中考数学几何辅助线:倍长中线法

合集下载

全等难题——倍长中线法

全等难题——倍长中线法

三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.版块一 倍长中线【例1】 (2002年通化市中考题)在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什重点:主要掌握中线的处理方法,遇见中线考虑中线倍长法难点:全等三角形的综合运用重、难点知识点睛例题精讲中考要求第二讲全等三角形与中点问题么?【补充】已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+. 【例2】 (2008年巴中市高中阶段教育学校招生考试)已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.【例3】 (浙江省2008年初中毕业生学业考试(湖州市)数学试卷)如图,在ABC ∆中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥.求证:BDE CDF ∆∆≌.【例4】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.【例5】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.【例6】 如图所示,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.【例7】 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.【例8】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>. 【例9】 在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?【例10】 如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+. 【例10】 (2008年四川省初中数学联赛复赛·初二组)在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.【例11】 如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥. 版块二、中位线的应用【例12】 AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =. 【例13】 如图所示,在ABC ∆中,AB AC =,延长AB 到D ,使BD AB =,E 为AB 的中点,连接CE 、CD ,求证2CD EC =.【例14】 已知:ABCD 是凸四边形,且AC <BD . E 、F 分别是AD 、BC 的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点. 求证:∠GMN >∠GNM .【例15】 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.【例16】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.【例17】 (“祖冲之杯”数学竞赛试题,中国国家集训队试题)如图所示,P 是ABC ∆内的一点,PAC PBC ∠=∠,过P 作PM AC ⊥于M ,PL BC ⊥于L ,D 为AB 的中点,求证DM DL =.【例18】 (全国数学联合竞赛试题) 如图所示,在ABC ∆中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE DF =.过E 、F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证:(1) DEM FDN ∆∆≌;(2) PAE PBF ∠=∠.【例19】 已知,如图四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC 的延长线分别交于M 、N 两点. 求证:AME BNE ∠=∠.【例20】 (2009年大兴安岭地区初中毕业学业考试)已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆ 的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .⑴ 如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论AMF BNE ∠=∠(不需证明).⑵ 当点D 旋转到图2或图3中的位置时,AMF ∠与BNE ∠有何数量关系?请分别写出猜想,并任选一种情况证明. 【例21】 如图,AE ⊥AB ,BC ⊥CD ,且AE =AB ,BC =CD ,F 为DE 的中点,FM ⊥AC .证明:FM =12AC . 【例22】 (1991年泉州市初二数学双基赛题)已知:在△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM =PN【习题1】 如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.【习题2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?【习题3】 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.【备选1】如图,已知AB =DC ,AD =BC ,O 是BD 中点,过O 点的直线分别交DA 、BC 的延长线于E ,F .求证:∠E =∠F【备选2】如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于E ,FD 与AC交于F .求证:BE AF =,AE CF =. 月测备选 家庭作业。

初中数学几何辅助线作法小结

初中数学几何辅助线作法小结

几何协助线作法小结三角形中常有协助线的作法:①延伸中线结构全等三角形;②利用翻折,结构全等三角形;③引平行线结构全等三角形;④作连线结构等腰三角形。

常有协助线的作法有以下几种:1) 碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思想模式是全等变换中的“对折”.2)碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,利用的思想模式是全等变换中的“旋转”.3)碰到角均分线,能够自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折”,所考知识点常常是角均分线的性质定理或逆定理.4)过图形上某一点作特定的均分线,结构全等三角形,利用的思想模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,详细做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延伸,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这类作法,合适于证明线段的和、差、倍、分等类的题目.特别方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各极点的线段连接起来,利用三角形面积的知识解答.A(一)、倍长中线(线段)造全等B D CA 1:已知,如图△ABC 中, AB=5, AC=3,则中线AD 的取值范围是_________.2:如图,△ ABC 中, E、F 分别在 AB、 AC 上, DE⊥ DF ,D 是中点,试比较BE+CF 与 EF 的大小 .EF BD C3:如图,△ ABC 中, BD =DC=AC, E 是 DC 的中点,求证:AD 均分∠ BAE.AB D EC中考应用以ABC 的两边AB、AC为腰分别向外作等腰Rt ABD 和等腰Rt ACE ,BAD CAE 90 , 连结DE,M、N分别是BC、DE的中点.研究:AM与DE的地点关系及数目关系.1当 ABC 为直角三角形时,AM与DE的地点关系是,()如图①线段 AM 与 DE 的数目关系是;( 2)将图①中的等腰 Rt ABD绕点 A 沿逆时针方向旋转(0< <90) 后,如图②所示,(1)问中获得的两个结论能否发生改变?并说明原因.ACBD(二)、截长补短1.如图,ABC 中,AB=2 AC,AD均分BAC ,且AD=BD,求证:CD⊥ACA DEBC2:如图, AC∥ BD , EA,EB 分别均分∠ CAB,∠ DBA , CD 过点 E,求证 ;AB= AC+BDABQPC3:如图,已知在VABC 内,BAC 60 , C 400 , P, Q 分别在 BC, CA 上,而且 AP, BQ 分别是BAC ,ABC 的角均分线。

中考数学专题复习全等三角形之辅助线倍长中线法

中考数学专题复习全等三角形之辅助线倍长中线法

中考数学专题复习全等三角形(辅助线倍长中线法)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.如图,己知AD 是△ABC 中BC 边上的中线,AB =5,AC =3,则AD 的取值范围是( )A .2<AD <8B .1<AD <4C .2<AD <5 D .4≤AD ≤82.在ABC 中,5AC =,中线7AD =,则AB 边的取值范围( )A .212AB << B .412AB <<C .919AB <<D .1019AB <<3.如图,在四边形ABCD 中,//AB CD ,AB BD ⊥,5AB =,4BD =,3CD =,点E 是AC 的中点,则BE 的长为( ).A .2B .52C .5D .34.如图,在ABC 中,D 为BC 的中点,若3,4AC AD ==.则AB 的长不可能...是( )A.5B.7C.8D.9评卷人得分二、填空题5.如图,在ABC中,AD是BC边上的中线,3AC=,5AD=,则AB的取值范围是________.6.如图,平行四边形ABCD,点F是BC上的一点,连接AF,△FAD=60°,AE平分△FAD,交CD于点E,且点E是CD的中点,连接EF,已知AD=5,CF=3,则EF =__.评卷人得分三、解答题7.已知:多项式x2+4x+5可以写成(x﹣1)2+a(x﹣1)+b的形式.(1)求a,b的值;(2)△ABC的两边BC,AC的长分别是a,b,求第三边AB上的中线CD的取值范围.8.如图,O为四边形ABCD内一点,E为AB的中点,OA=OD,OB=OC,△AOB+△COD=180︒.(1)若△BOE=△BAO,AB=22,求OB的长;(2)用等式表示线段OE和CD之间的关系,并证明.9.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在ABC中,6AB=,10AC=,D是BC的中点,求BC边上的中线AD的取值范围.【阅读理解】小明在组内经过合作交流,得到了如下的解决方法:(1)如图1,延长AD到E点,使DE AD=,连接BE.根据______可以判定ADC≌△______,得出AC=______.这样就能把线段AB、AC、2AD集中在ABE△中.利用三角形三边的关系,即可得出中线AD的取值范围是.【方法感悟】当条件中出现“中点”、“中线”等条件时,可以考虑做“辅助线”——把中线延长一倍,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中,这种做辅助线的方法称为“中线加倍”法.【问题解决】(2)如图2,在ABC中,90A∠=,D是BC边的中点,90EDF=∠,DE交AB于点E,DF交AC于点F,连接EF,求证:222BE CF EF+=.【问题拓展】(3)如图3,ABC中,90B=∠,3AB=,AD是ABC的中线,CE BC⊥,5CE=,且90ADE∠=.直接写出AE的长=______.10.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC的边BC到D,使DC=BC,过D作DE△AB交AC延长线于点E,求证:△ABC△△EDC.【理解与应用】如图2,已知在△ABC中,点E在边BC上且△CAE=△B,点E是CD的中点,若AD 平分△BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.11.如图,ABC中,BD DC AC==,E是DC的中点,求证:2AB AE=.12.如图1,在△ABC中,若AB=10,BC=8,求AC边上的中线BD的取值范围.(1)小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE,可证得△CED△△ABD.△请证明△CED△△ABD;△中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,△ABM=△NBC=△90°,连接MN.请写出BD与MN的数量关系,并说明理由.13.已知ABC 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD ∠=∠,求证:AE EC =.(3)如图3,点D 在ABC 内部,且满足AD BC =,BAD DCB ∠=∠,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.14.如图1,在ABC 中,CM 是AB 边的中线,BCN BCM ∠=∠交AB 延长线于点N ,2CM CN =.(1)求证AC BN =;(2)如图2,NP 平分ANC ∠交CM 于点P ,交BC 于点O ,若120AMC ∠=︒,CP kAC =,求CPCM的值.15.如图,AD 为ABC 中BC 边上的中线()AB AC >. (1)求证:2AB AC AD AB AC -<<+;(2)若8cm AB =,5cm AC =,求AD 的取值范围.16.(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+; (3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.17.(1)如图1,△ABC 中,AD 为中线,求证:AB +AC >2AD ;(2)如图2,△ABC 中,D 为BC 的中点,DE △DF 交AB 、AC 于E 、F .求证:BE +CF >EF .18.定义:如果三角形三边的长a 、b 、c 满足3a b cb ++=,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)已知“匀称三角形”的两边长分别为4和6,则第三边长为 . (2)如图,ABC 中,AB =AC ,以AB 为直径的△O 交BC 于点D ,过点D 作DF △AC ,垂足为F ,交AB 的延长线于E ,求证:EF 是△O 的切线; (3)在(2)的条件下,若53BE CF =,判断AEF 是否为“匀称三角形”?请说明理由.19.课堂上,老师出示了这样一个问题:如图1,点D 是ABC 边BC 的中点,5AB =,3AC =,求AD 的取值范围.(1)小明的想法是,过点B作//BE AC交AD的延长线于点E,如图2,从而通过构造全等解决问题,请你按照小明的想法解决此问题;(2)请按照上述提示,解决下面问题:在等腰Rt ABC中,90BAC∠=︒,AB AC=,点D边AC延长线上一点,连接BD,过点A作AE BD⊥于点E,过点A作AF AE⊥,且AF AE=,连接EF交BC于点G,连接CF,求证BG CG=.20.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC 中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),△延长AD到M,使得DM=AD;△连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;△利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,△BAE=△CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.21.如图,在△ABC中,△ACB=135°,BC=6,点D为AB的中点,连接DC,若DC△BC,求AB的长.22.如图,ABC∆中,3AB=,4AC=,AD为中线,求中线AD的取值范围.23.(1)方法呈现:如图△:在ABC中,若6AB=,4AC=,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE AD=,再连接BE,可证ACD EBD△≌△,从而把AB、AC,2AD集中在ABE△中,利用三角形三边的关系即可判断中线AD的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图△,在ABC中,点D是BC的中点,DE DF⊥于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE CF+与EF的大小关系并证明;(3)问题拓展:如图△,在四边形ABCD中,//AB CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是BAF∠的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.24.在等腰Rt△ABC中△ABC=90°,BA=BC,在等腰Rt△CDE中△CDE=90°,DE=DC,连接AD,点F是线段AD的中点.(1)如图1,连接BF,当点D和点E分别在BC边和AC边上时,若AB=3,CE=2 2,求BF的长.(2)如图2,连接BE、BD、EF,当△DBE=45°时,求证:EF=12ED.25.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD是ABC∆的中线,7,5,AB AC==求AD的取值范围.我们可以延长AD到点M,使DM AD=,连接BM,易证ADC MDB∆≅∆,所以BM AC=.接下来,在ABM∆中利用三角形的三边关系可求得AM的取值范围,从而得到中线AD的取值范围是;(2)如图2,AD是ABC的中线,点E在边AC上,BE交AD于点,F且AE EF=,求证:AC BF=;(3)如图3,在四边形ABCD中,//AD BC,点E是AB的中点,连接CE,ED且CE DE⊥,试猜想线段,,BC CD AD之间满足的数量关系,并予以证明.26.已知:在矩形ABCD中,连接AC,过点D作DF AC⊥,交AC于点E,交AB于点F.(1)如图1,若2tan 2ACD ∠=. △求证:AF BF =;△连接BE ,求证:2CD BE =.(2)如图2,若2AF AB BF =⋅,求cos FDC ∠的值.27.阅读下面材料:数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点E 在AC 上,BE 交AD 于点F ,AE =EF .求证:AC =BF .经过讨论,同学们得到以下思路:如图△,添加辅助线后依据SAS 可证得△ADC △△GDB ,再利用AE =EF 可以进一步证得△G =△F AE =△AFE =△BFG ,从而证明结论.完成下面问题:(1)这一思路的辅助线的作法是:.(2)请你给出一种不同于以上思路的证明方法(要求:写出辅助线的作法,画出相应的图形,并写出证明过程).28.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若△BAC=90°,求四边形AEDF的面积.29.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考: (1)由已知和作图能得到ADC △EDB △的理由是______. (2)求得AD 的取值范围是______. 【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中. 【问题解决】(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.30.在ABC ∆与CDE ∆中,90ACB CDE ∠=∠=︒,26AC BC ==,2CD ED ==,连接,AE BE ,点F 为AE 的中点,连接DF ,CDE ∆绕着点C 旋转.(1)如图1,当点D 落在AC 的延长线上时,DF 与BE 的数量关系是:__________; (2)如图2,当CDE ∆旋转到点D 落在BC 的延长线上时,DF 与BE 是否仍有具有(1)中的数量关系,如果具有,请给予证明;如果没有,请说明理由; (3)旋转过程中,若当105BCD ∠=︒时,直接写出2DF 的值.参考答案:1.B 【解析】 【分析】如图所示,延长AD 到E ,使DE AD =,连接CE ,先证ABD ECD ≅,得AB CE =,再由三角形任意两边之和大于第三边,两边之差小于第三边求出AE 的取值范围. 【详解】如图所示,延长AD 到E ,使DE AD =,连接CE , AD 是△ABC 中BC 边上的中线,BD CD ∴=,在ABD △与ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩, ABD ECD ∴≅,5AB CE ∴==,在ACE 中,由三角形三边关系得:CE AC AE CE AC -<<+,3AC =,2AE AD DE AD AD AD =+=+=,53253AD ∴-<<+,14AD ∴<<.【点睛】本题考查了三角形三边的关系,全等三角形的判定与性质,做辅助线构造全等三角形是解题的关键. 2.C【分析】延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出CE 的取值范围,即为AB 的取值范围. 【详解】解:如图,延长AD 至E ,使DE =AD ,△AD 是△ABC 的中线, △BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE ⎪∠⎪⎩∠⎧⎨===, △△ABD △△ECD (SAS ), △AB =CE , △AD =7, △AE =7+7=14, △14+5=19,14-5=9, △9<CE <19, 即9<AB <19. 故选:C . 【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键. 3.C【分析】延长BE 交CD 延长线于P ,可证△AEB ≌△CEP ,求出DP ,根据勾股定理求出BP 的长,从而求出BM 的长. 【详解】解:延长BE 交CD 延长线于P , ∵AB ∥CD , ∴∠EAB =∠ECP , 在△AEB 和△CEP 中,EAB ECP AE CE AEB CEP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEB ≌△CEP (ASA ) ∴BE =PE ,CP =AB =5 又∵CD =3, ∴PD=2, △4BD =△2225BP DP BD =+= ∴BE =12BP =5. 故选:C .【点睛】考查了全等三角形的判定和性质和勾股定理,解题的关键是得恰当作辅助线构造全等,依据勾股定理求出BP . 4.A 【解析】延长AD 到E ,使AD =DE ,证明△ADC △△EDB ,然后利用三边关系即可得出结论. 【详解】解:延长AD 到E ,使AD =DE =4,连接BE ,△D 是BC 的中点, △BD =CD 又△BDE =△CDA △△ADC △△EDB , △BE =AC =3由三角形三边关系得,AE BE AB AE BE -<<+ 即:511AB << 故选:A 【点睛】此题主要考查了三角形三边关系以及全等三角形的判定与性质,正确作出辅助线是解答此题的关键. 5.713AB << 【解析】 【分析】延长AD 至点E ,使DE=AD ,证明ABD ECD ≅,由全等性质求出相关的线段长度,在CAE 中,由,AE AC EC AE AC EC +>-<,代入数值即可得到答案.【详解】解:延长AD 至点E ,使DE=AD ,如下图:△D 是BC 的中点 △BD =CD在ABD △和ECD 中:BD CD ADB EDC AD ED =⎧⎪∠=∠⎨⎪=⎩△ABD ECD ≅ △=AB EC △AD =5 △AE =10在CAE 中,由,AE AC EC AE AC EC +>-<得:713EC << 即:713AB << 故答案为:713AB << 【点睛】本题考查三角形的全等判定和性质,三角形的三边关系,牢记相关知识点并灵活应用是解题关键. 6.4 【解析】 【分析】延长AE ,BC 交于点G ,判定△ADE△△GCE ,即可得出CG =AD =5,AE =GE ,再根据三线合一即可得到FE△AG ,进而得出Rt △AEF 中,EF =12AF =4. 【详解】解:如图,延长AE ,BC 交于点G ,△点E 是CD 的中点,△DE =CE ,△平行四边形ABCD 中,AD△BC ,△△D =△ECG ,又△△AED =△GEC ,△△ADE△△GCE ,△CG =AD =5,AE =GE ,又△AE 平分△FAD ,AD△BC ,△△FAE =△DAE =△G =12△DAF =30°, △AF =GF =3+5=8,又△E 是AG 的中点,△FE△AG ,在Rt △AEF 中,△FAE =30°,△EF =12AF =4, 故答案为:4.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等进行推算.7.(1)6a =,10b =(2)2<CD <8【解析】【分析】(1)把()()211x a x b -+-+展开,然后根据多项式x 2+4x +5可以写成(x ﹣1)2+a (x ﹣1)+b的形式,可得2415aa b-=⎧⎨-+=⎩,即可求解;(2)延长CD至点H,使CD=DH,连接AH,可得△CDB△△HAD,从而得到BC=AH=a=6,再根据三角形的三边关系,即可求解.(1)解:△()()211x a x b-+-+221x x ax a b=-++-+()221x a x a b=+-+-+,根据题意得:x2+4x+5=(x﹣1)2+a(x﹣1)+b△2415aa b-=⎧⎨-+=⎩,解得:610ab=⎧⎨=⎩;(2)解:如图,延长CD至点H,使CD=DH,连接AH,△CD是AB边上的中线,△BD=AD,在△CDB和△HDA中,△CD=DH,△CDB=△ADH,BD=DA,△△CDB△△HDA(SAS),△BC=AH=a=6,在△ACH中,AC-AH<CH<AC+AH,△10-6<2CD<10+6,△2<CD<8.【点睛】本题主要考查了全等三角形的判定和性质,整式乘法和二元一次方程组的应用,三角形的三边关系,熟练掌握全等三角形的判定和性质,整式乘法法则,三角形的三边关系是解题的关键.8.(1)2;(2)12OE CD=,理由见解析【解析】【分析】(1)由已知条件△BOE=△BAO,且公共角OBE ABO∠=∠,证明△OBE△△ABO,进而列出比例式,代入数值即可求得OB;(2)延长OE到点F,使得EF OE=,连接AF,FB,证明△AOF△△DOC,进而可得OF CD=,即12OE CD=【详解】(1)解:△△BOE=△BAO,OBE ABO∠=∠,△△OBE△△ABO,△BE OBOB AB=,△AB=22,E为AB的中点,△2BE=△222OBOB=,△2OB=(舍负).(2)线段OE和CD的数量关系是:12OE CD=,理由如下,证明:如图,延长OE到点F,使得EF OE=,连接AF,FB.△AE BE=△四边形AFBO是平行四边形,△AF OB ∥,AF OB =,△180FAO AOB ∠+∠=︒,△△AOB +△COD =180︒,△FAO COD ∠=∠,△OB =OC ,△AF OC =,在△AOF 和△DOC 中, OA OD FAO COD AF OC =⎧⎪∠=∠⎨⎪=⎩,△△AOF △△ODC ,△OF CD =△12OE CD =. 【点睛】本题考查了相似三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,第(2)小问中,根据题意正确的添加辅助线是解题的关键. 9.(1)SAS ;EDB △;BE ;2<<8AD ;(2)见解析;(3)7.【解析】【分析】(1)根据三角形全等的判定方法和全等三角形的性质以及三角形三边的关系求解即可; (2)延长ED 使DG =ED ,连接FG ,GC ,根据垂直平分线的性质得到EF GF =,然后利用SAS 证明BDE CDG ≌,得到BE CG =,B DCG ∠=∠,进而得到18090ACG A ∠=︒-∠=︒,最后根据勾股定理证明即可;(3)延长AD 交EC 的延长线于点F ,根据ASA 证明ABD FCD ∆∆≌,然后根据垂直平分线的性质得到AE CF =,最后根据全等三角形的性质求解即可.【详解】解:(1)在ADC 和EDB △中,AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩△()ADC EDB SAS ≌△△, △10AC BE ==.△6AB =,△<<BE AB AE BE AB -+,即106<<106AE -+,△4<<16AE ,△4<2<16AD ,解得:2<<8AD ;故答案为:SAS ;EDB △;BE ;2<<8AD ;(2)如图所示,延长ED 使DG =ED ,连接FG ,GC ,△90EDF =∠,△EF GF =,在BDE 和CDG 中, BD CD BDE CDG DE GD =⎧⎪∠=∠⎨⎪=⎩△()BDE CDG SAS ≌△△, △BE CG =,B DCG ∠=∠,△AB CG ∥,△18090ACG A ∠=︒-∠=︒,△在Rt FGC △中,222CG FC FG +=,△222BE CF EF +=;(3)如图所示,延长AD 交EC 的延长线于点F ,△,AB BC EF BC ⊥⊥,ABD FCD ∴∠=∠,在ABD △和FCD 中,ABD FCD BD CDADB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABD FCD ASA ∴∆∆≌,△3CF AB ==,AD DF =,△90ADE ∠=,△AE EF =,△538EF CE AB =+=+=,△8AE =.【点睛】此题考查了全等三角形的性质和判定方法,三角形的三边关系,“中线加倍”法的运用,解题的关键是根据题意作出辅助线构造全等三角形.10.[探究与发现]见解析;[理解与应用](1)见解析;(2)1<x <4【解析】【分析】[探究与发现]由ASA 证明△ABC △△EDC 即可;[理解与应用](1)延长AE 到F ,使EF =EA ,连接DF ,证△DEF △△CEA (SAS ),得AC =FD ,再证△ABD △△AFD (AAS ),得BD =FD ,即可得出结论;(2)由全等三角形的性质得AB =AF =2x ,再由三角形的三边关系得AD -BD <AB <AD+BD,即5-3<2x<5+3,即可求解.【详解】解:[探究与发现]证明:△DE△AB,△△B=△D,又△BC=DC,△ACB=△ECD,△△ABC△△EDC(ASA);[理解与应用](1)证明:如图2中,延长AE到F,使EF=EA,连接DF,△点E是CD的中点,△ED=EC,在△DEF与△CEA中,EF EADEF CEAED EC=⎧⎪∠=∠⎨⎪=⎩,△△DEF△△CEA(SAS),△AC=FD,△△AFD=△CAE,△△CAE=△B,△△AFD=△B,△AD平分△BAE,△△BAD=△F AD,在△ABD与△AFD中,BAD FAD AD AD ⎪∠=∠⎨⎪=⎩,△△ABD △△AFD (AAS ),△BD =FD ,△AC =BD ;(2)解:由(1)得:AF =2AE =2x ,△ABD △△AFD ,△AB =AF =2x ,△BD =3,AD =5,在△ABD 中,由三角形的三边关系得:AD -BD <AB <AD +BD ,即5-3<2x <5+3,解得:1<x <4,即x 的取值范围是1<x <4.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、平行线的性质、角平分线定义以及三角形的三边关系等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.11.见解析【解析】【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,△E 是DC 中点, △DE CE = ,△在DEF 和CEA 中,DEF CEA EF EA ⎪∠=∠⎨⎪=⎩,△DEF CEA △≌△(SAS ),△DF AC BD ==,FDE C ∠=∠,△DC AC =,△ADC CAD ∠=∠,又△ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,△ADF ADB ∠=∠,在ADB △和ADF 中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,△ADB ADF △≌△(SAS ),△2AB AF AE == .【点睛】 本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.12.(1)△见解析;△19BD <<;(3)MN =2BD ,理由见解析【解析】【分析】(1)△只需要利用SAS 证明△CED △△ABD 即可;△根据△CED △△ABD 可得AB =CE ,由三角形三边的关系可得CE BC BE CE BC -<<+即AB BC BE AB BC -<<+则218BE <<,再由2BE BD =,可得19BD <<;(2),延长BD 到E 使得DE =BD ,同(1)原理可证△ADE △△CDB ,得到△DAE =△DCB ,AE=CB,然后证明△BAE=△MBN,则可证△BAE△△MBN得到MN=BE,再由BE=BD+ED=2BD,可得MN=2BD.【详解】解:(1)△△BD是三角形ABC的中线,△AD=CD,又△△ABD=△CDE,BD=ED,△△CED△△ABD(SAS);△△△CED△△ABD,△AB=CE,△CE BC BE CE BC-<<+,△AB BC BE AB BC-<<+即218BE<<,又△2BE BD DE BD=+=,△19BD<<;故答案为:19BD<<;(2)MN=2BD,理由如下:如图所示,延长BD到E使得DE=BD,同(1)原理可证△ADE△△CDB(SAS),△△DAE=△DCB,AE=CB,△BC=BN,△AE=BN,△△ABM=△NBC=90°,△△MBN+△ABC=360°-△ABM-△NBC=180°,△△ABC+△BAC+△ACB=180°,△△ABC+△BAC+△DAE=180°,△△BAE+△ABC=180°,△△BAE=△MBN,又△AB =BM ,△△BAE △△MBN (SAS ),△MN =BE ,△BE =BD +ED =2BD ,△MN =2BD .【点睛】本题主要考查了三角形三边的关系,全等三角形的性质与判定,三角形内角和定理,解题的关键在于能够熟练掌握倍长中线法证明两个三角形全等.13.(1)BF AC =;(2)见解析;(3)见解析【解析】【分析】(1)通过证明BEF CEA △≌△,即可求解;(2)过点A 引AF CD ∥交BE 于点F ,通过≌ABF CAD 得到AF CD =,再通过AFE CDE ≌即可求解;(3)过点M 作MT AB ∥交BN 的延长线于点T ,MG AD ,在MT 上取一点K ,使得MK CD =,连接GK ,利用全等三角形的性质证明AB MT =、DM MT =,即可解决.【详解】证明:(1)BF AC =由题意可得:BE EC =在BEF 和CEA 中BE EC BEF CEA EF AE =⎧⎪∠=∠⎨⎪=⎩△()BEF CEA SAS △≌△△BF AC =(2)过点A 引AF CD ∥交BE 于点F ,如下图:由题意可得:CD BC ⊥,且∠=∠EAF ACD则AF BC ⊥又△AB AC =△AF 平分BAC ∠,△BAF EAF ACD ∠=∠=∠△在ABF 和CAD 中ABF DAC AB ACBAF ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩△()ABF CAD ASA ≌△AF CD =在AFE △和CDE △中 FAE DCE AEF CED AF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩△()AFE CDE AAS △≌△△AE EC =(3)证明:过点M 作MT AB ∥交BN 的延长线于点T ,MGAD ,在MT 上取一点K ,使得MK CD =,连接GK ,如下图:△AB MT ∥△ABN T ∠=∠△ANB MNT ∠=∠,AN MN =△()ANB MNT AAS △≌△△BN NT =,AB MT =△MG AD△ADN MGN ∠=∠△,AND MNG AN NM ∠=∠=△()AND MNG AAS △≌△△,AD MG DN NG ==△BD GT =△,BAN AMT DAN GMN ∠=∠∠=∠△BAD GMT ∠=∠△BAD BCD ∠=∠△BCD GMK ∠=∠△,AD BC AD GM ==△BC GM =又△MK CD =△()BCD GMK SAS △≌△△,GK BD BDC MKG =∠=∠△,GK GT MDT GKT =∠=∠△GKT T ∠=∠△DM MT =△AB MT =△DM AB =【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14.(1)见解析;(2)21k k + 【解析】【分析】(1)延长CM 至点D ,使CM DM =,可证ACM BDM ∆≅∆,由全等三角形的性质从而得出AC BD =,根据题目已知,可证DCB NCB ∆≅∆,由全等三角形的性质从而得出BN BD =,等量代换即可得出答案;(2)如图所示,作CQ CP =,可证CPO CQO ∆≅∆,由全等三角形的性质相等角从而得出123∠=∠=∠,进而得出45∠=∠,故可证NOB NOQ ∆≅∆等量转化即可求出CP CM 的值. 【详解】(1)如图1所示,延长CM 至点D ,使CM DM =,在ACM △与BDM 中,CM DM AMC BMD AM BM =⎧⎪∠=∠⎨⎪=⎩,ACM BDM ∴∆≅∆,AC BD ∴=,2CM CN =,CD CN ∴=,在DCB 与NCB △中,CD CN DCB NCB CB CB =⎧⎪∠=∠⎨⎪=⎩, DCB NCB ∴∆≅∆,BN BD ∴=,AC BN ∴=;(2)如图所示,120AMC ∠=︒,60CMN ∴∠=︒,NP 平分MNC ∠,BCN BCM ∠=∠,1602PNC BCN AMC ∠+∠=∠=︒, 120CON ∴∠=︒,60COP ∠=︒,180CMN BOP ∴∠+∠=︒,作CQ CP =,在CPO △与CQO 中, CQ CP QCO PCO CO CO =⎧⎪∠=∠⎨⎪=⎩,CPO CQO ∴∆≅∆,123∴∠=∠=∠,45∴∠=∠,在NOB 与NOQ 中,45BNO QNO NO NO ∠=∠⎧⎪∠=∠⎨⎪=⎩,NOB NOQ ∴∆≅∆,BN NQ ∴=,CN CP NB ∴=+,2CM CP AC∴=+,设AC a=,CP ka∴=,(1)2a kCM+=,21CP kCM k∴=+.【点睛】本题考查全等三角形的综合应用,掌握全等三角形的判定与性质是解题的关键.15.(1)2AB AC AD AB AC-<<+,(2)31322AD<<【解析】【分析】(1)延长AD至E,使AD DE=,连接BE,然后再证明ACD EBD△≌△,根据全等三角形的性质可得AC BE=,再根据三角形的三边关系可得AB BE AE AB BE-<<+,利用等量代换可得2AB AC AD AB AC-<<+;(2)把8cmAB=,5cmAC=代入(1)的结论里,再解不等式即可.【详解】(1)证明:如图延长AD至E,使DE AD=,连接BE,△AD为ABC中BC边上的中线,△DC BD=,在ACD△和EBD△中:DC BD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩,△(SAS)ACD EBD ≌△△,△AC BE =(全等三角形的对应边相等),在ABE △中,由三角形的三边关系可得AB BE AE AB BE -<<+,即2AB AC AD AB AC -<<+;(2)解:△8cm AB =,5cm AC =,由(1)可得2AB AC AD AB AC -<<+,△85285AD -<<+,△31322AD <<. 【点睛】本题考查全等三角形的判定与性质,三角形的三边关系,利用倍长中线的方式构造全等三角形是解题关键.16.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可; (2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD至P点,使得AD=PD,连接CP,△AD是△ABC的中线,△D为BC的中点,BD=CD,在△ABD与△PCD中,BD CDADB PDCAD PD=⎧⎪∠=∠⎨⎪=⎩△△ABD△△PCD(SAS),△AB=CP,在△APC中,由三边关系可得AC+PC>AP,△2AB AC AD+>;(2)如图所示,取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,△H为DE中点,D、E为BC三等分点,△DH=EH,BD=DE=CE,△DH=CH,在△ABH和△QCH中,BH CHBHA CHQAH QH=⎧⎪∠=∠⎨⎪=⎩△△ABH△△QCH(SAS),同理可得:△ADH△△QEH,△AB=CQ,AD=EQ,此时,延长AE,交CQ于K点,△AC+CQ=AC+CK+QK,AC+CK>AK,△AC +CQ >AK +QK ,又△AK +QK =AE +EK +QK ,EK +QK >QE ,△AK +QK >AE +QE ,△AC +CQ >AK +QK >AE +QE ,△AB =CQ ,AD =EQ ,△AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE , △M 为DE 中点,△DM =EM ,△BD =CE ,△BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩ △△ABM △△NCM (SAS ),同理可证△ADM △△NEM ,△AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,△AC +CN =AC +CT +NT ,AC +CT >AT ,△AC +CN >AT +NT ,又△AT +NT =AE +ET +NT ,ET +NT >NE ,△AT +NT >AE +NE ,△AC +CN >AT +NT >AE +NE ,△AB =NC ,AD =NE ,△AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.17.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)延长AD 至点E ,使ED AD =.由AD 为中线可知BD CD =,即易证()ABD ECD SAS ≅,得出AB EC =.利用三角形三边关系可知AC EC AE +>,即可证明2AC AB AD +>.(2)延长ED 至点G ,使DG ED =,连接CG,EG .由AD 为中线可知BD CD =.即易证()BDE CDG SAS ≅,得出BE CG =.由题意可得90EDF GDF ∠=∠=︒,即易证()EDF GDF SAS ≅,得出EF GF =.利用三角形三边关系可知CG CF FG +>,即可证明BE CF EF +>.【详解】(1)如图,延长AD 至点E ,使ED AD =.△AD 为中线,△BD CD =.△在ABD △和ECD 中,BD CD ADB EDC AD ED =⎧⎪∠=∠⎨⎪=⎩, △()ABD ECD SAS ≅,△AB EC =.△在ACE 中,AC EC AE +>,△2AC AB AD +>.(2)如图,延长ED 至点G ,使DG ED =,连接CG ,EG .△AD 为中线,△BD CD =.△在BDE 和CDG 中,BD CD BDE CDG ED GD =⎧⎪∠=∠⎨⎪=⎩, △()BDE CDG SAS ≅,△BE CG =.△DE DF ⊥,△90EDF GDF ∠=∠=︒, △在EDF 和GDF 中,90ED GD EDF GDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩,△()EDF GDF SAS ≅,△EF GF =.△在CFG △中,CG CF FG +>,△BE CF EF +>.【点睛】本题考查三角形中线的性质,全等三角形的判定和性质,三角形三边关系.作出常用的辅助线是解答本题的关键.18.(1)5或8;(2)见解析;(3)AEF 是“匀称三角形”,见解析【解析】【分析】(1)设第三边长为x ,利用“匀称三角形”的定义,列出方程,但是由于3a b c b ++=等式中,4,6,x 均有可能为等式右边的“b ”,所以需要分三类讨论,最终确定下来的三边长必须满足“三角形两边之和大于第三边”,故最终答案为5或8;(2)要证明EF 为O 切线,连接OD ,由于OD 是O 半径,只需要证明OD EF ⊥,又由于DF AC ⊥,所以只需要证明//OD AC ,又由于O 为AB 中点,只需要证明D 为BC 的中点,因为AB 是O 直径,所以AD BD ⊥,又因为AB AC =,所以D 为BC 的中点,即可证明;(3)因为D 为BC 的中点,仿照“中线倍长”模型,过B 作BM EF ⊥于M ,如图2,或者在DE 上截取DM DF =,构造BMD CFD ≅,所以BM CF =,将53BE CF =转化成53BE BM =,因为//BM AC ,所以BEM AEF ∽,可以得到53AE BE AF BM ==,设5AE x =,则3AF x =,利用勾股定理求出4EF x =,满足定义,即可证明. 【详解】解:(1)解:设第三边长为x ,△当4663x ++=时,解得8x =, △当463x x ++=是,解得5x =, △当4643x ++=时,解得2x =, 246+=,∴当三边长为2,4,6时,不能构成三角形,所以△舍去,故答案为:5或8;(2)证明:如图1,连接OD ,AD ,AB是O直径,AD BC∴⊥,AB AC=,D∴为BC的中点,即BD CD=,O为AB中点,//OD AC∴,12OD AC=,DF AC⊥,90AFD∴∠=︒,//OD AC,90ODE AFD∴∠=∠=︒,OD EF⊥∴,OD是O半径,EF∴是O的切线;(3)解:AEF∆是“匀称三角形”,理由如下:如图2,过B作BM EF⊥于M,90BMD CFD ∴∠=∠=︒,在BMD 和CFD △中,BMD CFD BDM CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BMD CFD AAS ∴≅,BM CF ∴=,53BE CF =, ∴53BE BM =, 90BMD CFD ∠=∠=︒,EBM EAF ∴∽,∴53BE AE BM AF ==, 设5AE x =,则3AF x =,∴224EF AE AF x =-=,54343x x x x ++=, ∴3AE EF AF EF ++=, AEF ∴是“匀称三角形”.【点睛】本题是一道圆的综合题,由新定义的结论,要注意分类讨论和根据三角形三边关系对答案进行取舍,在几何证明中,要注意利用相似转化线段比的思想,比如本题中“53BE BE AE FC BM AF ===”的转化. 19.(1)14AD <<;(2)见解析【解析】【分析】(1)根据已知证明BDE ADC △≌△,进而求得AC BE =,根据三角形三边关系即可求得AD 的取值范围;(2)过点B 作//BM FC 交FE 的延长线于M ,证明ABE ACF ≌,得CF BE =,再证明BM CE =,进而证明BMG CFG △≌△,即可证明BG CG =【详解】(1)//BE ACE EAC∴∠=∠,BDE ADC BD CD∠=∠=∴BDE ADC△≌△3AC BE∴==AB BE AE AB BE-<<+,即228AD<<14AD∴<<(2)如图,过点B作//BM FC交FE的延长线于M,23∴∠=∠AF AE=,AF AE⊥,445AEF∴∠=∠=︒,1180180904545AEB AEF∴∠=︒-∠-∠=︒-︒-︒=︒,,,90AB AC AE AF BAC EAF==∠=∠=︒BAC EAC EAF EAC∴∠-∠=∠-∠即BAE CAF∠=∠∴ABE ACF≌CF BE∴=,90AEB AFC∠=∠=︒390445∴∠=︒-∠=︒3445,AEF AE BD∠=∠=∠=︒⊥23145∴∠=∠=∠=︒BE BM∴=BM CF∴=又BGM CGF∠=∠,BMG CFG ∴△≌△BG CG ∴=【点睛】本题考查了三角形全等的性质与判定,三角形三边关系,等腰三角形的性质,掌握三角形全等的性质与判定是解题的关键.20.(1)1<AD <7;(2)AC ∥BM ,且AC =BM ,证明见解析;(3)EF =2AD ,证明见解析.【解析】【分析】(1)延长AD 到M ,使得DM =AD ,连接BM ,根据题意证明△MDB ≌△ADC ,可知BM =AC ,在△ABM 中,根据AB ﹣BM <AM <AB +BM ,即可求的;(2)由(1)知,△MDB ≌△ADC ,可知∠M =∠CAD ,AC =BM ,进而可知AC ∥BM ; (3)延长AD 到M ,使得DM =AD ,连接BM ,由(1)(2)的结论以及已知条件证明△ABM ≌△EAF ,进而可得AM =2AD ,由AM =EF ,即可求得AD 与EF 的数量关系.【详解】(1)如图2,延长AD 到M ,使得DM =AD ,连接BM ,∵AD 是△ABC 的中线,∴BD =CD ,在△MDB 和△ADC 中,BD CD BDM CDA DM AD =⎧⎪∠=∠⎨⎪=⎩,∴△MDB ≌△ADC (SAS ),∴BM =AC =6,在△ABM 中,AB ﹣BM <AM <AB +BM ,∴8﹣6<AM <8+6,2<AM <14,∴1<AD <7,故答案为:1<AD <7;(2)AC ∥BM ,且AC =BM ,理由是:由(1)知,△MDB ≌△ADC ,。

中考数学中点四大模型专题知识解读

中考数学中点四大模型专题知识解读

中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。

【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。

中考专题中线倍长法和截长补短

中考专题中线倍长法和截长补短

几何证明中常用辅助线 (一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。

已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21 (AB+AC)小结:涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。

它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。

例2、中线一倍辅助线作法△ABC 中方式1: 延长AD 到E , AD 是BC 边中线使DE=AD , 连接BE方式2:间接倍长AD 于F ,MD 到N , 作BE ⊥AD 的延长线于使DN=MD , 连接连接CD例3、△ABC 中,AB=5,AC=3,求中线AD的取值范围例4、已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线, 求证:∠C=∠BAEC作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论2、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF(二)截长补短法教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例. 例1.已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD平分∠ABC .求证:∠BAD +∠BCD =180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中,⎩⎨⎧==CD AD DFDE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF .DABCM TEABCD图1-1FEDCBA图1-2又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180°.例2. 如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB .求证:CD =AD +BC .分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的. 证明:在CD 上截取CF =BC ,如图2-2在△FCE 与△BCE 中,⎪⎩⎪⎨⎧=∠=∠=CE CE BCE FCE CB CF ∴△FCE ≌△BCE (SAS ),∴∠2=∠1.又∵AD ∥BC ,∴∠ADC +∠BCD =180°,∴∠DCE +∠CDE =90°, ∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△FDE 与△ADE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠43DEDE ADE FDE ∴△FDE ≌△ADE (ASA ),∴DF =DA , ∵CD =DF +CF ,∴CD =AD +BC .例3. 已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD .求证:∠BAP +∠BCP =180°.分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造. 证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中,⎩⎨⎧==BPBP PDPE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD .∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE .在Rt △APE 与Rt △CPD 中,⎪⎩⎪⎨⎧=∠=∠=DC AE PDC PEA PD PE ∴Rt △APE ≌Rt △CPD (SAS),∴∠PAE =∠PCD 又∵∠BAP +∠PAE =180°,∴∠BAP +∠BCP =180°例4. 已知:如图4-1,在△ABC 中,∠C =2∠B ,∠1=∠2.ADB CEF1234图2-2ABCDP12N图3-1P12NABCD E 图3-2A 12求证:AB =AC +CD .分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC 至E 使CE =CD ,或在AB 上截取AF =AC . 证明:方法一(补短法)延长AC 到E ,使DC =CE ,则∠CDE =∠CED ,如图4-2 ∴∠ACB =2∠E ,∵∠ACB =2∠B ,∴∠B =∠E , 在△ABD 与△AED 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD E B 21 ∴△ABD ≌△AED (AAS ),∴AB =AE . 又AE =AC+CE =AC +DC ,∴AB =AC +DC . 方法二(截长法)在AB 上截取AF =AC ,如图4-3 在△AFD 与△ACD 中,⎪⎩⎪⎨⎧=∠=∠=AD AD AC AF 21 ∴△AFD ≌△ACD (SAS ),∴DF =DC ,∠AFD =∠ACD . 又∵∠ACB =2∠B ,∴∠FDB =∠B ,∴FD =FB . ∵AB =AF +FB =AC +FD ,∴AB =AC +CD .上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。

中考数学“倍长中线模型”应用分析

中考数学“倍长中线模型”应用分析

《义务教育数学课程标准(2022年版)》指出,模型观念是初中阶段的数学核心素养的主要表现之一。

对初中学生来说,运用数学几何模型来解决实际问题要有清晰的认识,需要具备较好的解题思维与解题技巧。

数学建模是数学世界与现实世界联系的基本途径之一,教师应让学生在学习中感知数学建模的基本过程,增强数学知识的应用意识和能力。

文章以鲁教版五四学制初中数学教材七年级上册第一章第1节“认识三角形”中的相关内容为例进行讲解分析,进而研究倍长中线模型(中线加倍法模型)解题策略和解题思路。

初中数学学习策略模型的建立及其应用案例的研究显得尤其重要。

文章重点分析倍长中线模型并进行拓展应用,达到思维的提升。

一、倍长中线模型中线:平面内的三角形,任意取一个顶点,这个顶点到对边中点的线段,定义为三角形的一条中线,显然三角形有三条中线。

倍长中线模型(中线加倍法模型):沿着某一个方向延长中线,使得被延长的部分线段的长度等于它本身的长度,再连接两个端点。

此模型经常用来构造三角形全等(AAS 、SAS )以求解三角形边长之间的取值范围、长度、数量关系等问题。

一般思路:已知条件中出现三角形一边的中线或与中点有关的线段时,优先运用倍长中线模型来构造全等三角形加以论证说明。

利用中点巧作辅助线,通常是把中线延长一倍,然后利用全等三角形判定定理来解决问题。

常用的解决方案如下面四种情况所示:已知,在△ABC 中,AD 是BC 边上的中线。

①如图1所示,延长AD 到E ,使得DE =AD ,连接BE ;②如图2所示,延长AD 到F ,使得DF =AD ,连接CF ;③如图3所示,作CN ⊥AD 于点N ,作BM ⊥AD 的延长线于点M ;④如图4所示,在AB 上取一点G ,连接GD 并延长到点H ,使得DH =GD ,连接CH 。

上述四种解题思路均可以推导出两个三角形全等。

图1 图2 图3 图4二、模型应用及分析倍长中线的应用,需要借助中线的条件,根据题目条件来求解问题。

中考数学-全等三角形问题中常见的8种辅助线的作法

中考数学-全等三角形问题中常见的8种辅助线的作法

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

中考数学难点突破与经典模型精讲练全等三角形中的倍长中线模型(解析版)

中考数学难点突破与经典模型精讲练全等三角形中的倍长中线模型(解析版)

专题07 全等三角形中的倍长中线模型【模型展示】已知:在△ABC中,D为AC中点,连接BD并延长到E使得DE=BD,连接AE则:BC平行且等于AE.【证明】延长BD到E,使DE=BD,连接CE,∵AD是斜边BC的中线∵AD=CD∵∵ADE=∵BDC∵∵ADE∵∵BDC(SAS)∵AE=B C,∵D BC=∵AED∵AE∵BC【模型证明】【证明】延长DE至点F,使EF=DE.∵E是BC的中点∵BE=CE,在∵BEF和∵CED中,∵∵BEF∵∵CED(SAS).∵BF=CD,∵D=∵F.又∵∵BAE=∵D,∵∵BAE=∵F.∵AB=BF.∵AB=CD.△△F=△CGE=90°.又△△BEF=△CEG,BE=CE,在△BEF和△CEG中,,△△BFE△△CGE.△BF=CG.在△ABF和△DCG中,△,△△ABF△△DCG.△AB=CD.方法三:作CF△AB,交DE的延长线于点F.△△F=△BAE.又△△BAE=△D,△△F=△D.△CF=CD.△,△△ABE△△FCE.△AB=CF.△AB=CD.一、解答题1.如图,ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE CF∥.(1)求证:BDE△CDF;(2)若15AE=,8AF=,试求DE的长.【答案】(1)见解析;(2)72;【分析】(1)根据两直线平行内错角相等;全等三角形的判定(角角边);即可证明;(2)由(1)结论计算线段差即可解答;(1)证明:△BE△CF,△△BED=△CFD,△△BDE=△CDF,BD=CD,△△BDE△△CDF(AAS);(2)解:由(1)结论可得DE=DF,△EF=AE-AF=15-8=7,△DE=72;【点睛】本题考查了平行线的性质,全等三角形的判定(AAS)和性质;掌握全等三角形的判定和性质是解题关键.2.如图,在Rt △ABC 中,△ACB =90°,点D 是AB 的中点,小明发现,用已学过的“倍长中线”加倍构造全等,就可以测量CD 与AB 数量关系.请根据小明的思路,写出CD 与AB 的数景关系,并证明这个结论.【答案】CD =12AB ,证明过程详见解析【分析】延长CD 到点E ,使ED =CD ,连接BE ,根据全等三角形的判定和性质即可求解.【详解】解:CD =12AB ,证明:如图,延长CD 到点E ,使ED =CD ,连接BE ,在△BDE 和△ADC 中,BD AD BDE ADC ED CD =⎧⎪∠=∠⎨⎪=⎩△△BDE △△ADC (SAS),△EB =AC ,△DBE =△A ,△BE ∥AC ,△△ACB =90°,△△EBC =180°-△ACB =90°,△△EBC =△ACB ,在△ECB 和△ABC 中,EB AC EBC ACB CB BC =⎧⎪∠=∠⎨⎪=⎩△△ECB △△ABC (SAS),△EC=AB,△CD=12EC=12AB.【点睛】本题考查了全等三角形的判定和性质,解决本题的关键是正确的作出辅助线.3.我们规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA =OB,OC=OD,△AOB=△COD=90°,回答下列问题:(1)求证:△OAC和△OBD是兄弟三角形.(2)“取BD的中点P,连接OP,试说明AC=2OP.”聪明的小王同学根据所要求的结论,想起了老师上课讲的“中线倍长”的辅助线构造方法,解决了这个问题,按照这个思路回答下列问题.△请在图中通过作辅助线构造△BPE△△DPO,并证明BE=OD;△求证:AC=2OP.【答案】(1)见解析(2)△见解析;△见解析【分析】(1)证出△AOC+△BOD=180°,由兄弟三角形的定义可得出结论;(2)△延长OP至E,使PE=OP,证明△BPE△△DPO(SAS),由全等三角形的性质得出BE=OD;△证明△EBO△△COA(SAS),由全等三角形的性质得出OE=AC,则可得出结论.(1)证明:△△AOB=△COD=90°,△△AOC+△BOD=360°-△AOB-△COD=360°-90°-90°=180°,又△AO=OB,OC=OD,△△OAC和△OBD是兄弟三角形;(2)△证明:延长OP至E,使PE=OP,△P为BD的中点,△BP=PD,又△△BPE=△DPO,PE=OP,△△BPE△△DPO(SAS),△BE=OD;△证明:△△BPE△△DPO,△△E=△DOP,△BE∥OD,△△EBO+△BOD=180°,又△△BOD+△AOC=180°,△△EBO=△AOC,△BE=OD,OD=OC,△BE=OC,又△OB=OA,△△EBO△△COA(SAS),△OE=AC,又△OE=2OP,△AC=2OP.【点睛】本题是三角形综合题,考查了新定义兄弟三角形,全等三角形的判定与性质,正确作出辅助线是解题的关键.4.【发现问题】小强在一次学习过程中遇到了下面的问题:如图1,AD是△ABC的中线,若AB=8,AC=6,求AD的取值范围.【探究方法】小强所在学习小组探究发现:延长AD至点E,使ED=AD,连接BE.可证出△ADC与△EDB,利用全等三角形的性质可将已知的边长与AD转化到同一个△ABE中,进而求出AD的取值范围.方法小结:从上面思路可以看出,解决问题的关键是将中线AD 延长一倍,构造出全等三角形,我们把这种方法叫做倍长中线法.【应用方法】(1)请你利用上面解答问题的方法思路,写出求AD 的取值范围的过程;【拓展应用】(2)已知:如图2,AD 是△ABC 的中线,BA =BC ,点E 在BC 的延长线上,EC =BC .写出AD 与AE 之间的数量关系并证明.【答案】(1)1<AD <7;(2)2AD =AE .理由见解析【分析】(1)延长AD 至点E ,使DE =AD ,连接BE ,证明△BDE △△CDA (SAS ),得出AC =BE =6,由三角形三边关系可得出答案;(2)延长AD 至F ,使DF =AD ,由SAS 证明△BDF △△CDA ,利用已知条件推出△FBA =△ACE ,再由SAS 证明△ACE △△FBA 2AD =AE .【详解】(1)证明:延长AD 至E ,使DE =AD ,△AD 是BC 边上的中线,△BD =CD ,在△BDE 和△CDA 中,BD CD BDE CDA DE DA =⎧⎪∠=∠⎨⎪=⎩,△△BDE △△CDA (SAS ),△AC =BE =6,在△ABE 中,AB -BE <AE <AB +BE ,△8-6<2AD <8+6,△1<AD <7;(2)2AD =AE .理由如下:证明:延长AD 至F ,使DF =AD ,△AD 是BC 的中线,△BD =CD ,在△BDF 和△CDA 中,BD CD BDF CDA DF DA =⎧⎪∠=∠⎨⎪=⎩,△△BDF △△CDA (SAS ),△AC =BF ,△CAD =△F ,△AC △BF ,△△FBA +△BAC =180°,△BA =BC ,△△BAC =△BCA ,△△ACE +△BCA =180°,△△FBA =△ACE ,△BA =BC ,EC =BC ,△BA =EC ,在△ACE 和△FBA 中,CE BA ACE FBA AC BF =⎧⎪∠=∠⎨⎪=⎩,△△ACE △△FBA (SAS ),△AE =AF ,△2AD =AF ,△2AD =AE .【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟练掌握全等三角形的判定方法是解题的关键.5.[问题背景]△如图1,CD为△ABC的中线,则有S△ACD=S△BCD;△如图2,将△中的△ACB特殊化,使△ACB=90°,则可借助“面积法”或“中线倍长法”证明AB=2CD;[问题应用]如图3,若点G为△ABC的重心(△ABC的三条中线的交点),CG△BG,若AG×BC =16,则△BGC面积的最大值是()A.2B.8C.4D.6【答案】[问题背景]△见解析;△见解析;[问题应用]C【分析】[问题背景]△设AB边的高长为h,可得11,22ACD BCDS AD h S BD h=⨯=⨯,再由AD=BD,即可求证;△延长CD至点E,使DE=CD,连接AE,BE,根据AD=BD,可得四边形ACBE是平行四边形,再由△ACB=90°,可得到四边形ACBE是矩形,即可求证[问题应用]如图,过点G作GH△BC于点H,根据题意可得点D是BC的中点,AG=2DG,从而得到12DG BC=,得到AG=,再由AG×BC=16,可得到AG=BC=4,再由GH△BC,可得GH≤DG,从而得到当GH=DG时,△BGC面积的最大,即可求解.【详解】解:[问题背景]△设AB边的高长为h,△11,22ACD BCDS AD h S BD h =⨯=⨯,△CD为△ABC的中线,即AD=BD,△=ACD BCDS S;△如图,延长CD至点E,使DE=CD,连接AE,BE,△CD为△ABC的中线,△AD=BD,△DE=CD,△四边形ACBE是平行四边形,△△ACB=90°,△四边形ACBE是矩形,△AB=CE,△DE=CD,△AB=CD+DE=2CD;[问题应用]如图,过点G作GH△BC于点H,△点G为△ABC的重心(△ABC的三条中线的交点),△点D是BC的中点,AG=2DG,△CG△BG,△12DG BC,△AG=BC,△AG×BC=16,△AG=BC=4,△DG=2,△GH△BC,△GH≤DG,△GH≤2,△当GH =2,即GH =DG 时,△BGC 面积的最大,最大值为1124422DG BC ⨯=⨯⨯=. 【点睛】本题主要考查了矩形的判定和性质,重心的性质,熟练掌握矩形的判定和性质定理,重心的性质是解题的关键.6.先阅读,再回答问题:如图1,已知△ABC 中,AD 为中线.延长AD 至E ,使DE=AD .在△ABD 和△ECD 中,AD=DE ,△ADB =△EDC ,BD=CD ,所以,△ABD △△ECD (SAS ),进一步可得到AB=CE ,AB △CE 等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC 中,AD 是三角形的中线,F 为AD 上一点,且BF=AC ,连结并延长BF 交AC 于点E ,求证:AE=EF .【答案】证明见试题解析.【分析】延长AD 到G ,使DF =DG ,连接CG ,得到BD=DC ,根据SAS 推出△BDF △△CDG ,根据全等三角形的性质得出BF=CG ,△BFD =△G ,求出△AFE =△G ,CG=AC ,推出△G =△CAF ,求出△AFE =△CAF 即可.【详解】解:延长AD 到G ,使DF=DG ,连接CG ,△AD是中线,△BD=DC,在△BDF和△CDG中,△BD=DC,△BDF=△CDG,DF=DG,△△BDF△△CDG,△BF=CG,△BFD=△G,△△AFE=△BFD,△△AFE=△G,△BF=CG,且已知BF=AC,△CG=AC,△△G=△CAF,△△AFE=△CAF,△AE=EF.【点睛】本题考查了倍长中线法、三角形全等的判定、性质及等腰三角形的性质等,本题的关键是借助阅读材料中提供的方法延长AD到G,使DF=DG,进而构造三角形全等.7.(1)如图1,若△ABC是直角三角形,△BAC=90°,点D是BC的中点,延长AD到点E,使DE=AD,连接CE,可以得到△ABD△△ECD,这种作辅助线的方法我们通常叫做“倍长中线法”.求证:△ACE是直角三角形(2)如图2,△ABC是直角三角形,△BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE△DF.试说明BE2+CF2=EF2;(3)如图3,在(2)的条件下,若AB=AC,BE=12,CF=5,求△DEF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)1694. 【分析】(1)根据全等三角形的性质和直角三角形的判定解答即可;(2)延长ED 至点G ,使得DG=DE ,连接FG ,CG ,根据全等三角形的判定和性质进行解答;(3)连接AD ,根据全等三角形的判定和性质和三角形的面积公式解答即可.【详解】(1)△△ABD△△ECD△△ECD=△B△△BAC=90°△△B+△BCA=90°△△BCE+△BCA =90°,即△ACE=90°△△ACE 是直角三角形(2)延长ED 至点G ,使得DG=DE ,连接FG ,CG ,△DE=DG ,DF△DE ,△DF 垂直平分DE ,△EF=FG ,△D 是BC 中点,△BD=CD ,在△BDE 和△CDG 中,BD CD BDE CDG DE DG ⎧⎪∠∠⎨⎪⎩=== , △△BDE△△CDG (SAS ),△BE=CG ,△DCG=△DBE ,△△ACB+△DBE=90°,△△ACB+△DCG=90°,即△FCG=90°,△CG 2+CF 2=FG 2,△BE 2+CF 2=EF 2;(3)连接AD ,△AB=AC ,D 是BC 中点,△△BAD=△C=45°,AD=BD=CD ,△△ADE+△ADF=90°,△ADF+△CDF=90°,△△ADE=△CDF ,在△ADE 和△CDF 中,BAD C AD CDADE CDF ∠∠⎧⎪⎨⎪∠∠⎩=== , △△ADE△△CDF (ASA ),△AE=CF ,BE=AF ,AB=AC=17,△S 四边形AEDF =12S △ABC , △S △AEF =12×5×12=30, △△DEF 的面积=12S △ABC ﹣S △AEF =1694. 【点睛】考查全等三角形的判定与性质,通过证明三角形全等得出对应边相等、对应角相等是解题基础,将待求线段转化成求等长线段是解题的关键.8.(1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC 中,AB =9,AC =5,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):△延长AD 到Q ,使得DQ =AD ;△再连接BQ ,把AB 、AC 、2AD 集中在△ABQ 中;△利用三角形的三边关系可得4<AQ<14,则AD 的取值范围是_____________.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)请你写出图1中AC 与BQ 的位置关系并证明.(3)思考:已知,如图2,AD 是△ABC 的中线,AB =AE ,AC =AF ,△BAE =△FAC =90°.试探究线段AD 与EF 的数量和位置关系并加以证明.【答案】(1)2<AD<7;(2)AC△BQ,理由见解析;(3)EF=2AD,AD△EF,理由见解析【分析】(1)先判断出BD=CD,进而得出△QDB△△ADC(SAS),得出BQ=AC=5,最后用三角形三边关系即可得出结论;(2)由(1)知,△QDB△△ADC(SAS),得出△BQD=△CAD,即可得出结论;(3)同(1)的方法得出△BDQ△△CDA(SAS),则△DBQ=△ACD,BQ=AC,进而判断出△ABQ=△EAF,进而判断出△ABQ△△EAF,得出AQ=EF,△BAQ=△AEF,即可得出结论.【详解】解:(1)延长AD到Q使得DQ=AD,连接BQ,△AD是△ABC的中线,△BD=CD,在△QDB和△ADC中,BD CDBDQDQ DA=⎧⎪∠=⎨⎪=⎩,△△QDB△△ADC(SAS),△BQ=AC=5,在△ABQ中,AB﹣BQ<AQ<AB+BQ,△4<AQ<14,△2<AD<7,故答案为2<AD<7;(2)AC△BQ,理由:由(1)知,△QDB△△ADC,△△BQD=△CAD,△AC△BQ;(3)EF=2AD,AD△EF,理由:如图2,延长AD到Q使得BQ=AD,连接BQ,由(1)知,△BDQ△△CDA(SAS),△△DBQ=△ACD,BQ=AC,△AC=AF,△BQ=AF,在△ABC中,△BAC+△ABC+△ACB=180°,△△BAC+△ABC+△DBQ=180°,△△BAC+ABQ=180°,△△BAE=△F AC=90°,△△BAC+△EAF=180°,△△ABQ=△EAF,在△ABQ和△EAF中,AB EAABQ EAF BQ AF=⎧⎪∠=∠⎨⎪=⎩,△△ABQ△△EAF,△AQ=EF,△BAQ=△AEF,延长DA交EF于P,△△BAE=90°,△△BAQ+△EAP=90°,△△AEF+△EAP=90°,△△APE=90°,△AD△EF,△AD=DQ,△AQ=2AD,△AQ=EF,△EF=2AD,即:EF=2AD,AD△EF.【点睛】本题是三角形综合题,主要考查全等三角形的判定和性质,倍长中线法,构造全等三角形是解题的关键.9.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC 中,AB =8,AC =6,点D 是BC 边上的中点,怎样求AD 的取值范围呢?我们可以延长AD 到点E ,使AD =DE ,然后连接BE (如图△),这样,在△ADC 和△EDB 中,由于AD DE ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩,△△ADC △△EDB ,△AC =EB ,接下来,在△ABE 中通过AE 的长可求出AD 的取值范围.请你回答:(1)在图△中,中线AD 的取值范围是 .(2)应用上述方法,解决下面问题△如图△,在△ABC 中,点D 是BC 边上的中点,点E 是AB 边上的一点,作DF △DE 交AC 边于点F ,连接EF ,若BE =4,CF =2,请直接写出EF 的取值范围.△如图△,在四边形ABCD 中,△BCD =150°,△ADC =30°,点E 是AB 中点,点F 在DC 上,且满足BC =CF ,DF =AD ,连接CE 、ED ,请判断CE 与ED 的位置关系,并证明你的结论.【答案】(1)1<AD <7;(2)△2<EF <6;△CE △ED ,理由见解析【分析】(1)在△ABE 中,根据三角形的三边关系定理即可得出结果;(2)△延长ED 到点N ,使ED DN =,连接CN 、FN ,由SAS 证得NDC EDB ∆≅∆,得出4BE CN ==,由等腰三角形的性质得出EF FN =,在△CFN 中,根据三角形的三边关系定理即可得出结果;△延长CE 与DA 的延长线交于点G ,易证DG△BC ,得出GAE CBE ∠=∠,由ASA 证得GAE CBE ∆≅∆,得出,GE CE AG BC ==,即可证得CD GD =,由GE CE =,根据等腰三角形的性质可得出CE ED ⊥.【详解】(1)在△ABE 中,由三角形的三边关系定理得:AB BE AE AB BE -<<+ 8686AE ∴-<<+,即214AE <<2214AD ∴<<,即17AD <<故答案为:17AD <<;(2)△如图△,延长ED到点N,使ED DN=,连接CN、FN △点D是BC边上的中点BD CD∴=在△NDC和△EDB中,CD BDCDN BDE DN ED=⎧⎪∠=∠⎨⎪=⎩()NDC EDB SAS∴∆≅∆4BE CN∴==,DF DE ED DN⊥=EFN∴∆是等腰三角形,EF FN=在△CFN中,由三角形的三边关系定理得:CN CF FN CN CF-<<+ 4242FN∴-<<+,即26FN<<26EF∴<<;△CE ED⊥;理由如下:如图△,延长CE与DA的延长线交于点G△点E是AB中点BE AE∴=150,30BCD ADC∠=︒∠=︒//DG BC∴GAE CBE∴∠=∠在△GAE和△CBE中,GAE CBE AE BEAEG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩()GAE CBE ASA∴∆≅∆,GE CE AG BC∴==,BC CF DF AD==CF DF BC AD AG AD∴+=+=+,即CD GD= GE CE=CE ED∴⊥.(等腰三角形的三线合一)【点睛】本题考查了三角形全等的判定定理与性质、三角形的三边关系定理、等腰三角形的判定与性质等知识点,较难的是题(2)△,通过作辅助线,构造全等三角形是解题关键.10.阅读材料,解答下列问题.如图1,已知△ABC中,AD为中线.延长AD至点E,使DE=AD.在△ADC和△EDB中,AD=DE,△ADC=△EDB,BD=CD,所以,△ACD△△EBD,进一步可得到AC=BE,AC//BE 等结论.在已知三角形的中线时,我们经常用“倍长中线”的辅助线来构造全等三角形,并进一步解决一些相关的计算或证明题.解决问题:如图2,在△ABC中,AD是三角形的中线,点F为AD上一点,且BF=AC,连结并延长BF交AC于点E,求证:AE=EF.【答案】详见解析【分析】延长AD到M,使DM=AD,连接BM,根据SAS推出△BDM△△CDA,根据全等三角形的性质得出BM=AC,△CAD=△M,根据BF=AC可得BF=BM,推出△BFM=△M,求出△AFE=△EAF即可.【详解】如图,延长AD至点M,使得MD AD,并连结BM,△AD 是三角形的中线,△BD CD =,在MDB △和ADC △中,,,,BD CD BDM CDA DM DA =⎧⎪∠=∠⎨⎪=⎩△MDB ADC △≌△,△AC MB =,BMD CAD ∠=∠,△BF AC =,△BF BM =,△BMD BFD ∠=∠,△BFD EFA ∠=∠,BMD CAD ∠=∠,△EFA EAF ∠=∠,即AE EF =.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定的应用,主要考查学生的运用性质进行推理的能力,关键是能根据“倍长中线”法作出辅助线来构造全等三角形. 11.(1)如图1所示,在ABC 中,D 为BC 的中点,求证:2AB AC AD +>甲说:不可能出现ABD △ACD ≌△,所以此题无法解决; 乙说:根据倍长中线法,结合我们新学的平行四边形的性质和判定,我们可延长AD 至点E ,使得DE AD =,连接BE 、CE ,由于BD DC =,所以可得四边形ABEC 是平行四边形,请写出此处的依据_______________________________________(平行四边形判定的文字描述) 所以AC BE =,ABE △中,AB BE AE +>,即2AB AC AD +>请根据乙提供的思路解决下列问题:(2)如图2,在ABC 中,D 为BC 的中点,5AB =,3AC =,2AD =,求ABC 的面积; (3)如图3,在ABC 中,D 为BC 的中点,M 为AC 的中点,连接BM 交AD 于F ,若AM MF =.求证:BF AC =.【答案】(1)对角线互相平分的四边形是平行四边形;(2)6;(3)见解析.【分析】(1)根据题意,DE AD =,BD DC =即可得四边形的对角线相等,根据平行四边形的判定定理即可写出;(2)根据倍长中线法,延长AD 至点G ,使得DG AD =,可以求得,,AG AC GC ,再根据 勾股定理的逆定理可知AGC 为Rt ,继而即可求得面积(3)根据倍长中线法,延长AD 至点N ,证明四边形ABNC 是平行四边形,由AM MF =即可证明BF AC =.【详解】解:(1)DE AD =,BD DC =∴四边形ABEC 是平行四边形依据是:对角线互相平分的四边形是平行四边形.故答案为:对角线互相平分的四边形是平行四边形.(2)如图,根据倍长中线法,延长AD 至点G ,使得DG AD =,由(1)可知,四边形ABGC 是平行四边形GC AB ,//AC BG5AB =,3AC =,2AD =4AG ∴=,5GC =22223425AC AG +=+=22525CG ==222AC AG CG ∴+=AGC ∴△是Rt//AC BG1134622ABC AGC S S AC AG ∴==⋅=⨯⨯=△△(3)如图,根据倍长中线法,延长AD 至点N ,使,AD DN =由(1)可知:四边形ABNC是平行四边形,=∴,AC BN//AC BN∴∠=∠MAF BNF=AM MF∴∠=∠MAF MFA∠=∠又MFA BFN∴∠=∠BNF BFN∴=BF BNBF AC∴=【点睛】本题考查了平行四边形的性质与判定,勾股定理的逆定理,等角对等边,运用倍长中线法是解题的关键.12.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),△延长AD到M,使得DM=AD;△连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;△利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,△BAE=△CAF=90°,请直接利用(2)的结论,试判断线段AD 与EF 的数量关系,并加以证明.【答案】(1)1<AD <7;(2)AC △BM ,且AC =BM ,证明见解析;(3)EF =2AD ,证明见解析.【分析】(1)延长AD 到M ,使得DM =AD ,连接BM ,根据题意证明△MDB △△ADC ,可知BM =AC ,在△ABM 中,根据AB ﹣BM <AM <AB +BM ,即可;(2)由(1)知,△MDB △△ADC ,可知△M =△CAD ,AC =BM ,进而可知AC △BM ;(3)延长AD 到M ,使得DM =AD ,连接BM ,由(1)(2)的结论以及已知条件证明△ABM △△EAF ,进而可得AM =2AD ,由AM =EF ,即可求得AD 与EF 的数量关系.【详解】(1)如图2,延长AD 到M ,使得DM =AD ,连接BM ,△AD 是△ABC 的中线,△BD =CD ,在△MDB 和△ADC 中,BD CD BDM CDA DM AD =⎧⎪∠=∠⎨⎪=⎩,△△MDB △△ADC (SAS ),△BM =AC =6,在△ABM 中,AB ﹣BM <AM <AB +BM ,△8﹣6<AM <8+6,2<AM <14,△1<AD <7,故答案为:1<AD <7;(2)AC △BM ,且AC =BM ,理由是:由(1)知,△MDB △△ADC ,△△M =△CAD ,AC =BM ,△AC △BM ;(3)EF =2AD ,理由:如图2,延长AD 到M ,使得DM =AD ,连接BM ,由(1)知,△BDM △△CDA (SAS ),△BM =AC ,△AC =AF ,△BM =AF ,由(2)知:AC △BM ,△△BAC +△ABM =180°,△△BAE =△F AC =90°,△△BAC +△EAF =180°,△△ABM =△EAF ,在△ABM 和△EAF 中,AB EA ABM EAF BM AF =⎧⎪∠=∠⎨⎪=⎩,△△ABM △△EAF (SAS ),△AM =EF ,△AD =DM ,△AM =2AD ,△AM =EF ,△EF =2AD ,即:EF =2AD .【点睛】本题考查了三角形三边关系,三角形全等的性质与判定,利用倍长中线辅助线方法是解题的关键.13.【阅读理解】倍长中线是初中数学一种重要的数学思想,如图△,在ABC 中,AD 是BC 边上的中线,若延长AD 至E ,使DE AD =,连接CE ,可根据SAS 证明ABD ECD △△≌,则AB EC =.(1)【类比探究】如图△,在DEF中,3DF=,点G是EF的中点,求中线DG的DE=,7取值范围;(2)【拓展应用】如图△,在四边形ABCD中,AB CD∥,点E是BC的中点.若AE是BAD∠的平分线.试探究AB,AD,DC之间的等量关系,并证明你的结论.【答案】(1)2<DG<5(2)AD=DC+AB【分析】(1)延长DG至M,使GM=DG,连接MF,根据SAS可证△DEG△△MFG,得出MF=3,然后根据三角形三边不等关系定理求出DM取值范围,最后把DM=2DG代入即可求解;(2)延长AE,DC相交于点F,根据ASA可证△ABE△△FCE,则AB=FC,然后由AE平分△BAD,AB∥CD可证△F=△DAF,由等角对等边可得AD=DF,最后由线段的和差关系即可求解.(1)解:延长DG至M,使GM=DG,连接MF,又EG=FG,△EGD=△FGM,△△DEG△△MFG,△DE=MF,又DE=3,△MF=3,又DF=7,△DF-MF<DM<DF+MF,△7-3<DM<7+3,即4<DM<10,△4<2DG<10,△2<DG<5;(2)延长AE,DC相交于点F,△AB∥CD,△△BAE=△F,又BE=CE,△AEB=△FEC,△△ABE△△FCE,△AB=CF,△△BAE=△F,△DAF=△BAE,△△F=△DAF,△AD=FD,又FD=CD+DF,CF=AB,△AD=CD+AB.【点睛】本题考查了全等三角形的判定与性质,平行线的性质,三角形三边关系定理等知识,读懂题意,添加“倍长中线”的辅助线是解题的关键.14.阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.(1)小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD 到E,使DE=AD,连接BE,构造△BED△△CAD,经过推理和计算使问题得到解决.请回答:AD的取值范围是.(2)参考小军思考问题的方法,解决问题:如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC于点D.求证:PA•CD=PC•BD.【答案】(1)1<AD<5;(2)证明见试题解析.【详解】试题分析:(1)由△BED△△CAD ,得到BE=AC ,在△ABE 中,由三角形三边关系即可得到结论;(2)延长PD 至点F ,使EF =PE ,连接BF .得到△BEF△△AEP ,从而△APE =△F ,BF =PA ,又由△BDF =△CDP ,得到△BDF△△CDP ,故=,即可得到结论.试题解析:(1)1<AD<5; (2)证明:延长PD 至点F ,使EF =PE ,连接BF .△BE =AE ,△BEF =△AEP ,△△BEF△△AEP ,△△APE =△F ,BF =PA ,又△△BDF =△CDP ,△△BDF△△CDP ,△=,△=,即PA·CD =PC·BD . .考点:相似三角形的判定与性质.15.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线法.(1)如图1,AD 是ABC 的中线,7AB =,5AC =求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ≌△△,所以BM AC =.接下来,在ABM 中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是___________.(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点F ,且AE EF =,求证:AC BF =;【答案】(1)1<AD <6(2)见解析【分析】(1)如图1,延长AD 到点M ,使DM =AD ,连接BM ,证明△ADC △△MDB (SAS),推出AC =BM =5,再根据AB −BM △AM △AB +BM ,可得结论;(2)如图2,延长AD 到T ,使得DT =AD ,连接BT ,由△ADC △△TDB ,推出AC =BT ,△C =△TBD ,推出BT AC ,再证明BF =BT ,可得结论.(1)解:如图1中,延长AD 到点M ,使DM =AD ,连接BM ,△AD 是△ABC 的中线,△BD =CD ,在△ADC 和△MDB 中,DA DM ADC MDB DC DB =⎧⎪∠=∠⎨⎪=⎩,△△ADC △△MDB (SAS),△AC =BM =5,△AB =7,△AB −BM <AM <AB +BM ,△2<AM <12,△2<2AD <12,△1<AD <6,故答案为:1<AD <6;(2)证明:如图2中,延长AD 到T ,使得DT =AD ,连接BT ,△AD 是△ABC 的中线,△BD =CD ,在△ADC 和△TDB 中,DA DT ADC TDB DC DB =⎧⎪∠=∠⎨⎪=⎩,△△ADC △△TDB (SAS),△AC =BT ,△C =△TBD ,△BT AC ,△△T =△DAC ,△EA =EF ,△△EAF =△EF A ,△△EF A =△BFT ,△△T =△BFT ,△BF =BT ,△AC =BF【点睛】本题属于四边形综合题,考查了三角形的三边关系,全等三角形的判定和性质,三角形的中线的性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,倍长中线构造全等三角形解决问题.16.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD 是ABC ∆的中线,7,5,AB AC ==求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ∆≅∆,所以BM AC =.接下来,在ABM ∆中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是 ;(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点,F 且AE EF =,求证:AC BF =;(3)如图3,在四边形ABCD 中,//AD BC ,点E 是AB 的中点,连接CE ,ED 且CE DE ⊥,试猜想线段,,BC CD AD 之间满足的数量关系,并予以证明.【答案】(1)16AD <<;(2)见解析;(3)CD BC AD =+,证明见解析【分析】(1)延长AD 到点M ,使DM AD =,连接BM ,即可证明ADC MDB ∆≅∆,则可得BM AC =,在ABM ∆中,根据三角形三边关系即可得到AM 的取值范围,进而得到中线AD 的取值范围;(2)延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,则可得M CAD BM AC ∠=∠=,,由AE EF =可知,CAD AFE ∠=∠,由角度关系即可推出BMF BFM ∠=∠,故BM BF =,即可得到AC BF =;(3)延长CE 到F ,使EF EC =,连接AF ,即可证明AEF BEC ∆≅∆,则可得EAF B AF BC ∠=∠=,,由//AD BC ,以及角度关系即可证明点,,F A D 在一条直线上,通过证明Rt DEF △△DEC Rt △,即可得到FD CD =,进而通过线段的和差关系得到CD BC AD =+.【详解】(1)延长AD 到点M ,使DM AD =,连接BM ,△AD 是ABC ∆的中线,△DC DB =,在ADC ∆和MDB ∆中,AD MD =,ADC MDB =∠∠,DC DB =,△ADC MDB ∆≅∆,△BM AC =,在ABM ∆中,AB BM AM AB BM -+<<,△7575AM -+<<,即212AM <<,△16AD <<;(2)证明:延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,△M CAD BM AC ∠=∠=,,AE EF =,CAD AFE ∴∠=∠,MFB AFE ∠=∠,MFB CAD ∴∠=∠,BMF BFM ∴∠=∠,BM BF ∴=,AC BF ∴=,(3)CD BC AD =+,延长CE 到F ,使EF EC =,连接AF ,AE BE AEF BEC =∠=∠,,AEF BEC ∴∆≅∆,EAF B AF BC ∴∠=∠=,,//AD BC ,180BAD B ∴∠+∠=︒,180EAF BAD ∴∠+∠=︒,∴点,,F A D 在一条直线上,CE ED ⊥,△90DEF DEC ==︒∠∠,△在Rt DEF △和DEC Rt △中,EF EC =,DEF DEC ∠=∠,DE DE =,△Rt DEF △△DEC Rt △,FD CD ∴=,△FD AD AF AD BC =+=+,CD BC AD ∴=+.【点睛】本题考查了三角形中线、全等三角形的证明和性质、三角形的三边关系、等腰三角形的性质、平行线的性质、平角的概念、线段的和差关系等,正确的作出辅助线以及综合运用以上知识是解答本题的关键.17.问题探究:数学课上老师让同学们解决这样的一个问题:如图△,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.分析:证明两条线段相等,常用的方法是应用全等三角形或者等腰三角形的性质.本题中要证相等的两条线段不在同一个三角形中,所以考虑从全等三角形入手,而AB 与CD 所在的两个三角形不全等.因此,要证AB CD =,必须添加适当的辅助线构造全等三角形.以下是两位同学添加辅助线的方法.第一种辅助线做法:如图△,延长DE 到点F ,使DE EF =,连接BF ;第二种辅助线做法:如图△,作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F .(1)请你任意选择其中一种对原题进行证明:方法总结:以上方法称之为“倍长中线”法,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线构造全等三角形来解决问题.(2)方法运用:如图△,AD 是ABC 的中线,BE 与AD 交于点F 且AE EF =.求证:BF AC =. 【答案】(1)证明见解析;(2)证明见解析.【分析】(1)第一种辅助线做法:延长DE 到点F ,使DE EF =,连接BF .只要证明△BEF △△CED ,即可解决问题.第二种辅助线做法:作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F ,先证明△BEF △△CEG ,再证明△ABF △△DCG 即可.(2)延长AD 到点A ˊ,使得DA ˊ=AD ,连接BA ˊ,只要证得△BDA ˊ△△CDA 即可.(1)第一种辅助线做法:证明:如图1,延长DE 到点F ,使得DE =EF ,连接BF ,△E 是BC的中点△BE=CE在△BEF与△CED中BE CEBEF CEDDE FE=⎧⎪∠=∠⎨⎪=⎩△△BEF△△CED(SAS)△BF=CD,△F=△CDE又△△BAE=△CDE△△BAE=△F△BF=AB △AB=CD第二种辅助线做法:证明:如图2,作CG△DE于点G,BF△DE交DE延长线于点E;则△F=△CGE=△CGD=90°,△E是BC的中点,△BE=CE在△BEF与△CEG中F CGEBEF CEGBE CE∠=∠⎧⎪∠=∠⎨⎪=⎩△△BEF△△CEG(AAS)△BF=CG,在△ABF与△DCG中,BAE CDEF CGDBF CG∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABF△△DCG(AAS),△AB=CD.(2)如图3,延长AD到点Aˊ,使得DAˊ=AD,连接BAˊ,△AD是△ABC的中线,△BD=CD.在△BDAˊ与△CDA中BD CDBDA CDADA DA=⎧⎪∠=∠⎨⎪=⎩ˊˊ,△△BDAˊ△△CDA(SAS)△BAˊ=AC,△Aˊ=△CAD,又△AE=EF,△△CAD=△EF A=△BF Aˊ,△Aˊ=△BF Aˊ△BF=BAˊ △BF=AC.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、三角形的中线等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考常考题型.。

初中数学中考复习几何辅助线规律总结(共102条)

初中数学中考复习几何辅助线规律总结(共102条)

初中数学几何辅助线规律线、角、相交线、平行线【规律】1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。

【规律】2平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分。

【规律】3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。

【规律】4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。

【规律】5有公共端点的n条射线所构成的交点的个数一共有n(n-1)个。

【规律】6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。

【规律】7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。

【规律】8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。

【规律】9互为邻补角的两个角平分线所成的角的度数为90°。

【规律】10平面上有n条直线相交,最多交点的个数为n(n-1)个。

【规律】11互为补角中较小角的余角等于这两个互为补角的角的差的一半。

【规律】12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。

【规律】13已知AB∥DE,如图⑴~⑹,规律如下:【规律】14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。

三角形部分【规律】15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。

注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。

【规律】16三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半。

【规律】17三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半。

中考数学专题《全等三角形中的六种模型梳理》解析

中考数学专题《全等三角形中的六种模型梳理》解析

专题02 全等三角形中的六种模型梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。

类型一、倍长中线模型中线倍长法:将中点处的线段延长一倍。

目的:①构造出一组全等三角形;②构造出一组平行线。

将分散的条件集中到一个三角形中去。

例1.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC的边BC到D,使DC=BC,过D作DE△AB交AC延长线于点E,求证:△ABC△△EDC.【理解与应用】如图2,已知在△ABC中,点E在边BC上且△CAE=△B,点E是CD的中点,若AD平分△BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.【变式训练1】如图1,在ABC 中,CM 是AB 边的中线,BCN BCM ∠=∠交AB 延长线于点N ,2CM CN =.(1)求证AC BN =;(2)如图2,NP 平分ANC ∠交CM 于点P ,交BC 于点O ,若120AMC ∠=︒,CP kAC =,求CPCM的值.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>; (2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+; (3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【变式训练3】在ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,BM ⊥直线a 于点M .CN ⊥直线a 于点N ,连接PM ,PN .(1)如图1,若点B ,P 在直线a 的异侧,延长MP 交CN 于点E .求证:PM PE =.(2)若直线a 绕点A 旋转到图2的位置时,点B ,P 在直线a 的同侧,其它条件不变,此时7BMP CNP S S +=△△,1BM =,3CN =,求MN 的长度.(3)若过P 点作PG ⊥直线a 于点G .试探究线段PG 、BM 和CN 的关系.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例.在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,P 为△ABC 外一点,且△MPN =60°,△BPC =120°,BP =CP .探究:当点M 、N 分别在直线AB 、AC 上移动时,BM ,NC ,MN 之间的数量关系.(1)如图①,当点M 、N 在边AB 、AC 上,且PM =PN 时,试说明MN =BM +CN . (2)如图②,当点M 、N 在边AB 、AC 上,且PM ≠PN 时,MN =BM +CN 还成立吗? 答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M 、N 分别在边AB 、CA 的延长线上时,请直接写出BM ,NC ,MN 之间的数量关系.【变式训练1】如图,在四边形ABCD 中,,180AB AD B ADC =∠+∠=︒,点E 、F 分别在直线BC 、CD 上,且12EAF BAD ∠=∠.(1)当点E 、F 分别在边BC 、CD 上时(如图1),请说明EF BE FD =+的理由.(2)当点E 、F 分别在边BC 、CD 延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF 、BE 、FD 之间的数量关系,并说明理由.【变式训练2】(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC ∠,180A C ∠+∠=︒.求证:DA DC =.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题; 方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题. 结合图1,在方法1和方法2中任选一种....,添加辅助线并完成证明. (2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC ∠=︒时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C ∠+∠=︒,DA DC =,过点D 作DE BC ⊥,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.【变式训练3】在ABC 中,BE ,CD 为ABC 的角平分线,BE ,CD 交于点F . (1)求证:1902BFC A ∠=︒+∠;(2)已知60A ∠=︒.①如图1,若4BD =, 6.5BC =,求CE 的长; ②如图2,若BF AC =,求AEB ∠的大小.类型三、做平行线证明全等 例1.如图所示:ABC 是等边三角形,D 、E 分别是AB 及AC 延长线上的一点,且BD CE =,连接DE 交BC 于点M . 求让:MD ME =【变式训练1】 P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且P A =CQ ,连PQ 交AC 边于D . (1)证明:PD =DQ .(2)如图2,过P 作PE △AC 于E ,若AB =6,求DE 的长.【变式训练2】已知在等腰△ABC 中,AB =AC ,在射线CA 上截取线段CE ,在射线AB 上截取线段BD ,连接DE ,DE 所在直线交直线BC 与点M .请探究:(1)如图(1),当点E 在线段AC 上,点D 在AB 延长线上时,若BD =CE ,请判断线段MD 和线段ME 的数量关系,并证明你的结论.(2)如图(2),当点E 在CA 的延长线上,点D 在AB 的延长线上时,若BD =CE ,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;类型四、旋转模型 例.如图1,AC BC =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点M ,连接CM .(1)求证:BE AD =,并用含α的式子表示AMB ∠的度数;(2)当90α=︒时,取AD ,BE 的中点分别为点P 、Q ,连接CP ,CQ ,PQ ,如图2,判断CPQ 的形状,并加以证明.【变式训练1】四边形ABCD 是由等边ABC ∆和顶角为120︒的等腰ABD ∆排成,将一个60︒角顶点放在D 处,将60︒角绕D 点旋转,该60︒交两边分别交直线BC 、AC 于M 、N ,交直线AB 于E 、F 两点.(1)当E 、F 都在线段AB 上时(如图1),请证明:BM AN MN +=;(2)当点E 在边BA 的延长线上时(如图2),请你写出线段MB ,AN 和MN 之间的数量关系,并证明你的结论;(3)在(1)的条件下,若7AC =, 2.1AE =,请直接写出MB 的长为 .【变式训练2】(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,当△DCE 旋转至点A ,D ,E 在同一直线上,连接BE .则:①△AEB 的度数为 °;②线段AD 、BE 之间的数量关系是 . (2)拓展研究:如图2,△ACB 和△DCE 均为等腰三角形,且△ACB =△DCE =90°,点 A 、D 、E 在同一直线上,若AD =a ,AE =b ,AB =c ,求a 、b 、c 之间的数量关系. (3)探究发现:图1中的△ACB 和△DCE ,在△DCE 旋转过程中,当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索△AOE 的度数,直接写出结果,不必说明理由.【变式训练3】如图1,在Rt ABC 中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______. (2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.类型五、手拉手模型例.在等边ABC 中,点D 在AB 上,点E 在BC 上,将线段DE 绕点D 逆时针旋转60°得到线段DF ,连接CF .(1)如图(1),点D 是AB 的中点,点E 与点C 重合,连接AF .若6AB =,求AF 的长; (2)如图(2),点G 在AC 上且60AGD FCB ∠=︒+∠,求证:CF DG =;(3)如图(3),6AB =,2BD CE =,连接AF .过点F 作AF 的垂线交AC 于点P ,连接BP 、DP .将BDP △沿着BP 翻折得到BQP ,连接QC .当ADP △的周长最小时,直接写出CPQ 的面积.【变式训练1】△ACB 和△DCE 是共顶点C 的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A ,D ,E 在同一直线上,连接AE ,BE . ①求证:△ACD △△BCE ;②求△AEB 的度数.(2)类比探究:如图2,点B 、D 、E 在同一直线上,连接AE ,AD ,BE ,CM 为△DCE 中DE 边上的高,请求△ADB 的度数及线段DB ,AD ,DM 之间的数量关系,并说明理由. (3)拓展延伸:如图3,若设AD (或其延长线)与BE 的所夹锐角为α,则你认为α为多少度,并证明.【变式训练2】(1)如图1,锐角△ABC 中,分别以AB 、AC 为边向外作等腰直角△ABE 和等腰直角△ACD ,使AE =AB ,AD =AC ,∠BAE =∠CAD =90°,连接BD ,CE ,试猜想BD 与CE 的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD 中,AB =5,BC =2,∠ABC =∠ACD =∠ADC =45°,求BD 2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD 全等的三角形,将BD 进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD 中,AB =BC ,∠ABC =60°,∠ADC =30°,AD =6,BD =10,则CD = .【变式训练3】(1)问题发现:如图1,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,连接AD ,BE ,点A 、D 、E 在同一条直线上,则AEB ∠的度数为__________,线段AD 、BE 之间的数量关系__________;(2)拓展探究:如图2,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,连接AD ,BE ,点A 、D 、E 不在一条直线上,请判断线段AD 、BE 之间的数量关系和位置关系,并说明理由. (3)解决问题:如图3,ACB △和DCE 均为等腰三角形,ACB DCE α∠=∠=,则直线AD 和BE 的夹角为__________.(请用含α的式子表示)类型六、一线三角模型例.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC △CEB △;②DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【变式训练1】【问题解决】(1)已知△ABC 中,AB =AC ,D ,A ,E 三点都在直线l 上,且有△BDA =△AEC =△BAC .如图①,当△BAC =90°时,线段DE ,BD ,CE 的数量关系为:______________;【类比探究】(2)如图②,在(1)的条件下,当0°<△BAC<180°时,线段DE,BD,CE的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式;【拓展应用】(3)如图③,AC=BC,△ACB=90°,点C的坐标为(-2,0),点B的坐标为(1,2),请求出点A的坐标.【变式训练2】(1)如图1,在△ABC中,△BAC=90°,AB=AC,直线m经过点A,BD△直线m,CE△直线m,垂足分别为点D、E.求证:△ABD△△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问结论△ABD△△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为△BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若△BDA=△AEC=△BAC,求证:△DEF是等边三角形.【变式训练3】探究:(1)如图(1),已知:在△ABC中,△BAC=90°,AB=AC,直线m经过点A,BD△直线m,CE△直线m,垂足分别为点D、E.请直接写出线段BD,DE,CE之间的数量关系是.拓展:(2)如图(2),将探究中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问探究中的结论是否成立?如成立,请你给出证明;若不成立,请说明理由.应用:(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为△BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若△BDA=△AEC=△BAC,请直接写出△DEF的形状是.。

2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。

模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。

【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,∵ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD 到E ,使得DE AD =,连接CE ,易证ABD ECD ∆≅∆,得AB = ,在ACE ∆中,AC CE +> ,2AB AC AD +>.【问题解决】(1)如图(3),在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =.(2)如图(4),在ABC ∆中,90,A D ∠=︒是BC 边的中点,E F 、分别在边AB AC 、上,DE DF ⊥,若3,4BE CF ==,求EF 的长.(3)如图(5),AD 是ABC ∆的中线,,AB AE AC AF ==,且90BAE FAC ∠=∠=︒,请直接写出AD 与EF 的数量关系_ 及位置关系_ .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。

中考数学倍长中线练习题

中考数学倍长中线练习题

倍长中线练习题【模型分析】中线是三角形中的重要线段之一,当已知条件中出现中线时,常利用倍长中线法构造全等三角形解决问题.在△ABC中,AD是BC边的中线。

辅助线作法一:延长AD到E,使DE=AD,连接BE、CE.辅助线作法二:过点B作AC的平行线交AD延长线于点E,连接CE.结论:(1)△ACD≌△EBD;(2)△ABD≌△ECD;(3)四边形ABEC是平行四边形.【模型推广】间接倍长中线当已知条件中出现中点有关的线段时,常利用中点构造全等三角形解决问题.在△ABC中,AD是BC边的中点,点M是AB上一点.辅助线作法一:延长MD到点N,使DN=MD,连接CN.辅助线作法二:过点C作CN//AB,交MD延长线于点N.结论:△BDM≌△CDN.1.(1)如图①,在正方形ABCD中,点F在BC边上,∠DAP的平分线AE交CD于点E,交BC的延长线于点G,求证:AF=FG;(2)如图②,在矩形ABCD中,点E是CD边的中点,点F在BC边上,且AE平分∠DAF.求证:AF= BC+ FC;(3)在(2)的条件下,若AB=2, BC=3,求FC的长.2.问题探究:小红遇到这样-一个问题:如图①,△ABC中,AB=6 ,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使DE=AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是: ;(2)AD的取值范围是;方法运用:(3)如图②,AD是△ABC的中线,在AD上取一点F,连接BF并延长交AC于点E,使AE=EF,求证:BF= AC;(4)如图③,在矩形ABCD中,AB/BC=1/2,在BD上取一点F,以BF 为斜边作Rt△BEF,且EF/BE=1/2,点G是DF的中点,连接EG,CG,求证:EG=CC.。

初中数学中考二轮2几何神技大揭秘-截长补短、倍长中线、旋转

初中数学中考二轮2几何神技大揭秘-截长补短、倍长中线、旋转

中考神技大揭秘学生姓名年级学科授课教师日期时段核心内容几何辅助线的添加方法课型一对一/一对N教学目标1.掌握各种常见辅助线的添加方法;2.会在不同情境中选择恰当的方法解题。

重、难点辅助线的添加方法。

课首沟通1.了解学生在校学习情况和进度;2.检查上次课布置的作业。

知识导图课首小测1.[单选题] (2015青岛中考)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B.2 C.32.[单选题] (2015泰州中考)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对D.3.[单选题] 如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,是DE=AD,则∠ECA的度数为()A.30°B.35°C.40°D.45°4.[单选题] (2015荆门中考)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个知识梳理一、截长补短遇到求证线段和差及倍半关系时,可以尝试截长补短的方法.截长指在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短指将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.题目中常见的条件有等腰三角形(即两条边相等),或角平分线(即两个角相等),通过截长补短后,并连接一些点,构造全等得出最终结论.1.如图,若要求证AB+BD=AC,可以在线段AC上截取线段AB′=AB,并连接DB,证明B′C=BD即可;或延长AB至点C′ 使得AC′=AC,并连接BC′,证明BC′=BD即可.2.如图,若要求证AB+CD=BC,可以在BC上截取线段BF=AB,再证明CD=CF即可;或延长BA至点F,使得BF=BC,再证明AF=CD即可.图(1)图(2)3.在一个对角互补的四边形中,有一组邻边(AB=AD)相等,可以使用补短的方法延长另外两边的一条,构建全等三角形.二、倍长中线遇到一个中点的时候,通常会延长过该中点的线段.倍长中线指延长一边的中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等.如图所示,点D为△ABC边BC的中点.延长AD至点E,使得DE=AD,并连接BE,则△ADC≌△EDB(SAS).1.如图,AD为△ABC边BC的中线.延长AD至点E,使得AD=DE.若连接BE,则△ADC≌△EDB(SAS);若连接CE,则△ADB≌△EDC(SAS).2.如图,点D为△ABC边BC的中点.延长ED至点F,使得DE=DF,并连接BF,则△EDC≌△FDB(SAS).3.如图,AB∥CD,点E为线段AD的中点.延长CE交AB于点F,则△EDC≌△EAF(ASA).三、旋转1.如图1,△ABC内部有一点D,AB=AC.将△ABD绕着点A逆时针旋转,使得AB与AC重合,点D与点D′重合.图1 图22.如图3,△ABC外部有一点D,AB=AC.将△ACD绕着点A顺时针旋转,使得AC与AB重合,点D与点D′重合.图3 图42.如图5,△ABC边BC上有两点D,E,∠BAC=2∠DAE(或∠DAE=∠BAC).将△ACE绕着点A逆时针旋转,使得AC与AB重合,点E与点E′重合,并连接DE′,则△ADE≌△ADE′.图5 图6导学一:辅助线添加方法知识点讲解 1:截长补短例 1. [单选题] 如图,正方形ABCD中,E、F均为中点,则下列结论中:①AF⊥DE;②AD=BP;③PE+PF=PC;④PE +PF=PC.其中正确的是().A.①④B.①②④C.①③D.①②③【学有所获】总结归纳常用的几何辅助线的添加方法.我爱展示1. 在□ABCD中,BD⊥BC,点G为BD延长线上一点且△ABG为等边三角形,∠BAD,∠CBD的角平分线相交于点E,AE交BG于点F,连接GE。

考点05 倍长中线模型-2021年中考数学一轮复习重点题型归纳

考点05 倍长中线模型-2021年中考数学一轮复习重点题型归纳
(1)延长CD到E′,使得DE′=BE,连接AE′,
∵四边形ABCD是正方形,
∴AB=AB,∠B=∠ADC=90°,
∴∠AD E′=90°,
∵DE′=BE,
∴△ABE≌△ADE′,
∴AE′=AE,∠BAE=∠DA E′
∴∠E′AE=90°,
∵∠EAF=45°,
∴∠E′AF=45°,
∴∠E′AF=∠EAF,
在△AEF和△AE′F中,

∴EF=E′F,
∵E′F=DE′+DF=BE+DF=2+3=5,
∴EF=5.
(2)①延长MD到点M′,使得DM′=BM,连接AM′,如图5.
∵∠ADM′+∠ADM=180°,∠ABM+∠ADM=180°,
∴∠ABM=∠ADM′.
在△ABM和△ADM′中,

∴△ABM≌△ADM′(SAS).
则x+y=30,即8+y=30,解得y=22cm;
所以等腰三角形的腰长为22厘米,底边长为16厘米或腰长为20cm,底长为14cm.
2.解:(1)由△BED≌△CAD,得到BE=AC,在△ABE中,由三角形三边关系即可得到结论;
(2)延长PD至点F,使EF=PE,连接BF.得到△BEF≌△AEP,从而∠APE=∠F,BF=PA,又由∠BDF=∠CDP,得到△BDF∽△CDP,故 = ,即可得到结论.
试题解析:(1)1<AD<5;
(2)证明:延长PD至点F,使EF=PE,连接BF.∵BE=AE,∠BEF=∠AEP,∴△BEF≌△AEP,∴∠APE=∠F,BF=PA,又∵∠BDF=∠CDP,∴△BDF∽△CDP,∴ = ,∴ = ,即PA·CD=PC·BD.

中考数学几何模型专题5倍长中线模型(学生版)知识点+例题

中考数学几何模型专题5倍长中线模型(学生版)知识点+例题

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题5倍长中线模型如图①,AD是△ABC的中线,延长AD至点E使DE=AD,易证:△ADC≌△EDB(SAS).如图②,D是BC中点,延长FD至点E使DE=FD,易证:△FDB≌△EDC(SAS)当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.·一模)问题提出(1)如图,AD是△ABC的中线,则AB+AC__________2AD;(填“>”“<”或“=”)问题探究(2)如图,在矩形ABCD中,CD=3,BC=4,点E为BC的中点,点F为CD上任意一点,当△AEF的周长最小时,求CF的长;②图问题解决(3)如图,在矩形ABCD中,AC=4,BC=2,点O为对角线AC的中点,点P为AB上任意一点,点Q为AC上任意一点,连接PO、PQ、BQ,是否存在这样的点Q,使折线OPQB的长度最小?若存在,请确定点Q的位置,并求出折线OPQB的最小长度;若不存在,请说明理由.【例2】.(2021·湖北武汉·八年级期中)已知△ABC中,(1)如图1,点E为BC的中点,连AE并延长到点F,使FE=EA,则BF与AC的数量关系是________.(2)如图2,若AB=AC,点E为边AC一点,过点C作BC的垂线交BE的延长线于点D,连接AD,若∠DAC=∠ABD,求证:AE=EC.(3)如图3,点D在△ABC内部,且满足AD=BC,∠BAD=∠DCB,点M在DC的延长线上,连AM交BD的延长线于点N,若点N为AM的中点,求证:DM=AB.【例3】(2020·安徽合肥·二模)如图,正方形ABCD中,E为BC边上任意点,AF平分∠EAD,交CD于点F.(1)如图1,若点F恰好为CD中点,求证:AE=BE+2CE;(2)在(1)的条件下,求CE的值;BC(3)如图2,延长AF交BC的延长线于点G,延长AE交DC的延长线于点H,连接HG,当CG=DF时,求证:HG∠AG.【例4】.(2020·江西宜春·一模)将一大、一小两个等腰直角三角形拼在一起,OA =OB,OC =OD,∠AOB =∠COD =90°,连接AC,BD .(1)如图1,若A 、O 、D 三点在同一条直线上,则AC 与BD 的关系是 ;(2)如图2,若A 、O 、D 三点不在同一条直线上,AC 与BD 相交于点E ,连接OE ,猜想AE 、BE 、OE 之间的数量关系,并给予证明;(3)如图3,在(2)的条件下作BC 的中点F ,连接OF ,直接写出AD 与OF 之间的关系.一、解答题1.(2022·全国·八年级)如图1,在∠ABC 中,若AB =10,BC =8,求AC 边上的中线BD 的取值范围.(1)小聪同学是这样思考的:延长BD 至E ,使DE =BD ,连接CE ,可证得∠CED ∠∠ABD . ∠请证明∠CED ∠∠ABD ;∠中线BD的取值范围是.(2)问题拓展:如图2,在∠ABC中,点D是AC的中点,分别以AB,BC为直角边向∠ABC 外作等腰直角三角形ABM和等腰直角三角形BCN,其中,AB=BM,BC=BN,∠ABM=∠NBC =∠90°,连接MN.请写出BD与MN的数量关系,并说明理由.2.(2022·全国·八年级课时练习)【观察发现】如图∠,∠ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明的解法如下:延长AD到点E,使DE=AD,连接CE.在∠ABD与∠ECD中{BD=DC ∠ADB=∠EDC AD=DE∠∠ABD≅△ECD(SAS)∠AB=.又∠在∠AEC中EC﹣AC<AE<EC+AC,而AB=EC=7,AC=5,∠<AE<.又∠AE=2AD.∠<AD<.【探索应用】如图∠,AB∥CD,AB=25,CD=8,点E为BC的中点,∠DFE=∠BAE,求DF的长为.(直接写答案)【应用拓展】如图∠,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE 的中点,求证:AP∠DP.3.(2022·江苏·八年级课时练习)某数学兴趣小组在一次活动中进行了探究试验活动,请你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何添加辅助线:倍长中线中线或中点是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线。

所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法。

此法常用于构造全等三角形,利用中线的性质、辅助线、对顶角进而用“SAS”证明对应边之间的关系。

常规的倍长中线可以出全等,但需要证明“三点共线”,遇到“中点+平行”,我们“延长出全等”,而非“倍长出全等”. 用“倍长中线法”作辅助线解几何题,是一种重要的技巧套路。

它可以有效地生发出全等、平行等基本条件,关联好多基本图形,帮助解题,大家务必好好掌握。

也给我们解题的启示:抓住核心,找到关键,才能快速解题。

逢中点,便倍长,全等观,平行现.
倍长中线法:是指加倍延长中线,使所延长部分与中线相等,然后连接相应的顶点,构造“8字形”的全等三角形。

在与中点有关的线段尤其是涉及线段的等量关系时,倍长中线应用较常见,常见添加如图(AD是底边中线)
典例1.已知:AD是ΔABC的中线,AE=EF.求证:AC=BF.
名师指点:
延长AD到M,使AD=DM,连接BM,根据SAS证△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根据AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,再根据等腰三角形的性质证明即可.
满分解答:
证明:延长AD 到M ,使AD =DM ,连接BM ,
∵AD 是△ABC 中线,
∴CD =BD ,
∵在△ADC 和△MDB 中,{CD =BD
∠ADC =∠MDB AD =DM

∴△ADC ≌△MDB (SAS ),
∴BM =AC ,∠CAD =∠M ,
∵AE =EF ,
∴∠CAD =∠AFE ,
∵∠AFE =∠BFD ,
∴∠BFD =∠CAD =∠M ,
∴BF =BM =AC ,即AC =BF .
名师点评:
倍长中线是常见的辅助线、全等中相关的角、线段的代换是解决问题的关键. 1.如图,在平行四边形ABCD 中,28CD AD ==,E 为AD 上一点,F 为DC 的中点,则下列结论中正确的是( )
A .4BF =
B .2AB
C ABF ∠>∠。

相关文档
最新文档