几种排序算法分析

合集下载

算法实验报告结果分析

算法实验报告结果分析

一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。

为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。

二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。

实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。

实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。

同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。

三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。

从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。

在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。

总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。

2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。

实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。

与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。

3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。

实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。

可以看出,随着数据量的增加,插入排序的性能明显下降。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

常用排序算法分析比较

常用排序算法分析比较

常用排序算法分析比较排序算法是计算机科学中的基本概念之一,它主要用于对一组元素进行排序,使得这些元素按照某种规则有序排列。

常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等等,这些算法都有自己的特点和适用场景,下面针对这些排序算法进行分析比较。

1.冒泡排序冒泡排序是一种简单的排序算法,它的主要思想是依次比较相邻的两个元素,如果它们的顺序不对就交换它们的位置,可以保证每次循环后最后一个元素是已经排序好的。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

2.插入排序插入排序是一种稳定的排序算法,它的基本思想是将待排序的数据分为两个区间,已排序区间和未排序区间,在未排序区间内遍历,将每个元素插入到已排序区间的合适位置。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

3.选择排序选择排序是一种比较简单的排序算法,它的主要思想是通过不断选择未排序区间内的最小值,然后和未排序区间的第一个元素交换位置,以此类推,直到排序完毕。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

4.快速排序快速排序是一种经典的排序算法,它的思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行快速排序,最后合并两个排好序的子序列。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

5.归并排序归并排序是一种稳定的排序算法,它的基本思想是采用分治的思想,将序列分为左右两个子序列,通过递归的方式对左右两个子序列进行排序,最后将两个排好序的子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

通过比较以上五种排序算法,可以发现每种算法都有自己的特点和适用场景,对于元素数量较少的情况下,可以选择冒泡排序、插入排序或选择排序,这些算法思路简单易懂,实现也比较容易;对于大规模数据排序,可以选择归并排序或快速排序,因为它们的时间复杂度比较优秀。

五种排序算法的性能分析

五种排序算法的性能分析
s to e e to o tpe f m s w e 1 W h n t e ue e i r e e or r s l c i n s r ror l. e he s q nc So d r d, i s r i o t o n e ton s r rbubb e s tp r o m s l or e f r
总 第 6期 21 0 0年 6月
重 庆航 天 职 业 技 术 学 院 学报
J u n lo o g i g Ae o p c l t c n c r a fCh n q n r s a e Po y e h i o
Ge e a n r 1NO 6 .
J n 2 1 u. 00
s lc ,i e t e e t ns r ,m e g ra u c r e nd q i k,t i e a p c o p e t a u m a ie hetm nd s a e c m l xiy w ss m rz d. Fu t r o e,t o c t - r he m r w a e
g re fO( )a d 0( l n) c l e d v de o is o n n n og ou d b i i d. On t e or e e e o a o ,po ii e a e e s he r c d s qu nc fr nd m stv nd r v r e, t pp ia i n r l s wa i e tba e hee e i nt .W he hesz e o dsi ma l ns r i hea lc to u e spo nt d ou s d on t xp rme s n t ieofr c r ss l,i e ton
Gan ' n V , Sh n i a a g Jn

几种常见的排序方法

几种常见的排序方法

⼏种常见的排序⽅法常见算法效率⽐较:⼀. 冒泡排序冒泡排序是是⼀种简单的排序算法。

它重复地遍历要排序的数列,⼀次⽐较两个元素,如果他们的顺序错误就把它们交换过来。

遍历数列的⼯作是重复的进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.冒泡排序算法的运作如下:(1)⽐较相邻的元素。

如果第⼀个⽐第⼆个⼤(升序),就交换他们两个(2)对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对。

这步做完后,最后的元素还是最⼤的数(3)针对所有的元素重复以上的步骤,除了最后⼀个2.冒泡排序的分析:交换过程图⽰(第⼀次)那么我们需要进⾏n-1次冒泡过程,每次对应的⽐较次数如下图所⽰代码如下:def bubble_sort(alist):# j为每次遍历需要⽐较的次数,是逐渐减⼩的for j in range(len(alist)-1,0,-1):for i in range(j):if alist[i] > alist[i+1]:alist[i], alist[i+1] = alist[i+1],alist[i]li = [1,3, 4, 5, 2, 11, 6, 9, 15]bubble_sort(li)print(li)3. 时间复杂度算法的时间复杂度是指算法执⾏的过程中所需要的基本运算次数(1)最优时间复杂度:O(n)(表⽰遍历⼀次发现没有任何可以交换的元素,排序结束)(2)最坏时间复杂度:O(n2)(3)稳定性:稳定假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj 之前,⽽在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定的;否则称为不稳定的常见算法的稳定性(要记住)、、、不是稳定的排序算法,⽽、、、、是稳定的排序算法。

⼆. 选择排序选择排序是⼀种简单直观的排序算法。

各种排序算法分析

各种排序算法分析

i1 PjCj
j0
i1 1( j 1) 1i1 ( j 1)
j0 i
i j0
1((i 1)*i) i 1
i
2
2
直接插入排序算法评价5 —— 平均复杂度
• 直接插入排序的 总的比较次数为:
n
j1
n
1
1
n1
l1
j 2 2
2
2 l1
n 1 1 * (n 1)n 22
3 n n2 44
示例:{23,11,55,97,19,80}
第一趟: {23}, [起始只有一个记录]
{11, 23}
11
第二趟: {11,23},
{11,23,55}
55
第三趟: {11,23,55},
{11,23,55,97}
97
第四趟: {11,23,55,97},
{11,19,23,55,97}
19
第五趟: {11,19,23,55,97},
直接插入排序算法评价2
最小移动次数∶
M mi n n1n
最大移动次数∶
Mm
ax
n1
(i
i1
1)
n2 2
直接插入排序算法评价3
初始数据状态相关:
• 文件初态不同时,直接插入排序所耗费的时间有很大 差异。
– 若文件初态为正序,则算法的时间复杂度为O(n) – 若初态为反序,则时间复杂度为O(n2)
排序算法及算法分析
问题的提出:
• 为什么要排序?有序表的优点?缺点?
– 构造关系。
• 按照什么原则排序?
– 比较?
• 如何进行排序?
基本概念
• 排序(Sorting):

各种排序方法总结

各种排序方法总结

选择排序、‎快速排序、‎希尔排序、‎堆排序不是‎稳定的排序‎算法,冒‎泡排序、插‎入排序、归‎并排序和基‎数排序是稳‎定的排序算‎法。

‎冒泡法‎:这‎是最原始,‎也是众所周‎知的最慢的‎算法了。

他‎的名字的由‎来因为它的‎工作看来象‎是冒泡:‎复杂度为‎O(n*n‎)。

当数据‎为正序,将‎不会有交换‎。

复杂度为‎O(0)。

‎直接插‎入排序:O‎(n*n)‎选择排‎序:O(n‎*n)‎快速排序:‎平均时间复‎杂度log‎2(n)*‎n,所有内‎部排序方法‎中最高好的‎,大多数情‎况下总是最‎好的。

‎归并排序:‎l og2(‎n)*n‎堆排序:‎l og2(‎n)*n‎希尔排序‎:算法的复‎杂度为n的‎1.2次幂‎‎这里我没‎有给出行为‎的分析,因‎为这个很简‎单,我们直‎接来分析算‎法:首‎先我们考虑‎最理想的情‎况1.‎数组的大小‎是2的幂,‎这样分下去‎始终可以被‎2整除。

假‎设为2的k‎次方,即k‎=log2‎(n)。

‎2.每次‎我们选择的‎值刚好是中‎间值,这样‎,数组才可‎以被等分。

‎第一层‎递归,循环‎n次,第二‎层循环2*‎(n/2)‎.....‎.所以‎共有n+2‎(n/2)‎+4(n/‎4)+..‎.+n*(‎n/n) ‎= n+n‎+n+..‎.+n=k‎*n=lo‎g2(n)‎*n所‎以算法复杂‎度为O(l‎o g2(n‎)*n) ‎其他的情‎况只会比这‎种情况差,‎最差的情况‎是每次选择‎到的mid‎d le都是‎最小值或最‎大值,那么‎他将变成交‎换法(由于‎使用了递归‎,情况更糟‎)。

但是你‎认为这种情‎况发生的几‎率有多大?‎?呵呵,你‎完全不必担‎心这个问题‎。

实践证明‎,大多数的‎情况,快速‎排序总是最‎好的。

‎如果你担心‎这个问题,‎你可以使用‎堆排序,这‎是一种稳定‎的O(lo‎g2(n)‎*n)算法‎,但是通常‎情况下速度‎要慢于快‎速排序(因‎为要重组堆‎)。

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较

几种排序的算法时间复杂度比较1.选择排序:不稳定,时间复杂度 O(n^2)选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。

这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

2.插入排序:稳定,时间复杂度 O(n^2)插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。

第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i] 又是排好序的序列。

要达到这个目的,我们可以用顺序比较的方法。

首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。

图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。

3.冒泡排序:稳定,时间复杂度 O(n^2)冒泡排序方法是最简单的排序方法。

这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。

在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。

所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。

显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。

在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。

一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

4.堆排序:不稳定,时间复杂度 O(nlog n)堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

排序算法比较

排序算法比较

排序算法比较在计算机科学中,排序算法是一类重要且基础的算法。

通过对数据进行排序,我们可以更高效地检索、查找以及分析数据。

在实际应用中,我们经常需要比较不同排序算法的性能和效率,以便选择最适合特定任务的排序算法。

本文将对几种常见的排序算法进行比较。

一、冒泡排序冒泡排序是一种简单但效率较低的排序算法。

其基本思想是通过多次交换相邻的元素,将最大(或最小)的元素逐渐“冒泡”到待排序序列的末尾。

具体实现过程如下:从头开始依次比较相邻的两个元素,如果顺序不正确,则进行交换。

重复此过程,直到没有任何交换发生。

冒泡排序的时间复杂度为O(n^2),其中n为待排序序列的长度。

这使得冒泡排序在大规模数据排序时表现较差。

二、插入排序插入排序是一种简单且高效的排序算法。

它的基本思想是将未排序部分的元素依次插入到已排序部分的正确位置,直到全部元素都有序。

具体实现过程如下:将未排序部分的第一个元素插入到已排序部分中的正确位置,然后再将第二个元素插入到已排序部分中,依此类推。

插入排序的时间复杂度为O(n^2),但在实际应用中,插入排序通常要比冒泡排序快得多。

插入排序对于小规模或基本有序的数据集合表现良好。

三、选择排序选择排序是一种简单但不稳定的排序算法。

其基本思想是从未排序部分选择最小(或最大)的元素,将其放到已排序部分的末尾。

具体实现过程如下:从未排序部分中选出最小的元素,将其与未排序部分的第一个元素交换位置,然后将已排序部分的长度加1。

重复此过程,直到全部元素都有序。

选择排序的时间复杂度为O(n^2),与冒泡排序和插入排序相同。

尽管选择排序的性能较差,但由于其实现简单,对于小规模数据集合仍然是一种可用的排序方法。

四、快速排序快速排序是一种高效的排序算法,常被用作标准库中的排序函数实现。

其基本思想是通过分治的策略将待排序序列划分为较小和较大的两个子序列,然后分别对子序列进行递归排序。

具体实现过程如下:选择一个基准元素,通过一趟排序将待排序序列分割为两部分,使得左边部分的元素都小于等于基准元素,右边部分的元素都大于等于基准元素。

五种排序算法的性能分析

五种排序算法的性能分析
能容 纳全 部记 录 , 排序 过程 中 尚需 对 外存 进 行 在 访 问 的排 序过 程 .
② 一组 待排 序记 录存 放在 静 态链 表 中 , 录 记
之间 的次 序关 系 由指 针 指示 , 则实 现 排序 不 需要
移动记 录 , 需 移动 指针 即可 . 仅
③ 待排 序 记 录 本 身存 储 在 一 组 地 址 连续 的 存 储单 元 内 , 同时另设 一个 指 示各 个 记 录存 储位
杨 有 (9 5一) 男 , 庆 粱 平 人 , 士 , 教 授 , 要 从 事 数 字 图像 处 理方 面 的研 究 16 , 重 博 副 主 45
认 为按升序 排序 .
记 录 R k 将 它 与无 序 区 的第 1个 记 录 R 0 [ ], [] 交 换 , 有序 区记 录增 加 1 , 序 区记 录减少 1 使 个 无 个; ③第 i 次排 序. 在开始 时 , 当前 有序 区和无 序 区分别 为 R[ , ,] R[ +1 … , 0 … i和 i , n一1 0≤ ](


n一1 )其存 储 位 置 也 相邻 . 这 种存 储 方式 在
中 , 录之 间 的 次序 关 系 由其 存 储 的位 置 决 定 , 记
排 序 通过移 动 记录来 实 现.
及 的存 储 器 , 可将 排 序 方 法 分 为两 大类 … : 类 一 是 内部排 序 , 的是 待排 序记 录存放 在 计算 机 存 指 储器 中进 行 的排 序 过 程 ; 一类 是 外 部排 序 , 另 指 的是 待排 序记 录 的数量 很大 , 以致 于 内存 一次 不
通 过描 述 冒泡 、 选择 、 入 、 并和 快 速 5种 排 序 算 法 , 结 了它们 的 时 间复 杂 性பைடு நூலகம்和 空 间复 杂 插 归 总

排序算法实验报告

排序算法实验报告

数据结构实验报告八种排序算法实验报告一、实验内容编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单项选择择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。

二、实验步骤各种内部排序算法的比较:1.八种排序算法的复杂度分析〔时间与空间〕。

2.八种排序算法的C语言编程实现。

3.八种排序算法的比较,包括比较次数、移动次数。

三、稳定性,时间复杂度和空间复杂度分析比较时间复杂度函数的情况:时间复杂度函数O(n)的增长情况所以对n较大的排序记录。

一般的选择都是时间复杂度为O(nlog2n)的排序方法。

时间复杂度来说:(1)平方阶(O(n2))排序各类简单排序:直接插入、直接选择和冒泡排序;(2)线性对数阶(O(nlog2n))排序快速排序、堆排序和归并排序;(3)O(n1+§))排序,§是介于0和1之间的常数。

希尔排序(4)线性阶(O(n))排序基数排序,此外还有桶、箱排序。

说明:当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O〔n〕;而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O〔n2〕;原表是否有序,对简单项选择择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。

稳定性:排序算法的稳定性:假设待排序的序列中,存在多个具有相同关键字的记录,经过排序,这些记录的相对次序保持不变,则称该算法是稳定的;假设经排序后,记录的相对次序发生了改变,则称该算法是不稳定的。

稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。

基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。

另外,如果排序算法稳定,可以防止多余的比较;稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序四、设计细节排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

几种常见算法的介绍及复杂度分析

几种常见算法的介绍及复杂度分析

几种常见算法的介绍及复杂度分析一、排序算法1.冒泡排序:通过反复交换相邻元素实现排序,每次遍历将最大元素放到最后。

时间复杂度为O(n^2)。

2.插入排序:将未排序元素插入已排序序列的适当位置,时间复杂度为O(n^2)。

3.选择排序:每次选择最小的元素放到已排序序列末尾,时间复杂度为O(n^2)。

4. 快速排序:通过递归将数组分段,并以一个基准元素为准将小于它的元素放在左边,大于它的元素放在右边,时间复杂度为O(nlogn)。

5. 归并排序:将数组递归拆分为多个子数组,对子数组进行排序并合并,时间复杂度为O(nlogn)。

二、查找算法1.顺序查找:从头到尾依次比较目标元素与数组中的元素,时间复杂度为O(n)。

2. 二分查找:依据已排序的数组特性,将目标元素与中间位置的元素比较,并根据大小取舍一半的数组进行查找,时间复杂度为O(logn)。

3.哈希查找:通过哈希函数将目标元素映射到数组的索引位置,时间复杂度为O(1),但可能需要额外的空间。

三、图算法1.广度优先(BFS):从起始节点开始,依次访问其邻居节点,再访问邻居的邻居,直到找到目标节点或遍历所有节点。

时间复杂度为O(V+E),V为顶点数量,E为边的数量。

2.深度优先(DFS):从起始节点开始一直遍历到没有未访问的邻居,再回溯到上一个节点继续遍历,直到找到目标节点或遍历所有节点。

时间复杂度为O(V+E),V为顶点数量,E为边的数量。

3. 最短路径算法(如Dijkstra算法):通过计算起始节点到每个节点的最短路径,找到起始节点到目标节点的最短路径。

时间复杂度为O(V^2),V为顶点数量。

4. 最小生成树算法(如Prim算法):通过贪心策略找到连通图的最小权重生成树,时间复杂度为O(V^2),V为顶点数量。

四、动态规划算法1.背包问题:将问题拆解为若干子问题,并通过求解子问题的最优解推导出原问题的最优解。

时间复杂度为O(nW),n为物品数量,W为背包容量。

数据结构实验报告排序

数据结构实验报告排序

数据结构实验报告排序数据结构实验报告:排序引言:排序是计算机科学中常见的算法问题之一,它的目标是将一组无序的数据按照特定的规则进行排列,以便于后续的查找、统计和分析。

在本次实验中,我们将学习和实现几种常见的排序算法,并对它们的性能进行比较和分析。

一、冒泡排序冒泡排序是最简单的排序算法之一,它通过不断交换相邻的元素,将较大(或较小)的元素逐渐“冒泡”到数组的一端。

具体实现时,我们可以使用两层循环来比较和交换元素,直到整个数组有序。

二、插入排序插入排序的思想是将数组分为两个部分:已排序部分和未排序部分。

每次从未排序部分中取出一个元素,插入到已排序部分的适当位置,以保持已排序部分的有序性。

插入排序的实现可以使用一层循环和适当的元素交换。

三、选择排序选择排序每次从未排序部分中选择最小(或最大)的元素,与未排序部分的第一个元素进行交换。

通过不断选择最小(或最大)的元素,将其放置到已排序部分的末尾,从而逐渐形成有序序列。

四、快速排序快速排序是一种分治的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于等于基准元素,另一个子数组的所有元素都大于基准元素。

然后对两个子数组分别递归地进行快速排序,最终将整个数组排序。

五、归并排序归并排序也是一种分治的排序算法,它将数组划分为多个子数组,对每个子数组进行排序,然后再将排好序的子数组合并成一个有序的数组。

归并排序的实现可以使用递归或迭代的方式。

六、性能比较与分析在本次实验中,我们对以上几种排序算法进行了实现,并通过对不同规模的随机数组进行排序,比较了它们的性能。

我们使用了计算排序时间的方式,并记录了每种算法在不同规模下的运行时间。

通过对比实验结果,我们可以得出以下结论:1. 冒泡排序和插入排序在处理小规模数据时表现较好,但在处理大规模数据时性能较差,因为它们的时间复杂度为O(n^2)。

2. 选择排序的时间复杂度也为O(n^2),与冒泡排序和插入排序相似,但相对而言,选择排序的性能稍好一些。

数学数的排序

数学数的排序

数学数的排序数学中,数的排序是一项重要的基本技能,它帮助我们理解数字的大小关系、比较数值的大小,并能应用于各种数学问题中。

本文将介绍几种常见的数的排序方法及其应用。

一、升序排列升序排列是最常见的排序方法之一。

它按数字从小到大的顺序排列数值。

升序排列有助于我们理清数字的大小关系,方便做数值比较和快速查找。

下面是一个示例:例如,有一组数字:6、3、9、1、7按照升序排列,我们可以通过比较数字的大小,依次将它们排列为:1、3、6、7、9升序排列在很多问题中都有应用,比如查找最小值、最大值、中位数等。

二、降序排列降序排列与升序排列相反,它按数字从大到小的顺序排列数值。

降序排列在分析数据的时候更容易识别出最大值和最小值,使数据更直观。

下面是一个示例:例如,有一组数字:6、3、9、1、7按照降序排列,我们可以将它们排列为:9、7、6、3、1降序排列常用于统计数据、排行榜等领域。

三、插入排序插入排序是一种简单且常用的排序算法。

它通过将一个数字插入已排好序的数列中,使整个数列逐步有序。

插入排序操作如下:1. 从待排序数列中选择一个数作为第一个已排序数列;2. 取下一个数,与已排序数列中的数从后往前逐个比较,找到合适的插入位置;3. 重复步骤2,直到全部数字插入完毕。

插入排序的优点是简单易懂,适用于排序小型数据集,并且对部分有序的数列有较好的效果。

四、快速排序快速排序是一种高效的排序算法,它通过选择一个基准点(通常选择第一个或最后一个数字),将数列划分成小于基准点和大于基准点的两个子序列,并对子序列进行递归排序。

快速排序的步骤如下:1. 选择一个基准点;2. 比基准点小的数放到一个子序列中,比基准点大的数放到另一个子序列中;3. 对子序列进行递归排序,直到子序列的长度为1或0。

快速排序的优点是速度快,适用于排序大型数据集,它在排序大型数据集时表现出色,被广泛应用。

五、归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将一个大的数列拆分成多个子序列,然后递归地对子序列进行排序,最后将排序好的子序列进行合并。

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常用排序算法稳定性分析

数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。

其次,说⼀下稳定性的好处。

排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。

基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。

另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。

回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。

(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。

⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。

所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。

(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。

那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。

⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。

(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。

当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。

算法分析报告

算法分析报告

算法分析报告引言算法作为计算机科学中的重要组成部分,对于解决问题起着至关重要的作用。

在实际应用中,我们需要对不同算法进行分析,以确定其性能和效果,以便选择最适合的算法来解决问题。

本文将针对几种常见的算法进行分析,包括时间复杂度、空间复杂度和优缺点等方面的评估。

算法一:冒泡排序算法算法描述冒泡排序算法是一种简单直观的排序算法,其基本思想是通过不断比较相邻元素并交换位置,使得最大(或最小)的元素逐渐“冒泡”到右(或左)端。

算法分析时间复杂度:冒泡排序算法的时间复杂度为O(n^2),其中n表示待排序元素的个数。

算法的最坏情况下需要进行n-1趟排序,每趟需要比较n-i次(i为趟数),因此总的比较次数为(n-1) + (n-2) + ... + 1 = n*(n-1)/2由于进行元素交换的次数与比较次数同数量级,因此总的时间复杂度为O(n^2)。

空间复杂度:冒泡排序算法的空间复杂度为O(1),因为排序过程中只需要使用少量额外的辅助空间来存储临时变量。

优缺点:冒泡排序算法的优点是简单、易于理解和实现。

而缺点是排序效率低下,特别是在待排序元素个数较多时,性能下降明显。

算法二:快速排序算法算法描述快速排序算法是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的元素小于(或等于)基准元素,另一部分元素大于(或等于)基准元素,然后对这两部分继续进行排序,使整个序列有序。

算法分析时间复杂度:快速排序算法的时间复杂度为O(nlogn),其中n表示待排序元素的个数。

在每一趟排序中,平均需要比较和交换元素n次,共需进行logn趟排序。

因此,总的时间复杂度为O(nlogn)。

空间复杂度:快速排序算法的空间复杂度为O(logn),因为在每一趟排序中需要使用递归调用栈来存储待排序序列的分割点。

优缺点:快速排序算法的优点是快速、高效。

它是一种原地排序算法,不需要额外的辅助空间。

然而,快速排序算法的缺点是对于已经有序的序列,会退化成最坏情况下的时间复杂度O(n^2),因此在设计实际应用时需要考虑序列是否有序的情况。

各种常用排序算法的分析与比较

各种常用排序算法的分析与比较
2 . 1 . 2 算法分析
个简单 的 问题 , 但 是从计 算机科 学发展 以来 , 已经有 了大 量的
研 究 。例 如 , 冒泡排序 在 1 9 5 6年就 已经被 研究 , 虽然 大部 分人 认 为 这是 一个 已经 被解 决 的问题 , 有用 的新 算法 仍在 不断 的被 发明 。 笔者就排序的两种方法进行研究 , 分别是顺序表( c o n t i g u o u s
可 以根据 排 序 特 点划 分得 到 更加 具体 的类型 。介 绍 了各 种 排序 算 法 , 对 每 种 算法 进行 分析 并 将其 用程 序 实现 , 通 过 分析 对 比得 到 各种 算 法 的最佳 使 用 环境 , 从 而使 各 算 法能 够被 高效 地 利用 。 关 键词 : 排序 算 法; 算 法分 析 ; 程 序 实现
各种 常用排序 算法 的分析 与 比较
严 玮
( 甘肃 交通职业技术 学院, 甘肃 兰州 7 3 0 0 7 0 )

要: 阐述 了排序 算 法 的概念 和排序 算法 的具 体 划分 依据 , 并 将排 序 算 法分 为插 入排 序 ( i n s e r t i o n s o r t ) 、 选 择 排
是有 序 的第 一部 分里 的位 置 。
2 . 1 . 3 插 入 分 类
用链 表进 行排 序 的另一 种方 法 。
1 排序 算 法概述
( 1 ) 排序定 义 。所谓 计算 机 中的排 序 , 就是使 一 串记 录 , 按
照其 中的某个 或某 些关 键字 的 大小 , 递增 或递减 的排 列起 来 的
序( s e l e c t i o ns o r t ) 、 交换 排 序( e x c h a n g e s o r t ) 、 归并 排序 ( me r g e s o t) r 以及 分 配排序 ( d i s t r i b u t i o n s o r t ) & 大范 围 , 每种 类别 又

排序算法的时间复杂度分析

排序算法的时间复杂度分析

排序算法的时间复杂度分析排序算法是计算机科学领域中的重要问题之一,用于将一组未排序的数据按照一定规则重新排列。

排序算法的时间复杂度是评估算法执行效率的一个指标,它表示对于特定输入规模的数据,算法执行所需的计算时间与数据量增加的关系。

在实际应用中,时间复杂度是衡量算法效率的重要标准之一,因为它决定算法在处理大规模数据时的速度。

不同的排序算法具有不同的时间复杂度,根据复杂度不同,其执行时间也不同。

在具体应用场景中,我们需要根据不同的数据规模和数据特征选择合适的排序算法,以确保算法具有高效性和可扩展性。

下面具体介绍几种常见的排序算法及其时间复杂度分析。

1. 冒泡排序算法冒泡排序算法是一种简单的排序算法,其基本思想是通过比较相邻两个数据的大小,将较大的数据往后移,最终实现数据升序或降序排列的目的。

其时间复杂度为O(n^2),即当数据量增加一倍时,执行时间将增加4倍,算法效率较低。

2. 快速排序算法快速排序算法是一种经典的排序算法,在实际应用中广泛使用。

该算法通过定义基准值,将待排序数据分成两个子序列,并递归地对子序列进行排序,最终实现数据排序的目的。

其时间复杂度为O(n log n),效率较高,在对大规模数据进行排序时表现出色。

3. 直接插入排序算法直接插入排序算法是一种简单但效率较低的排序算法,其基本思想是将数据依次插入已排序的有序序列中,最终实现数据排序的目的。

该算法的时间复杂度为O(n^2),随着数据量的增加,算法执行时间增加较快。

4. 堆排序算法堆排序算法是一种基于堆数据结构的排序算法,其基本思想是通过维护一个堆,不断取出堆中最大或最小元素,最终实现数据排序的目的。

其时间复杂度为O(n log n),执行效率较高,在处理大规模数据时表现出色。

综上所述,排序算法的时间复杂度对算法的效率和可扩展性具有重要影响。

在具体应用场景中,我们需要根据数据特征和数据规模选择合适的排序算法,并结合算法的时间复杂度进行评估,以确保算法具有高效性和可扩展性。

排序的几种算法

排序的几种算法

排序的几种算法
一、冒泡排序
冒泡排序就是重复“从序列右边开始比较相邻两个数字的大小,再根据结果交换两个数字的位置”这一操作的算法。

在这个过程中,数字会像泡泡一样,慢慢从右往左“浮”到序列的顶端,所以这个算法才被称为“冒泡排序”。

二、选择排序
选择排序就是重复“从待排序的数据中寻找最小值,将其与序列最左边的数字进行交换”这一操作的算法。

在序列中寻找最小值时使用的是线性查找。

三、插入排序
插入排序是一种从序列左端开始依次对数据进行排序的算法。

在排序过程中,左侧的数据陆续归位,而右侧留下的就是还未被排序的数据。

插入排序的思路就是从右侧的未排序区域内取出一个数据,然后将它插入到已排序区域内合适的位置上。

四、堆排序
堆排序的特点是利用了数据结构中的堆。

五、归并排序
归并排序算法会把序列分成长度相同的两个子序列,当无法继续往下分时(也就是每个子序列中只有一个数据时),就对子序列进行归并。

归并指的是把两个排好序的子序列合并成一个有序序列。

该操作会一直重复执行,直到所有子序列都归并为一个整体为止。

总的运行时间为O,这与前面讲到的堆排序相同。

各个常用的排序算法的适用场景详细分析

各个常用的排序算法的适用场景详细分析

各个常用的排序算法的适用场景详细分析1. 适用场景分析总览排序算法是计算机科学中的一个重要概念,它能够将一组无序数据按照特定规则排列成有序的序列。

在实际应用中,不同的排序算法在不同的场景中具有各自的优势和适用性。

本文将详细分析常用的几种排序算法的适用场景,并加以比较。

2. 冒泡排序冒泡排序是最基本的排序算法之一,它通过相邻元素之间的比较和交换来实现排序。

由于其简单易懂的特点,适用于数据量较小、或者已有部分有序的场景。

冒泡排序的时间复杂度为O(n^2),在大数据量排序时效率较低。

3. 插入排序插入排序是一种简单直观的排序算法,通过将未排序元素逐个插入已排序部分的合适位置来实现排序。

它适用于数据量较小、或者已有部分有序的场景,其时间复杂度为O(n^2)。

插入排序相较于冒泡排序在一定程度上有一定的优化。

4. 选择排序选择排序通过每次选取最小(或最大)的元素来排序,每次找到的最小(或最大)元素与未排序部分的首位元素进行交换。

选择排序适用于数据量较小、或者对内存占用要求较高的场景。

它的时间复杂度为O(n^2),相对于冒泡排序和插入排序而言,选择排序更稳定。

5. 快速排序快速排序是一种基于分治思想的排序算法,其通过递归将数组划分为较小和较大的两部分,并逐步将排序问题划分为更小规模的子问题进行处理。

快速排序适用于数据量较大的情况,具有较好的时间复杂度,平均情况下为O(nlogn)。

然而,当输入数据已基本有序时,快速排序的效率会变得较低。

6. 归并排序归并排序也是一种分治思想的排序算法,它将一个数组分成两个子数组,分别对每个子数组进行排序,然后再将两个已排序的子数组进行合并。

归并排序适用于对稳定性要求较高的场景,时间复杂度为O(nlogn)。

相较于快速排序,归并排序对已有序的数组进行排序效率更高。

7. 堆排序堆排序是一种通过维护最大(或最小)堆的性质来实现排序的算法。

它适用于对内存占用要求较高的场景,时间复杂度为O(nlogn)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《几种排序算法的分析》摘要:排序算法是在C++中经常要用到的一种重要的算法。

如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。

同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。

可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。

排序的目的之一就是方便数据的查找。

在实际生活中,应根据具体情况悬着适当的算法。

一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。

本论文重点讨论时间复杂度。

时间复杂度就是一个算法所消耗的时间。

算法的效率指的是最坏情况下的算法效率。

排序分为内部排序和外部排序。

本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。

本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例:1.1.插入排序1.1.1.直接插入排序思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。

要点:设立哨兵,作为临时存储和判断数组边界之用。

实现:Void InsertSort(Node L[],int length){Int i,j;//分别为有序区和无序区指针for(i=1;i<length;i++)//逐步扩大有序区{j=i+1;if(L[j]<L[i]){L[0]=L[j];//存储待排序元素While(L[0]<L[i])//查找在有序区中的插入位置,同时移动元素{L[i+1]=L[i];//移动i--;//查找}L[i+1]=L[0];//将元素插入}i=j-1;//还原有序区指针}}1.1.2.希尔排序思路:又称增量缩小排序。

先将序列按增量划分为元素个数相同的若干组,使用直接插入排序法进行排序,然后不断缩小增量直至为1,最后使用直接插入排序完成排序。

要点:增量的选择以及排序最终以1为增量进行排序结束。

实现:Void shellSort(Node L[],int d){While(d>=1)//直到增量缩小为1{Shell(L,d);d=d/2;//缩小增量}}Void Shell(Node L[],int d){Int i,j;For(i=d+1;i<length;i++){if(L[i]<L[i-d]){L[0]=L[i];j=i-d;While(j>0&&L[j]>L[0]){L[j+d]=L[j];//移动j=j-d;//查找}L[j+d]=L[0];}}}1.2.选择排序1.2.1.直接选择排序思路:将序列划分为无序和有序区,寻找无序区中的最小值和无序区的首元素交换,有序区扩大一个,循环最终完成全部排序。

实现:Void SelectSort(Node L[]){Int i,j,k;//分别为有序区,无序区,无序区最小元素指针For(i=0;i<length;i++){k=i;For(j=i+1;j<length;j++){If(L[j]<L[k])k=j;}If(k!=i)//若发现最小元素,则移动到有序区{Int temp=L[k];L[k]=L[i];L[i]=L[temp];}}}1.2.2.堆排序思路:利用大根堆或小根堆思想,首先建立堆,然后将堆首与堆尾交换,堆尾之后为有序区。

要点:建堆、交换、调整堆实现:Void HeapSort(Node L[]){BuildingHeap(L);//建堆(大根堆)For(int i=n;i>0;i--)//交换{Int temp=L[i];L[i]=L[0];L[0]=temp;Heapify(L,0,i);//调整堆}}Void BuildingHeap(Node L[]){ For(i=length/2 -1;i>0;i--)Heapify(L,i,length);}1.3.归并排序思路:将原序列划分为有序的两个序列,然后利用归并算法进行合并,合并之后即为有序序列。

要点:归并、分治实现:Void MergeSort(Node L[],int m,int n){Int k;If(m<n){K=(m+n)/2;MergeSort(L,m,k);MergeSort(L,k+1,n);Merge(L,m,k,n);}}1.4.交换排序1.4.1.冒泡排序思路:将序列划分为无序和有序区,不断通过交换较大元素至无序区尾完成排序。

要点:设计交换判断条件,提前结束以排好序的序列循环。

实现:Void BubbleSort(Node L[]){Int i ,j;Bool ischanged;//设计跳出条件For(j=n;j<0;j--){ischanged =false;For(i=0;i<j;i++){If(L[i]>L[i+1])//如果发现较重元素就向后移动{Int temp=L[i];L[i]=L[i+1];L[i+1]=temp;Ischanged =true;}}If(!ischanged)//若没有移动则说明序列已经有序,直接跳出Break;}}1.5.基数排序思路:将数字按位数划分出n个关键字,每次针对一个关键字进行排序,然后针对排序后的序列进行下一个关键字的排序,循环至所有关键字都使用过则排序完成。

要点:对关键字的选取,元素分配收集。

实现:Void RadixSort(Node L[],length,maxradix){Int m,n,k,lsp;k=1;m=1;Int temp[10][length-1];Empty(temp); //清空临时空间While(k<maxradix) //遍历所有关键字{For(int i=0;i<length;i++) //分配过程{If(L[i]<m)Temp[0][n]=L[i];ElseLsp=(L[i]/m)%10; //确定关键字Temp[lsp][n]=L[i];n++;}CollectElement(L,Temp); //收集n=0;m=m*10;k++;}}2.各种排序算法的特点2.1冒泡排序冒泡排序是最慢的排序算法。

在实际运用中它是效率最低的算法。

它通过一趟又一趟地比较数组中的每一个元素,使较大的数据下沉,较小的数据上升。

它是O(n^2)的算法。

2.2快速排序快速排序是一个就地排序,分而治之,大规模递归的算法。

从本质上来说,它是归并排序的就地版本。

快速排序可以由下面四步组成。

(1)如果不多于1个数据,直接返回。

(2)一般选择序列最左边的值作为支点数据。

(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。

(4)对两边利用递归排序数列。

快速排序比大部分排序算法都要快。

尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。

快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。

2.3归并排序归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。

合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

2.4 堆排序堆排序适合于数据量非常大的场合(百万数据)。

堆排序不需要大量的递归或者多维的暂存数组。

这对于数据量非常巨大的序列是合适的。

比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。

接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

2.5希尔排序Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。

平均效率是O(nlogn)。

其中分组的合理性会对算法产生重要的影响。

现在多用D.E.Knuth的分组方法。

Shell排序比冒泡排序快5倍,比插入排序大致快2倍。

Shell排序比起QuickSort,MergeSort,HeapSort慢很多。

但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。

它对于数据量较小的数列重复排序是非常好的。

2.6插入排序插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。

插入排序是对冒泡排序的改进。

它比冒泡排序快2倍。

一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

2.7交换排序和选择排序这两种排序方法都是交换方法的排序算法,效率都是 O(n2)。

在实际应用中处于和冒泡排序基本相同的地位。

它们只是排序算法发展的初级阶段,在实际中使用较少。

2.8基数排序基数排序和通常的排序算法并不走同样的路线。

它是一种比较新颖的算法,但是它只能用于整数的排序,如果我们要把同样的办法运用到浮点数上,我们必须了解浮点数的存储格式,并通过特殊的方式将浮点数映射到整数上,然后再映射回去,这是非常麻烦的事情,因此,它的使用同样也不多。

而且,最重要的是,这样算法也需要较多的存储空间。

3.总结:下面是一个总的表格,大致总结了我们常见的所有的排序算法的特点(如图1)。

图1。

相关文档
最新文档