《高盐废水处理》word版
高含盐废水处理
高含盐废水处理由于人口的不断增长和经济的快速发展,工业、农业的污染日益严重,加剧了水资源短缺的矛盾。
所以,从事废水处理的专业公司成为当今一个新兴产业。
当今世界上约有1/ 3的国家存在废水排放问题,而我国是世界上第一产盐大国,也是世界第二大产油国。
随着化学工业的迅速发展,我国每年产生的含盐废水在1000万t以上,占全国工业废水排放量的10%左右,其中绝大多数为高含盐废水。
这些高含盐废水有相当部分直接排入河道,既污染了环境,又造成浪费。
因此,治理高含盐废水势在必行。
但是,高含盐废水是指PH在9-11之间的废水。
它是一种无机盐类溶液,而且这类废水中含有各种各样的微量杂质,对工艺流程及设备造成很大的冲击负荷,使生化反应效果变差,甚至造成整个系统崩溃。
目前处理高含盐废水的方法主要有:浓缩法、蒸发结晶法、离子交换法等。
但这几种方法对高含盐废水都有一定的局限性,无法全部解决高含盐废水的处理问题。
随着化学工业的发展,高含盐废水的数量越来越多,对其进行有效地处理已经成为工业废水处理中的关键。
下面介绍几种常见的高含盐废水的处理技术。
现在针对高含盐废水进行处理主要采用物化法,即将含盐废水与一定的药剂混合均匀后进行搅拌,然后加热或进行曝气,利用物理的作用将其分离出去,这样可以去除废水中的微小颗粒及其它污染物。
例如高氯酸钾(KClO)法、硫酸亚铁法、重铬酸盐法、聚合氯化铝法等。
化学法处理高含盐废水主要是向废水中投加化学药剂,然后利用化学反应将废水中的微量杂质转化为无害物质,最终达到脱色、去臭、降低pH值等目的。
例如絮凝沉淀法、化学氧化法、湿式氧化法、混凝沉淀法等。
物理法包括了膜分离技术、离子交换技术、微波处理技术、磁力分离技术等,适用于废水中的微量元素的回收再利用。
2、生化处理法。
生物处理就是利用微生物进行生命活动,使得废水中的有机物被分解为简单的物质或转化成对人体有用的无机物,这种处理方法对水量的波动比较敏感,易于控制。
高盐废水处理
高盐废水处理工艺高含盐有机废水的处理是国内外研究的难点和热点之一,国内外对高盐废水的研究主要有生物法和物理化学方法。
生物法在处理高盐废水时表现出较高的有机物去除率,但采用生物法处理高盐废水通常需要较长的驯化期,且废水中盐分越高驯化污泥所需的时间越长;另外,微生物对环境的改变敏感,盐度的突变通常会对处理系统产生严重的干扰。
物理化学方法主要有蒸发法、电化学方法、离子交换法、吸附、膜分离技术等,有效结合物理、化学方法与生物法将是未来高盐废水处理的重要方向之一。
现在依托一案例,简单介绍高盐废水的处理方法:DTRO膜法+蒸发结晶法,该工艺已经成功应用于众多高盐废水零排放项目,该工艺处理量大,成本低,产水回用率高。
碟管式反渗透(DTRO技术)碟管式膜组件:DT膜技术即碟管式膜技术,分为DTRO(碟管式反渗透)和DTNF(碟管式纳滤)两大类,是一种专利型膜分离设备。
它的膜组件构造与传统的卷式膜截然不同,原液流道:碟管式膜组件具有专利的流道设计形式,采用开放式流道,料液通过入口进入压力容器中,从导流盘与外壳之间的通道流到组件的另一端,在另一端法兰处,料液通过8个通道进入导流盘中,被处理的液体以最短的距离快速流经过滤膜,然后180º逆转到另一膜面,再从导流盘中心的槽口流入到下一个导流盘,从而在膜表面形成由导流盘圆周到圆中心,再到圆周,再到圆中心的双”S”形路线,浓缩液最后从进料端法兰处流出。
DT组件两导流盘之间的距离为4mm,导流盘表面有一定方式排列的凸点。
这种特殊的水力学设计使处理液在压力作用下流经滤膜表面遇凸点碰撞时形成湍流,增加透过速率和自清洗功能,从而有效地避免了膜堵塞和浓度极化现象,成功地延长了膜片的使用寿命;清洗时也容易将膜片上的积垢洗净,保证碟管式膜组适用于处理高浑浊度和高含砂系数的废水,适应更恶劣的进水条件。
透过液流道:过滤膜片由两张同心环状反渗透膜组成,膜中间夹着一层丝状支架,使通过膜片的净水可以快速流向出口。
高盐废水深度处理
高盐废水深度处理目前,水资源的短缺和水体污染已严重制约了我国的经济发展、社会进步和人民生活水平的提高,解决水体污染问题非常迫切。
在一些干旱地区和沿海地区,水资源短缺特别是水质性短缺问题尤为严重,为了缓解淡水资源日益紧缺的局面,一些沿海地区已经推行海水直接利用于工业生产和生活用水,如在香港冲厕海水量已达413×105 m3·d-1,约为全港淡水总用量的17%,这些活动导致排放的废水中含有大量的无机盐。
另外,一些工业如杀虫剂、除草剂、有机过氧化物、制药和染料等化学品的制造业,淹制品、海产品加工厂等,其生产产生的废水中都含有大量的无机盐。
含盐废水的排放带来十分严重的环境污染,特别是工业含盐废水,不仅受到本身高浓度盐的限制,还含有大量的有毒、难降解有机物。
这些废水都由于含盐量高不能用传统的生化法处理或处理后达不到排放标准,更是无法解决盐水回收的问题。
1 高盐废水产生途径1.1海水代用排放的废水所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。
在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。
发达国家年海水冷却水用量已经超过了1000亿m3。
目前我国海水的年利用量为60多亿m3。
青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。
目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。
天津年利用海水达到18亿m3。
此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。
对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。
城市生活用水。
在城市生活中,海水可以替代淡水作为冲厕水。
目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。
而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。
《高盐废水处理》word版
高盐废水处理高盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
一、高浓度含盐废水处理的生物流程高含盐废水生物处理流程的选择:高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。
(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2•h)左右,或用中心管来增加提升和搅拌能力。
高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。
含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。
在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。
在处理盐度波动较大的废水的时候,仍然需要设置调节池。
有高浓度含盐废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。
高盐度废水处理资料
2010-03-19 11:36:43| 分类:小知识| 标签:|字号大中小订阅在化工、制药、燃料的生产过程中,产生的废水除含有高浓度的有机物外,还含有高浓度的盐类物质,采用生物法进行处理,高浓度的盐类物质对微生物具有抑制作用,采用物化法处理,投资大,运行费用高,且难以达到预期的净化效果。
采用生物法对此类废水进行处理,仍是目前国内外研究的重点。
本文介绍了盐浓度对微生物的抑制作用,嗜盐菌的特性、培驯方法,并介绍了采用生物法处理含盐有机废水的研究及应用现状。
1 盐浓度对生物处理的影响高含盐量有机废水的有机物根据生产过程不同,所含有机物的种类及化学性质差异较大,但所含盐类物质多为Cl-、SO42-、Na+、Ca2+等盐类物质。
虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。
但是若这些离子浓度过高,会对微生物产生抑制和毒害作用,主要表现:盐浓度高、渗透压高、微生物细胞脱水引起细胞原生质分离;盐析作用使脱氢酶活性降低;氯离子高对细菌有毒害作用;盐浓度高,废水的密度增加,活性污泥易上浮流失,从而严重影响生物处理系统的净化效果。
高盐环境对生化处理有抑制作用,表现为微生物代谢酶活性受阻,致使生物增长缓慢, 产率系数低。
早在1940年,Ingram[1]对杆菌研究发现,当NaCl 浓度>10 g/L时,能够使微生物的呼吸速率降低。
Lawton[2]研究表明,当NaCl 浓度>20 g/L时,会导致滴滤池BOD去除率降低;在此浓度下,活性污泥法的BOD去除率降低,同时污泥中的絮凝性变坏,出水SS升高,硝化细菌受到抑制。
处理含高浓度卤代有机物废水的实验表明,BOD的去除率随着盐浓度的增加而降低。
Davis[3]采用活性污泥系统,处理含盐浓度高达12%的废水中试实验结果证明,废水中的TOC去除率较低,且实验运行相当困难。
Kargi[4]等利用间歇生物反应器研究了盐的抑制作用及动力学常数,Shim[5]等研究了高盐环境下化工废水的生物处理,Li[6]等讨论了盐度对二阶段接触氧化法处理含盐废水的影响。
高盐废水的处理(曹国民)
76.9 mg/L 3.05×103mg/L
DOPO废水的主要特点
z 可生化性低:废水B/C均很低,且水中盐分含量 高。
z 有害物质浓度高:水中挥发酚含量很高,对于 生物毒性很大,不利于生化处理。
时硫酸消耗量非常大。
蒸发脱盐中试装置
蒸发脱盐中试结果
序 号
蒸发器进水 水量 盐分 COD (L) (g/L) (mg/L)
蒸汽冷凝水 水量 COD (L) (mg/L)
离心母液 水量 盐分 COD (L) (g/L) (mg/L)
1 80
128
43220 52 19216 11
203 139488
高盐有机废水是目前最难处理的一类工业废水。
几种高盐废水的水质
二、高盐废水的预处理---吹脱法
1. 偏二氯乙烯(VDC)废水的处理
上海某公司在偏二氯乙烯合成过程中有一步皂化
反应,期间会产生一股高盐废水(简称皂化废水),其主
要成分如下:
1,1,1-三氯乙烷: 0.03%; 1,1,2-三氯乙烷: 0.01%; 1,1,2,2-四氯乙烯: 0.09%; 偏二氯乙烯VDC: 0.29%;
脱附剂流速:1-2 BV/h,
吸附率>99%,COD去除率96%,脱附率92.8
%,
高浓度脱附液可送到生产工段中回收水杨酸
和苯酚,低浓度脱附液可套用,实现废水的有效处理与综
合利用。
二、高盐废水的预处理---蒸发脱盐
(1) 自然蒸发 制革工厂中皮毛浸泡工段产生的含盐很高的这股废
水,可单独采用暴晒蒸发的方法处理。但自然蒸发仅适用 于土地资源丰富、降雨少、光照充足、气候干燥的地区, 如我国北方部分地区。不过,自然蒸发有可能引发二次污 染(空气污染、土壤和地下水污染)。(盐场晒盐)
高盐废水处理方法
高盐废水处理方法高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
高盐废水如何处理,首先我们对其不同情况做一个简单的分析。
1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
2、稀释进水盐度。
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。
其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。
高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解:(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。
高盐度废水处理
离心废水盐度处理方案一、离心废水基本情况我公司的离心发酵液产生于发酵工艺,该工艺主要是以玉米浆、味精和葡萄糖为主要原料,用特别的菌种进行发酵,离心发酵液具有COD浓度高,氨氮浓度高,盐度含量高的特点,而且该废水不能长时间储存,容易二次发酵,产生恶臭气味。
目前车间中罐条件下每天产生30T离心废水,大罐条件下每天产生60T。
二、该部分废水处理现状离心废水系列指标如下:表1:离心废水指标而污水站设计进水指标如下:表2:污水站设计进水指标由以上两表可知,这部分废水的氨氮已完全超出设计指标,导致目前污水处理站无法处理,另外可知离心发酵液的盐度较高,高盐度对生物处理系统有很大影响。
比如在好氧生物处理中,高盐度会导致微生物的质壁分离以至失活,降低有机物去除率;而在厌氧处理系统中,高盐度也会会对厌氧池中产甲烷菌产生抑制,从而影响厌氧处理效果。
三、国内外对高盐度废水处理方法表3:国内外高盐度废水处理方法一览表四、公司对离心废水的处理计划计划一:将这部分高浓度废水送至富驰磷肥厂,作为制作磷肥球磨步骤的添加水由于制作中球磨步骤所需添加水对盐度没有特别要求,故不需要对离心废水的盐度进行预处理。
公司计划在10月份完成这部分试验,试验目前还在前期准备中,主要针对两大问题:一是保证废水的新鲜度;二是保证废水供应时间连续性。
如果试验生产出来的产品没有异味或者其他质量问题,那么我公司将会长期用此方法处理离心废水,因此不用考虑盐度的处理。
如果试验结果表明该方法不行,则考虑实施以下计划。
计划二:将这部分高浓度废水作为园区污水处理厂废水处理的碳源由于考虑到离心废水的盐度对园区污水处理厂生物处理产生抑制作用,故需要对废水进行预处理,方案如下:1、请园区污水处理厂项目组提供一个可行的盐度范围(以及其它污染因子COD、氨氮的范围);2、由于该离心废水的盐度值是委托武药污水处理站代为测定,采用的是导电率测定方法,并不能直接反应导致废水盐度高的主要组成成分,所以需要取样分析废水主要成分。
高含盐污水的处理技术
高含盐污水的处理技术高含盐污水是指含有较高盐分、氯离子或溴离子的工业废水或海水淡化后的废水。
这类污水不仅对环境造成严重污染,还会危害水质安全、影响生态系统和人类健康。
因此,如何有效地处理高含盐污水已成为当今社会的一个亟待解决的问题。
从理论上来说,高含盐污水的处理与一般废水的处理相似。
但实际上,由于高含盐污水中含有大量的氯离子或溴离子,这会在化学反应中造成很大的影响,因此需要针对其特性展开研究,制订出适合的处理技术。
目前,对于高含盐污水的处理技术主要分为物理法、化学法和生物法三类。
一、物理法处理物理法处理高含盐污水的主要手段为逆渗透技术和电渗析技术。
这两种技术使用高压或电势差将污水推向某一方向,使水分子逃脱盐分的束缚,从而实现去除盐分的目的。
逆渗透技术是将高含盐的污水通过半透膜,使清水通过膜而盐分被留在污水侧,从而减少或去除污水中的盐分。
它通过高压、低温(水温过高会降低膜的使用寿命)和高浓度废液的反洗等手段实现处理。
电渗析技术主要利用了电解在化学反应中生成的气体或在电位差的推动下,将阳离子或阴离子不断被驱赶到对应的电极上,从而实现去除盐分的目的。
二、化学法处理化学法主要利用了化学反应去除污水中的盐分。
根据物理状态的不同,化学法可以分为氧化还原法、沉淀法和蒸发结晶法等。
氧化还原法处理原理是采用化学反应溶解污水中的特定物质来减少或去除其盐分。
像氢化合物类物质,如硫酸、硝酸和氯酸等,与氧化物类物质,如过氧化氢、氢氧根等,在一定的条件下反应生成的物质是大量的水分子和盐分的离子。
沉淀法主要是利用化学药剂与污染物发生化学反应,从而使污染物形成不溶的沉淀物质,然后用膜过滤法或离心机分离沉淀物质,以达到减少或去除盐分的目的。
蒸发结晶法则是将废水加热,使水分子蒸发,盐分被凝结,在需要的瞬间通过冷却处理,将盐分留在器壁上。
三、生物法处理在合适的温度和pH值下,一些适应高盐环境的细菌可以利用污水中的有机物质来生长和繁殖,通过它们的代谢过程将废水中的盐分降低或去除。
污水处理中的高盐废水处理技术
海水淡化
随着全球水资源短缺问题日益严重,海水淡化成为解决人类 用水需求的重要途径。然而,海水淡化过程中会产生大量的 高盐废水。
高盐废水排入环境后,不仅对生态环境造成危害,还会对淡 水资源的供给产生影响。因此,如何有效处理这些高盐废水 成为海水淡化技术发展的关键问题之一。
高盐废水对城市污水处理厂的生物处理过程产生不利影响,如抑制微生物的生长和代谢,降低污水处 理效率。同时,高盐废水也会对城市污水处理厂的出水水质产生影响,导致出水水质不稳定,难以达 到排放标准。
02
高盐废水处理技术
物理法
01
02
03
反渗透法
利用半透膜,在压力作用 下使水分子和无机离子透 过膜,而盐类物质被截留 ,从而实现脱盐。
污水处理中的高盐废水处理 技术
汇报人:可编辑 2024-01-05
contents
目录
• 高盐废水来源及危害 • 高盐废水处理技术 • 高盐废水处理技术应用与案例分析 • 高盐废水处理技术经济性分析
01
高盐废水来源及危害
工业生产排放
工业生产过程中,如石油化工、制药 、造纸等,会产生大量的高盐废水。 这些废水中的盐分主要来源于生产过 程中添加的化学物质和反应副产物。
02
随着膜技术的不断发展,膜分离技术将在高盐废水处理中发挥越来越 重要的作用。
03
高级氧化技术具有强氧化能力和广谱性,将成为高盐废水处理领域的 研究热点。
04
生物法在高盐废水处理中具有成本低、能耗小、无二次污染等优势, 未来将得到更广泛的应用。
04
高盐废水处理技术经济性 分析
高盐废水处理方案
高盐废水处理方案高盐废水处理方案1. 简介高盐废水是指含有高浓度盐类物质的废水。
由于盐类物质的存在,高盐废水处理相对复杂。
本文档将介绍一种高盐废水处理方案,旨在有效降低废水中盐类物质的浓度,使其符合环境排放标准。
2. 方案概述本方案采用以下步骤处理高盐废水:- 预处理:去除悬浮物和沉积物。
- 逆渗透反洗:采用逆渗透技术去除盐类物质。
- 浓缩处理:对逆渗透膜的浓缩液进行处理。
- 残渣处理:处理浓缩过程中产生的残渣。
3. 预处理预处理旨在去除高盐废水中的悬浮物和沉积物,以减少对后续处理设备的损坏和效果的影响。
常用的预处理方法包括:物理沉淀、筛网过滤、调节pH值等。
4. 逆渗透反洗逆渗透是一种通过半透膜分离溶质与溶剂的方法,能有效去除盐类物质。
逆渗透设备主要包括膜组件、沉淀池、高压泵、压力容器等。
在逆渗透处理过程中,由于盐类物质的堆积会影响处理效果,需要定期进行反洗操作,清理膜组件。
反洗过程包括冲洗、反吹、排污等步骤,旨在恢复膜组件的通透性。
5. 浓缩处理逆渗透反洗产生的废液需要进行浓缩处理,以减少处理后的废液体积。
常用的浓缩处理方法包括:蒸发浓缩、结晶、压滤等。
在浓缩处理过程中,需要注意对废液中有价值物质的回收利用。
6. 残渣处理浓缩处理过程中产生的残渣需要进行处理,以减少对环境的影响。
常见的残渣处理方法有:固化、填埋、焚烧等。
选择合适的残渣处理方法时,需要考虑残渣的性质和环境要求。
7. 控制措施为了确保高盐废水处理方案的有效运行,需要采取以下控制措施:- 定期监测废水的盐类物质浓度,以及处理设备的运行状态。
- 保持处理设备的正常运行,及时进行维护和更换膜组件。
- 严格执行废水处理相关法规和标准,确保废水排放符合环境要求。
- 对废水处理过程中产生的化学品、残渣等进行妥善管理和处理。
8. 结论本文介绍了一种高盐废水处理方案,通过预处理、逆渗透反洗、浓缩处理和残渣处理等步骤,可以有效降低废水中的盐类物质浓度,使其达到环境排放标准。
处理高含盐废水
处理高含盐废水
随着我国经济的快速发展,高盐废水排放量的增大,使得高盐废水处理难度的加大,如何选择高盐废水处理工艺呢?高盐废水处理工艺有哪些优缺点呢?该如何对这些高盐废水进行处理呢?
高盐废水是指含有有机物和至少3.5%(质量浓度)的总溶解固体物(TDS)的废水。
这种废水来源广泛,一类是化工、制药、石油、造纸、奶制品加工、食品罐装等多种工业生产过程中,会排放大量废水,水中不但含有很多高浓度的有机污染物,伴随着大量钙、钠、氯、硫酸根等离子。
另一类是为了充分利用水资源,部分沿海城市直接利用海水作为工业生产用水或是冷却水。
高盐废水中除了含有有机污染物外,还含有大量的无机盐,如Cl-,SO42-,Na+,Ca2+等离子。
这些高盐、高有机物废水若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水生产极大的危害。
但常规处理方法中盐水浓度不能过高,亟待开发处理更高浓度的高盐废水的工艺技术。
20210922高盐废水处置最终版
环氧氯丙烷皂化废水处置系统技改方案一、实施必要性和目的:环化塔反映后排出来的钙液废水浓度在11-12%左右,该浓度的钙液废水经压滤后,接入无水氯化钙系统蒸发提浓造粒,制取粒状无水氯化钙。
通过近一年的调试开车,该系统目前存在以下问题:一、沸腾炉燃煤量不足、易结焦,二、无水氯化钙系统的蒸发处置量过小,3、流化床极易死床、结块,4、返料系统容易卡堵,五、烟气排放及喷淋除尘系统不太合理、对周边环境污染较大,六、系统风机因气相杂质较多、常常因摩损破坏动平稳,7、钙液泡沫多、杂质较多易堵管,八、设备选型及材料较差、造成机械故障较频繁,以上问题致使该系统无法持续平稳运行,且正常运行时最高只能处置8m3/h 的钙液,无法知足环氧项目设计产能产生的28m3/h的钙液的处置量,造成目前钙液废水积存,环氧前半部无法开车生产。
长期处于半停产状态。
二、存在问题分析:1)原液钙液浓度低,且蒸发器蒸发效率差,致使钙液在无水氯化钙系统第一时期的浓缩时,钙液量跟不上。
2)钙液中有机杂质多、COD较高(降低皂化废水COD指标的技术改造已经实施,闪蒸罐已就位,蒸汽管改造尚未完成),致使其在高温蒸发时产生大量的泡沫,容易堵塞系统,且造成产品溶水后含泡沫多、阻碍客户利用。
3)流化床容易死床,当流化床的热风温度高于300度时,流化床内床料容易结焦、碳化;当流化床排风温度低于180度时,床料又不干燥,容易粘结结块。
造粒系统调试最正确状态时只能开3—6个喷嘴(皂化废液开3、4个、纯钙液开五、6个,共计13个喷头),产量远低于设计值。
4)流化床返料搅笼容易卡死、跳停,处置不及时或不妥会带来一系列问题。
5)旋风分离器过小、分离能力差,系统排风带钙粉多,致使其在湿法除尘器布风板处堵死、堵塞,返料池泡沫外溢。
6)系统处置钙液量过小,达不到系统配套的要求,目前钙液处置量最高只有8m3/h,无法知足前半部生产的要求。
7)烟气排风,热风排风含粉尘多,造成周边环境污染、系统风机损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高盐废水处理高盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
一、高浓度含盐废水处理的生物流程高含盐废水生物处理流程的选择:高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。
(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2•h)左右,或用中心管来增加提升和搅拌能力。
高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。
含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。
在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。
在处理盐度波动较大的废水的时候,仍然需要设置调节池。
有高浓度含盐废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。
生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。
接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。
含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。
(3)二沉池。
二沉池表面负荷应有一定的余量,主要是考虑废水密度增加,不利于污泥沉淀,尤其是含NaCl废水。
处理水量较大时,特别是含CaCL2废水,最好采用周边传动式刮泥机,以适应污泥浓度高、密度大的特点。
在采用传统活性污泥法处理高CaCL2废水时,应适当加大污泥回流量,以减少废水波动造成的冲击,提高系统的稳定性。
(4)污泥脱水。
由于含CaCL2废水生物处理的剩余污泥含钙盐多,有利于脱水,可不用加絮凝剂。
经浓缩后的污泥浓度可大于50g/L。
剩余污泥量与普通废水处理的剩余污泥类似,设计参数可参考普通污泥脱水。
在处理钙离子浓度高的废水时,由于活性污泥中的无机成分高,有机物去除能力较低,较低的负荷情况下运行,污染物的去除率要高于高负荷条件下,但是延时曝气又不太适合处理高盐废水,因为污泥龄长,水力停留时间长,活性污泥容易老化,絮凝性能变差,最终影响出水效果。
此过程需要培养性能很好的适盐微生物,适盐微生物的研究属于极端分子生物学研究范畴,由于研究起步较晚,目前对适盐微生物的分类和新种发现有限。
适盐机理的研究主要依靠适盐生理特异结构和特性生理特性两方面进行。
在此我简要介绍四种。
一紫膜原理(光能质子泵)嗜盐菌多是好气化能异养类型,一些盐杆菌的种可进行厌氧呼吸.细胞含类胡萝卜素,菌体呈红色、桃红、紫色,大多数不运动,只有少数种靠丛生鞭毛缓慢运动,采用二分分裂法进行繁殖,无休眠状态,不产生孢子.极端嗜盐菌的细胞膜上具有呈六面格子状的紫色斑块,称为紫膜。
它是个巧妙的光能转换器。
在光能驱动下将光能转化为ATP。
某些嗜盐菌会产生大量的胞外多聚物(PGA、PHA)和胞内多聚物(PHB),在不同条件下的研究发现,其多聚物的产生受环境条件很大,C、N、P等抑制了多聚物的产量。
二嗜盐菌的Na依存性嗜盐菌要在高盐环境下生存,Na对维持细胞膜、细胞壁构造和功能有特别重要的作用.Na与细胞膜成分发生特异作用而增强了膜的机械强度,有利于细胞膜结构的稳定.若把嗜盐菌的细胞放在蒸馏水中,便会立即发生溶菌,要维持细胞膜的构造,盐类的存在是必不可少的,尤其是Na+的存在对阻止嗜盐菌的溶菌起着重要作用;在细胞膜的功能方面,嗜盐菌中氨基酸和糖的能动运输系统内必需有Na存在,而且Na作为产能的呼吸反应中一个必需因子起着作用;Na被束缚在嗜盐菌细胞壁的外表面,起着维持细胞完整性的重要作用.三吸钾排钠作用嗜盐菌的生长虽然需要高钠的环境,细胞内的Na浓度并不高,如盐杆菌光介导的H+质子泵具有Na+/K+反向转运功能,即具有吸收和浓缩K+和向胞外排放Na+的能力.K+作为一种相容性溶质,可以调节渗透压达到细胞内外平衡,其浓度高达7mol/L,以维持内外同样的水活度.例如嗜盐厌氧菌、嗜盐硫还原菌及嗜盐古菌是采用细胞内积累高浓度K+来对抗胞外的高渗环境.例酵母中的Na+/H+反向载体可以将多余的盐分排出体外,提高酵母的耐盐性.四积累相容物质中度嗜盐菌是通过在细胞内积累一些被称为相容性溶质(Compatible solutes) 的物质来抵抗细胞外的高渗透压。
任何处于高渗环境中的生物其细胞内必须含有一定浓度的溶质以保持细胞内外渗透压的平衡,维持细胞的形态、结构和生理功能。
通常细胞内积累的溶质不同于细胞外的主要溶质,同时这些细胞内溶质不能妨碍细胞的其它代谢途径,因此被称为相容性溶质。
相容性溶质是一些高度水溶性的小分子物质,如糖,糖醇,其它的醇类,氨基酸,及氨基酸的衍生物。
它们可以在高NaCl 浓度中保持细胞内的低水活度,从而保持细胞内酶的活性。
不同的生物各自积累不同的相容性溶质。
二、高含盐水脱盐技术高含盐水脱盐技术现状1、石灰/石灰-纯碱软化法石灰软化作为应用最广泛应用的单元技术之一,能有效降低水中结垢成份与悬浮物浓度,并且可使部分水处理剂经软化工艺后再回流系统中继续循环使用,石灰乳与水中的碳酸盐硬度成分反应,生成难溶的CaCO3或Mg(OH)2.后沉淀析出。
单纯的石灰软化法只能去除碳酸盐硬度,而石灰- 纯碱软化法能有效去除水中结垢的主要成分如钙、镁、磷酸盐和二氧化硅等,并将水中的悬浮物、腐蚀产物和微生物粘泥等在沉淀和过滤过程中去除,且产生泥渣易脱水,可作为非毒性废弃物掩埋处置。
另外,石灰价格低廉、来源广泛,运行成本低,可与絮凝过程同时进行,即可降低水的硬度,又可除浊。
因此,石灰-纯碱软化法已广泛用于工业纯水系统补充水的预处理。
2、膜分离近40年来,膜分离技术已迅速发展成为工业循环冷却水系统中旁流处理中最重要、最广泛采用的新型高效节能分离单元技术,电渗析(ED)、反渗透(RO)、微滤(MF)、超滤(UF)、纳滤(NF)和渗透汽化(PV)等膜技术相继发展,并成为集成处理技术系统中的关键技术。
主要膜分离技术简述如下:(1)反渗透膜技术反渗透膜技术是以渗透压差作为推动力的一类膜分离过程。
依据各种物料的不同渗透压,通过RO膜技术达到分离提取、纯化与浓缩的目的。
RO技术的最大优点是节能,其能耗仅为电渗析的1/2,蒸馏技术的1/40,而且能够达到深度除盐目的。
近年来,随着膜分离技术的快速发展,工程造价和运行成本持续降低,RO膜技术已逐渐取代传统的离子交换、电渗析除盐技术,成为工业水系统中首选除盐技术。
RO膜技术今后主要发展趋势是降低R O膜的操作压力,提高RO系统纯水产率和浓缩回收率,以及廉价高效预处理技术,增强膜组件抗污能力等。
尤其近年来,在电厂循环冷却水脱盐回用领域,集成膜工艺已成为主要发展方向,其中“UF+RO”双膜工艺已成为电厂深度除盐的主导技术。
(2)电渗析技术电渗析技术是以电位差作为推动力的一类膜分离过程。
在外加直流电场作用下,利用荷电离子膜的反离子迁移原理使水中阴阳离子做定向迁移,从水溶液及其它不带电组份中分离带电离子组份。
ED技术作为脱盐,在20世纪70~90年代得到广泛应用,但由于ED只能部分除盐,不能满足许多工业领域深度除盐的技术需求且电耗高。
因此,近年来已逐渐被反渗透膜技术所替代。
(3)纳滤膜技术与RO相比,NF技术的操作压力较低(0.5-1.0MPa),节能效果显著。
因此NF技术又称低压RO技术,是介于RO 和UF之间的一种亲水性膜分离过程,适宜分离分子量在 200-1000 Daltons(1Daltons=1.65×10-24g),分子大小约为1nm溶解组份的膜工艺。
由于NF膜具有松散的表面层结构,存在氨基和羧基两种正负基团,具有离子选择性,一价离子可基本完全透过,对二价和高价离子具有较高截留率,可去除约80%的总硬度、90%的色度和几乎全部浊度及微生物,因此,NF的软化功能近年引起重视,在工业循环冷却水的排污水回用处理中具有良好的应用前景。
3 、蒸馏脱盐蒸馏法是一种最古老、最常用的脱盐方法。
目前工业废水的蒸馏法脱盐技术基本上均是从海水脱盐淡化技术基础上发展而成。
蒸馏法就是把含盐水加热使之沸腾蒸发,再把蒸汽冷凝成淡水的过程。
蒸馏法是最早采用的淡化法,其优点是结构简单、操作容易、所得淡水水质好等。
蒸馏法有很多种,如多效蒸发、多级闪蒸、压气蒸馏、膜蒸馏等。
(1)多效蒸发(MED)多效蒸发是让加热后的盐水在多个串联的蒸发器中蒸发,前一个蒸发器蒸发出来的蒸汽作为下一蒸发器的热源,并冷凝成为淡水。
其中低温多效蒸馏是蒸馏法中最节能的方法之一。
低温多效蒸馏技术由于节能的因素,近年发展迅速,装置的规模日益扩大,成本日益降低,主要发展趋势为提高装置单机造水能力,采用廉价材料降低工程造价,提高操作温度,提高传热效率等。
(2)多级闪蒸(MSF)以海水淡化为例,将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。
多级闪蒸就是以此原理为基础,使热盐水依次流经若干个压力逐渐降低的闪蒸室,逐级蒸发降温,同时盐水也逐级增浓,直到其温度接近(但高于)天然海水温度。
多级闪蒸是海水淡化工业中较成熟的技术之一,是针对多效蒸发结垢较严重的缺点而发展起来的。