3.3 解一元一次方程(二)去括号与去分母 第1课时PPT 2012年人教版七数上
人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)
3.3 解一元一次方程(二)
——去括号与去分母 (第3课时)
学习目标: (1)会去分母解一元一次方程. (2)归纳一元一次方程解法的一般步骤,体会解方程中
化归和程序化的思想方法. (3)通过列方程,进一步体会模型思想.
教学重点: 建立一元一次方程模型解决实际问题以及解含有分数系
数的一元一次方程,归纳解一元一次方程的基本步骤.
根据往返路程相等,列出方程,得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并同类项,得
0.5x=13.5
系数化为1,得
x 27.
答:船在静水中的平均速度为 27 km/h.
活动3:巩固练习,拓展提高
一架飞机在两城之间航行,风速为24 km/h,顺风 飞行要2小时50分,逆风飞行要3小时,求两城距离.
移项,得
3 x-7 x+7=3-2 x-6
3 x=7 x+2 x=3-6-7
合并同类项,得
-2x=-10
系数化为1,得
x=5
活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考: 1.行程问题涉及哪些量?它们之间的关系是什么?
例:一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返
回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求
船在静水中的速度.
问题中的相等
解:设船在静水中的平均速度为x km/h 关系是什么?
则顺流的速度为_(_x_+__3_)_km/h,逆流速度为_(_x_-__3_)km/h.
3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)
则下半年每月平均用电为(x-2000) kW·h.
上半年共用电为:6x kW·h;
上半年共用电为:6(x-2000) kW·h.
根据题意列出方程6x+6(x -2000)=150000
怎样解这个方
程呢?
探究新知
6x + 6 ( x-2000 ) = 150000系数化为1,得来自−6 = 84
=−
3
4
x=- .
3
例题讲解
(2)3 − 7( − 1) = 3 − 2( + 3)
解:去括号,得
− + = − −
移项,得
− + = − −
合并同类项,得
− = −
系数化为1,得
=
归纳总结
共得利息 0.36万元(不计利息税),求甲、乙两种存款各多少
万元?
解:解:设甲种存款 万元,乙种存款 万元.
根据题意,得1.5%x+2%(20-x)=0.36.
解得,x=8,所以20-8=12.
答:甲种存款8万元,乙种存款12万元.
中考链接
1.(2023·甘肃天水一模)解方程−2 2 + 1 = , ,以下去括号正
D. 2 6 3x 2
3.若 x 3 是一元一次方程2( + ) = 5(k 为实数)的解,则 k 的值是(
A.
1
2
1
B. 2
C.
11
2
D.
11
2
D)
分层作业
【基础达标作业】
4.去掉方程3( − 1) − 2( + 5) = 6中的括号,结果正确的是( B )
人教版数学七年级上册解一元二次方程(二)去括号与去分母课件
解:设目的地距学校 x km,则骑自行车所用
时间为
x 9
h,乘汽车所用时间为
x 45
h.
由题意得 解得
x - x = 40 . 9 45 60
x=7.5
答:目的地距学校7.5 km.
一通讯员骑自行车把信送往某地.如果每小时 行15 km,就比预定时间少用24分钟;如果每小 时行12 km,就比预定时间多用15分钟,那么预 定时间是多少小时?他去某地的路程是多少km?
2.为了使每天的产品刚好配套,应使生产的螺母恰好是螺 钉数量的________.
【变式思考 1】 某车间有 28 名工人,生产一种螺母和螺栓,每
人每天平均能够生产螺栓 12 个或螺母 18 个,第一天 安排 14 名工人生产螺栓、14 名工人生产螺母,问第 二天应安排多少工人生产螺栓、多少工人生产螺母, 才能使当天生产的螺栓和螺母与第一天生产的刚好 配套?(已知每个螺栓要配两个螺母)
合并同类项,得
10x=4 200
系数化为1,得
x=420.
答:A,B两地间的路程是420 km.
问题2 回顾本题列方程的过程,计算行程问题时 常用的数量关系是什么?
路程=速度×时间
某中学组织团员到校外参加义务植树活动,一 部分团员骑自行车先走,速度为 9 km/h,40分钟后 其余团员乘汽车出发,速度为 45 km/h,结果他们 同时到达目的地,则目的地距学校多少km?
【变式思考 2】 某车间有 27 名工人,生产一种螺母和螺栓,每人
每天平均能够生产螺栓 12 个或螺母 18 个,问应安排多 少工人生产螺栓、多少工人生产螺母,才能使当天生产 的螺栓和螺母刚好配套?(已知每个螺栓要配两个螺 母)
【变式思考 3】 某车间有 27 名工人,生产一种螺母和螺栓,每人每天平
人教版解一元一次方程去括号与去分母第一课时
去括号得: 6x+6x-12000=150000 移项得: 6x+6x=150000+12000
方程中有括 号怎么解呀?
合并同类项得: 12x=162000
系数化为1得: x=13500 答:这个工厂去年上半年每月平均用电13500度。
去括号法则:
⑴括号前是“+”号,把括号和它前面的“+” 号去掉,括号里各项都不变符号。 ⑵括号前是“-”号,把括号和它前面的“-” 号去掉,括号里各项都改变符号。
x 150000 6x 2000 6
⑵如果设上半年用电x万度,则可列方程:
x-(15-x)=6×0.2
解一元一次方程的步骤: 去括号 移项
合并同类项
系数化为1
例1
解方程 3x-7(x-1)=3-2(x+3)
解:去括号得: 3x-7x+7=3-2x-6
移项得: 3x-7x+2x=3-6-7
合并同类项得: -2x = -10
作业布置
P98第2、4、5题
谢谢
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
想一想
某工厂加强万度,这个工厂去年上半年每 月平均用电多少度?
你还有其它方法列方程吗?
分析
从不同的角度去列方程。 ⑴设上半年每月平均用电x度,如“从下半年与 上半年相比,月平均用电量减少2000度。” 可 列方程:
解: 3x-2(3x-3-2x-4)=54-3x
去括号得: 3x-6x+6+4x+8=54-3x 移项得: 3x-6x+4x+3x=54-6-8 合并同类项得: 4x=40 系数化为1得: x=10
课堂小结
《 3.3 解一元一次方程(二)——去括号与去分母》学历案-初中数学人教版12七年级上册
《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)一、学习主题本节课的学习主题是“解一元一次方程的进一步学习”,具体聚焦于“去括号与去分母”这一关键知识点。
通过本课的学习,学生将掌握去括号和去分母的方法,为后续学习一元一次方程的解法打下坚实的基础。
二、学习目标1. 掌握去括号的法则和技巧,能够在解一元一次方程的过程中正确运用。
2. 理解去分母的意义和作用,掌握去分母的方法,并能在实际问题中应用。
3. 通过练习,提高学生的计算能力和问题解决能力,培养学生的数学思维和逻辑推理能力。
三、评价任务1. 能否正确理解和掌握去括号的法则和技巧,能否在解一元一次方程的过程中正确运用。
2. 能否理解去分母的意义和作用,能否掌握去分母的方法,并能在实际问题中应用。
3. 通过课堂练习和课后作业,评价学生的计算能力和问题解决能力是否有所提高。
四、学习过程1. 导入新课:通过回顾一元一次方程的基本形式和解法,引出本节课的学习内容——去括号与去分母。
2. 学习新知:首先,讲解去括号的法则和技巧,通过例题演示让学生理解并掌握。
其次,讲解去分母的方法和意义,同样通过例题演示让学生理解并掌握。
3. 课堂练习:提供一系列练习题,让学生运用所学知识进行练习,加深对知识的理解和掌握。
4. 课堂讨论:组织学生进行课堂讨论,分享解题经验和技巧,提高学生的交流和合作能力。
5. 归纳总结:对本节课的学习内容进行归纳总结,强调重点和难点,加深学生的印象。
五、检测与作业1. 课堂检测:通过小测验或课堂练习,检测学生对本节课所学知识的掌握情况。
2. 课后作业:布置相关练习题,让学生在家中进行巩固练习,提高计算能力和问题解决能力。
六、学后反思1. 学生应反思自己在课堂上的表现,包括听讲、练习、讨论等方面,找出自己的不足之处。
2. 学生应思考如何更好地掌握去括号与去分母的方法和技巧,提高自己的计算能力和问题解决能力。
人教版七年级上数学:3.3 解一元一次方程(二) ——去括号与去分母
锦囊妙计
航行或飞行问题的解题方法 (1)抓住水流速度(风速)、静水航行速度(无 风飞行速度)、顺水 航行速度(顺风飞行速度)、 逆水航行速度(逆风飞行速度)的关系, 确 定船航 行速度(飞机飞行速度), 即: 顺水(顺风)速度=静水(无风)速度+水流速 度(风速); 逆水(逆风)速度=静水(无风)速度-水流速 度(风速). (2)结合题意, 灵活应用路程、时间、速度 之间的关系, 建立方 程求解.
求a的值, 并正确地求 出方程的解.
分析 根据“由此求得的解为x=4”, 可知x=4 是方程2(2x-1)+1=5(x+a)的 解.
解 因为去分母时, 左边的1没有乘10, 所以小明去分母后的方程是2(2x-1)+1= 5(x+a). 把x=4代入, 可求得a=1. 所以原方程为 去分母, 得2(2x-1)+10=5(x-1). 去括号, 得4x-2+10=5x-5. 移项、合并同类项, 得-x=-13. 系数化为1, 得x=13.
例题2 解方程:
解 去分母, 得2(x-2)-(2x-3)=6+3(x-1). 去括号, 得2x-4-2x+3=6+3x-3. 移项, 得2x-3x-2x=6+4-3-3. 合并同类项, 得-3x=4. 系数化为1, 得x=
锦囊妙计
去分母解一元一次方程的方法 (1)在方程的两边都乘各分母的最小公倍数, 不要漏乘不 含分母的项; (2)若分子是多项式, 去分母后要把分子用括 号括起来.
锦囊妙计
行程问题中常用的相等关系 (1)相遇问题: 甲的行程+乙的行程=A, B两地间的路程.
(2)追及问题: 同地不同时出发, 前者行程=追及者的行 程; 同时不同地出发, 前者行程+初始相距的路 程=追及者的行程.
人教版数学七年级上册3.3 解一元一次方程(二)——去括号与去分母课件
推进新课 知识点1 去括号
某工厂加强节能措施,去年下半年与 上半年相比,月平均用电量减少2 000 kW·h (千瓦·时),全年用电15 万 kW·h.这个工厂去 年上半年每月平均用电是多少? 温馨提示: 1 kW·h的电量是指1 kW的电器1 h的用电量. 月平均用电量×n(月数)=n个月用电量
4
解:去分母(方程两边乘4),得
2(x + 1) – 4 = 8 +(2 – x).
去括号,得 2x + 2 – 4 = 8 + 2 – x.
移项,得 2x + x = 8 + 2 – 2 + 4 .
合并同类项,得 3x = 12.
系数化为1,得 x = 4.
(2)3x x- 1=3- 2x-1
2
4
5
解:去分母(方程两边乘20),得
【课本P98 练习】
10(3x + 2)– 20 = 5(2x – 1)– 4(2x + 1)
去括号,得 30x +20 – 20 = 10x –5 – 8x – 4
移项,得 30x – 10x + 8x = – 5 – 4 – 20+20
合并同类项,得 28x = – 9
4
2
3
解:去分母(方程两边乘12),得
【课本P98 练习】
3(5x – 1) = 6(3x + 1)– 4(2 – x)
去括号,得 15x – 3 = 18x + 6– 8 + 4x
移项,得 15x – 18x – 4x = 6 – 8 + 3
七年级数学上册一元一次方程3.3解一元一次方程(二)—去括号与去分母课件(新版)新人教版
易错点二 去分母时漏乘不含分母的项 例2 解方程:
2 x 1 3x 1 - =1. 3 6
错解 去分母,得2(2x-1)-(3x+1)=1, 去括号,得4x-2-3x-1=1, 移项,得4x-3x=1+2+1, 合并同类项,得x=4. 正解 去分母,得2(2x-1)-(3x+1)=6, 去括号,得4x-2-3x-1=6, 移项,得4x-3x=6+2+1, 合并同类项,得x=9. 错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不 含分母的项.
9 系数化为1,得x=- . 7
点拨 解决本题的关键是抓住“相等”“互为相反数”两个关键性词 语,进而正确地列出方程.
题型二 利用两个一元一次方程的解相同求某个字母的值 例2 如果方程 -8=- 的解与方程4x-(3a+1)=6x+2a-1的解相同, 求式子a- 的值. 分析 先求出第一个方程的解,然后将求出的解代入第二个方程即可求 出a的值,从而求得a- 的值.
1 2
5 8
合并同类项,得-7x=-77.系数化为1,得x=11.
5 5 8 4 5 5 3 移项,得y+y+ y=1+ - . 8 4 2 21 3 2 合并同类项,得 y= .系数化为1,得y= . 8 4 7
(2)去括号,得y+ =1-y- y+ .
3 2
温馨提示 运用分配律去括号时,不要漏乘括号内任何一项.
易错点一 去括号时漏乘项或出现符号错误
例1 解方程:4x-3(2-x)=5x-2(9+x). 错解 错解一:去括号,得4x-6+x=5x-18-x,
移项、合并同类项,得x=-12.
人教版解一元一次方程——去括号与去分母
也就是:顺航速度_×__顺航时间=逆航速度_×__逆航时间
解:设船在静水中的平均速度是x千米/时,则船在顺水 中的速度是_(_x_+_3_)_千米/时,船在逆水中的速度是 _(_x_-_3_)__千米/时. 根据往返路程相等,列得
2(x+3)=2.5(x-3) 解得x=27 答:船在静水中的平均速度为27千米/时.
★ 我们在方程6x-7=4x-1上加上一个括号得 6x-7=4(x-1)会解吗?
★ 在前面再加上一个负号得6x-7=-4(x-1) 会解吗?
例1 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
分析:若设上半年每月平均用电x度,
某轮船从A码头到B码头顺水航行3小时,返航时用4.5小时,已知轮船在静水 中的速度为4千米/小时,求水流速度为多少?
顺流航行的路程=逆流航行的路程
解:设水流速度为x千米/时,则顺流速度为 (__x_+_4_)_千米/时,逆流速度为(__4_-_x_)__千米/时,
由题意得: 3(x+4)=4.5(4-x) 解得,x=0.8.
15x-3-6x-4 =6x-6+2.
移项,得
15x-6x-6x=-6+2+3+4.
合并同类项,得
3x=3.
系数化为1,得
x=1.
注:方程中有带括号的式子时,去括号是常用的化简步骤.
2.下列变形对吗?若不对,请说明理由,并改正.
1
解方程 3 2(0.2x 1) x
5
去括号,得 3 0.4x 2 0.2x
初中数学教学课件:3.3 解一元一次方程(二)——去括号与去分母 第1课时(人教版七年级上)
x=2 3
11
(2) 6( 1 x - 4) + 2x = 7-( 1 x - 1)
2
3
x=6
2.(黄冈中考)通信市场竞争日益激烈,某通信公司的手 机市话费标准按原标准每分钟降低a元后,再次下调了20%, 现在收费标准是每分钟b元,则原收费标准每分钟是___元.
【解析】设原收费标准每分钟是x元,根据题意得,
顺流航行的路程=逆流航行的路程
解:设水流速度为x千米/时,则顺流速度为 (__x_+_4_)_千米/时,逆流速度为(__4_-_x_)__千米/时, 由题意得: 3(x+4)=4.5(4-x)
解之得,x=0.8. 答:水流速度为0.8千米/时.
1.计算(1) 4x + 3(2x-3) = 12- (x-2)
(x-a)(1-20%)=b,解得x=
5
答案: b+a 5
4
4
b+a,
3.(湛江中考)学校组织一次有关世博的知识竞赛共有20 道题,每一题答对得5分,答错或不答都倒扣1分,小明最 终得76分,那么他答对___________题.
【解析】设他答对了x道题,由题意得 5x-(20-x)=76,
解得 x=16. 答案:16
3.3 解一元一次方程(二) ——去括号与去分母
第1课时
1.掌握去括号解决含括号的一元一次方程. 2.通过分析行程问题中顺流速度、逆流速度、水流速度、 静水中的速度的关系,进一步经历运用方程解决实际问 题的过程,体会方程模型的作用. 3.关注学生在建立方程和解方程过程中的表现,发展学 生积极思考的学习态度以及合作交流的意识.
解一元一次方程 的步骤有:
去括号 移项 合并同类项 系数化为1
七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件
移项,得4x-3x=6+2+1,
合并同类项,得x=9.
错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不
含分母的项.
2021/12/11
第二十二页,共九十五页。
知识点一 解一元一次方程——去括号(kuòhào)
1.将方程-3(2x-1)+2(1-x)=2去括号,得 ( ) A.-3x+3-1-x=2 B.-6x-3+2-x=2 C.-6x+3+1-2x=2 D.-6x+3+2-2x=2
≠0,a,b为常数)
等式的 性质2
(1)系数相加; (2)字母及其指数不变
(1)除数不为0;(2)不要把分子、分 母颠倒
化分母中的小数为整数不同于去分母,不是将方程两边同时乘同一个数,而是将分子、分母同时乘同一个 数
第六页,共九十五页。
例3 解方程:(1)4-3(10-y)=5y;
(2) 2 x =1 2-1x . 1
点拨 这是一道典型的追及问题,做题时要注意挖掘题中的隐含条件: 小明用的时间比小亮用的时间多0.5 h.
2021/12/11
第二十页,共九十五页。
易错点一 去括号时漏乘项或出现符号(fúhào)错误
例1 解方程:4x-3(2-x)=5x-2(9+x).
错解 错解一:去括号,得4x-6+x=5x-18-x, 移项、合并同类项,得x=-12. 错解二:去括号,得4x-6-3x=5x-18+2x, 移项、合并同类项,得-6x=-12, 系数化为1,得x=2. 正解 去括号,得4x-6+3x=5x-18-2x, 移项、合并同类项,得4x=-12,系数化为1,得x=-3. 错因分析 错解一中运用分配律时,括号前的系数只乘了第一项,漏乘 了第二项;错解二中出现了符号错误.本题括号前面是“-”,去括号时, 2只021改/12/变11 了第一项的符号,而忽视了第二改十一页变,共九括十五号页。 内其他项的符号.
人教版初一上册数学3.3 解一元一次方程(二)——去括号与去分母课件
方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标 准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪 个阶段,然后列方程求解即可.
巩固练习 4.某中学计划给结成帮扶对子的农村希望小学捐赠40台电 扇(分吊扇和台扇两种).经了解,某商店每台台扇的价格 比每台吊扇的价格多80元,用1240元恰好可以买到3台台 扇和2台吊扇.每台台扇和每台吊扇的价格分别为多少元?
4. (5a-3b)-3(2a-4b)=_-_a_+_9_b__.
5.当x为何值时,式子3(x-2)和4(x+3)-4相等.
解:根据题意,得 3(x-2)=4(x+3)-4.
去括号,得
3x-6=4x+12-4.
移项,得
3x-4x=12-4+6.
合并同类项,得 -x=14.
系数化为1,
x=-14.
答:当x=-14时,式子3(x-2)和4(x+3)-4相等.
去括号,得 2x + 6 = 2.5x-7.5.
移项及合并同类项,得 0.5x = 13.5.
系数化为1,得
x = 27.
答:船在静水中的平均速度为 27 km/h.
巩固练习 3.一架飞机在两城之间航行,风速为24 km/h,顺风飞 行要2小时50分,逆风飞行要3小时,求两城距离.
人教版七年级数学上册解一元一次方程(二)—去括号与去分母第1课时教学课件
3、去括号时,不要漏乘括号内的常数项,同时注意符号
创设情境
探究新知
应用新知
巩固新知
做一做
列方程解题的步骤:
解:设去年上半年平均每月用电 kW∙h.
6 + 6( − 2000) = 150000.
(1)找出题目中涉及的量,
去括号,得 6 + 6 − 12000 = 150000.
解:(1) 去括号,得
2 + 6 = 5.
移项,得
2 − 5 = −6.
合并同类项,得
−3 = −6.
系数化为1,得
配套人教版
3.2 解一元一次方程(二)
第1课时
学习目标
去
括
号
1.
理解去括号法则,并能灵活应用于方程的求解过程;
2.
掌握去括号的方法,能够准确求解方程,进一步体会化归思想;
3.
进一步利用列方程的方法解决实际问题,体会建立数学模型的思想;
4.
通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程
课堂小结
1
下半年月均用电量: 150000 − 6
6
第二步:根据“下半年月均用电量=上半年月均用电量−2000”可列方程
布置作业
1
150000 − 6 = − 2000
6
创设情境
探究新知
探究
设未知数
(1) 设上半年月平均用电量是x kW·h
应用新知
巩固新知
课堂小结
(2) 设下半年月平均用电量是x kW·h
−6 = 8.
4
=− .
3
1、去括号时,括号外是负号时,注意变号;
人教版七年级上册数学精品教学课件 第3章 一元一次方程 第1课时 利用去括号解一元一次方程
解:-2x-10 = 3x-15-6, -2x-3x =-15-6+10, -5x =-11,
x 11. 5
二 去括号解方程的应用
例2 一艘船从甲码头到乙码头顺流而行,用了 2 h; 从乙码头返回甲码头逆流而行,用了 2.5 h. 已知水 流的速度是 3 km/h,求船在静水中的平均速度.
分析:这艘船往返的路程相等,即等量关系为: 顺流速度_×__顺流时间_=__逆流速度_×__逆流时间
解:设壶中原有 x 斗酒, 依题意,得
2 [2(2x-1)-1]-1 = 0.
解得 x = 0.875. 答:壶中原有 0.875 斗酒.
课堂小结
1. 解一元一次方程的步骤:去括号→移项→合并 同类项→系数化为 1.
2. 若括号外的因数是负数,去括号时,原括号内 各项的符号要改变.
解:设他这个月用电 x 度,根据题意,得 0.50×100 + 0.65×(200 - 100) + 0.75(x - 200) = 310, 解得 x = 460.
答:他这个月用电 460 度.
方法总结:对于此类阶梯收费的题目,需要弄清楚各 阶段的收费标准,以及各节点的费用,然后根据缴纳 费用的金额,判断其处于哪个阶段,再列方程求解即 可.
6
解得 x = 840.
则 3×(840-24) = 2448.
答:两城之间的距离为 2448 km.
例3 为鼓励居民节约用电,某地对居民用户用电收费 标准作如下规定:每户每月用电如果不超过 100 度, 那么每度按 0.50 元收费;如果超过 100 度不超过 200 度,那么超过部分每度按 0.65 元收费;如果超过 200 度,那么超过部分每度按 0.75 元收费.若某户居民 在 9 月份缴纳电费 310 元,则他这个月用电多少度? 提示:若一个月用电 200 度,则这个月应缴纳电费 为 0.50×100 + 0.65×(200 - 100) = 115 元. 故当缴纳 电费为 310 元时,该用户 9 月份用电量超过 200 度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去括号
移项 解一元一次方程 的步骤有: 合并同类项 系数化为1
点此播放教学视频
3.3
解一元一次方程(二) ---去括号与去分母
第1课时
点此播放教学视频
1.掌握用一元一次方程解决实际问题的方法,会用分配
律,去括号解决关于含括号的一元一次方程.
2.经历应用方程解决实际问题的过程,发展分析问题, 解决问题的能力,进一步体会方程模型的作用. 3.关注学生在建立方程和解方程过程中的表现,发展学 生积极思考的学习态度以及合作交流的意识.
解方程:3(5x-1)- 2(3x+2)=6(x-1)+2 解:去括号,得 15x-3-6x-4 =6x-6+2 移项得
15x-6x-6x =-6+2+3+4
合并同类项得 3x =3
系数化为1,得 x =1
注:方程中有带括号的式子时,去括号是常用的化简步骤.
2、下列变形对吗?若不对,请说明理由,并改正:
6(x-2000) 度 因为全年共用了15万度电, 所以,可列方程
下半年共用电
6x+ 6(x-2000)=150000
.
6x+ 6(x-2000)=150000 • 问题:这个方程有什么特点,和以前我们学过的方程有什 么不同?怎样使这个方程向x=a转化? 去括号 移项 合并同类项 系数化为1
6x+ 6(x-2000)=150000 去括号,得
合并同类项,得 0.2 x 5 两边同除以-0.2得 x 25
5 x 3
1.计算(1) 4x + 3(2x-3) = 12- (x-2)
x=
23 11
1 (2) 6( 1 x - 4) + 2x = 7-( x - 1) 3 2
x=6
2.(2010·黄冈中考)通信市场竞争日益激烈,某通信公 司的手机市话费标准按原标准每分钟降低a元后,再次 下调了20%,现在收费标准是每分钟b元,则原收费标准 每分钟是___元. 解析:设原收费标准每分钟是x元,根据题意得, 5 (x-a)(1-20%)=b,解得x= b+a, 4 5 答案: b+a . 4
解方程:6x-7=4x-1
1、一元一次方程的解法我们学了哪几步?
移项
6x-4x=-1+7
合并同类项
2x=6
系数化为1
X=3
2、移项,合并同类项,系数化为1,要注意什么?
①移项时要变号.(变成相反数)
②合并同类项时,只是把同类项的系数相加作为所得
项的系数,字母部分不变.
③系数化为1,也就是说方程两边同时除以未知数前 面的系数.
6x + 6x - 12000 = 150000
移项,得 6x + 6x = 150000 + 12000
合并同类项,得 12x = 162000
系数化为1,得 x = 13500
例题2:解方程 3x-7 (x -1) =3-2(x +3)
解:去括号,得
3 x -7 x +7 =3-2 x -6 移项得 3 x -7 x +2 x =3-6 -7 合并同类项得 -2 x =-10 系数化为1,得 x =5
点此播放教学视频
★ 我们在方程6x-7=4x-1后加上一个括号得 6x-7=4(x-1)会解吗? ★ 在前面再加上一个负号得6x-7=-(4x-1) 会吗?
点此播放讲解视频
例题1 某工厂加强节能措施,去年下半年与上半年相比, 月平均用电量减少2000度,全年用电15万度,这个工厂去 年上半年每月平均用电多少度? 分析:若设上半年每月平均用电x度, 则下半年每月平均用电 (x-2000)度 上半年共用电 6x 度,
1 解程 3 2(0.2 x 1) x 5
去括号,得 3 0.4 x 2 0.2 x
去括号变形错,有一项 没变号,改正如下:
去括号,得3-0.4x-2=0.2x 移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1
∴
移项,得 0.4 x 0.2 x 3 2