误差理论试卷及答案

合集下载

误差理论试卷及答案

误差理论试卷及答案
上述四次测量的测量精度相同,确定x、y的最佳估计值及其精度。本题18分)
四、
对一温度测量仪进行标定,被测温度x由标准场提供,其误差可忽略不
计。通过试验得到的被测温度x与测温仪的输出电压y的数值如下:
确定y对x的线性回归方程表达式,并进行方差分析与回归方程的显著性检验;
(附:F0。10(1,4)=4.54,F0。05(1,4)=7.71,F0。01(1,4)=21.2)(本题20分)
五、
在光学计上用量块组作为标准件,重复测量圆柱体直径9次,已知单次
测量的标准差为0.3微米,用算术平均值作为直径测量结果。量块组由三块
量块组成,各量块的标准不确定度分别为0.15微米、0.10微米、0.08微米,
201.0
200.7
200.6
200.8
200.8
200.8
已知功率计的系统误差为0.2mW,除此以外不再含有其它的系统误差。求当置信
概率为99.73%时激光器的输出功率及其极限误差。(本题20分)
三、
对x和y两个量进行组合测量,测量方程如下:
⎧xy50.04
⎪2xy70.02

⎪⎩2x2y100.05
量的估计方法有何不同?分别写出它们的特征量均值与方差的估计公式。
《误差理论与数据处理》试卷二

用电压表和电流表来测量某一纯电阻性电子器件的功耗时,已知用电压表
测得器件上的直流电压降是12.00V,其测量极限误差是0.04V,用电流表测
得通过器件的电流是2.00A,其测量极限误差是0.02A。另外,电压表和电
上述测得值求得被测角度的测量结果,问该测量结果的标准差为多少?
(本题10分)
三.测某一温度值15次,测得值如下:(单位:℃)

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案

误差理论和测量平差试卷及答案6套试题+答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y 相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为±;23±。

则:1.这两段距离的中误差( )。

2.这两段距离的误差的最大限差( )。

3.它们的精度( )。

4.它们的相对精度( )。

三、 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±秒,如果要使其中误差为±秒,则还需增加的测回数N=( )。

误差试题及答案

误差试题及答案

误差试题及答案一、选择题1. 测量误差的来源不包括以下哪一项?A. 仪器误差B. 环境误差C. 人为误差D. 计算误差答案:D2. 绝对误差和相对误差的关系是?A. 绝对误差是相对误差的倍数B. 相对误差是绝对误差的倍数C. 两者之间没有直接关系D. 相对误差是绝对误差与测量值的比值答案:D3. 在测量中,误差的减小可以通过以下哪种方式实现?A. 增加测量次数B. 使用更精确的仪器C. 改进测量方法D. 所有以上选项答案:D二、填空题1. 误差是测量值与_________之间的差异。

答案:真值2. 误差可以分为系统误差和_________误差。

答案:随机3. 误差的表示方法有绝对误差和_________误差。

答案:相对三、简答题1. 请简述如何减小测量误差。

答案:减小测量误差可以通过以下方法实现:使用更精确的测量仪器、改进测量方法、增加测量次数以进行平均、控制环境条件以减少环境误差、对测量人员进行培训以减少人为误差。

2. 什么是系统误差?请举例说明。

答案:系统误差是指在重复测量过程中,误差值保持恒定或按照一定规律变化的误差。

例如,使用一个校准不准确的温度计测量室温,每次测量结果都会比实际温度高0.5摄氏度,这就是系统误差。

四、计算题1. 假设一个测量值的真值为100,测量值为102,计算绝对误差和相对误差。

答案:绝对误差 = 102 - 100 = 2相对误差 = (2 / 100) * 100% = 2%2. 如果一个测量值的相对误差为3%,真值为500,求测量值。

答案:测量值 = 500 * (1 + 3%) = 500 * 1.03 = 515。

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷(含参考答案)

《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。

2.偶然误差服从分布,其图形越陡峭,则方差越。

3.独立观测值L1和L2的协方差为。

4.条件平差的多余观测数为减去。

5.间接平差的未知参数协因数阵由计算得到。

6.观测值的权与精度成关系,权越大,则中误差越。

7. 中点多边形有个极条件和个圆周条件。

8. 列立测边网的条件式时,需要确定与边长改正数的关系式。

9. 秩亏水准网的秩亏数为个。

三、 问答题1. 写出协方差传播律的应用步骤。

2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。

8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。

2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。

3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。

4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。

(提示:~)(L L E =,须证明0)(=V E )5. 在某测边网中,设待定点P 的坐标为未知参数,即[]TX X X 21^=,平差后得到^X 的协因数阵为⎥⎦⎤⎢⎣⎡=yy xyxy xx XX Q Q Q Q Q ^^,且单位权中误差为0^σ,求:(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。

第6章 误差理论的基本知识答案

第6章 误差理论的基本知识答案

第六章 误差理论的基本知识一、选择题1、B2、C3、C4、B5、A6、A7、B8、B9、C 10、C11、D 12、B 13、A 14、C 15、B 16、C 17、A 18、B 19、B 20、B 21、C 22、A 23、C 24、B 25、A 26、A 27、C二、填空题1、 系统误差 偶然误差2、 仪器本身误差 观测误差 外界自然条件影响3、 相对误差4、 读m 25、 中误差 容许误差 相对误差6、n17、 相同 8、[]nlnm9、 提高仪器的等级 10、相对误差 11、极限误差 12、±10″ 13、±0.2m 14、101-''±n 15、观测值的算术平均值 16、Nmm x =三、问答计算题1、可分为系统误差和偶然误差系统误差特点:误差在符号和数值上都相同,或按一定的规律变化。

如果规律性能够被到,则系统误差对观测值的影响可以改正,或者用一定的测量方法加以抵消或者削弱。

偶然误差特点:误差出现的符号和数值大小都不相同,表面上看没有任何规律性,多次观测和平均可以抵消一些偶然误差。

2、产生测量误差的原因:仪器原因 人的原因 外界环境的影响偶然误差具有四个基本特性,即:(1) 在一定观测条件下,偶然误差的绝对值不会超过一定的限值(有界性) (2) 绝对值小的误差比绝对值大的误差出现的机会多(密集性)(3) 绝对值相等的正负误差出现的机会相等(对称性);(4) 在相同条件下同一量的等精度观测,其偶然偶然误差的算术平均值随着观测次数的无限增大而趋于零(抵偿性)。

3、测量中的误差是不可避免的,只要满足规定误差要求,工作中可以采取措施加以减弱或处理。

粗差的产生主要是由于工作中的粗心大意或观测方法不当造成的,错误是可以也是必须避免的,含有粗差的观测成果是不合格的,必须采取适当的方法和措施剔除粗差或重新进行观测。

4、这两种误差主要在含义上不同,另外系统误差具有累积性,对测量结果的影响很大,但这种影响具有一定的规律性,可以通过适当的途径确定其大小和符号,利用计算公式改正系统误差对观测值的影响,或采用适当的观测方法、提高测量仪器的精度加以消除或削弱。

误差理论试卷及答案-(1)

误差理论试卷及答案-(1)

《误差理论与数据处理》试卷一一.某待测量约为80 μm,要求测量误差不超过3%,现有 1.0 级0-300μm 和2。

0 级0-100 μm 的两种测微仪,问选择哪一种测微仪符合测量要求?(本题10 分)二.有三台不同的测角仪,其单次测量标准差分别为: ⎛ 1=0.8′, ⎛ 2=1.0′,⎛ 3=0.5′。

若每一台测角仪分别对某一被测角度各重复测量4 次,并根据上述测得值求得被测角度的测量结果,问该测量结果的标准差为多少?(本题10 分)三.测某一温度值15 次,测得值如下:(单位:℃)20。

53,20。

52,20.50,20。

52,20。

53,20。

53,20。

50,20.49, 20.49, 20。

51, 20.53,20。

52, 20。

49, 20.40,20.50已知温度计的系统误差为-0。

05℃,除此以外不再含有其它的系统误差,试判断该测量列是否含有粗大误差.要求置信概率P=99.73%,求温度的测量结果。

(本题18 分)四.已知三个量块的尺寸及标准差分别为:l1 ± ⎛ 1 =(10.000 ± 0。

0004)mm;l 2 ± ⎛ 2 =(1。

010 ± 0。

0003)mm;l3 ± ⎛ 3 = (1.001 ± 0.0001) mm求由这三个量块研合后的量块组的尺寸及其标准差( 〉 ij = 0 ).(本题10 分)五.某位移传感器的位移x与输出电压y的一组观测值如下:(单位略)x y10。

105150.5262101.0521151.5775202.1031252。

6287设x无误差,求y对x的线性关系式,并进行方差分析与显著性检验.(附:F0。

10(1,4)=4.54,F0。

05(1,4)=7.71,F0.01(1,4)=21。

2)(本题15 分)六.已知某高精度标准电池检定仪的主要不确定度分量有:①仪器示值误差不超过 ± 0。

误差理论试卷及答案-(1)

误差理论试卷及答案-(1)

三. 测某一温度值 15 次,测得值如下:(单位:℃) 20.53, 20.52, 20.50, 20.52, 20.53, 20.53, 20.50, 20.49, 20.49, 20.51, 20.53, 20.52, 20.49, 20.40, 20.50 已知温度计的系统误差为-0.05℃,除此以外不再含有其它的系统误差,试判 断该测量列是否含有粗大误差。要求置信概率 P=99.73%,求温度的测量结 果。(本题 18 分)
四. 已知三个量块的尺寸及标准差分别为:
l1 1 (10.000 0.0004) mm; l 2 2 (1.010 0.0003) mm;
l3 3 (1.001 0.0001) mm 求由这三个量块研合后的量块组的尺寸及其标准差( ij 0 )。(本题 10 分) 五. 某位移传感器的位移 x 与输出电压 y 的一组观测值如下:(单位略)
x
1 0.1051
5 0.5262
10 1.0521
1ቤተ መጻሕፍቲ ባይዱ 1.5775
20 2.1031
25 2.6287
y
设 x 无误差,求 y 对 x 的线性关系式,并进行方差分析与显著性检验。 (附:F0。10(1,4)=4.54,F0。05(1,4)=7.71,F0。01(1,4)=21.2)(本题 15 分) 六.已知某高精度标准电池检定仪的主要不确定度分量有: ①仪器示值误差不超过 0.15v,按均匀分布,其相对标准差为 25%; ②电流测量的重复性,经 9 次测量,其平均值的标准差为 0.05 v;
To cons cienti ously sum up the Ol ympic se curity contr ols, pr omoting i ntegrated manageme nt to a hig her level, higher standards, a higher level of devel opme nt. Empl oyees, t oday is l unar calendar on De cember 24, the ox Bell i s about to ri ng, at thi s time of year, we clearly feel the pul se of the XX power generati on compa ny to flourish, to more clearly hear XX power ge neration com panie s mature and symmetry breathi ng. Recalli ng past one a not her acr oss a railing, w e are ent hus iastic a nd full of confide nce. F uture development opportunities, w e more exciting fight more spirite d. Employees, let us together across 20 13 full of challenge s and opportunitie s, to create a green, l ow -cost operation, full of humane care of a worl d-clas s power generation compa ny and work hard! The occasi on of the Spri ng Festival, my sincere wis h that you and the families of the staff in the new year, g ood healt h, ha ppy, ha ppy

(整理)误差理论作业-年总结--有答案

(整理)误差理论作业-年总结--有答案

1. 若用两种测量方法测量某零件的长度110m m L 1=,其测量误差分别为m 11μ±和m 9μ±,而用第三种测量方法测量另一零件的长度为150m m L 2=,其测量误差为m 12μ±,试比较三种测量方法精度的高低。

解:对于1110L mm =:第一种方法的相对误差为:3111100.00010.01%110r -⨯=±=±=± 第二种方法的相对误差为:329100.0000820.0082%110r -⨯=±=±=± 对于2150L mm =:第三种方法的相对误差为:3312100.000080.008%150r -⨯=±=±=± 因为123r r r <<,故第三种方法的测量精度高。

2. 用两种方法测量1L 50mm =,2L 80mm =。

分别测得50.004mm ;80.006mm 。

试评定两种方法测量精度的高低。

解:因被测量不同,故用相对误差的大小来评定其两种测量方法之精度高低。

相对误差小者,其测量精度高。

第一种方法的相对误差为:150.004500.000080.008%50r -===第二种方法的相对误差为:280.006800.0000750.0075%80r -===因为12r r <,故第二种方法的测量精度高。

3. 若某一被测件和标准器进行比对的结果为008mm .20D =,现要求测量的正确度、精密度及准确度均高,下述哪一种方法测量结果符合要求? A. 0.004m m 012.20D 1±= B. 0.003m m 015.20D 2±= C. 0.002m m 015.20D 3±= D. 0.002m m 005.20D 4±= 解:D1. 测量某电路电流共5次,测得数据(单位mA )为168.41,168.54,168.59,168.40,168.50。

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。

即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。

这种误差称为偶然误差。

2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。

在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。

这一转换过程,称之为函数模型的线性化。

3、点位误差椭圆——以点位差的极大值方向为横轴轴方向,以位差的极值分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。

4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。

如,若观测向量的协方差阵为,则按协方差传播律,应有。

5、权——表示各观测值方差之间比例关系的数字特征,。

二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. ,其中五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。

实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,X F E 、0K KL Z +=LL D T LL ZZ K KD D =220ii P σσ=0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρABAC AC X X Y Y W αββ-++--=''4300arctan其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。

误差理论与测量平差基础习题1

误差理论与测量平差基础习题1

为边长观测值,若按条件图27BC α654321D CBA 武汉大学 测绘学院误差理论与测量平差基础 课程试卷(A 卷)出题者:黄加纳 审核人:邱卫宁一.已知观测值向量的协方差阵为,又知协因数,试求观测值的权阵及观测值的权和。

(10分)二.在相同观测条件下观测A 、B 两个角度,设对观测4测回的权为1,则对观测9个测回的权为多少?(10分)三.在图一所示测角网中,A 、B 为已知点,为已知方位角,C 、D 为待定点,为同精度独立观测值。

若按条件平差法对该网进行平差:(1).共有多少个条件方程?各类条件方程各有多少个?(2).试列出全部条件方程(非线性条件方程要求线性化)。

(15分)图一四.某平差问题有以下函数模型21L ⎥⎦⎤⎢⎣⎡--=3112LL D 5112-=Q LL P 1L P 2L P A ∠B ∠BC α721,,,L L L )(I Q =⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0ˆ03060515443121x v v v v v v v v57624312P 2(1.732,3.000P 1(1.732,1.000A(0,0)B(0,2)Ah 5h 4h 1h 3h 2C DB 试问:(1).以上函数模型为何种平差方法的模型?(2).本题中, , , , , , 。

(10分)五.在图二所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标值(见图二,以“km ”为单位),以及,,,,为同精度观测值,其中。

若按坐标平差法对该网进行平差,试列出观测角的误差方程(设,、图二 以dm 为单位)。

(10分)六.有水准网如图三所示,网中A 、B 为已知点,C 、D 为待定点,为高差观测值,设各线路等长。

已知平差后算得,试求平差后C 、D两点间高差的权及中误差。

(10分)=n =t =r =c =u =s 0000330001'''=BP α000030002'''=BP αkm S BP 0.201=km S BP 0.202=721,,,L L L 65955906'''=L 6L 5102⨯=ρxˆyˆ51~h h )(482mm V V T =5ˆhABP 2h 5h 4h 1h 3h 2P 17654321PCBA图三七.在间接平差中,参数与平差值是否相关?试证明之。

误差理论和测量平差试卷及答案6套 试题+答案

误差理论和测量平差试卷及答案6套  试题+答案

《误差理论与测量平差》课程自测题(1)一、正误判断。

正确“T”,错误“F”。

(30分)1.在测角中正倒镜观测是为了消除偶然误差()。

2.在水准测量中估读尾数不准确产生的误差是系统误差()。

3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

4.观测值与最佳估值之差为真误差()。

5.系统误差可用平差的方法进行减弱或消除()。

6.权一定与中误差的平方成反比()。

7.间接平差与条件平差一定可以相互转换()。

8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

14.定权时σ0可任意给定,它仅起比例常数的作用()。

15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

二、用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

三、选择填空。

只选择一个正确答案(25分)。

1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

误差理论试题及答案

误差理论试题及答案

误差理论试题及答案一、选择题1. 误差的来源主要包括()。

A. 测量仪器的精度B. 测量方法C. 环境条件D. 所有以上答案:D2. 系统误差和随机误差的主要区别在于()。

A. 系统误差是可预测的,随机误差是不可预测的B. 系统误差是不可预测的,随机误差是可预测的C. 系统误差和随机误差都是可预测的D. 系统误差和随机误差都是不可预测的答案:A3. 测量误差的估计方法不包括()。

A. 标准差B. 均方根误差C. 绝对误差D. 误差传递答案:D二、填空题1. 测量误差可以分为________和________两种类型。

答案:系统误差;随机误差2. 误差的绝对值越小,表示测量结果的________越高。

答案:准确性三、简答题1. 简述如何减少测量误差。

答案:减少测量误差的方法包括:使用高精度的测量仪器,改进测量方法,控制环境条件,以及采用适当的数据处理方法,如取平均值等。

2. 描述误差传播的基本原理。

答案:误差传播的基本原理是,当一个量是由多个变量通过某种函数关系计算得到时,这些变量的测量误差会通过该函数关系传播到最终结果上。

误差传播的计算可以通过误差传播公式来进行,该公式考虑了各变量误差与函数关系之间的影响。

四、计算题1. 已知测量长度的仪器误差为±0.05cm,测量时间的仪器误差为±0.02s,计算速度的测量误差。

答案:假设长度为L,时间为T,速度为V=L/T,速度的相对误差可以通过误差传播公式计算得到。

速度的误差ΔV可以通过以下公式计算:ΔV = V * sqrt((ΔL/L)^2 + (ΔT/T)^2)其中ΔL = 0.05cm,ΔT = 0.02s。

将数值代入公式计算,得到速度的测量误差。

2. 已知一组数据的平均值为50,标准差为5,求这组数据的相对误差。

答案:相对误差可以通过以下公式计算:相对误差 = (标准差 / 平均值) * 100%将数值代入公式计算,得到相对误差的百分比。

误差理论 作业及参考答案

误差理论 作业及参考答案

第一章1、熟悉误差、精度、有效数字的基本概念和相关计算方法。

答案:略2、用两种方法分别测量L1=50mm,L2=80mm。

测得值各为50.004mm,80.006mm。

试评定两种方法测量精度的高低。

解:两种测量方法进行的测量绝对误差分别为:δ1=50.004-50=0.004(mm);δ2=80.006-80=0.006(mm);两种测量方法的相对误差分别为:δ1/L1=0.004/50=0.008%;和δ2/L2=0.006/80=0.0075 %;显然,测量L2尺寸的方法测量精度高些。

3、若某一量值Q用乘积ab表示,而a与b是各自具有相对误差f a和f b的被测量,试求量值Q的相对误差。

解:∵相对误差=绝对误差/真值=(测得值-真值)/真值∴ a = a0(1+f a);b = b0(1+f b);式中a0、b0分别为a、b的真值。

则Q =ab = a0(1+f a) b0(1+f b)≈a0 b0(1+f a+ f b)因此,Q的相对误差约为(f a+ f b)第二章1、在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

解:①求算术平均值②求残余误差:各次测量的残余误差依次为 0,0.0001,0.0003,0,-0.0004。

③求测量列单次测量的标准差用贝塞尔公式计算:用别捷尔斯公式计算:④求算术平均值的标准差⑤求单次测量的极限误差和算术平均值的极限误差因假设测量值服从正态分布,并且置信概率P=2Φ(t)=99%,则Φ(t)=0.495,查附录表1 正态分布积分表,得置信系数t=2.6。

故:单次测量的极限误差:算术平均值的极限误差:⑥求得测量结果为:2、甲、乙两测试者用正弦尺对一锥体的锥角α个各重复测量 5 次,测得值如下:α甲:7°2’20”,7°3’0”,7°2’35”,7°2’20”,7°2’15”,α乙:7°2’25”,7°2’25”,7°2’20”,7°2’50”,7°2’45”;试求其测量结果。

(完整版)误差理论与数据处理复习题及答案

(完整版)误差理论与数据处理复习题及答案

《误差理论与数据处理》一、填空题(每空1分,共20分)1.测量误差按性质分为 _____误差、_____误差和_____误差,相应的处理手段为_____、_____和_____。

答案:系统,粗大,随机,消除或减小,剔除,统计的手段2.随机误差的统计特性为 ________、________、________和________。

答案:对称性、单峰性、有界性、抵偿性3. 用测角仪测得某矩形的四个角内角和为360°00′04″,则测量的绝对误差为________,相对误差________。

答案:04″,3.1*10-54.在实际测量中通常以被测量的、、作为约定真值。

答案:高一等级精度的标准给出值、最佳估计值、参考值5.测量结果的重复性条件包括:、、、、。

测量人员,测量仪器、测量方法、测量材料、测量环境6. 一个标称值为5g的砝码,经高一等标准砝码检定,知其误差为0.1mg,问该砝码的实际质量是________。

5g-0.1mg7.置信度是表征测量数据或结果可信赖程度的一个参数,可用_________和_________来表示。

标准差极限误差8.指针式仪表的准确度等级是根据_______误差划分的。

引用9.对某电阻进行无系差等精度重复测量,所得测量列的平均值为100.2Ω,标准偏差为0.2Ω,测量次数15次,则平均值的标准差为_______Ω,当置信因子K =3时,测量结果的置信区间为_______________。

0.2/sqrt(15),3*0.2/sqrt(15)10.在等精度重复测量中,测量列的最佳可信赖值是_________ 。

平均值11.替代法的作用是_________,特点是_________。

消除恒定系统误差,不改变测量条件12.对某电压做无系统误差等精度独立测量,测量值服从正态分布。

已知被测电压的真值U 0 =79.83 V ,标准差σ(U )= 0.02V ,按99%(置信因子 k = 2.58)可能性估计测量值出现的范围: ___________________________________。

误差理论与测量平差基础试卷

误差理论与测量平差基础试卷

考试试卷…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………课程名称(含档次) 误差理论与测量平差基础 课程代号 0809021专 业 测绘工程 层次(本、专) 本 考试方式(开、闭卷) 闭 一、 正误判断(正确“T ”,错误“F ”每题1分,共10 分)。

1.已知两段距离的长度及中误差分别为128.286m ±4.5cm 与218.268m ±4.5cm ,则其真误差与精度均相同( )。

2.如果X 与Y 的协方差0xy σ=,则其不相关( )。

3.水准测量中,按公式i icp s =(i s 为水准路线长)来定权,要求每公里高差精度相同( )。

4.可用误差椭圆来确定待定点与待定点之间的某些精度指标( )。

5.在某一平差问题中,观测数为n ,必要观测数为t ,参数个数u <t 且不独立,则该平差问题可采用附有参数的条件平差的函数模型。

( )。

6.由于同一平差问题采用不同的平差方法得到的结果不同,因此为了得到最佳平差结果,必须谨慎选择平差方法( )。

7.根据公式()222220cos sin 0360E F θσθθθ=+≤≤得到的曲线就是误差椭圆( )。

8.对于特定的平面控制网,如果按间接平差法解算,则误差方程的个数是一定的( )。

9.对于同一个观测值来说,若选定一定权常数0σ,则权愈小,其方差愈小,其精度愈高( )。

10.设观测值向量,1n L 彼此不独立,其权为()1,2,,i P i n =,12(,,,)n Z f L L L =,则有22211221111Z n nf f f P L P L P L P ⎛⎫⎛⎫⎛⎫∂∂∂=+++ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭( )。

二、填空题(每空2分,共24分)。

1、设对某三角网进行同精度观测,得三角形角度闭合差分别为:3秒,-3秒,2秒,4秒,-2秒,-1秒,0秒,-4秒,3秒,-2秒,则测角中误差为 秒。

《误差理论与测量平差基础》考试试卷

《误差理论与测量平差基础》考试试卷

《误差理论与测量平差基础》考试试卷3一、填空题(每空3分,共15分)1、有一段距离,其观测值及其中误差为 ,该观测值的相对中误差为 (1) 。

2、已知常系数矩阵A 和B ,随机向量L 的方差阵LL D ,并有随机向量的函数L A x T,L B y T 。

x 和y 的互协方差阵为 (2) 。

3、已知独立观测值 T L L L 211,2 的方差阵160064LL D,单位权方差420 ,则其权阵LL P 为 (3) 。

4、设有某个物理量同精度观测了n 次,得),,2,1(n i L i ,若每次观测的精度为 ,权为p ,则其算术平均值L 的权为 (3) 。

5、已知某三角网中P 点坐标的协因数阵为22ˆˆ 2.100.25/"0.25 1.60XX Q cm,单位权方差的估值为22"0ˆ 1.0,位差的极大值方向E 为 (5) 。

二、单选题(每题3分,共15分)1、设有观测向量 TL L X 211,2 ,已知2ˆ1 L,4ˆ2 L ,2)'('2ˆ21 L L ,其协方差阵XX D 为( )。

A 、4222 , B 、 4222 , C 、44416 , D 、16224 2、设有观测向量L ,其协方差阵为432LLD 。

函数11233F L L L 的方差为( )。

A 、9 ,B 、41 ,C 、 17 ,D 、25mm m 153003、已知观测向量L 的权阵为5224LL P ,观测值的权1L p 和2L p 分别为( )。

A 、165和4, B 、41和51, C 、 165和41, D 、4和54、有图(1)所示的三角网,其中B 、C 为已知点,A 、D 、E 为待定点,观测角)10,,2,1( i L i 。

则网中必要观测数和多余观测数分别是( )。

A 、6和4,B 、4和6,C 、5和 5 ,D 、7和35、下列说法错误的是( )。

A 、一个平差问题中,必要观测的个数取决于该问题本身的性质,与观测值的多少无关。

误差理论练习题解答

误差理论练习题解答

误差理论部分常见题型一.填空1.根据测量结果的不同方法,测量可以分为 直接 测量和 间接 测量。

根据测量的条件不同,可分为 等精度 测量和 非等精度 测量。

2.测量的四要素包括:被测对象、计量单位、测量方法和测量精度。

3. 误差按其来源可以分为 设备 误差、 环境 误差、 人员 误差和 方法 误差。

4. 在测量中,绝对误差等于___测量值____ 减去___真值______ 。

5. 对于不连续读数的仪器,如数字秒表、分光计等,就以 最小分度 作为仪器误差。

6. 偶然误差的分布具有三个性质,即 单峰 性, 对称 性, 有界 性。

7. 测量结果的有效数字的位数由 被测量的大小 和 测量仪器 共同决定。

8. 表示测量数据离散程度的是 精密度 ,它属于 偶然 误差,用 标准 误差( 偏差 )来描述它比较合适。

二.选择1.下列说法中不正确的是 ( C ) A .误差是测量值与真值之差B .偏差是测量值与算术平均值之差C .通过一次测量即可求出标准偏差S x ,所以称之为单次测量的标准偏差D .我们在实验中是用平均值的标准偏差来作为随机误差的估算值 2.两个直接测量值为0.5136mm 和10.0mm ,它们的商是( B ) A .0.05136 B .0.0514 C .0.051 D .0.1 3.下列哪种情况引起的误差属于随机误差 ( D ) A .用空载时没有调平衡的天平称物体的质量. B .千分尺零点读数不为零,又未作修正.C .利用单摆公式测重力加速度时,单摆摆角的影响.D .测量钢丝直径时,测量结果的起伏 4.下列正确的说法是 ( A )A .多次测量可以减小偶然误差B .多次测量可以消除系统误差C .多次测量可以减小系统误差D .多次测量可以消除偶然误差 5. 下列数字中,哪个是三位有效数字? (A )A .0.0235B .2.350C . 0.2350D . 2350 6.选出消除系统误差的测量方法( D )A .镜像法B .放大法C .模拟法D .代替法 7.请选出下列说法中的正确者 ( B )A .一般来说,测量结果的有效数字多少与测量结果的准确度无关B .可用仪器最小分值度或最小分度值的一半作为该仪器的单次测量误差C .直接测量一个约1 mm 的钢球,要求测量结果的相对误差不超过5%,应选用最小分度为1mm 的米尺来测量D .实验结果应尽可能保留多的运算位数,以表示测量结果的精确度 8. 某螺旋测微计的示值误差为mm 004.0±,下列测量结果中正确的( B ) A .用它进行多次测量,其偶然误差为mm 004.0 B .用它作单次测量,可用mm 004.0±估算其误差 C .用它测量时的相对误差为mm 004.0± D .以上说法都不对 9. 多次测量可以( C )A .消除偶然误差B .消除系统误差C .减小偶然误差D .减小系统误差 10. 某同学计算得某一体积的最佳值为3415678.3cm V=(通过某一关系式计算得到),不确定度为3064352.0cm V =∆,则应将结果表述为 ( D )A .V=3.415678±0.64352cm 3B .V=3.415678±0.6cm 3C .V=3.41568±0.64352cm 3D .V=3.42±0.07cm 311. 在计算数据时,当有效数字位数确定以后,应将多余的数字舍去。

《误差理论与数据处理》考试题试题及答案

《误差理论与数据处理》考试题试题及答案

《误差理论与数据处理》考试题( 卷)一、填空题(每空1分,共计25分)1.误差的表示方法有 绝对误差 、 相对误差 、 引用误差 。

2.随机误差的大小,可用测量值的 标准差 来衡量,其值越小,测量值越 集中 ,测量 精密度 越高。

3.按有效数字舍入规则,将下列各数保留三位有效数字:6.3548— 6.35 ;8.8750— 8.88 ;7.6451— 7.65 ;5.4450— 5.44 ;547300— 5.47×105 。

4.系统误差是在同一条件下,多次测量同一量值时,误差的 绝对值和符号 保持不变,或者在条件改变时,误差 按一定规律变化 。

系统误差产生的原因有(1)测量装置方面的因素、(2) 环境方面的因素 、(3) 测量方法的因素 、(4) 测量人员方面的因素 。

5.误差分配的步骤是: 按等作用原则分配误差 ; 按等可能性调整误差 ; 验算调整后的总误差 。

6.微小误差的取舍准则是 被舍去的误差必须小于或等于测量结果总标准差的1/3~1/10 。

7.测量的不确定度与自由度有密切关系,自由度愈大,不确定度愈 小 ,测量结果的可信赖程度愈 高 。

8.某一单次测量列的极限误差lim 0.06mm σ=±,若置信系数为3,则该次测量的标准差σ= 0.02mm 。

9.对某一几何量进行了两组不等精度测量,已知10.05x mm σ=,20.04x mm σ=,则测量结果中各组的权之比为 16:25 。

10.对某次测量来说,其算术平均值为15.1253,合成标准不确定度为0.015,若要求不确定度保留两位有效数字,则测量结果可表示为 15.125(15) 。

二、是非题(每小题1分,共计10分)1.标准量具不存在误差。

( × ) 2.在测量结果中,小数点的位数越多测量精度越高。

( × ) 3.测量结果的最佳估计值常用算术平均值表示。

( √ ) 4.极限误差就是指在测量中,所有的测量列中的任一误差值都不会超过此极限误差。

误差理论与数据处理试卷及答案

误差理论与数据处理试卷及答案

i
(pa)
101991 .33 8 101858 .01 6 101724 .69 4 101591 .36 2
x
pV
i 1 i m
m
2 xi
( m 1) p i
i 1
86.95
2、锰铜标准线圈的电阻—温度公式为:Rt=R20+ t 20 t 20 。试中:Rt—温度为 t℃时的电阻值;R20—温度
6 2 2 4
6 又因为: x 10 R ,根据公式可得: 0.5 10 Rt 20 <0.5 x 0.5 10
4
R
所以: 10 C <t< 30 C 。 3、对某一量进行十次重复测量,测得数据为:20.42,20.43,20.40,20.43, 20.42 ,20.43 20.39 ,20.43 ,20.42 ,20.41,已知测 量的已定系统误差为 =-0.6,误差分量及其相应的传递系数如下表列。若各误差均服从正态分布,试求该量的最可信赖值及其极限误差。 (mm)(10 分) 序 号 1 2 3 4 5 6 7 8 极限误差 随机误差 0.5 — — — 0.1 — 0.3 — 未定系统误差 — 1.5 1.0 0.5 — 2.2 — 1.8 误差传递系数 1.0 2.0 2.3 1.5 1.0 2.2 1.4 1.0
f1
,已测得物镜主焦距 f1 1 19.8 0.2cm ,目镜的主焦距 f 2 2 0.8 0.05cm ,求放大率 d 及其
6.4547 (mm)
4、望远镜的放大率 d 标准偏差。 (10 分) 解: d
f2
f1
f2
=
19 .8 =24.75(cm) 0 .8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《误差理论与数据处理》试卷一一.某待测量约为80 μm,要求测量误差不超过3%,现有 1.0 级0-300μm 和2.0 级0-100 μm 的两种测微仪,问选择哪一种测微仪符合测量要求?(本题10 分)二.有三台不同的测角仪,其单次测量标准差分别为: ⎛ 1=0.8′, ⎛ 2=1.0′,⎛ 3=0.5′。

若每一台测角仪分别对某一被测角度各重复测量4 次,并根据上述测得值求得被测角度的测量结果,问该测量结果的标准差为多少?(本题10 分)三.测某一温度值15 次,测得值如下:(单位:℃)20.53, 20.52, 20.50, 20.52, 20.53, 20.53, 20.50, 20.49, 20.49,20.51, 20.53, 20.52, 20.49, 20.40, 20.50已知温度计的系统误差为-0.05℃,除此以外不再含有其它的系统误差,试判断该测量列是否含有粗大误差。

要求置信概率P=99.73%,求温度的测量结果。

(本题18 分)四.已知三个量块的尺寸及标准差分别为:l1 ± ⎛ 1 = (10.000 ± 0.0004) mm;l 2 ± ⎛ 2 = (1.010 ± 0.0003) mm;l3 ± ⎛ 3 = (1.001 ± 0.0001) mm求由这三个量块研合后的量块组的尺寸及其标准差( 〉 ij = 0 )。

(本题10 分)五.某位移传感器的位移x与输出电压y的一组观测值如下:(单位略)x y10.105150.5262101.0521151.5775202.1031252.6287设x无误差,求y对x的线性关系式,并进行方差分析与显著性检验。

(附:F0。

10(1,4)=4.54,F0。

05(1,4)=7.71,F0。

01(1,4)=21.2)(本题15 分)六.已知某高精度标准电池检定仪的主要不确定度分量有:①仪器示值误差不超过 ± 0.15μv,按均匀分布,其相对标准差为25%;②电流测量的重复性,经9 次测量,其平均值的标准差为0.05 μ v;③仪器分辨率为0.10 μv,按均匀分布,其相对标准差为15% 。

求该检定仪的不确定度分量,并估计其合成标准不确定度及其自由度。

(本题10 分)七.由下列误差方程,求x、y的最佳估计值及其精度(单位略)。

(本题12 分)v1 = 5.1 - 2x - yv2 = 1.1- x + yv3 = 7.4 -4 x + yv4 = 5.9- x- 4 y八.简答题(3 小题共15 分)1.在实际测量中如何减小三大类误差对测量结果的影响?2.简述系统误差合成与随机误差合成的方法。

3.平稳随机过程的必要条件与各态历经随机过程的充分条件是什么?其特征量的估计方法有何不同?分别写出它们的特征量均值与方差的估计公式。

♠x + 2 y = 80.01 ( 《误差理论与数据处理》试卷二一用电压表和电流表来测量某一纯电阻性电子器件的功耗时,已知用电压表测得器件上的直流电压降是 12.00V ,其测量极限误差是 ± 0.04V ,用电流表测 得通过器件的电流是 2.00A ,其测量极限误差是 ± 0.02 A 。

另外,电压表和电 流表分别存在 0.05V 和 - 0.04 A 的系统误差。

测量时,电压和电流的测量结果相互独立,试确定电器的功耗及其测量极限误差。

(本题 12 分)二、用一光功率计对某激光器的输出功率进行重复性测量,测得的结果如下:(单位:mW )200.7 200.9 200.6200.6 200.6 200.7200.5 201.9 200.5201.0 200.7 200.6200.8 200.8 200.8已知功率计的系统误差为 0.2mW ,除此以外不再含有其它的系统误差。

求当置信 概率为 99.73%时激光器的输出功率及其极限误差。

(本题 20 分)三、对 x 和 y 两个量进行组合测量,测量方程如下:♣x + y = 50.04 ♠2 x + y = 70.02 ♦♠♥2 x + 2 y = 100.05上述四次测量的测量精度相同,确定 x 、y 的最佳估计值及其精度。

本题 18 分)四、对一温度测量仪进行标定,被测温度 x 由标准场提供,其误差可忽略不计。

通过试验得到的被测温度 x 与测温仪的输出电压 y 的数值如下:确定y 对 x 的线性回归方程表达式,并进行方差分析与回归方程的显著性检验; (附:F 0。

10(1,4)=4.54,F 0。

05(1,4)=7.71,F 0。

01(1,4)=21.2)(本题 20 分)五、在光学计上用量块组作为标准件,重复测量圆柱体直径 9 次,已知单次测量的标准差为 0.3 微米,用算术平均值作为直径测量结果。

量块组由三块 量块组成,各量块的标准不确定度分别为 0.15 微米、0.10 微米、0.08 微米,其相对标准差均为25%,求直径测量结果的合成标准不确定度及其自由度。

(本题10 分)六、简答题(4 小题共20 分)(1) 简述仪器的误差来源,并就你熟悉的仪器加以举例说明。

(本题6 分)(2) 简述系统误差的判断方法及其适用对象。

(本题5 分)(3) 简述误差分配的依据和基本步骤。

(本题4 分)(4) 简述微小误差的判别方法及其应用?(本题5 分)一、 由式 S = ab sin α计算三角形的面积,式中 a, b 是三角形 〈 角的两邻边。

合肥工业大学仪器科学与光电工程学院误差理论与数据处理1 2经测得 a = 20.3 ± 0.1cm , b = 10.5 ± 0.2cm , α = 40.36'±24' ,设 a ,b, α的测量相互独立,试求面积 S 的测量结果及极限误差。

(本题 10 分)二、 对某量进行了 12 次测量,测得值如下:(单位:mm )25.64, 25.65, 25.62, 25.40, 25.67, 25.63,25.66, 25.64, 25.63, 25.66, 25.64, 25.60。

若这些测得值存在不变的系统误差 0.02mm ,试判断该测量列是否含有粗大 误差,并求被测量的测量结果(要求置信概率 P=99.73%)。

(本题 15 分) 三、 甲乙两人分别对某地的重力加速度进行了测量。

甲共测量 16 次,平均值为9.808m/s 2,单次测量标准差为 0.015m/s 2;乙共测量 25 次,平均值为 9.810m/s 2,其单次测量标准差为 0.020m/s 2。

若由甲乙两人的测量数据计算 测量结果,求该测量结果及其标准差。

(本题 15 分)四、 由下列误差方程,求 x 、 y 的最佳估计值及其精度(单位略)。

(本题 15 分)v 1 = 2.9 - 3x - y v 2 = 0.9 - x + 2 y v 3 = 1.9 - 2 x + 3 yP 1 = 1 P 2 = 2P 3 = 3五、 通过试验测得某一铜棒在不同温度下的电阻值:t / 0 C R / ∧ 19.1 76.30 25.0 77.80 30.1 79.75 36.0 80.8040.0 82.3545.1 83.90设 t 无误差,求 R 对 t 的线性关系式,并进行方差分析与显著性检验。

(附:F 0.10(1,4)=4.54,F 0.05(1,4)=7.71,F 0.01(1,4)=21.2)(本题 15 分)六、 已知某高精度标准电池检定仪的主要不确定度分量有:①仪器示值误差不超过 ± 0.15 ⎧ v ,按均匀分布,其相对标准差为 25%;②输入电流的重复性,经9 次测量,其平均值的标准差为0.05 v;求该检定仪的标准不确定度分量,并估计其合成标准不确定度及其自由度。

(本题10 分)七.简答题(本题20 分,任选 3 题)1. 在实际测量中如何减小三大类误差对测量结果的影响?2. 简述微小误差的判别方法及其应用?3. 系统误差合成与随机误差合成的方法有何区别?4. 简述动态测试数据的分类,分析各类数据的特点与性质。

5. 平稳随机过程的必要条件与各态历经随机过程的充分条件是什么?其特征量的估计方法有何不同?分别写出它们的特征量均值与方差的估计公式。

vv 《误差理论与数据处理》试卷一参考答案一. 某待测量约为 80 ⎧ m ,要求测量误差不超过 3%,现有 1.0 级 0-300 ⎧ m 和2.0 级 0-100 ⎧ m 的两种测微仪,问选择哪一种测微仪符合测量要求? (本题 10 分)解: 测量允许误差: 80 ⋅ 3% = 2.4⎧m1.0 级测微仪最大示值误差: 300 ⋅1% = 3⎧m2.0 级测微仪最大示值误差:100 ⋅ 2% = 2⎧m 答:2.0 级 0-100 ⎧ m 的测微仪符合要求。

二. 有三台不同的测角仪,其单次测量标准差分别为: ⎛ 1=0.8′, ⎛ 2 =1.0′,⎛ 3 =0.5′。

若每一台测角仪分别对某一被测角度各重复测量 4 次,并根据 上述测得值求得被测角度的测量结果,问该测量结果的标准差为多少?(本题 10 分)解:p 1 : p 2 : p 3 =1 2 1 1 2 2 1 2 1 1 1: : 64 100 25= 25 : 16 : 64⎛ x = ⎛ ip i p i⎛ 2 4 p 2p 1 + p 2 + p 3 1 2⋅16 25 + 16 + 64 = 0.22 答:测量结果的标准差 ⎛ x = 0.22 。

三. 测某一温度值 15 次,测得值如下:(单位:℃)20.53, 20.52, 20.50, 20.52, 20.53, 20.53, 20.50, 20.49, 20.49, 20.51, 20.53, 20.52, 20.49, 20.40, 20.50已知温度计的系统误差为-0.05℃,除此以外不再含有其它的系统误差,试判 断该测量列是否含有粗大误差。

要求置信概率 P=99.73%,求温度的测量结 果。

(本题 18 分)解: (1)已定系统误差: ⊗ = 0.05 C(2) x = 20.504 , ⎛ =i 15 1= 0.033(3) 因为: v 14 = 20.40 20.504 = 0.104 > 3⎛所以:第 14 测量值含有粗大误差,应剔除。

(4) 剔除粗大误差后, x 2 = 20.511, ⎛ 2 = i14 1= 0.016 ,。

相关文档
最新文档