中考数学动点问题最值基本题型汇总

中考数学动点问题最值基本题型汇总
中考数学动点问题最值基本题型汇总

中考数学动点问题最值基本题型汇总

一、最值类型

1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。

2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。

3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。

4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。

5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。

6.结合型:即以上类型的综合运用,大多为饮马+小垂、小垂+穿心、饮马+穿心饮马+转换等

※二、分类例析

一、饮马型

例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ .

解析:如图

例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____.

解析:如下图

二、小垂型

例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________.

解析:如下图

三、穿心型

例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____.

解析:如下图

四、转换型

例5:如图,P为菱形ABCD内一点,且P到A、B两点的距离相等,若∠C=60°,CD=4,则的最小值为____________

解析:因为P到A、B两点的距离相等,所以P 在AB的垂直平分线上,又因菱形ABCD 中∠C为60°,所以△ABD为等边三角形,AB的垂直平分线经过点D,如下图由∠ADP=30度,可将PD的一半进行转换,即过点P作AD的垂线。如图,

即B、P、F三点共线,且BF⊥AD时最短

五、三边型

例6:如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为________

解析:如下图因为AB为定长,所以取其中点E,则OE为定值,在△ODE中,DE为定值,OE为定值,根据三角形三边关系即可得到OD的最大值。

例7:如图,已知△ABC中,∠ACB=90°,BC=4,AC=8,点D在AC上,且AD=6,将线

中考数学动点问题十大题型

1、如图,已知ABC ==厘米,8 BC=厘米,点D为AB的中 AB AC △中,10 点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △ 与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速 度为多少时,能够使BPD △全等? △与CQP (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,364y x =-+A B 、P Q 、O A Q OA

速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. P O B A A B 、Q t OPQ △S S t 485S P O P Q 、、M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学复习 利用辅助圆求解动点最值问题

利用辅助圆求解动点最值问题 许多几何问题虽然与圆无关,但是如果能结合条件补作辅助圆,就能利用圆的有关性质、结论,将某些最值问题通过圆中的几何模型求解.笔者经过研究,归纳为以下情况可考虑作辅助圆: 一、同一端点出发的等长线段 例1 如图1,在直角梯形ABCD 中,90,3,4,6DAB ABC AD AB BC ∠=∠=?=== ,点E 是线段AB 上一动点,将EBC ?沿CE 翻折到EB C '?,连结,B D B A ''.当点E 在AB 上运动时,分别求,,B D B A B D B A ''''+的最小值. 解析 如图1,当点E 在点B 时,B '与B 重合;当点E 在点A 时,设点B '在点F 处,由翻折可知BC B C FC '==.所以,点B '在以C 为圆心,BC 为半径的圆上,运动轨迹为弧BF . 如图2,点D 在⊙C 内,延长CD 交⊙C 于点1B .当点B '在点1B 时B D '最小,最小值为11B C DC -=. 点A 在⊙C 外,设AC 交⊙C 于点2B ,当点B '在点2B 时B A '最小,最小值为22136AC B C -=-. 设AD 与⊙C 交点为3B ,当点B '在点3B 时B D B A ''+最小,最小值为3AD =. 点评 当条件中有同一端点出发的等长线段时,根据圆的定义,以该端点为圆心,等长为半径构造圆,将原问题转化为定点与圆上点的距离问题.

模型1 如图3,点A 在⊙O 外,A 到⊙O 上各点连线段中AB 最短;如图4,点A 在⊙O 内,A 到⊙O 上各点连线段中AB 最短. 证明 在⊙O 上任取一点C ,不与点B 重合,连结,CA CO ,如图3. ,,OC CA OA OC OB CA AB +>=∴> ,得证. 如图4, ,,OC OA CA OC OB AB CA -<=∴<,得证. 二、动点对定线段所张的角为定值 模型2 如图5 , AB 为定线段,点C 为AB 外一动点,ACB ∠为定值,则点C 形成的轨迹是弧ACB 、弧AmB (不含点,A B ). 证明 设⊙O 为ABC ?的外接圆,在AB 上方任取三点,点,,D E F 分别在⊙O 外、⊙O 上、⊙O 内. ,,D AGB C E C AFB H C ∠<∠=∠∠=∠∠>∠=∠, ∴当ACB ∠为定值时,点C 形成的轨迹是弧ACB 、弧ADB (不含点,A B ). 1.动点时定线段所张的角为直角 例2 如图6,正方形ABCD 边长为2,点E 是正方形ABCD 内一动点,90AEB ∠=?,连结DE ,求DE 的最小值. 解析 90,AEB AB ∠=?为定线段, 由模型2可知,点E 在以AB 为直径的圆上.连OD 交⊙O 于点F ,由模型1,当E 在点F 处时DE 最短,最小值是51-.

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学动点问题最值基本题型汇总

中考数学动点问题最值基本题型汇总 一、最值类型 1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。 2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。 3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。 4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。 5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。 6.结合型:即以上类型的综合运用,大多为饮马+小垂、小垂+穿心、饮马+穿心饮马+转换等 ※二、分类例析 一、饮马型 例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD 的最小值是_____ . 解析:如图 例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____.

解析:如下图 二、小垂型 例3:如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________. 解析:如下图 三、穿心型 例4:如图,在边长为4的菱形ABCD中,∠ABC=120°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN翻折得到△A′MN,连接A’C,则A’C长度的最小值是____. 解析:如下图

中考数学压轴题专题:动点问题

2012年全国中考数学(续61套)压轴题分类解析 汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s 的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示). (2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN 上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况:

①如图(2)a,当点N与点D重合时,此时点P在DE 上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=。 综上所述,当点N落在AB边上时,t=4或t=。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况: ①当2<t<4时,如图(3)a所示。 DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t。 ∵MN∥BC,∴△AFM∽△ABC。∴FM:BC = AM:AC=1:2,即FM:AM=BC:AC=1:2。 ∴FM=AM=t.

中考数学最新经典动点问题-十大题型

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发, 同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出 与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 3 64 y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 48 5 S = P O P Q 、、 M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A

2018中考数学动点问题专题复习(含答案)

2018中考数学动点问题专题复习 1.如图1,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠PDQ =90°. (1)求ED 、EC 的长; (2)若BP =2,求CQ 的长; (3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长. 图1 备用图 解:(1)在Rt △ABC 中, AB =6,AC =8,所以BC =10. 在Rt △CDE 中,CD =5,所以 315tan 544ED CD C =?∠=? =,25 4EC =. (2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是 △ABC 的两条中位线,DM =4,DN =3. 由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN . 因此△PDM ∽△QDN . 所以43PM DM QN DN ==.所以34QN PM =,43PM QN =. 图2 图3 图4 ①如图3,当BP =2,P 在BM 上时,PM =1. 此时 3344QN PM = =.所以319444CQ CN QN =+=+=. ②如图4,当BP =2,P 在MB 的延长线上时,PM =5. 此时 31544QN PM = =.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中, 3 tan 4QD DN QPD PD DM ∠= == . 在Rt △ABC 中, 3tan 4BA C CA ∠= = .所以∠QPD =∠C . 由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ . 当△PDF 是等腰三角形时,△CDQ 也是等腰三角形. ①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时 4433PM QN ==.所以45 333BP BM PM =-=-= . ②如图6,当QC =QD 时,由 cos CH C CQ = ,可得5425 258CQ =÷= . 所以QN =CN -CQ = 257488- = (如图2所示). 此时 4736PM QN ==.所以725 366BP BM PM =+=+= . ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示). 图5 图6 2.如图1,抛物线y =ax2+bx +c 经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标; (3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.

中考数学常见题型几何动点问题

中考数学压轴题型研究(一)——动点几何问题 例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积; (2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC 的面积的一半 (3)在第(2)问题前提下,P,Q 两点之间的距离是多少 例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿 A → B → C →E 运动,到达点 E.若点P 经过的路程为自变量x ,△APE 的面积为函数y , (1)写出y 与x 的关系式 (2)求当y = 1 3 时,x 的值等于多少 例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( ) A .32 B .18 C .16 D .10 例4:直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动.(1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 例6:如图(3),在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒. (1)求边的长; 图(3) B A C P Q B A M N

2020年中考数学题型专练一 动点问题的函数图像(含答案)

题型一 动点问题的函数图像 类型一 判断函数图像 (2014.8) 1. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB ︵→BO 的路径运动一周,设点P 到点O 的距离为s ,运动时间为t ,则下列图象能大致地反映s 与t 之间的关系的是( ) 第1题图 2. 如图,在Rt △ABC 中,AC =BC =4 cm ,点D 是AB 的中点,点F 是BC 的中点,动点E 从点C 出发,沿CD →DA 以1 cm/s 的速度运动至点A ,设点E 运动的时间为x s ,△EFC 的面积为y cm 2(当E ,F ,C 三点共线时,设y =0),则y 与x 之间的函数关系的大致图象是( ) 第2题图 3.如图,A 、B 是反比例函数y =k x (k >0)在第一象限图象上的两点,动点P 从坐标原点O 出发,沿图中 箭头所指方向匀速运动,即点P 先在线段OA 上运动,然后在双曲线上由A 到B 运动,最后在线段BO 上运动,最终回到点O .过点P 作PM ⊥x 轴,垂足为点M ,设△POM 的面积为S ,点P 运动时间为t ,则S 关于t 的函数图象大致为( )

第3题图 4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是() 第4题图 5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为() 第5题图 6. (2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()

历年中考数学动点问题题型方法归纳

x A O Q P B y 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。

图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) y M C D 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学难点之动点问题

动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊 角 或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单 介 绍 ,解题方 法、关键给以点拨。 一 、 三 角 形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴 分别交于 A B 、两点,动点P Q 、同时从 出发,同时到达 A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点 Q 的运动时间为t 秒,OPQ △的面积为S , 求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出 以 点 O P Q 、、为顶点的平行四边形的第四个顶点 M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S =t 2 当3<t <8时,S =3/8(8-t )t 提示:第(2)问按点 P 到拐点 B 所有时间分 段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q , 探 究 第 四 点 构 成 平行四边形 时

图B 图 B 图 按已知线段身份不同分类-----①O P为 边、O Q为边,②O P为边、O Q为对角 线,③O P为对角线、O Q为边。然后画 出各类的图形,根据图形性质求顶点坐 标。 2、(2009年衡阳市) 如图,A B是⊙O的直径,弦B C=2c m, ∠A B C=60o. (1)求⊙O的直径; (2)若D是A B延长线上一点,连结C D,当B D长为多少时,C D与⊙O相切; (3)若动点E以2c m/s的速度从A点出发沿着A B方向运动,同时动点F以1c m/s的速度从B点出发沿B C方向运动,设运动时间为 )2 )( (<

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学--动点问题题型方法归纳

动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 3 1、( 2009年齐齐哈尔市) 直线y x 6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发, 4 同时到达A点,运动停止?点Q沿线段OA运动,速度为每秒1个单 位长度,点P沿路线O T B T A运动. (1)直接写出A、B两点的坐标; (2)设点Q的运动时间为t秒,△ OPQ的面积为S,求出S与t之间 的函数关系式; 「48 (3)当S 时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的5 坐标. 提示:第(2)问按点P到拐点B所有时间分段分类; 第(3)问是分类讨论:已知三定点OP、Q,探究第四点构成平行四边形时按已知线段身份不同 分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB是O O的直径,弦BC=2cm / ABC=60). (1) 求O O的直径; (2) 若D是AB延长线上一点,连结CD当BD长为多少时,CD与O O相切; (3) 若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC t(S)(0 ::: t ::: 2),连结EF,当t为何值时,△ BEF为直角三角形. 注意:第(图问按直角位置分类讨论 O 图(2) D A

中考数学动点问题专题讲解

中考动点专题 1、如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH= 32NH=2 1 32?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2 362 1 21x OH MH -==. 在Rt △MPH 中, . ∴ y =GP= 32MP=23363 1 x + (0

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学动点问题题型方法归纳

x A O Q P B y 图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S=t 2 当3<t <8时,S=3/8(8-t)t 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市) 如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

九年级中考数学动点问题精选汇编(含答案)

【改编中考】——初中数学动点问题集 【问题100】 如图,已知四边形ABCD 为正方形,边长AB=6,点E 在是AB 上一动点(不能与A 、B 两点重合),过点E 作EF ⊥AB 交对角线AC 于点F ,连结DF 。 (1)当AE=2时,求△CDF 的面积; (2)当△ADF 是等腰三角形时,求AE 的长; (3)当△ADF 与△AEF 的面积之比是3:2时,求CF 的长。 D A 【问题101】 如图,已知正方形ABCD 和等腰直角△AEF 共一个顶点A ,且AB=4,AE=EF=2,∠AEF =90°,若等腰直角△AEF 可以绕点A 旋转360°,连接FC ,H 是FC 的中点,连接EH . (1)当顶点E 在边AD 上时,则EH=_________; (2)当点A 、E 、C 三点在一直线上时,则EH =___________. 【问题102】 (2016年山东枣庄市中考试题改编)如图,在△ABC 中,∠C=90°,AC=BC=22,将△ABC 绕点A 逆时针旋转到△ADE 的位置,旋转角度是α°(0°<α<360°). (1)当A 、B 、C 、D 四个点恰好是平行四边形的四个顶点时,则∠

BAD=____________° (2)当△ABE是等边三角形时,则BD=________; E 【问题103】 在矩形ABCD中,AB=4 , BC=3 4,点P是直线BC一动点,若将△ABP沿AP折叠,使点B落在平面上的点E处,连结AE、PE。 (1)当A、E、C三点在一直线上时,则BP=__________; (2)当P、E、D三点在一直线上时,则BP=__________. 【问题104】 如图,四边形ABCD为菱形,且BD=AB=4,点P为对角线BD上的一个动点,作∠PAQ=60°交CB的延长线于Q点,连结PQ. (1)求证△APQ是等边三角形; (2)求四边形AQBP面积; (3)且△APQ的面积是3 3,则BP=__________.

中考数学专题讲义 动点最值基本模型

动点最值基本模型 原创:向北向北数学 2018-05-14 从合肥各区的模考卷来看,最值问题仍是2018中考第10或14题的热门。本文以瑶海蜀山庐阳二模卷中最值问题为例,对最值问进行简要分类和例析,欢迎指正。 一、最值类型 1.饮马型:即将军饮马型,通常为两条线段之和的最值问题,利用对称性质将其中一条线段进行转换,再利用两点之间线段最短(或三角形三边关系)得到结果。(本公众号有“【解题模型】将军饮马”) 2.小垂型:即小垂回家型,通常为一条线段的最值问题,即动点的轨迹为直线,利用垂线段最短的性质得到结果。 3.穿心型:即一箭穿心型,通常为一条线段的最值问题,即动点的轨迹为圆或弧,利用点与圆的位置关系得到结果。(本公众号有“一箭穿心,圆来如此一文”) 4.转换型:即一加半型,通常为一条线段与另一条线段一半的和的最值问题,即将那半条线段利用三角形中位线或30°的对边等知识进行转换,再利用饮马或小垂或穿心。 5.三边型:即三角形三边关系关系型,通常利用两边之和大于第三边、两边之差小于第三边求其最大(小)值。

6.结合型:即以上类型的综合运用,大多为饮马+小垂【如包河一模20题】【瑶海一模第10题】、小垂+穿心【如庐阳二模第10题】、饮马+穿心【如瑶海二模第10题】饮马+转换【如蜀山二模第10题】等 ※二、分类例析 一、饮马型 例1:如图,在正方形ABCD中,点E在CD上,CE=3, DE=1, 点P在AC上,则PE+PD的最小值是_____ . 解析:如图 例2:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为____. 解析:如下图

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

相关文档
最新文档