共圆. 由 PK=PF=PE 知,P 为△EFK 的外心,显然 PQ=PE=PF.于 是∠1+∠AQH=∠1+PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ ABF=90º .由此知 QH⊥AH,即 PQ⊥AB.
长点的距离等于它与 对边中点的距离的 2 倍.
(3)
SBGC
SCGA
SAGB
1 3
SABC .
外心:三角形外接圆的圆心(三边垂直平分线的交点).
△ABC 的外心一般用字母 O 表示,它具有如下性质:
(1)外心到三顶点等距,即 OA=OB=OC.
(2)∠A= 1 BOC,B 1 AOC,C 1 AOB .
BC ED AD BC AC ED AC AD
AB CD AD BC AC (BE ED)
AB CD AD BC ≥ AC BD
且等号当且仅当 E 在 BD 上时成立,即当且仅当四
边形 ABCD 内接于圆时,等号成立.
平面几何的几个重要的定理
3、塞瓦定理:
设 P、Q、R 分 别 是 ABC的BC、CA、AB 边 上 的 点 , 则
积与另一组对边所包 矩形的面积之和).
即:若四边形 ABCD 内接于圆,
则有 AB CD AD BC AC BD.
广义的托勒密定理
在四边形 ABCD 中,
有: ABCD AD BC ≥ AC BD ,
并且当且仅当四边形 ABCD 内接于圆时,等号成 立.
广义的托勒密定理:在四边形 ABCD 中,有:
平面几何初步
一.平面几何主要知识点
平面几何是培养严密推理能力的很好数学分支,且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、向量法等许多证法,这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题.
平面几何的知识竞赛要求:三角形的边角不等关系;面积 及等积变换;三角形的心(内心、外心、垂心、重心)及其性 质; 四个重要定理;几个重要的极值:到三角形三顶点距离之 和最小的点--费马点,到三角形三顶点距离的平方和最小的点 --重心,三角形内到三边距离之积最大的点-----重心;简单的 等周问题。
几个常用基本知识
在周长一定的n边形的集合中,正n边形的面 积最大。
在周长一定的简单闭曲线的集合中,圆的面积 最大。
在面积一定的n边形的集合中,正n边形的周 长最小。
在面积一定的简单闭曲线的集合中,圆的周长 最小。
(二)、《高中数学竞赛大纲 》中平面几 何的要求
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密 定理、西姆松定理.
2
2
2
如果已知外心或通过分析“挖掘”出外心,与外心
有关的几何定理,尤其是圆周角与圆心角关系定理,就
可以大显神通了.
例题:AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q,过 E、 F 分别作半圆的切线得交点 P,求证:PQ⊥AB. 分析:延长 EP 到 K,使 PK=PE,连 KF、AE、EF、BF, 直线 PQ 交 AB 于 H.因∠EQF=∠AQB
则有 AR BP CQ 1. RB PC QA
结论反过来 也成立.
(西姆松定理及其逆定理) 例题:点 P 位于 ABC 的处接圆上, A1、B1、C1 是从点 P 向 BC、CA、AB引的垂线的垂足, 求证:点 A1、B1、C1 共线. 证:易得
BA1 BP cosPBC , CB1 CP cosPCA , CA1 CP cosPCB AB1 AP cosPAC
AC1 AP cosPAB BC1 PB cosPBA
由上面的三个式子相乘 且 PAC PBC,PAB PCB,PCA PBA 180
可得 BA1 CB1 AC1 =1 , CA1 AB1 BC1
平面几何的几个重要的定理
托勒密定理:
圆内接四边形中,两 条对角线的乘积(两对角线所包矩 形的面积)等于两组 对边乘积之和(一组对边所包矩形的面
AP、BQ、CR 三线共点的充要条件是:
BP PC
CQ QA
AR RB
1.
A
R M
Q
B
PC
平面几何的几个重要的定理
西姆松定理及其逆定理: 若从△ABC 外接圆上一点作 BC、AB、AC 的垂线,
垂足分别为 D、E、F ,则 D、E、F 三点共线. 反过来也成立.
这条直线叫西姆松线.
(二)三角形的五心
相关文档
最新文档