热电偶标准 SAE AMS 2750D(chinese)09-5-6
论AMS2750E高温测量规范对热电偶的要求
![论AMS2750E高温测量规范对热电偶的要求](https://img.taocdn.com/s3/m/b309bdff998fcc22bcd10d45.png)
中国科技期刊数据库 科研2015年21期 33论AMS2750E 高温测量规范对热电偶的要求毛海银 杨 嵩 王志雄山东南山铝业股份有限公司,山东 烟台 265713摘要:通过对国际宇航材料规范AMS2750E 温度传感器部分规定及要求的解析,重点阐述高温测量用热电偶的校验及使用,对企业顺利通过Nadcap 热处理认证具有指导意义。
关键词:AMS2750E ;热电偶 中图分类号:TK311;V261.3 文献标识码:A 文章编号:1671-5780(2015)21-0033-021 引言Nadcap 是“ National Aerospace and Defense Contractors Accreditation Program ”的英文缩写,即为“国家航空航天和国防合同方授信项目”。
它是由美国航空航天和国防工业巨头与美国国防部、SAE 等机构共同发起和发展的一个专门对航空航天工业的特殊产品和工艺进行认证的体系。
其宗旨是以通用的第三方认证解决方案代替各自对供应商进行重复的特种工艺审查认证,以有效地降低其供应商发展成本和潜在风险。
热处理作为Nadcap 认证的其中一项特种工艺,高温测量部分是热处理Nadcap 特种工艺认证项目的主要内容,目前最新的参考标准是AMS2750E 《高温测量》。
该标准涵盖了对热处理设备高温测量的要求,主要对温度传感器、仪器、热处理设备、系统精度测试、温度均匀性测试共5个模块进行了规定,并提出相关细节要求。
本文重点论述AMS2750E 对温度传感器的相关要求,为热处理企业顺利通过Nadcap 认证提供帮助。
2 热电偶分类及选择 2.1 热电偶分类热电偶品种众多,分类方法也不尽相同。
按照热电极材料来分,则有贵金属热电偶;廉金属热电偶;贵-廉金属混合式热电偶和非金属热电偶。
按照热电偶导线的绝缘/保护类型不同,可将热电偶分为易耗型热电偶和非易耗型热电偶。
到目前为止国际电工委员会(简称IEC )共推荐了8种标准化热电偶,其中J 、E 、K 、N 、T 型热电偶为廉金属热电偶,R 、B 、S 型热电偶为贵金属热电偶,各种热电偶的材质成分及使用温度详见表1。
AMS 2750D
![AMS 2750D](https://img.taocdn.com/s3/m/227762cb6137ee06eff91880.png)
解析AMS2750D_高温测量_
![解析AMS2750D_高温测量_](https://img.taocdn.com/s3/m/457ae73687c24028905fc30e.png)
热处理技术与装备 RECHUL I J ISHU YU ZHUANGBE I
Vol. 30, No. 3 Jun, 2009
·综 述 ·
解析 AMS 2750D《高温测量 》
李 克 1 ,张 莉 2
(1. 中国南方航空工业集团有限公司 ,湖南 株洲 412002; 2. 东华大学机械工程学院 ,上海 201620)
( - 200至 + 870 ℃) + 32至 + 1400 )
( 0至 + 760 ℃) - 328至 + 2282 )
( - 200至 + 1250 ℃) - 450至 + 2372 )
( - 267至 + 1300 ℃) - 328至 + 662 )
( - 200至 + 350 ℃) + 32至 + 2642 )
第 3期
李 克等 :解析 AM S 2750料成分 Table 1 Compositions of thermocoup les materials
说 明
E 镍铬合金正极线 (90%镍 , 10%铬 )和一根铜镍合金负极线 (45 %镍 , 55 %铜 )
30 gage
0. 25 mm 150 ℃ 320 ℃ 370 ℃ 760 ℃
图 1 传感器的电压与温度关系曲线 Fig. 1 Curves of sensor voltage and temperature
性能稳定 , K、N 型热电偶在 700 ℃左右仍然可用 ; 500 ℃以下时 ,任何热电偶均能使用 。低温下 , E型 电压变化速率约为 B 型的 10倍 ,所以用于低温测量 时候 ,采用 E型热电偶比较合理 ,灵敏度高且价格便 宜。
SAE AMS 2750D-2005 中文版 高温检测
![SAE AMS 2750D-2005 中文版 高温检测](https://img.taocdn.com/s3/m/5cdb70d87f1922791688e8c4.png)
航空用材料说明书测高温1. SCOPE:1.1该规范涵盖热处理过程中的热处理设备。
他包括温度传感器、仪器使用、热处理设备、系统精确度测试以及温度均一性测量。
因此有必要保证不同的原材料在热处理过程中选用合适的规范。
1.2除非特别要求否则该分类不适用于加热或者中间热处理过程。
1.3实验室用炉的标准详见3.6。
2.适用性文件2.1 ASTM 发行:购买可联系ASTM, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959 或。
ASTM E 207 热电元件材料与参比热电元件在相似的电动势-稳定性能下进行热电动势测试。
ASTM E 220 比较法校准热电偶ASTM E 230 标准化热电偶的标准说明书及温度-电动势表ASTM E 608 矿务绝缘,金属屏蔽贱金属热电偶。
ASTM E 1129 热电偶连接器的标准说明书ASTM MNL 7 数据及控制绘图分析表述ASTM MNL 12 温度测量用热电偶3.技术要求目录3.1温度传感器............................................................... . (4)3.1.1通用传感器知识...................................................... .. (4)3.1.1.1传感器适用性的认证 (4)3.1.1.2温度与电压的转换 (4)3.1.1.3热电偶校准要求.................................................................. (4)3.1.1.4热电偶使用 (4)3.1.1.5扩展导线 (4)3.1.1.6导线圈-刻度校准要求 (4)3.1.1.7导线圈-最大允许长度 ........................................................................ (5)3.1.1.8 K和E型热电偶以二级标准或SAT传感器的再利用...................................... . ..5 3.1.1.10可损耗贱金属热电偶测试“U”公式. (5)3.1.2参比标准传感器 ..................................................................................... .5 3.1.3一级标准传感器..................................................................................... . .5 3.1.4二级标准传感器 ..................................................................................... .6 3.1.5温度均一测试传感器............................................................................... . .6 3.1.6系统精确度测试传感器 ............................................................................ .6 3.1.7控制、监控以及记录传感器. (6)3.1.8载荷传感器........................................................................................... . 6 3.2使用仪器 ................................................................................................. .7 3.2.4控制、监视以及记录仪器 .. (8)3.2.5仪器的校准(参见表3) (8)3.2.6仪器的记录........................................................................................... . .9 3.2.7仪器的电子记录 .. (9)3.3热处理设备 (10)3.3.1炉子分级(参见表6和表7).......... .. (10)3.3.1.1 A型仪器......................................................................................... . .10 3.3.1.2 B型仪器 . (11)3.3.1.3 C型仪器......................................................................................... . .11 3.3.1.4 D型仪器.... .. (11)3.3.1.5 E型仪器......................................................................................... . . .12 3.3.1.6.1仪器-冷却设备............................................................................... . .12 3.3.1.6.2仪器-淬火系统................................................................................ . 12 3.4系统准确度测试(SAT’s) (12)3.4.2系统准确度测试频率(参见表6及表7) (12)3.4.3系统准确度测试失效(失败) (13)3.4.4系统准确度测试步骤............................................................................ .. 13 3.4.4.2.1常驻测试传感器......................................................................... (13)3.4.4.8可选系统准确度测试步骤................................................................... . (15)3.4.5系统准确度测试仪器(参见表1及表3) (16)3.4.6系统准确度测试之记录......................................................................... .. 15 3.5炉温均一性测试................................................................................ . (16)3.5.2多重认证操作温度区间...................................................................... . (16)3.5.5起始TUS测温 (17)第2页/共37页3.5.6 TUS测温周期 ...................................................................................... .17 3.5.7 TUS频率(参见表8及表9)................................................................... . .17 3.5.8 TUS过程中的炉参数 ............................................................................. .17 3.5.9插入TUS传感器时的炉温度..................... .. (18)3.5.10加载条件............................................................ .. (18)3.5.11气氛炉TUS测温................................................................................... ..18 3.5.12真空炉TUS测温............................................................................. .. (18)3.5.13批处理炉、盐浴炉、温度可控液态化浴炉及流态化 (18)3.5.13.1 TUS传感器数目(参见表11) (18)3.5.13.2 TUS传感器定位 (18)3.5.13.3 TUS测温数据采集 (19)3.5.13.4盐浴炉、温度可控液态化浴炉及流态化床的可选探头测试法 (19)3.5.14连续及半连续炉...................... . . . (20)3.5.14.1体积法-TUS传感器的数量及定位................... (20)3.5.14.2平面法-TUS传感器的数量............................... . (20)3.5.14.3平面法-TUS传感器的定位...................... . . . . .. (20)3.5.14.4 TUS测温数据采集 (20)3.5.15连续炉或半连续炉或蒸器炉或马沸炉的可选TUS测试法. . . . . . . . . . . . . . . . . . . . ..21 3.5.15.1探头探测法.......... . . (21)3.5.15.2性能测试 (21)3.5.16 TUS测温传感器失效............................................................. . (21)3.5.17 TUS测温通过及失效技术要求.......... . (22)3.5.18 A类或C类设备的冷热记录传感器位置变换.......... . (22)3.5.19 TUS测试失效 (23)3.5.20 TUS测温设备(参见表1及表3) (23)3.5.21 TUS 报告............................... . . . . (23)3.5.22 本说明出版前的TUS测试 (24)3.5.23辐射测试 (24)3.6 试验室用炉 (24)3.7记录 (24)4.0品质保证规定................... (25)表1 热电偶及热电偶校准...................... (25)表2 热电偶及扩展导线............................ . (26)表3 设备及设备校准 ................ (27)表4 炉子绘图记录仪解决方案............................... (28)表5 记录仪打印及绘图速率 (28)表6 炉子等级、设备型号、SAT测试间隔 (28)表7 原材料炉子等级、设备型号、SAT测试间隔 (29)表8 炉子等级、设备类型及温度均匀性间隔 (30)表9 原材料炉子分类、设备类型及温度均匀性间隔 (30)表10 允许的校准/测试间隔延展期 (31)表11 TUS传感器需要数量....... (31)8.1 注释............................................ . . . . . (32)8.2 表中专用名词释义 (32)3.1温度传感器:温度传感器必须遵守表1以及下列要求。
AMS2750D
![AMS2750D](https://img.taocdn.com/s3/m/607dc62abd64783e09122be7.png)
3.1.7 控制、报警及 记录传感 器 9 ·························································· 3.1.8 负载传感器 9 ·················································································
有特别规定,供应商应使用最新修订版本。当被引用文件已经删除和没有
后续文件时,就使用最后出版的版本。
2.1 ASTM 出版物
可通过以下方式与 ASTM 出版商联系:100 Bar r Harbor Drive, P. o.
Box C700, West Conshohocken, PA194282959 网址:www. astm. Org。
AMS 2750D
3.3 热处理设备 14 ······················································································ 3.3.1 炉子等级(见表 6 和 7) 14 ······························································ 3.3.1.1 A 型仪表 14 ··················································································· 3.3.1.2 B 型仪表 15 ··················································································· 3.3.1.3 C 型仪表 15 ··················································································· 3.3.1.4 D 型仪表 16 ··················································································· 3.3.1.5 E 型仪表 16 ··················································································· 3.3.1.6.1 制冷设备 使用的仪 表 16 ··························································· 3.3.1.6.2 淬火设备 使用的仪 表 16 ·························································· 3.4 系统精度测试(SAT’s) 16 ·································································· 3.4.2 系统精度测试 周期(见表 6 和 7) 17 ··············································· 3.4.3 系统精度测试 免测 17 ······································································ 3.4.4 系统精度测试 程序 18 ······································································ 3.4.4.2.1 固定的测 试传感器 18 ······························································ 3.4.4.8 系统精度测 试程序的 替换 21 ······················································ 3.4.5 系统精度测试使用的仪表(见表 1 和表 3) 21 ································ 3.4.6 系统精度测试 记录 21 ······································································ 3.5 炉子的温度均匀 性测量 (TUS) 22 ····················································· 3.5.2 具有多个工作 温度范围 的规定 22 ·················································· 3.5.5 初次 TUS 温度 23 ············································································· 3.5.6 定期的 TUS 温度 24 ·········································································· 3.5.7 TUS 周期(见表 8 和 9) 24 ······························································· 3.5.8 TUS 期间的炉子 参数 24 ··································································· 3.5.9 TUS 传感器插入 时的炉子 温度 24 ··················································· 3.5.10 装载的 条件 24 ················································································
AMS 2750D
![AMS 2750D](https://img.taocdn.com/s3/m/8e6a574c2e3f5727a5e96259.png)
CONTROLLED DOCUMENT – DO NOT COPYALCOA USE ONLYOnly one (1) of this document can be printed for use bythe requestor. If additional copies are needed by otherAlcoa employees, contact MQS. Transmittal to entitiesoutside of Alcoa, even to customers, isSAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of thisReport is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright 2005 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)3.1.1.4 Thermocouples and Their Usage: Thermocouples should only be used within the rangeslisted in ASTM MNL 12 Table 3.1 (Recommended Upper Temperature Limits for ProtectedThermocouples) or 3.5 (Recommended Upper Temperature Limits for ProtectedThermoelements), ASTM E 230 Table 6 (Suggested Upper Temperature Limits forProtected Thermocouples), ASTM E 608 Table 1 (Suggested Upper Temperature Limits for Sheathed Thermocouples), or other national standard and the sensor supplier. Use ofthermocouples not conforming to these recommendations shall be based upon calibrationand recalibration intervals required in Table 1 of this document.3.1.1.4.1 Thermocouple calibration intervals specified herein, whether based on time, number ofuses, or temperature are the maximums permitted. However, compliance with theseintervals does not relieve the user of the responsibility for ensuring that excessive drift hasnot occurred under the particular conditions (environment, time, and temperature) ofexposure. Users shall have supporting data such as, but not limited to, SAT, TUS, and re-calibration data and written procedures controlling the replacement of sensors includinglimits on maximum life and/or number of uses, as applicable.3.1.1.5 Extension wire in new installations (one year after the issue of this revision) shall conform toASTM E 230 or national equivalent. Extension wire shall not be spliced. Connectors, plugs,jacks and terminal strips are permitted if they are the compatible type, i.e. they havethermoelectric properties conforming to the characteristics of the correspondingthermocouple type – ASTM E 1129 may be used as a guide for round-pin connectors.Thermocouple composition and extension wire requirements are shown in Table 2.3.1.1.6 Thermocouples made from calibrated rolls may be used in lieu of individually calibratedthermocouples. Rolls up to 1000 feet (305 meters) in length may be sampled at one end;rolls over 1000 feet shall be sampled at both ends of the roll (see 3.1.1.1). Use the average correction factor calculated from both ends of the roll if the individual correction factors from each end are within acceptable limits of Table 1.3.1.1.6.1 The roll calibration method shall not be used for rolls over 1000 feet (305 meters) if thedifference between the highest and lowest calibration readings of the samplethermocouples at any calibration temperature exceeds the requirements in 3.1.1.6.2 or3.1.1.6.3, as applicable.3.1.1.6.2 1 °F (0.6 °C) for primary and secondary standard thermocouples.3.1.1.6.3 2 °F (1.1 °C) for system accuracy test, temperature uniformity test, controlling, monitoring,recording, and load thermocouples.3.1.1.6.4 For rolls not meeting 3.1.1.6.2 or 3.1.1.6.3:3.1.1.6.4.1 It is permissible to divide the roll into shorter length rolls that do meet the end to endtolerance specified in 3.1.1.6.2 or 3.1.1.6.3.3.1.1.6.4.2 It is permissible to use individual thermocouples from the roll if they are calibrated inaccordance with Table 1.3.1.1.7 The maximum amount of wire/cable in a roll at the time of calibration shall be as follows:Primary Standard Sensors ----------------------- 200 feet ( 60 meters)Other Noble Metal Sensors ---------------------- 2000 feet ( 610 meters)Base Metal Secondary Standard Sensors --- 2000 feet ( 610 meters)All Other Base Metal Sensors ------------------ 5000 feet ( 1525 meters)3.1.1.8 For reuse of Types K and E thermocouples above 500 °F (260 °C) depth of insertion shallbe equal to, or greater than, depth of insertion of any previous use.3.1.1.9 Reuse of any thermocouple is prohibited unless the insulation remains intact and wiresincluding the hot junction are not damaged. The salvage of damaged thermocouples ispermitted if the discrepant portion [including the portion exposed above 500 °F (260°C) forTypes K and E thermocouples] is trimmed off, the hot junction remade and thethermocouple recalibrated. If the salvaged thermocouple originated from a calibrated wireroll, the original roll calibration may be used in lieu of recalibration. The number of uses prior to salvage shall be included in the total number of uses of the thermocouple.3.1.1.10 Recalibration of any expendable base metal test thermocouples (SAT or TUS) is prohibited.Reuse is permitted so long as "U" in the following formula does not exceed 30. A “use” fortest thermocouples is defined as one cycle of heating and cooling the thermocouple.U = Number of uses below 1200 °F (650 °C) + 2 times number of uses between 1200 °F (650 °C) and 1800 °F (980 °C). Expendable base metal test thermocouples shall belimited to a single use above 1800 °F (980 °C).3.1.1.11 Recalibration of nonexpendable base metal Type E and K thermocouples used below500 °F (260 °C), Type J, Type N, and all noble metal thermocouples (SAT or TUS) shall bein accordance with Table 1.3.1.2 Reference standard sensors shall comply with Table 1.3.1.2.1 The reference standard sensor together with a primary standard instrument shall be used tocalibrate primary standard sensors.3.1.3 Primary standard sensors shall comply with Table 1.3.1.3.1 A primary standard sensor together with a primary standard instrument shall be used tocalibrate secondary standard sensors.3.1.4 S econdary standard sensors shall comply with Table 1.3.1.4.1 Use shall be limited to calibration of temperature uniformity, system accuracy, controlling,monitoring, recording, and load sensors.3.1.5 Temperature uniformity survey sensors shall comply with Table 1.3.1.5.1 Calibration of temperature uniformity survey sensors shall have been performed with aprimary or secondary standard instrument against a primary or secondary standard sensorin accordance with Table 1 except as specified in 3.1.5.2. See 3.1.1.8 and 3.1.1.9 for limits on reuse of thermocouples. Recalibration of Types K and E thermocouples that have beenexposed to temperatures above 500 °F (260 °C) is prohibited.3.1.5.2 Expendable base metal TUS thermocouples that are (1) used exclusively under 1200 °F(650 °C), (2) identified, and (3) preserved/protected from damage (i.e., crimping, excessivemoisture contact, corrosion, etc.) between tests or remain installed on a rack that isprotected between tests, may be reused subject only to the limitations of 3.1.1.9 and3.1.1.10. Nonexpendable base metal TUS thermocouples installed on racks and usedexclusively under 1200 °F (650 °C) shall be limited to no more than 90 uses or 3 years,whichever comes first.3.1.6 System accuracy test sensors shall comply with Table 1.3.1.6.1 Calibration of SAT sensors shall have been performed with a primary or secondary standardinstrument against a primary or secondary standard sensor in accordance with Table 1. See3.1.1.8, 3.1.1.9, and 3.1.1.10 for limits on reuse of thermocouples. Recalibration of Types Kand E thermocouples that have been exposed to temperatures above 500 °F (260 °C) isprohibited.3.1.7 Control, monitoring, and recording sensors shall comply with Table 1. Expendablethermocouples may be used, subject to the limitations of 3.1.1.9 and 3.1.1.10.3.1.7.1 Controlling, monitoring, and recording sensors shall be installed in thermal processingequipment within the work zone, or as close as possible, for controlling and/or monitoring of temperature, in conjunction with controlling and/or monitoring instruments.3.1.7.2 When a Load Sensor is used as a Control Sensor:3.1.7.3 Calibration shall have been performed before use. Recalibration of base metal loadthermocouples is prohibited (see 3.1.8.3).3.1.7.4 Expendable thermocouples, when used as a control sensor are limited to one use.3.1.7.5 Nonexpendable load thermocouples may be used to control temperature, subject to thelimitations of 3.1.8.3.1.8 Load sensors shall comply with Table 1.3.1.8.1 Load sensors, used for measurement of temperature of parts, simulated parts, or rawmaterial, shall be in contact with or buried in the load during thermal processing.3.1.8.2 Load sensors may be used as control sensors in accordance with 3.1.7.2. When a loadsensor is used as a control sensor, no control, monitoring, or recording sensor shall exceed the maximum allowed processing temperature.3.1.8.3 Recalibration of base metal load thermocouples is prohibited. Recalibration frequency ofnoble metal thermocouples shall be every six months after first use.3.1.8.4 Expendable base metal load thermocouples may be used up to 30 times when used at orbelow 1200 °F (650 °C) provided the requirements of section 3.1.1.9 are satisfied; they arelimited to one use above 1200 °F (650 °C). Nonexpendable base metal load thermocouplesmay be used as specified in 3.1.8.5.3.1.8.5 The life of nonexpendable base metal load thermocouples shall be determined by theoperating temperature(s). Records shall be maintained of the accumulated thermocoupleuse (furnace load cycle). Maximum number of uses or maximum elapsed usage time,whichever occurs first, shall be as follows:2300 °F (1260 °C) and above 1 use2200 °F (1205 °C) to 2299 °F (1260 °C) 10 uses1801 °F (980 °C) to 2199 °F (1205 °C) 30 days or 90 uses1200 °F (650 °C) to 1800 °F (980 °C) 90 days or 180 usesBelow 1200 °F (650 °C) 90 days or 270 usesWhen used in multiple ranges, the shortest frequency or usage shall apply. Replacement ofa load sensor earlier than the required SAT frequency satisfies the SAT requirement for theload sensor.Example 1:• A sensor with 9 uses at 2250 °F has only one more use allowed in the 2200-2299 °F range or any lower operating range.•No uses remain at 2300 °F or above.Example 2:• A sensor with 50 uses between 1400-1600 °F is then used at 1820 °F.•It has already exceeded the use limits for all ranges above 2199 °F.•It is now subject to the 90 use limit as it has been used in a higher temperature range.Example 3:• A sensor with 50 uses between 1400-1600 °F is then used at 1015 °F.•It has already exceeded the use limits for all ranges above 2199 °F.•It is subject to a 180 use limit as it has been used in the 1200-1800 °F temperature range.3.2 Instrumentation (See Tables 3, 4, and 5):Output of sensors shall be converted to temperature readings by instruments specified herein or instruments of equal or greater accuracy. Instruments shall be calibrated by NIST or anequivalent national standards organization, or against standards whose calibration is traceable to NIST or other recognized national equivalent(s) according to Table 3.3.2.1 Users shall review all instrument requirements in AMS 2750D as not all instruments approvedfor use in AMS 2750C will meet the requirements of this revision.3.2.2 The following requirements (3.2.2.1 and 3.2.2.2) apply to control, monitoring, or recordinginstruments purchased one year after the issue date of AMS 2750D. Control, monitoring, orrecording instruments purchased prior to one year after the publication of AMS 2750D maymeet the requirements of AMS 2750C.3.2.2.1 Temperature resolution requirements for furnace chart recorders shall be in accordance withTable 4.3.2.2.2 Process Recorder Print and Chart Speeds shall be in accordance with Table 5.3.2.3 Test instruments shall be digital and have a minimum readability of 1 °F or 1 °C.3.2.4 Controlling, Monitoring, or Recording Instruments:3.2.4.1 At least one recording and/or controlling instrument for each zone shall have a minimumreadability of 1 °F or 1 °C.3.2.4.2 Installation of controlling, monitoring or recording instruments shall conform to themanufacturer's recommendations.3.2.4.3 Offsets: If offsets are used, a documented procedure shall exist, describing when and howto perform manual and electronic offsets. The procedure shall address how to account forand reintroduce any intentional offsets. Prior to reintroducing any intentional offsets, anyinstrument calibration error found shall be taken into account. Adjustments (offsets) greaterthan those shown in Tables 6 or 7 shall not be used.3.2.4.3.1 If subsequent internal instrument adjustments or offsets are made to achieve TUSrequirements, these internal adjustments or offsets must be applied during subsequentSATs per 3.4.4.3.1. In addition, if subsequent internal instrument adjustments or offsetsare made to achieve SAT requirements, the effect on the TUS range or distribution shallbe considered as the range will shift upwards or downwards in response to the internaladjustment or offset.3.2.4.4 Controlling, monitoring and recording instruments shall receive an unmodified signal fromsensors except for analog to digital and digital to analog conversions, or a digitally-processed, error-checked equivalent representation of a direct measured value.3.2.5 Instrument Calibration:3.2.5.1 Calibration shall be performed on the instrument(s) listed in the Instrument Type column ofTable 3. Regardless of the calibration procedure used, it shall comply with the requirements of Table 3.3.2.5.2 Calibration accuracy and frequency requirements shall be in accordance with Table 3.3.2.5.3 Calibration shall be performed to the manufacturer’s instructions.3.2.5.3.1 Calibration of controlling, monitoring or recording instruments shall be performed to themanufacturer’s instructions or, if the manufacturer’s instructions are not used, a minimumof three simulated sensor inputs shall be used at the minimum, midpoint and maximum ofthe furnace Qualified Operating Temperature Range.3.2.5.3.2 Calibration of furnace controlling, monitoring or recording instrument(s) may be performedwith a load in process (for a single temperature range) if the furnace temperature remainswithin the processing tolerance and the furnace temperature record is appropriatelyannotated to indicate that a calibration occurred, including time and date.3.2.5.3.3 Calibration shall be performed on each channel in use that can be altered or adjusted, orgroup of channels that can be altered or adjusted.3.2.5.4 Chart recorder (circular and strip) speed(s) shall be verified annually and shall be accuratewithin ± 3 minutes per hour.3.2.5.5 Sensitivity shall be checked during calibration. See Table 3 footnote4.3.2.6 Instrumentation Records:3.2.6.1 A sticker affixed to the instrument shall indicate the most recent successful calibration. As aminimum, the sticker shall include:•Date the calibration was performed•Due date of the next calibration•Technician who performed the calibration•Any limitations or restrictions of the calibration shall be indicated on the sticker.3.2.6.2 The results of calibration shall be documented. At a minimum the report shall include:•Instrument number or furnace number•Make and model of instrument calibrated•Standard used during calibration•Method of calibration (manufacturer’s instructions, three point)•Required accuracy•As found and as left data at each calibration point•Offset as found and as left (as required)•Any intentional offset as left•Sensitivity (as required by Table 3, Note 4)•Statement of acceptance or rejection•Any limitations or restrictions of the calibration shall be included•Date the calibration was performed•Due date of the next calibration•Technician who performed the calibration•Calibration company (if not performed in-house)3.3.1.1 Instrumentation Type A:3.3.1.1.1 Each control zone shall have at least one control sensor connected to a control instrumentthat displays and controls temperature.3.3.1.1.2 The temperature indicated by the control sensor in each control zone shall be recorded bya recording instrument.3.3.1.1.3 At least two additional recording sensors in each control zone shall be located to bestrepresent the coldest and hottest temperatures based on the results from the most recenttemperature uniformity survey. It is recognized that certain furnace designs/loadingconfigurations can prevent the location of these sensors in the precise coldest and hottestlocations, but these sensors shall be located as close as practical.3.3.1.1.3.1 These recording locations may change over time. See 3.5.18 for relocationrequirements.3.3.1.1.4 At least one recording load sensor shall be located in each control zone.3.3.1.1.5 Each control zone shall have over-temperature protection. The sensor representing thehottest location per 3.3.1.1.3 may also be utilized as the over-temperature protectionsensor.3.3.1.2 Instrumentation Type B:3.3.1.2.1 Each control zone shall have at least one control sensor attached to a control instrumentthat displays and controls temperature.3.3.1.2.2 The temperature indicated by the control sensor in each control zone shall be recorded bya recording instrument.3.3.1.2.3 At least one recording load sensor shall be located in each control zone.3.3.1.2.4 Each control zone shall have over-temperature protection.3.3.1.3 Instrumentation Type C:3.3.1.3.1 Each control zone shall have at least one control sensor attached to a control instrumentthat displays and controls temperature.3.3.1.3.2 The temperature indicated by the control sensor in each control zone shall be recorded bya recording instrument.3.3.1.3.3 At least two additional recording sensors in each control zone shall be located to bestrepresent the coldest and hottest temperatures based on the results from the most recenttemperature uniformity survey. It is recognized that certain furnace designs/loadingconfigurations can prevent the location of these sensors in the precise coldest and hottestlocations, but these sensors shall be located as close as practical.3.3.1.3.3.1 These recording locations may change over time. See 3.5.18 for relocationrequirements.3.3.1.3.4 Each control zone shall have over-temperature protection. The sensor representing thehottest location per 3.3.1.3.3 may also be utilized as the over-temperature protectionsensor.3.3.1.4 Instrumentation Type D:3.3.1.4.1 Each control zone shall have at least one control sensor attached to a control instrumentthat displays and controls temperature.3.3.1.4.2 The temperature indicated by the control sensor in each control zone shall be recorded bya recording instrument.3.3.1.4.3 Each control zone shall have over-temperature protection.3.3.1.5 Instrumentation Type E:3.3.1.5.1 Each control zone shall have at least one control sensor attached to a control instrumentthat displays and controls temperature.3.3.1.6 Instrumentation - Refrigeration Equipment and Quench Systems:3.3.1.6.1 Refrigeration equipment shall have a temperature controller. This temperature controllerrequirement is not applicable to liquid nitrogen, dry ice and dry ice/liquid-cooledcontainers. All refrigeration equipment shall be equipped with a temperature recorder if itis used for a treatment where time-at-temperature is required. The above requirementsare not applicable during transportation of materials at sub-ambient temperatures.3.3.1.6.2 Quench systems used for heat treatments that include a quenchant temperaturerequirement (minimum, maximum or both) shall be equipped with a recording instrument.Existing installations at the release date of this revision do not require recordinginstruments.3.4 System Accuracy Tests (SATs):3.4.1 SATs shall be performed on the temperature control and recording systems in each controlzone of each piece of thermal processing equipment that is used for production heattreatments. The SATs shall also be performed on additional systems that qualifyinstrumentation as Types A, B, or C. See 3.3.1.1, 3.3.1.2, and 3.3.1.3.3.4.1.1 SATs shall be performed using a test instrument meeting the requirements of Table 3 and atest sensor meeting the requirements of Table 1.3.4.1.2 An SAT is not required for sensors whose only function is over-temperature control, loadsensors that are limited to a single use (one furnace load/cycle), sensors not used foracceptance as part of production heat treatment, or load sensors whose replacementfrequency is shorter than the SAT frequency. See 3.1.8.4 and 3.1.8.5.3.4.1.3 A new SAT shall be performed after any maintenance that could affect the SAT accuracy.Examples include replacement of the thermocouple and recalibration of the instrument when any adjustment has been made. Quality Assurance shall be consulted for direction onwhether specific maintenance requires a new SAT.3.4.2 SATs shall be performed upon installation and periodically thereafter in accordance with therequirements of Table 6 or 7. SAT frequency is based upon equipment class andinstrumentation type. If a preventive maintenance program (see 8.2.35) is in effect, frequency may be reduced one step (e.g., weekly to biweekly, biweekly to monthly, etc.) if allowed inTable 6 or 7 under either of the following conditions:3.4.2.1 Two sensors in each control zone are Type N, R, or S.3.4.2.2 Weekly readings show that the relationship between the control sensor and an additionalmonitoring sensor in each control zone remains within 2 °F (1 °C) of their relationship at thetime of the last Temperature Uniformity Survey.3.4.3 SAT Waiver: The requirement for an SAT is waived if all of the following (3.4.3.1 through3.4.3.6) apply:3.4.3.1 In addition to the required instrumentation of types A thru D there are always at least tworecording load sensors in each control zone, one monitoring and one controlling. In the case of Instrument type A and B, there would be one additional load sensor. Manual adjustments to the controller set point, based on observed load sensor readings provide acceptablecontrol. The controlling load sensor, in this context, does not need to be physicallyconnected to the furnace controller.3.4.3.2 Load sensors used for control shall comply with 3.1.7.2 and the monitoring load sensorsshall comply with 3.1.8.3.4.3.3 All noble metal load thermocouples in use shall be nonexpendable and shall be eitherreplaced or recalibrated quarterly.3.4.3.4 All base metal control and recording thermocouples in use shall be replaced annually.3.4.3.5 All noble metal control and recording thermocouples in use shall be replaced every twoyears.3.4.3.6 The load sensors are recalibrated or replaced anytime that observations, made andrecorded at least weekly, reveal any unexplainable difference between their readings andthe readings of other control, monitoring and recording sensors. Weekly readings must alsoshow that the relationship between the control sensor and an additional monitoring sensor in each control zone remains within 2 °F (1 °C) of their relationship at the time of the lastTemperature Uniformity Survey.3.4.4 System Accuracy Test Procedure3.4.4.1 The uncorrected temperature indication and/or recording of the sensor being tested, at anyoperating temperature, shall be compared with the corrected temperature indication of thetest sensor on a test instrument.3.4.4.2 The tip (measuring junction) of the SAT sensor shall be as close as practical to the tip(measuring junction) of the controlling, monitoring, or recording sensor, but the tip to tipdistance shall not exceed 3 inches (76 mm). Subsequent SAT tests shall utilize SATthermocouple(s) placed in the same locations/positions/depth as the initial test. The SATsensor may be inserted temporarily for the test or may be a resident test sensor, subject tothe limitations of 3.4.4.2.1.3.4.4.2.1 Resident SAT thermocouples may be employed subject to the following limitations:3.4.4.2.1.1 Resident SAT thermocouples shall be restricted to Type N, R or S at temperaturesexceeding 500 °F (260 °C) and shall be nonexpendable if exposed to temperaturesabove 1000 °F (538 °C).3.4.4.2.1.2 The resident SAT sensor type shall be different from that of the sensor being tested.Furthermore, a resident Type R sensor shall not be used to check a Type S sensor, anda resident Type S sensor shall not be used to check a Type R sensor.3.4.4.2.1.3 Resident SAT sensors shall be subject to the replacement and recalibrationrequirements of 3.1.6.3.4.4.3 The difference between the uncorrected reading of the sensor system being tested (sensor,leadwire, and instrument) and the corrected reading (after test sensor and test instrumentcorrection factors are applied) of the test sensor system shall be recorded as the systemaccuracy difference. Applicable correction factors shall be applied algebraically.3.4.4.3.1 Certain correction factors may be algebraically applied to the sensor system being testedwhen calculating the system accuracy difference, provided that these correction factorsare consistently applied during production heat treatment in accordance with documentedprocedures.Examples of correction factors that may be incorporated include:•Sensor correction factor as listed on the initial calibration report, or recalibration report (whether recalibration was performed in a laboratory or in-situ). Only the most recent sensor correction factor may be applied.•Control or recording instrument correction factor as listed on the most recent calibration report.•Intentional internal adjustment to the control or recording instrument solely to correct a skewed temperature uniformity distribution.• A previously documented and specified offset to the control instrument to correct an SAT difference, if this offset is in the form of an intentional manual offset of the control setpoint (e.g., If the desired setpoint is 1000 °F, set control instrument setpoint at 1003 °F).Correction factors that shall not be incorporated include:•Previously applied internal adjustments or offsets to the control or recording instrument to correct an SAT difference. These internal adjustments or offsets are alreadyreflected in the displayed or recorded temperature and shall not be applied twice. •Manually applied offsets to the control instrument that have been specified for production heat treatment solely to correct a skewed temperature uniformitydistribution. These manual offsets have no effect on the performance of an SAT or calculation of an SAT difference.。
ams2750d《高温测量》规范对热电偶的规定
![ams2750d《高温测量》规范对热电偶的规定](https://img.taocdn.com/s3/m/b0a47b3b3968011ca300919b.png)
温度均 匀性测 试(TUS)
பைடு நூலகம்
廉金属 或类型 B、R 和 S贵金 属
系统 精度 测 试(SAT)
廉金属 或类型 B、R 和 S贵金 属
控 制、记 录和监 控
廉金属 或类型 B、R 和 S贵金 属
负载
廉金属 或类型 B、R 和 S贵金 属
第 一次使 用前。 重新校 验:
类型B、 R和 S:6 个月 类型J 和N:3个 月 其他 廉金属 不允许
参考标 准
±0. 6℃或 ±0.1 %
二级 标准
廉金 属或类 型R和S 贵金属
第 一次使 用前。 重新校 验:
类 型R和S: 2年 廉 金属:1年
一级标 准
廉金 属: ±1. 1℃或 ±0.4 %
贵金 属: ±0. 6℃或 ±0.1 %
类型B 贵金属
第 一次使 用前。 重 新校验 :2年
±0.6 ℃或± 0.2 5%
识出用于追溯nist和其他认可的国家标准的校验6由已校准且满足表2要求的线卷制造数据源公称测试温度实际测试的温度读数的热电偶可以替代单独校验的热电偶
第 33 卷 第 2 期 201 2年6 月
哈 尔 滨 轴 承 JOURNAL OF HARBIN BEARING
Vol.33 No.2 Jun. 2 0 1 2
第 一次使 用前。 重新校 验:
类型B、 R和 S:6 个月 类型J 和N:3个 月 其他 廉金属 不允许
第 一次使 用前。
第 一次使 用前。 重新校 验:
类型B、 R和 S:6 个月 廉 金属不 允许
一级 或二级 标准 一级 或二级 标准 一级 或二级 标准 一 级或二级 标准
±2.2 ℃或± 0.7 5%
航标2750D
![航标2750D](https://img.taocdn.com/s3/m/a2b8cfc00c22590102029dbe.png)
1. 1. 范围:范围:范围:1.1 本规范适用于热处理设备高温测量中涉及的温度传感器、检测仪表、热处理设备、系统精度校验和温度均匀性检测的相关内容。
应确保零件或原材料的热处理符合现行规范的要求。
1.2 本技术规范不适用于加热或者中间热处理,除非材料或工艺规程引用了本规范。
1.3 在3.6中的实验炉适用于本规范。
2. 2. 适用文件:适用文件:适用文件:下列出版物在订货单签订日期有效的版本,在本规范规定的范围内构成了本规范的一部分。
供应商应该执行现行的版本,除非指定了规定的文件。
当参考的文件被删除并且没有可以替代的文件时,应当采用最后一次发行的版本。
2.1 ASTM 2.1 ASTM 出版物:出版物:出版物:可以从位于West Conshohocken, PA 19428-2959 100 Barr 港口C700信箱ASTM (美国材料试验协会)或 获取。
ASTM E 207 利用与相似电动势-温度特性的参考热电偶对比的结果,对单支热电偶材料进行热电动势的测试ASTM E 220 利用比较技术对热电偶进行校准ASTM E 230 标准化热电偶的标准规范和温度-电动势(EF )对照表ASTM E 608 金属皮绝缘,普通金属热电偶标准规格ASTM E 1129 热电偶连接器标准规范ASTM MNL 7 数据的表示和解析质量评估图ASTM MNL 12 温度测量中热电偶的使用3.3.技术要求技术要求技术要求目 录录章节 标题 页数3.1 温度传感器 (3)3.1.1 一般的传感器信息 (3)3.1.1.1 传感器认证规范 ..................................................................... (3)3.1.1.2 毫伏转变的读数 ..................................................................... (3)3.1.1.3 热电偶的校验要求 (3)3.1.1.4 热电偶的使用 (3)3.1.1.5 补偿导线 .............................................................................. (4)3.1.1.6 线材轧辊-校验规范 ............................................................... (4)3.1.1.7 线材轧辊-最大允许长度 ......................................................... . (4)3.1.1.8 K 或E 型测试热电偶用作二等标准或SAT 传感器时的重复使用 (4)3.1.1.10 可消耗的普通金属测试热电偶U 系数 (4)3.1.2 基准传感器 ………………………………………………………………… ..4AMS 2750D 版航空材料规范 发布日期:1980年4月 修改日期:2005年9月取代:AMS 2750C高 温 测 定 法3.1.4 二级标准传感器..................................................................... ..4 3.1.5 温度均匀性测试传感器............................................................ ..4 3.1.6 系统精确测试传感器............................................................... ..4 3.1.7 控制,监测,和记录传感器...................................................... ..5 3.1.8 负载传感器........................................................................... ..5 3.2 仪表.............................................................................. . (5)3.2.4 控制,监测或记录仪器............................................................ ..6 3.2.5 仪器校准(参看表3)............................................................... ..6 3.2.6 仪器记录.............................................................................. ..6 3.2.7 电子记录仪器. (7)3.3 热处理设备 (7)3.3.1 炉子等级(参看表6和7)......................................................... ..7 3.3.1.1 A型使用仪器..................................................................... .. (7)3.3.1.2 B型使用仪器..................................................................... .. (7)3.3.1.3 C型使用仪器..................................................................... .. (7)3.3.1.4 D型使用仪器........................................................................ .. (8)3.3.1.5 E型使用仪器 (8)3.3.1.6.1 冷却设备的仪器............................................................... .. (8)3.3.1.6.2 淬火系统的仪器............................................................... .. (8)3.4 系统精度校验(SAT’S) (8)3.4.2 系统精度校验频率(参看表6和7)............................................. ..8 3.4.3 系统精度校验免除.................................................................. ..8 3.4.4 系统精度校验程序.................................................................. ..9 3.4.4.2.1 固定测试传感器..................................................................... (9)3.4.4.8 可选择的系统精度校验程序 (10)3.4.5 系统精度校验仪表(参看表1和3) (10)3.4.6 系统精度校验记录............................................................ (10)3.5 炉温均匀性检测(TUS) (10)3.5.2 多重限定工作温度范围 ......................................................... ..10 3.5.5 初始TUS温度.. (11)3.5.6 周期TUS温度........................................................................ .11 3.5.7 TUS频率(参看表8和9) ............................................................ ..11 3.5.8 TUS中的使用炉参数............................................................... .11 3.5.9 插入TUS传感器时的炉温......................................................... .11 3.5.10 负载情况.............................................................................. (12)3.5.11 TUS的炉子环境..................................................................... .12 3.5.12 TUS下的炉子真空级别............................................................... .12 3.5.13 批量热处理炉,盐浴炉,控温液池以及流化态炉........................... (12)3.5.13.1 TUS传感器数量(参看表11)...................................................... ..12 3.5.13.2 传感器位置........................................................................... (12)3.5.13.3 TUS数据收集........................................................................... ..12 3.5.13.4 盐浴的可选择探测方法,液浴温度控制以及流化态炉 (13)3.5.14 连续和半连续炉 (13)3.5.14.1 TUS传感器位置及数量-测定体积的方法.................................... ..13 3.5.14.2 TUS传感器数量-水平方法...................................................... ..13 3.5.14.3 TUS传感器位置-水平方法......................................................... ..13 3.5.14.4 TUS数据收集........................................................................... ..13 3.5.15 连续炉、半连续炉或马弗炉、闭式炉的选择TUS方法........................ .13 3.5.15.1 探测方法.............................................................................. (14)3.5.15.2 性能测试.............................................................................. (14)3.5.17 TUS 验收/不合格情况 ……………………………………………………… .143.5.18 对于A 或C 级别仪器热或冷记录传感器的重新设置 (14)3.5.19 TUS 失效 (15)3.5.20 TUS 仪器(参看表1和3) (15)3.5.21 TUS 报告.............................................................................. (15)3.5.22 TUS 再版 (15)3.5.23 辐射测试 …………………………………………………………………… ..153.6 实验室用加热炉 …………………………………………………………… .163.7 记录 ………………………………………………………………………… .164.0 质量保证条款 ……………………………………………………………… .16表1 传感器和传感器校准 (16)表2 热电偶和补偿导线 (18)表3 使用仪器及校准 (18)表4 炉子记录图表的确定要求 (19)表5 记录器打印图表及速度 (20)表6 零件所用炉子分类、仪表类型以及SAT 校验周期 (20)表7 原材料炉所用炉子分类、仪表类型以及SAT 校验周期 (21)表8 零件所用炉子分类、仪表类型以及和TUS 校验周期 (21)表9 原材料炉所用炉子分类、仪表类型和TUS 校验周期 (22)表10 校验或试验间隔延长的容许值 …………………………………………… .22表11 TUS 传感器数量要求 (22)8.1 注释 (23)8.2 定义 (23)3.1 3.1 温度传感器温度传感器温度传感器必须满足表1及以下要求,在后面的章节中列出的用于特殊用途的除外。
SAE AMS-2750E 高温测定法(中英文对照版)介绍
![SAE AMS-2750E 高温测定法(中英文对照版)介绍](https://img.taocdn.com/s3/m/68a1ba3ea76e58fafab0037c.png)
A EROSPACEMA TERIA L SPECIFICATION 航空航天材料规范A MS2750REV. E发行1980-04修订2012-07替代 AMS2750D(R)高温测定法5 年一次的更新,复查并重审了该规范以提高其使用量,技术革新导致了使用的变化。
变化范围较大并且没有做标记。
目录1. SCOPE范围 (3)2. APPLICABLE DOCUMENTS引用文件 (3)2.1 ASTM PublicationsASTM 出版物 (3)2.2 Definitions定义 (4)3. TECHNICAL REQUIREMENTS技术要求 (12)3.1 Temperature Sensors温度传感器 (12)3.2 Instrumentation (See Tables 3, 4, and 5)仪表(见表3, 4, 和表5) (17)3.3 Thermal Processing Equipment热处理设备 (25)3.4 System Accuracy Tests (SATs)系统精度测试(SATs) (29)3.5 Furnace Temperature Uniformity Surveys (TUS)炉温均匀性测试(TUS) (36)3.6 Laboratory Furnaces实验室炉子 (52)3.7 Records记录 (52)3.8 Rounding取舍 (52)4. QUALITY ASSURANCE PROVISIONS质量保证条款 (52)4.1 Responsibility for Inspection检验职责 (52)5. PREPARATION FOR DELIVERY交货准备 (70)6. ACKNOWLEDGEMENT接收 (70)7. REJECTIONS8. NOTES注释 (70)FIGURE 1 REUSE AND RECALIBRATION OF TEST AND LOAD SENSORS (20)图1 负载传感器的再使用和重新校检 (21)FIGURE 2 FURNACE CLASS UNIFORMITY RANGES图2 不同等级炉子的炉温均匀性范围 (26)FIGURE 3 INSTRUMENTATION TYPE REQUIREMENTS图3 仪表类型要求 (27)FIGURE 4 MINIMUM SENSORS REQUIRED PER ZONE图4 每个区域最少传感器支数 (28)FIGURE 5 ALLOWABLE COMBINATIONS OF RESIDENT SAT SENSOR WITH SENSOR BEING TESTED FOR TEMPERATURES OVER 500 °F (260 °C)图5 固定的SAT传感器与在500℉(260℃)以上温度测试的传感器的允许组合 (31)FIGURE 6 SAT CALCULATION EXAMPLES图6 系统精度测试(SAT)计算的实例 (33)TABLE 1 SENSORS AND SENSOR CALIBRATION表1 传感器和传感器校检 (54)TABLE 2 THERMOCOUPLES AND EXTENSION WIRE表2 热电偶和补偿导线 (56)TABLE 3 INSTRUMENTS AND INSTRUMENT CALIBRATION表3 使用仪器及校准 (57)TABLE 4 RESOLUTION REQUIREMENTS FOR CHART RECORDERS表4 炉子记录图表的确定要求 (60)TABLE 5 PROCESS RECORDER PRINT AND CHART SPEEDS表5 记录器打印图表及速度 (61)TABLE 6 PARTS FURNACE CLASS, INSTRUMENT TYPE, AND SAT INTERVAL (62)表6 零件加热炉等级、仪表类型和SAT校验周期 (63)TABLE 7 RAW MATERIAL FURNACE CLASS, INSTRUMENT TYPE, AND SAT INTERVAL (64)表7 原材料加热炉等级、仪表类型和SAT校验周期 (65)TABLE 8 PARTS FURNACE CLASS, INSTRUMENT TYPE, AND TUS INTERVAL表8 零件加热炉等级、仪表类型和TUS校验周期 (66)TABLE 9 RAW MATERIAL FURNACE CLASS, INSTRUMENT TYPE, AND TUS INTERVAL表9 原材料加热炉等级、仪表类型和TUS校验周期 (67)TABLE 10 PERMITTED CALIBRATION/TEST INTERVAL EXTENSION表10 校验或试验间隔延长的容许值 (68)TABLE 11 NUMBER OF TUS SENSORS REQUIRED表11 TUS传感器数量要求 (69)附录A:E版与D版变更内容说明 (71)1.SCOPE范围1.1This specification covers pyrometric requirements for thermal processing equipment used for heat treatment. Itcovers temperature sensors, instrumentation, thermal processing equipment, system accuracy tests, and temperature uniformity surveys. These are necessary to ensure that parts or raw materials are heat treated in accordance with the applicable specification(s).本规范涵盖了热处理过程中用到的热处理设备的高温测量要求,包括温度传感器,仪器仪表,热处理设备,系统精度测试和温度均匀性测量。
AMS2750E中文版
![AMS2750E中文版](https://img.taocdn.com/s3/m/bc723199fad6195f302ba60c.png)
AMS 2750E高温测定法5 年一次的更新,复查并重审了该规范以提高其使用量,技术革新导致了使用的变化。
变化范围较大并且没有做标记。
目录1.范围 (3)2.引用文件 (3)2.1 ASTM 出版物 (3)2.2 定义 (3)3.技术要求 (8)3.1温度传感器 (8)3.2 仪表(见表3, 4, 和表5) (12)3.3 热处理设备: (16)3.4 系统精度测试(SA Ts) (18)3.5 炉温均匀性测试(TUS) (23)3.6 实验室炉子 (33)3.7 记录 (33)3.8 取舍 (33)4. 质量保证条款 (33)4.1 检验职责 (33)5. 交货准备 (42)6. 接收 (42)7. 拒收 (42)8. 注释 (43)图1 负载传感器的使用和重新校检 (13)图2 不同类型炉子的炉温均匀性范围 (16)图3 仪表类型要求 (17)图4 每个区域最少传感器支数 (18)图5固定的SAT传感器与在500℉ (260℃)以上温度测试的传感器的允许组合 (19)图6 系统精度测试(SA T)计算的实例 (21)表1 传感器和传感器校检 (34)表2 热电偶和补偿导线 (35)表3 使用仪器及校准 (36)表4 炉子记录图表的确定要求 (38)表5 记录器打印图表及速度 (38)表6 零件所用炉子分类、仪表类型以及SA T校验周期 (39)表7 原材料炉所用炉子分类、仪表类型以及SA T校验周期 (40)表8 零件所用炉子分类、仪表类型以及和TUS校验周期 (41)表9 原材料炉所用炉子分类、仪表类型和TUS校验周期 (41)表10 校验或试验间隔延长的容许值 (42)表11 TUS传感器数量要求 (42)附录A:E版与D版变更内容说明 (42)1.范围1.1 本规范涵盖了热处理过程中用到的热处理设备的高温测量要求,包括温度传感器,仪器仪表,热处理设备,系统精度测试和温度均匀性测量。
这些对于确保零部件或原材料的热处理符合适用规范要求是很有必要的。
基于AMS2750标准对温度仪表校准要求和校准方法的探讨
![基于AMS2750标准对温度仪表校准要求和校准方法的探讨](https://img.taocdn.com/s3/m/cbef773a54270722192e453610661ed9ac515546.png)
基于AMS2752标准对温度仪表校准要求和校准方法的探讨吴静文谷山林高伟眭程铭刘晓晗(上海飞机制造有限公司理化计量中心,上海204436)摘要:AMS2752标准《高温测量》是热处理Nabcap特种工艺认证项目的重要内容。
温度仪表作为高温测量过程中直接读取温度测试数据的设备,在AMS2752标准中有明确的校准和周期性控制要求。
本文针对这些要求,对其中最常用的热电偶信号仪表在周期性校准中校准方法的选用及注意事项进行了研究,通过理论和试验验证了使用标准测试仪表内部补偿的校准方法符合高温测量NOon认证对温度仪表的校准要求。
关键词:AMS2757;温度仪表;内部补偿;冰点法中图分类号:TH811文献标识码:A国家标准学科分类代码:427.4299DOI:17.1595/j.cakt.1774-0941.2721.5.725Disscussion of Instrumenis Requiremenis and CaUbition Methods Basing on AMS2754"Pynmeti"WU Jinewer GU Shaclix GAO Wci SUI CUocmOg LIU XiaoCacAbstrrct:The specification of AMS2752"PymmOm"is on important cocterl of Nabcap special process cortificaPoc project of heal treatoerf As a device that reaps test data directla in the process of temperature measpremerl,the Omperaturo instrument has cleoi caCPratioc anC peOoCic control repuiremerls in AMS2752.BaseP on these equOe merts,this papee studies the selection of caCPratioc methoC anC matten neePing attention of the most commocte useP thermoconple signal instrument in peOoCic caCPratioc,anC veOXes that the caCPratioc methoC using inteeal compersatioc of stanCarO test instemerl conforms to the approvol repuiremerls of Nabcap certification foe temperature instemerl thecaU theoe anC experimerl.Keywoit:AMS2752;temperature instemerl;inteeal compersatioc;ice point methoC7引言在AMS2752标准《高温测量》中,温度仪表的定义是由传感器接收电子信息,将传感器产生的电动势转换为一种可用的格式,或是将传感器的电信号值转化成可用于控制、监控和记录的温度值,以确定、维护及记录过程参数的仪器。
热处理AMS-2750D-2005-中文版
![热处理AMS-2750D-2005-中文版](https://img.taocdn.com/s3/m/d82a778383d049649b665844.png)
航空用材料说明书测高温1. SCOPE:1.1该规范涵盖热处理过程中的热处理设备。
他包括温度传感器、仪器使用、热处理设备、系统精确度测试以及温度均一性测量。
因此有必要保证不同的原材料在热处理过程中选用合适的规范。
1.2除非特别要求否则该分类不适用于加热或者中间热处理过程。
1.3实验室用炉的标准详见3.6。
2.适用性文件2.1 ASTM 发行:购买可联系ASTM, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959 或。
ASTM E 207 热电元件材料与参比热电元件在相似的电动势-稳定性能下进行热电动势测试。
ASTM E 220 比较法校准热电偶ASTM E 230 标准化热电偶的标准说明书及温度-电动势表ASTM E 608 矿务绝缘,金属屏蔽贱金属热电偶。
ASTM E 1129 热电偶连接器的标准说明书ASTM MNL 7 数据及控制绘图分析表述ASTM MNL 12 温度测量用热电偶3.技术要求目录3.1温度传感器............................................................... . (4)3.1.1通用传感器知识...................................................... .. (4)3.1.1.1传感器适用性的认证 (4)3.1.1.2温度与电压的转换 (4)3.1.1.3热电偶校准要求.................................................................. (4)3.1.1.4热电偶使用 (4)3.1.1.5扩展导线 (4)3.1.1.6导线圈-刻度校准要求 (4)3.1.1.7导线圈-最大允许长度 ........................................................................ (5)3.1.1.8 K和E型热电偶以二级标准或SAT传感器的再利用...................................... . ..5 3.1.1.10可损耗贱金属热电偶测试“U”公式. (5)3.1.2参比标准传感器 ..................................................................................... .5 3.1.3一级标准传感器..................................................................................... . .5 3.1.4二级标准传感器 ..................................................................................... .6 3.1.5温度均一测试传感器............................................................................... . .6 3.1.6系统精确度测试传感器 ............................................................................ .6 3.1.7控制、监控以及记录传感器. (6)3.1.8载荷传感器........................................................................................... . 6 3.2使用仪器 ................................................................................................. .7 3.2.4控制、监视以及记录仪器 .. (8)3.2.5仪器的校准(参见表3) (8)3.2.6仪器的记录........................................................................................... . .9 3.2.7仪器的电子记录 .. (9)3.3热处理设备 (10)3.3.1炉子分级(参见表6和表7).......... .. (10)3.3.1.1 A型仪器......................................................................................... . .10 3.3.1.2 B型仪器 . (11)3.3.1.3 C型仪器......................................................................................... . .11 3.3.1.4 D型仪器.... .. (11)3.3.1.5 E型仪器......................................................................................... . . .12 3.3.1.6.1仪器-冷却设备............................................................................... . .12 3.3.1.6.2仪器-淬火系统................................................................................ . 12 3.4系统准确度测试(SAT’s) (12)3.4.2系统准确度测试频率(参见表6及表7) (12)3.4.3系统准确度测试失效(失败) (13)3.4.4系统准确度测试步骤............................................................................ .. 13 3.4.4.2.1常驻测试传感器......................................................................... (13)3.4.4.8可选系统准确度测试步骤................................................................... . (15)3.4.5系统准确度测试仪器(参见表1及表3) (16)3.4.6系统准确度测试之记录......................................................................... .. 15 3.5炉温均一性测试................................................................................ . (16)3.5.2多重认证操作温度区间...................................................................... . (16)3.5.5起始TUS测温 (17)3.5.6 TUS测温周期 ...................................................................................... .17 3.5.7 TUS频率(参见表8及表9)................................................................... . .17 3.5.8 TUS过程中的炉参数 ............................................................................. .17 3.5.9插入TUS传感器时的炉温度..................... .. (18)3.5.10加载条件............................................................ .. (18)3.5.11气氛炉TUS测温................................................................................... ..18 3.5.12真空炉TUS测温............................................................................. .. (18)3.5.13批处理炉、盐浴炉、温度可控液态化浴炉及流态化 (18)3.5.13.1 TUS传感器数目(参见表11) (18)3.5.13.2 TUS传感器定位 (18)3.5.13.3 TUS测温数据采集 (19)3.5.13.4盐浴炉、温度可控液态化浴炉及流态化床的可选探头测试法 (19)3.5.14连续及半连续炉...................... . . . (20)3.5.14.1体积法-TUS传感器的数量及定位................... (20)3.5.14.2平面法-TUS传感器的数量............................... . (20)3.5.14.3平面法-TUS传感器的定位...................... . . . . .. (20)3.5.14.4 TUS测温数据采集 (20)3.5.15连续炉或半连续炉或蒸器炉或马沸炉的可选TUS测试法. . . . . . . . . . . . . . . . . . . . ..21 3.5.15.1探头探测法.......... . . (21)3.5.15.2性能测试 (21)3.5.16 TUS测温传感器失效............................................................. . (21)3.5.17 TUS测温通过及失效技术要求.......... . (22)3.5.18 A类或C类设备的冷热记录传感器位置变换.......... . (22)3.5.19 TUS测试失效 (23)3.5.20 TUS测温设备(参见表1及表3) (23)3.5.21 TUS 报告............................... . . . . (23)3.5.22 本说明出版前的TUS测试 (24)3.5.23辐射测试 (24)3.6 试验室用炉 (24)3.7记录 (24)4.0品质保证规定................... (25)表1 热电偶及热电偶校准...................... (25)表2 热电偶及扩展导线............................ . (26)表3 设备及设备校准 ................ (27)表4 炉子绘图记录仪解决方案............................... (28)表5 记录仪打印及绘图速率 (28)表6 炉子等级、设备型号、SAT测试间隔 (28)表7 原材料炉子等级、设备型号、SAT测试间隔 (29)表8 炉子等级、设备类型及温度均匀性间隔 (30)表9 原材料炉子分类、设备类型及温度均匀性间隔 (30)表10 允许的校准/测试间隔延展期 (31)表11 TUS传感器需要数量....... (31)8.1 注释............................................ . . . . . (32)8.2 表中专用名词释义 (32)3.1温度传感器:温度传感器必须遵守表1以及下列要求。
AMS2750D中文版
![AMS2750D中文版](https://img.taocdn.com/s3/m/dfb3708383d049649b6658ad.png)
3.4.4.8 3.4.5 3.4.6 3.5 3.5.2 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10 3.5.11 3.5.12 3.5.13
可替代的系统精度测试程序 系统精度测试仪器(也见表 1 和 3) 记录-系统精度测试 炉子温度均匀性检测(TUS) 多点鉴定操作温度范围 最初的 TUS 温度 定期的 TUS 温度 TUS 频率(也见表 8 和 9) 在 TUS 中的炉子参数 在 TUS 传感器插入时的炉子温度 装载情况 TUS 中的炉子气氛 TUS 中的炉子真空水平 批生产炉、盐浴炉、可控的温度液体浴和流体 床炉
2
3.1.6 3.1.7 3.1.8 3.2 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.1.1 3.3.1.2 3.3.1.3 3.3.1.4 3.3.1.5 3.3.1.6.1 3.3.1.6.2 3.4 3.4.2 3.4.3 3.4.4 3.4.4.2.1
系统精度测试传感器 控制、监控和记录传感器 负载传感器 仪器 控制、监控和记录仪表 仪表校验(也见表 3) 仪器记录 电子记录-仪器 热处理设备 炉子类别(也见表 6 和 7) A 类装置 B 类装置 C 类装置 D 类装置 E 类装置 装置-冰冷设备 装置-淬火系统 系统精度测试 系统精度测试频率(也见表 6 和 7) 取消系统精度测试 系统精度测试程序 长置测试传感器
3.1.2.1 应使用参考标准传感器和初级标准仪器校验初级标准传感 器。
9
3.1.3 初级标准传感器应符合表 1。 3.1.3.1 应使用初级标准传感器和初级标准仪器校验次级标准传感 器。 3.1.4 次级标准传感器用符合表 1。 3.1.4.1 仅限于对温度均匀性、系统精度、控制、监控、记录和负载 传感器的校验。 3.1.5 温度均匀性传感器应符合表 1。 3.1.5.1 除了 3.1.5.2 的规定外,温度均匀性检测传感器应用初级或次 级标准仪器和一个初级或次级标准传感器按表 1 进行校验。 对热电偶 的再次使用的限制见 3.1.1.8 和 3.1.1.9。禁止对暴露在 500℉(260℃) 以上温度的 K 型和 E 型热电偶重新校验。 3.1.5.2 那些在测试中或在测试间保留在一个架子上并被保护(1)仅 在 1200℉(650℃)以下使用, (2)被标识, (3)储存/防护以避免损 伤(例如卷曲、过度的潮气接触、腐蚀等)的一次性贱金属 TUS 电 偶,可以在 3.1.1.9 和 3.1.1.10 的限制内再次使用。装在架子上并仅在 1200℉(650℃)以下使用的非一次性贱金属 TUS 电偶,其使用不超 过 90 次或 3 年,以先到的为准。 3.1.6 系统精度测试传感器应符合表 1。 3.1.6.1 SAT 传感器应用初级或次级标准仪器和一个初级或次级标准 3.1.1.9 传感器按表 1 进行校验。 对热电偶的再次使用的限制见 3.1.1.8、 和 3.1.1.10。禁止对暴露在 500℉(260℃)以上温度的 K 型和 E 型热 电偶重新校验。
SAE_AMS_2750D-2005
![SAE_AMS_2750D-2005](https://img.taocdn.com/s3/m/9433eccec1c708a1284a446b.png)
SAE AMS 2750D1980年4月发布航天材料规范2005年9月修订代替AMS 2750C高温测量1. 范围:1.1 本规范覆盖了用于热处理的热工艺设备的高温测量要求。
它包括温度传感器、仪表、热工艺设备、系统精度测试和温度均匀性测试。
这些都是确保零件和原材料按适用的规范进行热处理所必须的。
1.2 除非被某一材料和工艺规范特别引用,否则本规范不适用于加热和中间热工艺。
1.3 本规范适用于在第3.6节中规定的范围内的实验炉。
2. 适用的文件:下列出版物在发出订单之日的有效版本将在此处所规定的范围内形成本规范的一部分。
除非指定了某个特定的文件版本,供应商应按该文件的后续版本进行工作。
当引用的文件已被废止而未规定替代文件时,则该文件的最后一版是适用的。
2.1 ASTM出版物:可从ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959或处获取。
ASTM E 207 通过与具有类似电势-温度特性的标准热电元件进行比较实现的单极热电元件材料的热电势测试ASTM E 220 通过比较法进行的热电偶校准ASTM E 230 用于标准热电偶的标准规范和温度-电势(EF)表ASTM E 608 矿物绝缘的金属铠装贱金属热电偶ASTM E 1129 热电偶连接器的标准规范ASTM MNL 7 数据显示和控制表分析ASTM MNL 12 热电偶在温度测量中的应用3. 技术要求:目录节主题页次3.1 温度传感器 (6)3.1.1 传感器的一般信息 (6)3.1.1.1 传感器合格证的要求 (7)3.1.1.2 度-毫伏的转换 (7)3.1.1.3 热电偶校准要求 (7)3.1.1.4 热电偶的用途 (7)3.1.1.5 补偿线 (7)3.1.1.6 偶丝卷-校准要求 (8)3.1.1.7 偶丝卷-最大允许长度 (8)3.1.1.8 作为二级标准或系统精度测试传感器的 (9)K型和E型热电偶的重复使用3.1.1.10 易耗型贱金属测试热电偶的“U”公式 (9)3.1.2 参考标准传感器............................... .. (9)3.1.3 一级标准传感器............................... .. (9)3.1.4 二级标准传感器............................... .. (10)3.1.5 温度均匀性测试传感器 (10)3.1.6 系统精度测试传感器 (10)3.1.7 控制、检测和记录传感器 (10)3.1.8 载荷传感器............................... .. (11)3.2 仪表............................... .. (12)3.2.4 控制、检测和记录仪表 (13)3.2.5 仪表校准(亦见表3) (14)3.2.6 仪表记录............................... .. (15)3.2.7 电子记录-仪表............................... .. (16)3.3 热工艺设备............................... .. (16)3.3.1 炉子等级............................... .. (16)3.3.1.1A型仪表............................... .. (17)3.3.1.2B型仪表............................... .. (17)3.3.1.3C型仪表............................... .. (18)3.3.1.4D型仪表............................... .. (18)3.3.1.5E型仪表............................... .. (18)3.3.1.6.1仪表-冷藏设备............................... . (19)3.3.1.6.2仪表-淬火系统............................... .. (19)3.4 系统精度测试(SAT) (19)3.4.2 系统精度测试频次(亦见表6和表7) (20)3.4.3 系统精度测试放弃............................... .. (20)3.4.4 系统精度测试程序............................... .. (21)3.4.4.2.1固定的测试传感器............................... .. (21)3.4.4.8可供选择的系统精度测试程序 (24)3.4.5 系统精度测试仪表(亦见表1和表3) (24)3.4.6 记录-系统精度测试 (24)3.5 炉温均匀性测试(TUS) (25)3.5.2 多个合格的工作温度范围 (25)3.5.5 初次温度均匀性测试的温度 (27)3.5.6 周期性温度均匀性测试的温度 (27)3.5.7 温度均匀性测试的频次(亦见表8和表9) (28)3.5.8 温度均匀性测试期间的炉子参数 (28)3.5.9温度均匀性测试传感器插入时的炉温 (28)3.5.10载荷状态............................... . (28)3.5.11温度均匀性测试期间的炉子气氛 (29)3.5.12温度均匀性测试期间的炉子真空度水平 (29)3.5.13分室炉、盐浴炉、温度受控的液体槽和流化床炉 (29)3.5.13.1温度均匀性测试传感器的数量(亦见表11) (29)3.5.13.2温度均匀性测试传感器的位置 (29)3.5.13.3温度均匀性测试的数据采集 (30)3.5.13.4对于盐浴炉、温度受控液体槽和流化床炉可选用的探测方法 (31)3.5.14连续和半连续炉............................... .. (32)3.5.14.1温度均匀性测试传感器的数量和位置-空间法 (32)3.5.14.2温度均匀性测试传感器的数量-平面法 (32)3.5.14.3温度均匀性测试传感器的位置-平面法 (33)3.5.14.4温度均匀性测试的数据采集 (33)3.5.15对于连续和半连续炉或有罐式炉膛和马弗炉膛的 (34)炉子可选用的温度均匀性测试方法3.5.15.1探测方法 (34)3.5.15.2特性测试 (34)3.5.16温度均匀性测试传感器故障 (35)3.5.17温度均匀性测试合格/不合格要求 (36)3.5.18A类或C类热或冷记录传感器的重新定位 (36)3.5.19温度均匀性测试失败 (37)3.5.20温度均匀性测试仪表(亦见表1和表3) (38)3.5.21温度均匀性测试报告 (38)3.5.22发布前温度均匀性测试 (39)3.5.23辐射测试 (39)3.6 实验炉 (40)3.7 记录 (40)4.0 质保条款 (40)表1 传感器和传感器校准 (42)表2 热电偶和补偿线 (44)表3 仪表和仪表校准 (45)表4 炉子图形记录仪的分辨率要求 (47)表5 过程记录仪打印和走纸速度 (48)表6 零件炉的等级、仪表类型和系统精度测试间隔 (49)表7 原材料炉等级、仪表类型和系统精度测试间隔 (50)表8 零件炉的等级、仪表类型和温度均匀性测试间隔 (51)表9 原材料炉等级、仪表类型和温度均匀性测试间隔 (52)表10允许的校准/测试间隔延长量 (53)表11要求的温度均匀性传感器的数量 (54)8.1 注意事项 (55)8.2 定义 (55)3.1 温度传感器:温度传感器应符合表1及以下要求。
2750d航空材料规范标准
![2750d航空材料规范标准](https://img.taocdn.com/s3/m/c621fb3502020740be1e9b3d.png)
1. SCOPE:.1.1 This specification covers pyrometric requirements for thermal processing equipment used for heat treatment. It coverstemperature sensors, instrumentation, thermal processing equipment, system accuracy tests, and temperatureuniformity surveys. These are necessary to ensure that parts or raw materia l s are heat treated in accordance with theapplicable specificatio n s).1.1 该规范包括了热处理所用设备的高温测量要求。
其中有温度传感器、测量仪器、热处理设备、系统精度检测和温度均匀性检验方法,以确保零件或原材料的热处理符合相应规范。
1.2 This specification is not applicable to heating, or to intermediate thermal processing unless specifically referencedby a material or process specification.1.2 除非材料或工艺规范专门引用,本规范不适用于加热或中间热处理。
1.3 This specification applies to laboratory furnaces to the extent specified in 3.6.2. APPLICABLE1.3 该规范适用于3.6.2中所规定的实验室炉。
2 APPLICABLE DOCUMENTS:2 适用文件The issue of the fo l lowing documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific documentissue is specified. When the referenced document has been cance l ed and no superseding document has beenspecified, the last published issue of that document shall apply.下述文件的有效版本从订货日期起构成本规范规定内容的一部分。
2750d航空材料规范标准
![2750d航空材料规范标准](https://img.taocdn.com/s3/m/ddbade7d0b4c2e3f572763f5.png)
2750d航空材料规范标准. 'T____> SAE international CroupAEROSPACEMATERIALSPECIFICATION航空材料规范•SS-VS,AMS 2750DIssued APR1980 Revised SEP 2005Superseding AMS 2750C(R)PYROMETRY高温测量1. SCOPE:.1.1 This specification covers pyrometric requirements for thermal proc essing equipment used for heat treatment. It covers temperature sensors, i nstrumentation, thermal processing equipment, system accuracy tests, and t emperature uniformity surveys. These are necessary to ensure that parts or raw materials are heat treated in accordance with the applicable specifica tions).1.1 该规范包括了热处理所用设备的高温测量要求。
其中有温度传感器、测量仪器、热处理设备、系统精度检测和温度平均性检验方法,以确保零件或原材料的热处理符合相应规范。
1.2 This specification is not applicable to heating, or to intermediate thermal processing unless specifically referenced by a material or process specification.1.2 除非材料或工艺规范专门引用,本规范不适用于加热或中间热处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空航天材料规范SAE AMS 2750D1. 范围:该规范描述了对热处理设备的温度要求。
包括温度传感器、仪器、热处理设备、系统精确度测试和温度均匀性测试。
这些对确保零件或原材料按照适用规范进行热处理,是必要的。
除非材质或过程规范特别规定,否则该规范不适用于加热或中间热处理,。
该规范适用于实验炉,参见第3.6节。
2. 适用文件:以下文件从订单发布之日起生效,并构成了该规范的一部分。
除非对使用的文件版本有专门的规定,否则供应商要使用最新版本的文件。
当参考文件取消,而且没有文件替代时,使用最新发行的那版文件。
ASTM文件可以从ASTM, 100 Barr Harbor Drive, 邮箱C700,West Conshohocken,PA19428-2959或获得。
ASTME 207,ASTM E 220,ASTM E 230,ASTM E 608,ASTM E 1129,ASTM MNL 7,ASTM MNL 12。
3. 技术要求温度传感器:温度传感器必须符合表1要求和如下要求。
一些例外情况在下文中有提到。
温度应该用此规范中规定的热电偶来测量,或用其他的精度相同或更高的热电偶或温度传感器来测。
热电偶用裸线或涂装线或MIMS线(矿物绝缘,金属铠装的)制成。
没有特殊说明的话,要求适用于所有温度传感器材料。
此规范中的“传感器”即指“温度传感器”。
从传感器首次校准或后来校准所得到的修正系数可以用来提高温度的精确度,且在此规范要求下要被使用。
校准:传感器应该有合格证明,注明校准数据的来源、理论测试温度,实际测试温度读数、校准方法和每个可追溯到NIST或其他认可的国家标准的校准温度的修正系数。
校准方法应符合ASTM E 220,ASTM E 207或其他国家标准的要求。
从毫伏到度或从度到毫伏的转化,应该遵守ASTM E 230或其他国家标准。
温度传感器必须在使用的温度范围内校准。
所有热电偶的校准点间隔不能超过250 o F(140 o C) ,不包括那些按照ASTM MNL 12或其他国家标准要求,在固定点上校准的热电偶。
K型和E型热电偶在500 o F (260 o C)温度以上使用后不允许再次校准。
对超过最高校准温度和低于最低校准温度的修正系数不允许用外插法来预测。
热电偶及其使用:热电偶只能在ASTM MNL 12 表3.1(对保护性热电偶的最高建议温度范围)或3.5(对保护性热组件的最高建议温度范围),ASTM E 230 表6(对保护性热电偶的最高建议温度范围),ASTM E 608 表1(对铠装的热电偶的最高建议温度范围)或其他国家标准规定的以及传感器供应商建议的范围内使用。
对于不符合以上温度要求的热电偶,应该按该规范中表格1所要求的校准和重新校准的温度间隔来使用。
在本规范中所规定的热电偶校准间隔,不论是按使用时间、次数,还是使用温度,都要是可允许的最大值。
虽然使用者按此规定进行定期校准,但是仍有责任确保在特殊条件下(环境、时间和温度)暴露时,不会发生过多的偏移。
使用者必须有支持性数据,如SAT,TUS,和再次校准数据以及书面程序文件,来控制探测头的更换,包括对最大寿命和/或者使用次数的限定等(适用的话)。
在新装置里的补偿导线(此版发行的第二年)应该符合ASTM E 230或等效的国家标准。
不允许接合导线。
连接器、插头、插座和接线条是允许的,前提是它们的热电性能和相应热电偶的特性能兼容。
ASTM E 1129可以用作圆柱插头的指南。
热电偶各组成部分和补偿导线的要求见表2。
用校准线卷制成的热电偶可以替代单独的校准热电偶。
线卷长度达到1000英尺的(305米),可以从一端取样;超过1000英尺的,应从两端取样(见3.1.1.1)。
如果从每端得到的单个的修正系数都在表1规定的接受范围内,就可以使用从线卷两端计算的平均修正系数。
如果样品热电偶在任何校准温度下,得到的最高和最低校准读数的差额超出了3.1.1.6.2或3.1.1.6.3中规定的要求,那么就不能对超过1000英尺的线卷使用线卷校准方法。
1 o F (0.6 o C) 针对一级标准和二级标准热电偶。
2 o F (1.1 o C) 针对系统精确度测试、温度均匀性测试、控制、监控、记录和负荷热电偶。
针对不满足3.1.1.6.2或3.1.1.6.3要求的线卷:允许将线卷分成较短的卷,而且两端误差能满足3.1.1.6.2或3.1.1.6.3中的要求。
如果热电偶是按照表1要求校准的话,就允许使用从线卷取下的单独的热电偶。
校准时,线卷里电线/电缆的最大数量规定如下:一级标准传感器---200英尺(60米)其他贵重金属传感器---2000英尺(610米)廉金属二级标准传感器---2000英尺(610米)其他廉金属传感器---5000英尺(1525米)对于K型和E型热电偶在500 o F (260 o C)以上温度下再次使用时,插入的深度应该等于或多于前一次使用时插入的深度。
除非绝缘性保持完好,并且电线包括热接点没有受到破坏,否则就不允许对任何热电偶进行再次使用。
在热接点重制以及热电偶重新校准下,就允许对破坏的热电偶(包括K型和E型热电偶在500 o F温度以上暴露的部分)进行补救修整。
如果补救的热电偶来源于校准线卷,对原始线卷的校准就可以来代替再次校准。
在补救前使用热电偶的次数应该包含在总的使用次数里。
不允许对任何一次性廉金属测试热电偶(即SAT或TUS)进行再次校准。
如果按照下面公式计算的“U”的值不超过30,就允许再次使用。
对测试热电偶使用一次是指电偶从加热到冷却的一个周期。
U= 在1200 o F(650 o C)以下使用的次数+在1200 o F(650 o C)和1800 o F(980 o C)之间使用次数的两倍。
对于一次性廉金属测试热电偶,应该限定:在1800 o F(980 o C)以上只能使用一次。
对于可回收的在500o F(260o C)温度以下使用的廉金属E型和K型热电偶,以及J,N型和其他贵金属测试热电偶(SAT或TUS)的再次校准,应该符合表1的要求。
参考标准传感器必须符合表1要求。
使用参考标准传感器和一级标准仪器来校准一级标准传感器。
一级标准传感器应符合表1要求。
使用一级标准传感器和一级标准仪器,来校准二级标准传感器。
二级标准传感器应符合表1要求。
使用仅限于对温度均匀性、系统精确性、控制、监测、记录和负荷传感器的校准。
温度均匀性测试(TUS)传感器应符合表1要求。
对温度均匀性测试传感器的校准,应该用一级或二级标准仪器对照一级或二级标准传感器按照表1的要求进行校准,不包括3.1.5.2中提到的热电偶。
对热电偶再次使用的限制,参见3.1.1.8和3.1.1.9。
对在500o F(260o C)温度以上使用的K型和E型热电偶,不允许再次校准。
对于符合以下三种情况的一次性廉金属TUS热电偶可以再次使用,而且受到3.1.1.9和3.1.1.10的限制:1)只在1200 o F(650 o C)温度下使用;2)有标识;3)在测试时受保护,防止损坏(如折弯、接触过多水分、腐蚀等)或者仍安装在测试时的防护架上。
对于装在防护架上,并只在1200 o F(650 o C)温度下使用的可回收廉金属TUS热电偶,规定只能使用90次或3年,依先达到的限制为准。
系统精确度测试(SAT)传感器应符合表1要求。
应该用一级或二级标准仪器对照一级或二级标准传感器的方式,按照表1的要求对SAT传感器进行校准。
对热电偶重复使用的限制,参见3.1.1.8,3.1.1.9和3.1.1.10。
对在500o F (260o C)温度以上使用的K型和E型热电偶,不允许再次校准。
控制、监控和记录传感器应符合表1要求。
可消耗热电偶的使用要按照3.1.1.9和3.1.1.10的要求。
与控制/监控仪器连接的控制、监控和记录传感器应安装在加热区内或尽可能接近加热区的热处理设备里,来控制和监控温度。
当负荷传感器被用作控制传感器时:在使用前要进行校准。
不允许对廉金属负荷热电偶再次校准。
(见3.1.8.3)。
作为控制传感器使用时,一次性热电偶只能使用一次。
依3.1.8的限制,可回收负荷热电偶可用于控制温度。
负荷传感器应符合表1要求用于测量零件温度、模拟零件或原材料温度的负荷传感器,在热处理时应与负荷物接触或埋在负荷物中。
按照3.1.7.2的要求,负荷传感器可以作为控制传感器来使用。
在这种情况下,控制、监控或记录感应器不应超过最大可允许的处理温度。
不允许对廉金属负荷热电偶再次校准。
对贵金属热电偶的再次校准频率应该是首次使用后每6个月校准一次。
如果3.1.1.9中的要求能满足,一次性廉金属热电偶在1200 o F(650 o C)温度以下使用时,可以用30次。
在1200 o F(650 o C)温度以上时,只能用1次。
可以按照3.1.8.5的要求使用可回收廉金属负荷热电偶。
可回收廉金属负荷热电偶的寿命应该由运作温度来决定。
热电偶累计使用记录应该保留。
最大使用次数或最大使用时间,规定如下:2300 o F(1260 o C)及其以上1次2200 o F(1205o C)至2299 o F(1260 o C) 10次1801 o F(980o C)至2199 o F(1205 o C) 30天或90次1200 o F(650o C)至1800 o F(980 o C) 90天或180次1200 o F(650o C)以下90天或270次在多个温度范围使用时,应采取最小使用次数或频率。
在要求的系统精确度测试(SAT)频率之前,更换负荷传感器以满足负荷传感器的SAT要求。
例1:•在2250 o F(1205o C)下使用9次的传感器,只允许在2200 o F-2299 o F或更低的温度下再使用一次•在2300 o F(1260o C)或以上温度时不能使用例2:•在1400-1600 o F之间使用了50次的传感器,在1820 o F 温度下使用•已经超过了在2199o F以上的温度范围所规定的使用次数•因为在较高的温度下也有使用,所以现在的限定使用次数是90次例3:•在1400-1600 o F之间使用了50次的传感器,在1015 o F 温度下使用•已经超过了在2199o F以上的温度范围所规定的使用次数•因为在1200-1800 o F温度下也有使用,所以现在的限定使用次数是180次仪器(见表格3,4和5)传感器的输出必须通过该规范中规定的仪器(或精度相同或更高的仪器)来转化成温度读数。
仪器必须经过NIST或等效国家标准组织的校准,或者通过其他可以追溯到NIST或公认的等效国家标准来校准(根据表格3)。
使用者必须对AMS 2750D里的所有仪器要求进行评审,因为在AMS 2750C里规定的仪器不一定都能满足这一版的要求。