空间解析几何1

合集下载

空间解析几何

空间解析几何

空间解析几何空间解析几何是解析几何的一个重要分支,它通过坐标系和向量的概念来研究空间中的几何关系和性质。

本文将会介绍空间解析几何的基本概念、特点以及应用,以便读者对此有更深入的了解。

一、坐标系的建立在研究空间解析几何之前,我们首先需要建立合适的坐标系。

常用的坐标系有直角坐标系、柱坐标系和球坐标系。

直角坐标系是最常见的坐标系,可以通过三个相互垂直的坐标轴来描述空间中的点。

柱坐标系和球坐标系较为常用于对称性较强的问题。

通过建立坐标系,我们可以将空间中的点与数值进行对应,进而进行进一步的分析与计算。

二、向量的表示和运算向量是空间解析几何中非常重要的一个概念,它可以表示空间中的位移、速度、加速度等物理量。

向量具有长度和方向两个特点,可以用有向线段或坐标表示。

在解析几何中,我们常常使用坐标表示向量。

例如,在直角坐标系中,向量a可以表示为(a₁, a₂, a₃),其中a₁、a₂、a₃分别表示在x、y、z轴上的分量。

在解析几何中,向量的运算有加法、减法、数量乘法和点乘法等。

向量的加法与减法可以通过对应分量相加或相减来进行,数量乘法可以将向量的每个分量与一个实数相乘,而点乘法可以通过两个向量的对应分量相乘再相加得到。

三、直线和平面的方程在空间解析几何中,直线和平面是重要的几何基本要素。

直线可以通过一点和一个方向向量来表示,方程通常为(x, y, z) = (x₁, y₁, z₁) +t(a, b, c),其中(x₁, y₁, z₁)为直线上的一点,(a, b, c)为直线的方向向量,t为参数。

平面可以通过一个点和两个不共线的向量来表示,方程通常为Ax + By + Cz + D = 0,其中A、B、C为平面法向量的分量,D为常数项。

四、空间曲线和曲面除了直线和平面,空间解析几何还研究了各种曲线和曲面的性质。

空间曲线可以通过参数方程、一般方程或者向量函数来表示,例如,圆柱面的参数方程可以表示为x = a cosθ,y = a sinθ,z = hθ,其中a为圆柱的半径,h为圆柱的高度,θ为参数。

空间解析几何

空间解析几何

空间解析几何空间解析几何是三维空间中研究点、线、面等几何对象的数学分支。

通过坐标系和向量等数学工具,可以描述和分析三维空间中的几何形状、位置关系和运动方式。

本文将介绍空间解析几何的基本概念、坐标系、向量运算和几何性质,并应用于实际问题。

一、空间解析几何的基本概念在空间解析几何中,我们首先需要了解点、直线、平面和空间的基本概念。

1. 点:点是空间中最基本的几何对象,用坐标表示。

在三维空间中,一个点可以由三个坐标确定,分别表示其在x轴、y轴和z轴上的位置。

2. 直线:直线是由无数个点组成的,在空间中没有宽度和厚度。

直线可以由一个点和一个方向向量确定,或者由两个不重合的点确定。

3. 平面:平面是由无数个点组成的,在空间中有宽度但没有厚度。

平面可以由一个点和两个不共线的方向向量确定,或者由三个不共线的点确定。

4. 空间:空间是由所有的点组成的,是点的集合。

在空间中,我们可以研究点、直线、平面和它们之间的相互关系。

二、空间解析几何的坐标系为了方便描述和计算,在空间解析几何中常常使用坐标系来表示点、向量和几何对象。

常用的坐标系有直角坐标系和柱面坐标系。

1. 直角坐标系:直角坐标系由三个相互垂直的坐标轴构成,分别是x轴、y轴和z轴。

在直角坐标系中,点的坐标表示为(x, y, z),它们分别表示点在x轴、y轴和z轴上的投影长度。

2. 柱面坐标系:柱面坐标系由极径、极角和高度构成。

极径表示点到z轴的距离,极角表示点在xy平面上的投影与x轴正半轴之间的夹角,高度表示点在z轴上的投影长度。

三、空间解析几何的向量运算在空间解析几何中,向量是一个有大小和方向的量。

向量可以表示位移、速度、力等物理量,也可以用来表示线段、直线、平面等几何对象。

1. 向量的表示:在空间解析几何中,向量通常用有序数组表示,如a = (a₁, a₂, a₃)。

其中,a₁、a₂和a₃分别表示向量在x轴、y轴和z轴上的分量。

2. 向量的运算:空间解析几何中的向量运算包括加法、减法、数乘和点乘等。

空间解析几何

空间解析几何

空间解析几何.求解答过程谢谢.空间解析几何是一种系统的空间几何学,它使用简单的几何元素,如点、线段、面和体,来推理复杂的空间结构。

求解空间几何问题的基本步骤是:1.准备所需的元素;2.根据定义、定理和原理解释该空间结构的构造;3.对空间变换和其它变换进行适当的推理。

空间解析几何是一门探究物体的定位和形状的学科。

它集合了几何、微积分、代数、物理和计算机科学等多项学科协同创新,并使用数学解决一些空间问题的解决方法。

本文的目的是介绍空间解析几何的基本概念,并通过实例给出求解空间问题的步骤。

一、什么是空间解析几何空间解析几何(Spatial Analytic Geometry)是探究物体的定位和形状的学科,也可以叫做空间几何学。

它集合了几何、算术、代数、物理和计算机科学等多项学科、术语和概念,应用数学解决解析几何问题,研究方式综合多元素、多模态。

它不仅涉及形状和位置的探究,还有基于图像的空间加工、性能分析和可视化的处理,是一门相当丰富的学科。

二、空间解析几何主要概念1、坐标定位:坐标定位是将物体定位于一个特定的位置的表示方法,股票投资者可以使用坐标定位来实现多轴上的测量。

2、几何形体量度:用以测量几何形状的各种参量,如内接圆直径,面积,体积等,常用于测量地形面、工程坑槽等三维物体。

3、平面投影:使用几何学方法将三维物体投射到二维平面上,用以分析物体的位置、形状和尺寸等。

4、位置运算:位置运算是一种基于位置的算法,可以用于分析几何对象之间的关系。

三、空间解析几何求解过程1、收集数据:空间解析几何需要收集几何形状相关的位置数据,并按照特定格式用计算机处理这些数据。

2、定义几何形状:将收集到的数据用定义空间几何形状的方法(如坐标定位、几何沿面记号法等)转换成一系列几何内容。

3、应用计算机:针对这些定义的几何形状,可使用计算机空间分析技术,建立计算机模型,实现物体的分析和可视化。

4、结果统计:根据模拟或实际的空间物体分析数据,进行分析处理,得出完整的结果统计。

空间解析几何

空间解析几何

空间解析几何空间解析几何是解析几何的一个重要分支,它是研究空间内点、直线、平面等几何元素的相互关系和性质的数学分支。

在空间解析几何中,我们通过向量和坐标等工具来描述和分析空间内的几何问题。

本文将介绍空间解析几何的基本概念、常用方法和一些实际应用。

基本概念在空间解析几何中,我们通常使用三维笛卡尔坐标系来描述空间内的几何元素。

点在空间中用其三维坐标(x,y,z)来表示,直线可用参数方程、点向式方程或标准式方程等来表示,平面则通常用点法式方程表示。

在空间解析几何中,向量是一个非常重要的概念,它能够很好地描述空间内的方向和长度。

方法和技巧解析几何中有很多方法和技巧可以应用到空间解析几何中。

例如,我们可以通过向量的线性运算来求解点到直线的距离,通过向量的数量积和向量积来判断点和直线、平面的位置关系,通过方向比值来判断两直线的平行性或垂直性等。

此外,我们还可以利用三角函数和投影的概念来解决一些空间几何中的问题。

实际应用空间解析几何不仅仅是一种理论工具,它在实际应用中也具有广泛的意义。

在工程建筑中,空间解析几何可以帮助工程师设计和规划建筑物的结构和布局;在航天航空领域,空间解析几何可以帮助科学家研究轨道、飞行路径等问题;在计算机图形学中,空间解析几何是实现三维模型和动画的重要基础。

总的来说,空间解析几何是一门极具实用性的数学分支,它在各个领域都有着广泛的应用。

通过掌握空间解析几何的基本概念和方法,我们可以更好地理解和解决空间内的几何问题,为我们的工程设计和科学研究提供有力的支持。

以上是关于空间解析几何的简要介绍,希望对读者理解和学习空间解析几何有所帮助。

愿大家在空间解析几何的世界中能够不断探索、学习和创新,为数学事业的发展贡献自己的力量。

空间解析几何

空间解析几何

空间解析几何空间解析几何是数学中的一个重要分支,它研究的是三维空间中的几何图形和其性质。

本文将介绍空间解析几何的基本概念、常见图形以及解析方法,帮助读者更好地理解和应用空间解析几何。

一、基本概念在空间解析几何中,我们使用坐标系来描述点、直线、平面等几何对象。

一般常用的坐标系有直角坐标系和柱面坐标系。

直角坐标系中,我们使用三个坐标轴x、y、z来确定一个点的位置。

柱面坐标系中,我们使用极坐标和一个垂直轴来确定一个点的位置。

通过坐标系,我们可以得到点的坐标、距离和角度等信息。

二、常见图形1. 点:空间中的一个点可以通过其坐标表示。

例如,点A(2,3,4)表示空间中的一个点,它的x坐标为2,y坐标为3,z坐标为4。

2. 直线:空间中两个不重合的点可以确定一条直线。

直线可以用参数方程、对称式、一般式等形式表示。

3. 平面:平面是由三个不共线的点所确定的。

平面可以用一般式、点法式等形式表示。

4. 球:由空间中的一个固定点和到该点距离等于定值的所有点构成的集合称为球。

5. 圆柱体:由一个闭合的曲线和平行于该曲线的直线段所围成的曲面称为圆柱体。

圆柱体可以通过其底面半径、高和母线方程等参数表示。

三、解析方法在空间解析几何中,我们可以使用向量、点法式、平面截距式等方法来求解各种几何问题。

1. 向量:向量是空间解析几何中一个重要的工具。

它可以用来表示线段、直线的方向和长度等信息。

通过向量,我们可以进行向量加法、减法、内积、外积等运算,用来求解直线的夹角、垂直平分线等问题。

2. 点法式:点法式是求解平面方程的一种方法。

它通过平面上的一点和法向量来表示平面的方程。

利用点法式,我们可以求解平面的交点、两平面的夹角等问题。

3. 平面截距式:平面截距式可以用来表示平面上与坐标轴相交的三个截距,通过截距可以确定平面的位置和方程。

我们可以利用平面截距式来求解平面的方程、直线与平面的交点等问题。

通过以上的解析方法,我们可以将空间解析几何中的各种问题转化为代数方程或方程组求解,从而得到几何图形的性质和关系。

考研数学一向量代数与空间解析几何-试卷1_真题无答案

考研数学一向量代数与空间解析几何-试卷1_真题无答案

考研数学一(向量代数与空间解析几何)-试卷1(总分88, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.已知曲面z=x 2 +y 2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是 ( )SSS_SINGLE_SELA (1,一1,2)B (一1,1,2)C (1,1,2)D (一1,一1,2)2.设平面方程为Ax+Cz+D=0,其中A,C,D均不为零,则平面 ( )SSS_SINGLE_SELA 平行于x轴B 平行于y轴C 经过x轴D 经过y轴3.已知向量的始点A(4,0,5),的方向余弦为则B的坐标为( )SSS_SINGLE_SELA (10,一2,1)B (一10,一2,1)C (10,2,1)D (10,一2,一1)4.双曲线绕z轴旋转而成的曲面的方程为 ( )SSS_SINGLE_SELABCD5.已知等边三角形△ABC的边长为1,目则a.b+b.c+c.a= ( )SSS_SINGLE_SELABCD6.过点P(2,0,3)且与直线垂直的平面的方程是 ( )SSS_SINGLE_SELA (x一2)一2(y—0)+4(z一3)=0B 3(x一2)+5(y—0)一2(z一3)=0C 一16(x一2)+14(y—0)+11(z一3)=0D 一16(x+2)+14(y一0)+11(z一3)=07.已知且a与b不平行,则以OA、OB为邻边的平行四边形□OACB的对角线OC上的一个单位向量为 ( )SSS_SINGLE_SELABCD8.已知,则|a+b|= ( )SSS_SINGLE_SELA 1BC 2D9.曲线x 2 +y 2 +z 2 =a 2与x 2 +y 2 =2ax(a>0)的交线是 ( )SSS_SINGLE_SELA 抛物线B 双曲线C 圆D 椭圆10.设直线L为平面π为4x一2y+z一2=0,则 ( )SSS_SINGLE_SELA L平行于πB L在π上C L垂直于πD L与π相交但不垂直11.曲面上任一点的切平面在三个坐标轴上的截距的平方和为( )SSS_SINGLE_SELA 48B 64C 36D 1612.设a,b,c为非零向量,则与a不垂直的向量是 ( )SSS_SINGLE_SELA (a.c)b一(a.b)cBC a×bD a+(a×b)×a13.与直线及直线都平行,且过原点的平面π的方程为 ( ) SSS_SINGLE_SELA x+y+z=0B x一y+z=0C x+y—z=0D x—y+z+2=014.直线与平面π:x-y+2z+4=0的夹角为 ( )SSS_SINGLE_SELA πBCD15.曲线在平面xOy上的投影柱面方程是 ( )SSS_SINGLE_SELAx 2 +20y 2 -24x-116=0B4y 2 +4z 2一12z-7=0CD16.曲面上任意一点处的切平面在三个坐标轴上的截距之和为 ( ) SSS_SINGLE_SELA aBC 0D2. 填空题1.设A=2a+b,B=ka+b,其中|a|=1,|b|=2,且a⊥b.若A⊥B,则k=_________.SSS_FILL2.点(-1,2,0)在平面x+2y-z+1=0上的投影为________.SSS_FILL3.点(1,2,1)到平面.x+2y+2z-13=0的距离是_________.SSS_FILL4.已知,则u=2a一3b的模|u|=_________.SSS_FILL5.过三点A(1,1,一1),B(-2,一2,2)和C(1,一1,2)的平面方程是______.SSS_FILL6.三平面x+3y+z=1,2x—y-z=0,一x+2y+2z=3的交点是________.SSS_FILL7.xOz坐标面上的抛物线z 2 =x一2绕x轴旋转而成的旋转抛物面的方程是___________.SSS_FILL8.设a=(3,一5,8),b=(-1,1,z),|a+b|=|a-b|,则z=_________.SSS_FILL9.向量a=(4,一3,4)在向量b=(2,2,1)上的投影为_________.SSS_FILL10.已知向量a=(2,一1,一2),b=(1,1,z),则使a和b的夹角(a^b)达到最小的z为________.SSS_FILL11.已知△ABC的顶点坐标为A(1,2,1),B(1,0,1),C(0,1,z),则当z=___________时,△ABC的面积最小.SSS_FILL12.设a,b,c的模|a|=|b|=|c|=2,且满足a+b+c=0,则a.b+b.c+c.a=_________.SSS_FILL13.过直线且和点(2,2,2)的距离为的平面方程是_______.SSS_FILL14.曲面z一e z +2xy=3在点(1,2,0)处的切平面方程为_________.SSS_FILL3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。

空间解析几何.pdf

空间解析几何.pdf

第一章 高等数学 第一节 空间解析几何一、向量代数(一)向量及其线性运算既有大小又有方向的量,如位移、速度、力等这类量,称为向量,向量 a 的大小称为向量 a 的模,记作| a |。

模等于1的向量叫做单位向量,向量的加减法、向量与数的乘法统称为向量的线性运算。

向量a 与向量 b 的和 a + b 是一个向量 c ,利用平行四边形法则或三角形法则可得向量c ,如图 1-1-1 ,图 1-1-2 所示。

向量的加法符合下列运算规律: ① 交换律 a + b = b + a② 结合律(a + b)+c= a +(b+c)向量 b 与向量 a 的差 b - a 定义为向量 b 与 a 的负向量-a 的和,即b - a = b + (-a)由向量加法的三角形法则可知:() |a| = |-a|向量 a 与实数λ的积记作λa ,它是一个向量,它的模它的方向当λ> 0 时,与向量 a 相同;当λ< 0 时,与向量 a 相反。

向量与数的乘积符合下列运算规律:由向量与数的乘积的定义,可得以下定理:定理 设向量 a≠0 ,那么,向量 b 与向量 a 平行的充分必要条件是:存在惟一的实数λ,使 b =λa 。

(二)向量的坐标设有空间直角坐标系 O - xyz , i、 j、 k 分别表示沿 x 、 y 、 z 轴正向的单位向量, 12a M M是以1111(,,)M x y z 为起点,2222(,,)M x y z 为终点的向量,则向量a 可表示为其中212121x x y y z z ---、、称为向量 a 的坐标。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法运算如下:非零向量 a 与三条坐标轴正向的夹角αβγ、、称为它的方向角。

向量的模、方向角与坐标之间关系:其中cos cos cos αβγ、、称为向量 a 的方向余弦。

利用向量的坐标可得向量的模与方向余弦如下:(三)数量积 向量积设向量a 和向量 b 的夹角为θθπ≤≤(0),向量 a 和向量 b 的数量积为一个数量,记作a b ⋅ ,其大小为||||cos a b θ,即a ⊥b 的充分必要条件是 a .b =0向量 a 在轴u 上的投影(记作 Prj u a )等于向量 a 的模乘以轴与向量a 的夹角φ的余弦,即利用向量在轴上的投影,可将数量积表为向量 a 和向量 b 的向量积为一个向量 c ,记作 a × b ,即c = a × b ,c 的模c 的方向垂直于 a 与 b 所决定的平面, c 的指向按右手法则确定。

考研数学之高等数学讲义第五章(考点知识点+概念定理总结)

考研数学之高等数学讲义第五章(考点知识点+概念定理总结)

82 第五章 向量代数与空间解析几何§5.1 向量代数(甲)内容要点内容要点一、空间直角坐标系一、空间直角坐标系 二、向量概念二、向量概念®a =®i x +®j y +®k z坐标()z y x ,,模®a =222z y x ++ 方向角g b a ,,方向余弦g b a cos ,cos ,cosa cos =222zy x x ++ ;b cos =222zy x y ++ ;g cos =222zy x z ++三、向量运算三、向量运算设®a ()11,1,z y x ;®b ()22,2,z y x ;®c ()33,3,z y x 1. 加(减)法加(减)法®a ±®b =()2121,21,z z y y x x ±±± 2. 数乘数乘 ()111,,z y x a l l l l =®3. 数量积(点乘)(ⅰ)定义®a ·®b =®a®b ÷øöçèæ®®Ðb a ,cos (ⅱ)坐标公式®a ·®b =21x x +21y y +21z z (ⅲ)重要应用®a ·®b =0Û®a ^®b4.向量积(叉乘)(ⅰ)定义®a ´®b =®®ba ÷øöçèæ®®Ðb a ,sin ®a ´®b 与®a 和®b 皆垂直,且®a ,®b ,®a ´®b 构成右手系构成右手系83(ⅱ)坐标公式®a ´®b =222111z y x z y x k j i®®®(ⅲ)重要应用®a ´®b =®0Û®a ,®b 共线共线5、混合积、混合积 (ⅰ)定义(ⅰ)定义(®a ,®b ,®c )=(®a ´®b )·®c (ⅱ)坐标公式(®a ,®b ,®c )=333222111z y x z y x z y x (ⅲ)÷øöçèæ®®®c b a ,,表示以®a ,®b ,®c 为棱的平行六面体的体积为棱的平行六面体的体积§5.2 平面与直线(甲)内容要点(甲)内容要点一、一、 空间解析几何空间解析几何1 空间解析几何研究的基本问题。

空间解析几何

空间解析几何

空间解析几何空间解析几何是数学中的一个重要分支,它研究的是空间中的点、直线和平面,以及它们之间的关系和性质。

通过解析几何,我们可以更好地理解和描述三维空间中的几何图形,从而解决与空间相关的问题。

一、平面方程在空间解析几何中,平面是一个基本概念。

为了方便研究和描述平面,我们需要找到一种方式来表示平面。

平面方程就是用来表示平面的一种方式。

一个平面可以由一个点和一个法向量确定。

假设平面上的一点为P,法向量为n,那么平面的方程可以表示为Ax + By + Cz +D = 0,其中A、B、C和D是常数。

这就是平面的一般方程。

二、直线方程与平面类似,直线也是空间解析几何中的一个重要概念。

为了描述直线,我们同样需要找到一种方式来表示它。

直线方程可以通过点和向量来确定。

设直线上的一点为P,方向向量为v,那么直线的方程可以表示为x = x0 + at,y = y0 + bt,z = z0 + ct,其中x0、y0、z0是直线上的一点的坐标,a、b、c是方向向量v的分量,t是参数。

三、直线与平面的位置关系在解析几何中,直线与平面的位置关系也是一个重要的问题。

直线可以与平面相交、平行或重合。

为了判断直线和平面的位置关系,我们可以通过求解方程组来解决。

假设直线的方程为L:x = x0 + at,y =y0 + bt,z = z0 + ct,平面的方程为P:Ax + By + Cz + D = 0。

将直线方程代入平面方程,将得到一个关于参数t的一元方程。

如果这个方程有解,那么直线与平面相交;如果方程无解,那么直线与平面平行;如果方程有无穷多解,那么直线与平面重合。

四、空间曲线除了点、直线和平面,空间解析几何还涉及到更为复杂的空间曲线。

空间曲线可以由参数方程、一般方程或者向量方程来表示。

不同的曲线有着不同的性质和特点,如曲率、切线等。

通过研究空间曲线,我们可以理解曲线在空间中的运动和变化规律。

总结:空间解析几何是数学中的一个重要分支,通过解析几何的方法,我们可以更好地研究和描述空间中的几何图形。

高数(空间解析几何与向量代数)

高数(空间解析几何与向量代数)

第一节 空间解析几何与向量代数一、空间直角坐标 (一)空间直角坐标系在空间取定一点O ,和以O 为原点的两辆垂直的三个数轴,依次记作x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),构成一个空间直角坐标系(图1-1-1)。

通常符合右手规则,即右手握住z 轴,当右手的四个手指从正向x 轴以2π角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

并设i、j 、k 为x轴、y 轴、z 轴上的单位向量,又称为O xyz 坐标系,或[i,j,k]坐标系。

(二)两点间的距离在空间直角坐标系中,M 1(x 1,y 1,z 1)与M 2(x 2,y 2,z 2)之间的距离为()()()221221221z z y y x x d -+-+-=(1-1-1)(三)空间有向直线方向的确定设有一条有向直线L ,它在三个坐标系正向的夹角分别为α、β、γ(πγβα≤≤,,0),称为直线L 的方向角;{γβαcos ,cos ,cos }称为直线L 的方向余弦,三个方向余弦有以下关系1cos cos cos 222=++γβα (1-1-2)二、向量代数 (一)向量的概念空间具有一定长度和方向的线段称为向量。

以A 为起点,B 为终点的向量,记作AB ,或简记作a 。

向量a 的长记作a ,又称为向量a 的模,两向量a和b 若满足:①b a =,②b a //,③b a ,指向同一侧,则称b a=。

与a方向一致的=单位向量记作0a ,则0a =aa。

若0a={γβαcos ,cos ,cos },也即为a的方向余弦。

(二)向量的运算 1.两向量的和以b a,为边的平行四边形的对角线(图1-1-2)所表示的向量c ,称为向量a和b 的和,记作b a c+= (1-1-3)一般说,n 个向量1a ,2a,…,n a 的和可定义如下:先作向量1a ,再以1a 的终点为起点作向量2a,…,最后以向量1-n a 的终点为起点作向量n a,则以向量1a的起点为起点、以向量n a 的终点为终点的向量b 称为1a ,2a,…,n a 的和,即 n a a a b+++=21(1-1-4) 2.两向量的差设a 为一向量,与a 的模相同,而方向相反的向量叫做a 的负向量,记作a -,规定两个向量a和b 的差为()ba b a-+=- (1-1-5)3.向量与数的乘法设λ是一个数,向量a 和λ的乘积a λ规定为:当λ>0时,a λ表示一个向量,它的方向与a 的方向相同,它的模等于a 的λ倍,即a a λλ=;当λ=0时,aλ是零向量,即0=aλ; 当λ<0时,a λ表示一个向量,它的方向与a的方向相反,它的模等于a 的λ倍,即a a λλ=。

第十章(空间解析几何)(数一)(基础留白版)

第十章(空间解析几何)(数一)(基础留白版)
bx by bz 2.垂直: a ⊥ b ⇔ axbx + ayby + azbz = 0 .
ax ay az 3. a,b,c 共面 ⇔ bx by bz = 0 .
cx cy cz 【例 4】已知=a {1, 2, −3},=b {2, −3, k} , c = {−2, k, 6} ,
(1)若 a ⊥ b ,求 k ;(2)若 a c ,求 k ;(3)若 a,b,c 共面,求 k .
x − x1 x2 − x1 x3 − x1
y − y1 y2 − y1 y3 − y1
z − z1 z2 − z1 = 0 . z3 − z1
【评注】(1).法向量是不唯一的.
(2). Ax + By + Cz = 0 表示通过原点的平面, Ax + By + D =0 表示平行于 z 轴的平面,
A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0 .
2.一般式:空间 O − xyz 中平面方程为三元一次方程
Ax + By + Cz + D = 0
3. 截距式:在 x 轴、 y 轴、 z 轴上的截距分别为 a, b, c (abc ≠ 0) 的平面方程为
x + y + z =1 abc 4.三点式:过空间不共线的三点{x1, y1, z1},{x2, y2, z2},{x3, y3, z3} 的平面方程为
二.直线方程 平行于直线的非零向量称为该直线的方向向量,记为 s = {m, n, p},方向向量不唯一.
1.对称式(点向式):过点 ( x0 , y0 , z0 ) 且方向向量为 s = {m, n, p}的直线方程为

第一节空间解析几何简介.doc

第一节空间解析几何简介.doc

多元函数微分学§1空间解析几何简介【目的要求】1、会建立曲面和旋转曲面的方程;2、会求空间曲线在坐标面上投影方程;3、熟练识别空间柱面方程;了解常见二次曲面方程.【重点难点】旋转曲面的方程的建立;空间柱面概念的理解.【教学内容】在平面解析几何中, 通过坐标法把平面上的点与一对有次序的数对应起来, 把平面上的图形和方程对应起来, 从而可以用代数方法来研究几何问题. 空间解析几何也是按照类似的方法建立起来的.正像平面解析几何的知识对学习一元函数微积分是不可缺少的一样, 空间解析几何的知识对学习多元函数也是必要的.本章先简要介绍空间解析几何的有关内容.一、空间直角坐标系在空间任意选取一定点O点, 过定点O作三条互相垂直的以O为原点的数轴:Ox轴(横轴)、Oy轴(纵轴), Oz轴(竖轴),统称为坐标轴.它们的顺序按下角度转述右手规则确定:以右手握住z轴,让右手的四个手指从x轴正向以/2向y轴正向时,大姆指的指向就是z轴的正向(如图4-1).这样就构成了一个空间直角坐标系,如图4-2所示.点O称为坐标原点(或原点),每两条坐标轴确定一个平面,称为坐标平面.由x轴与y轴确定的平面称为xOy平面,类似地有yOzx横轴y纵轴z竖轴∙定点o图 4-2平面和zOx 平面.显然, 三个坐标平面把空间分为八个部分, 称为八个卦限(图6-3). 含有三个坐标轴正半轴的那个卦限叫做第Ⅰ卦限,其它第Ⅱ、第Ⅲ、第Ⅳ卦限,在xOy 平面的上方,按逆时针方向确定.第Ⅰ、Ⅱx 、Ⅲ、Ⅳ卦限下面的空间部分分别称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限(图4-3).设M 为空间任意一点, 过点分别作垂直于三坐标轴的平面,与坐标轴分别交于P 、Q 、R 三点(图4-4).设这三点在x 轴、y 轴和z 轴上的坐标分别为、y 和z .则点M 唯一确定了一个三元有序数组(,,)x y z ;反之,设给定一组三元有序数组(,,)x y z ,在x 轴、y 轴和z 轴上分别取点P 、Q 、R ,使得OP x =, OQ y =,OR z =, 然后过P 、Q 、R 三点分别作垂直于x 轴、y 轴和z 轴的平面,这三个平面相交于点M ,即由一个三元有序数组(,,)x y z 唯一地确定了空间的一个点M .于是,空间的点M 和三元有序数组(,,)x y z 之间建立了一一对应的关系,我们称这个三元有序数组为点M 的坐标,记为(,,)M x y z ,并依次称x 、y 和z 为点M 的横坐标、纵坐标和竖坐标.显然,原点O 的坐标为(0,0,0);x 轴、y 轴和z 轴上点的坐标分别为(,0,0)x 、(0,,0)y 、(0,0,)z ;xOy 平面、yOz 平面和zOx 平面上点的坐标分别为(,,0)x y 、(0,,)y z 和(,0,)x z .x Oyz图 4-1二、空间两点间的距离设1111(,,)M x y z 、2222(,,)M x y z 为空间任意两点,过这两点可作一条空间直线, 称空间直线段12M M 的长度为空间两点12,M M 之间的距离, 由此得空间任意两点间的距离公式:12d M M ==特别地, 点(,,)M x y z 与坐标原点(0,0,0)O 的距离为d OM ==xy)例1 求点(2,1,1)M -到y 轴的距离.解 过点M 作y 轴的垂线,其垂足点P 的坐标为(0,1,0),所以MP ==.例2 设动点M 与两定点1(1,2,1)P -, 2(2,1,2)P-等距离,求此动点M 的轨迹. 解 设动点(,,)M x y z ,因为12||||PM P M =,所以=由此得点M 的轨迹为26630x y z +--=.以后我们会知道, 这是一个空间平面方程.三、空间曲面及其方程与在平面解析几何中建立平面曲线与二元方程(,)0F x y =的对应关系一样,在空间直角坐标系中可以建立空间曲面与三元方程(,,)0F x y z =之间的对应关系.在空间解析几何中,任何曲面都可看作是空间点的几何轨迹.因此,曲面上的所有点都具有共同的性质,这些点的坐标必须满足一定的条件.在这样的意义下,先建立空间曲面S 与三元方程(,,)F x y z = (1)之间的对应关系:定义 1.1 如果三元方程(,,)0F x y z =与空间曲面S 有下列关系: (1) 曲面S 上任一点的坐标都满足方程(1); (2) 不在曲面S 上的点的坐标都不满足方程(1),那么,方程(1)就称为曲面S 的方程,而曲面S 就称为方程(1)的图形(见图4-5). 这样, 可利用方程来研究曲面. 关于曲面的讨论, 有下列两个基本问题: (1) 已知一曲面作为点的几何轨迹时, 如何建立该曲面的方程;(2) 已知方程(,,)0F x y z =, 研究此方程所表示的曲面形状.例3 求球心在点0000(,,)M x y z ,半径为R 的球面方程.解 设(,,)M x y z 是球面上任一点(见图4-6),则有0M M R =,由两点间距离公式得R =.两边平方,得222000()()()x x y y z z R -+-+-=.(2) 这就是球面上的点的坐标所满足的方程,而不在球面上的点的坐标都不满足这个方程.所以,方程(2)就是以点0000(,,)M x y z 为球心、R 为半径的球面方程. 特别地,以原点(0,0,0)O 为球心, R 为半径的球面方程为2222x y z R ++=. 一般的, 设有三元二次方程2220Ax Ay Az Dx Ey Fz G ++++++=,这个方程的特点是缺xy , yz , zx 各项, 而且平方项系数相同, 只要将方程经过配方就可以化为方程(2)的形式, 那么它的图形就是一个球面. 例4 考察方程222x y R +=表示怎样的曲面.解 方程222x y R +=在xOy 面上表示圆心在原点O 、半径为R 的圆. 在空间直角坐标系中, 此方程不含竖坐标z , 即不论空间点的竖坐标z 怎样, 只要它的横坐标x 和纵坐标y 能满足方程, 那么这些点就在该曲面上. 这就是说, 凡是通过xOy 面内圆222x y R +=上一点(,,0)M x y , 且平行于z 轴的直线l 都在此曲面图4-5图4-6上, 因此, 该曲面可以看做是由平行于z 轴的直线l 沿xOy 面上的圆222x y R +=移动而形成的. 这种曲面叫做圆柱面(见图4-7), xOy 面上的圆222x y R +=叫做它的准线, 平行于z 轴的直线l叫做它的母线.一般的, 直线L 沿定曲线C 平行移动形成的轨迹叫做柱面, 定曲线C 叫做柱面的准线, 动直线L 叫做柱面的母线.上面我们看到, 不含z 的方程222x y R +=在空间直角坐标系中表示圆柱面, 它的母线平行于z 轴, 它的准线是xOy 面上的圆222x y R +=.类似地, 方程23y x =表示母线平行于z 轴的柱面,它的准线是xOy 面上的抛物线23y x =,该柱面叫做抛物柱面(见图 4-8).一般的, 只含x 、y 而缺z 的方程(,)0F x y =在空间直角坐标系中表示母线平行于z 轴的柱面, 其准线是x Oy 面上的曲线:(,)0C F x y =. 类似可知, 只含x 、z 而缺y 的方程(,)0G x z =和只含y 、z 而缺y的方程(,)0H y z =在空间直角坐标系中表示母线平行于y 轴和x 轴的柱面.接下来, 我们讨论空间平面方程. 平面是曲面的一种特殊形式, 将方程(1)化为三元一次方程0Ax By Cz D +++=, (,,A B C 不全为零) (3)所对应的图形就是一个平面; 反之, 任何一个平面都可以用一个三元一次方程表示. 我们称方程(3)为平面的一般方程.例5 设一平面与,,x y z 轴的交点依次为(,0,0)P a 、(0,,0)Q b 、(0,0,)R c , 见图4-9, 求这平面的方程(其中0,b 0,c 0a ≠≠≠).图4-7222x y R +=L M∙3x图4-8解 设所求的平面的方程为0Ax By Cz D +++=.因(,0,0)P a 、(0,,0)Q b 、(0,0,)R c 三点都在该平面上,所以点P 、Q 、R 的坐标都满足平面方程;即有⎪⎩⎪⎨⎧=+=+=+,0,0,0D cC D bB D aA 得,,D D D A B C a b c=-=-=-. 得所求的平面方程为1=++czb y a x (4) 方程(4)叫做平面的截距式方程,而a 、b 、c 依次叫做平面在x 、y 、z 轴上的截距.四、二次曲面简介对于一般的曲面方程(,,)0F x y z =所确定的曲面, 常用平行于坐标面的平面相截, 考察其交线的形状, 然后加以综合, 从而了解曲面的全貌. 这种方法叫做截痕法.下面我们研究三元二次方程(,,)0F x y z =所表示的曲面, 即:二次曲面. 本小节将简介几种常见的二次曲面. 1. 椭球面 方程2222221,(0,0,0)x y z a b c a b c++=>>> 所表示的曲面叫做椭球面(见图4-10).椭球面与三个坐标面的交线:222210x y a b z ⎧+=⎪⎨⎪=⎩, 222210x z a c y ⎧+=⎪⎨⎪=⎩, 222210y z b cx ⎧+=⎪⎨⎪=⎩均为图4-9平面上的椭圆.椭球面与平行于xoy 的平面1z z =的交线也为椭圆⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b y z c c a x 同理, 与平面 1x x = 和 1y y =的交线也是椭圆.椭圆截面的大小随平面位置的变化而变化. 椭球面的几种特殊情况:(1) 当a b =时, 1222222=++cz a y a x 叫做旋转椭球面, 由椭圆12222=+cz a x 绕z 轴旋转而成. 旋转椭球面与椭球面的区别:与平面 1z z =)||(1c z <的交线为圆. 截面上的圆方程为: .)(12122222⎪⎩⎪⎨⎧=-=+zz z c ca y x (2) 当abc ==时, 1222222=++az a y a x 为球面.2.双曲面 由方程1222222=-+cz b y a x (0, 0, 0a b c >>>) 所确定的曲面称为单叶双曲面.由方程1222222-=-+cz b y a x (0, 0, 0a b c >>>) 所确定的曲面称为双叶双曲面.下面讨论单叶双曲面的图形.图 4-10显然,单叶双曲面关于各坐标轴、坐标平面及原点对称.用一组平行于xOy 平面的平面h z =去截它,截痕为椭圆,其方程为2222221,. x y h ab c z h ⎧+=+⎪⎨⎪=⎩并且h 越大,椭圆越大.用yOz 平面截曲面,得到一条实轴为y 轴的双曲线. 用zOx 平面截曲面,得到一条实轴为x 轴的双曲线. 因此,单叶双曲面的图形如图4-11所示. 注 方程1222222=+-cz b y a x 和1222222=++-c z b y a x 也都是单叶双曲面.用同样的方法也可以得到双叶双曲面的图形. 用h z =去截双叶双曲面,截痕方程为2222221,. x y h ab c z h ⎧+=-⎪⎨⎪=⎩当h c <时,无截痕;h c =时,截痕为两点(0, 0, )c ±;当h c >时,截痕为椭圆,且h 越大,椭圆越大.用yOz 平面去截它,截痕是一条实轴为z 轴的双曲线. 用zOx 平面去截它,截痕是一条实轴为z 轴的双曲线. 因此,双叶双曲面的图形如图4-12所示. 注 方程1222222-=+-c z b y a x 和1222222-=++-cz b y a x 也是双叶双曲面.3.抛物面常见的抛物面有椭圆抛物面和双曲抛物面. 由方程2222by a x z += (0, 0, 0a b c >>>)所确定的曲面称为椭圆抛物面.由方程2222by a x z -= (0, 0, 0a b c >>>)所确定的曲面称为双曲抛物面.用截痕法可得到它们的图形分别如图4-13与图4-14所示. 注 双曲抛物面的图形形状很象马鞍,因此也称马鞍面.4.柱面例4中定义的柱面也是一种特殊的二次曲面. 常见的柱面还有:图 4-13图 4-14椭圆柱面:12222=+b y a x (图4-15).双曲柱面:12222=-ax b y (图4-16).抛物面:py x 22= (图4-17).5.旋转曲面一条平面曲线C 绕同一平面内的一条定直线L 旋转所形成的曲面称为旋转曲面.曲线C 称为旋转曲面的母线,定直线L 称为旋转曲面的旋转轴,简称轴.前面讲过的球面,圆柱面等都是旋转曲面.例6 设母线C 在yOz 平面上,它的平面直角坐标方程为(, )0F y z =试证: 曲线C 绕z 轴旋转所成的旋转曲面∑的方程为( )0F z =.证 设(, , )M x y z 为旋转曲面上的任一点,并假定M 点是由曲线C 上的点000(0, , )M y z 绕z 轴旋转到一定角度而得到的(图4-18).因而0z z =,且点M 到z图 4-16轴的距离与0M 到z 轴的距离相等.而M 到z 轴的距离为22y x +,0M 到z 轴的距离为020y y =,即0y =又因为0M 在C 上,因而00(, )0F y z =,将上式代入得( )0F z =,即旋转曲面上任一点(, , )M x y z 的坐标满足方程( )0F z =.其次,若点(, , )M x y z的坐标满足方程( )0F z =,则不难证明M ∈∑.于是,该旋转曲面的方程为( )0F z =.注 此例说明,若旋转曲面的母线C 在yOz 平面上,它在平面直角坐标系中的方程为(, )0F y z =,则要写出曲线C 绕z 轴旋转的旋转曲面的方程,只需将方程(, )0F y z =中的y 换成±22y x +即可.同理,曲线C 绕y 轴旋转的旋转曲面的方程为(, 0F y =,即将(, )0F y z =中的z 换成±22z x +.反之,一个方程是否表示旋转曲面,只需看方程中是否含有两个变量的平方和M 图 4-18如在yOz 平面内的椭圆12222=+cz b y 绕z 轴旋转所得到的旋转曲面的方程为122222=++cz b y x . 该曲面称为旋转椭球面.例7 求xOy 平面上的双曲线14922=-y x 绕x 轴旋转形成的旋转曲面的方程.解 由于绕x 轴旋转,只需将方程14922=-y x 中的y 换成±22z y +即可,所以,所求的旋转曲面的方程为149222=+-z y x . 该曲面为旋转双叶双曲面.五、空间曲线及其方程一般地, 空间曲线可以看作两个曲面的交线. 设(,,)0F x y z =和(,,)0G x y z =是两个曲面方程, 它们的交线为C , 如图4-19. 因为曲线C 上的任何点的坐标应同时满足这两个方程, 所以应满足方程组(,,)0(,,)0F x y zG x y z =⎧⎨=⎩. 反过来, 如果点M 不在曲线C 上, 那么它不可能同时在两个曲面上, 所以它的坐标不满足方程组.因此, 曲线C 可以用上述方程组来表示. 上述方程组叫做空间曲线C 的一般方程.(,,)0F x y z =例8 方程组221236x y x z ⎧+=⎨+=⎩表示怎样的曲线解方程组中第一个方程表示母线平行于z轴的圆柱面, 其准线是xOy 面上的圆, 圆心在原点O , 半径为1. 方程组中第二个方程表示平行于y 轴的空间平面, 该平面在坐标平面zOx 面的截痕为2360x z y +=⎧⎨=⎩. 方程组就表示上述平面与圆柱面的交线, 大致图像见图4-20.以曲线C 为准线、母线平行于z 轴的柱面叫做曲线C 关于xOy 面的投影柱面, 投影柱面与xOy 面的交线叫做空间曲线C 在xOy 面上的投影曲线, 或简称投影(类似地可以定义曲线C 在其它坐标面上的投影).设空间曲线C 的一般方程为(,,)0(,,)0F x y z G x y z =⎧⎨=⎩.设方程组消去变量z 后所得的方程(x,y)0H =这就是曲线C 关于xOy 面的投影柱面. 曲线C 在xOy面上的投影曲线的方程为(,)00H x y z =⎧⎨=⎩. 请自行讨论: 曲线C 关于yOz 面和zOx 面的投影柱面的方程是什么? 曲线C 在yOz 面和zOx 面上的投影曲线的方程是什么?例9 已知两球面的方程为2221x y z ++=和222(1)(1)1x y z +-+-=, 求它们的交线C 在xOy 面上的投影方程. 解两球面的交线C 的方程:图4-202222221(1)(1)1x y z x y z ⎧++=⎨+-+-=⎩求解, 得1y z +=.上式代入2221x y z ++=得22220x y y +-=.这就是交线C 关于xOy 面的投影柱面方程. 两球面的交线C 在xOy 面上的投影方程为222200x y y z ⎧+-=⎨=⎩.例10 求由上半球面z z xOy 面上的投影.解由方程z 和z 消去z 得到221x y +=. 这是一个母线平行于z 轴的圆柱面, 容易看出, 这恰好是半球面与锥面的交线C 关于xOy 面的投影柱面, 因此交线C 在xOy 面上的投影曲线为2210x y z ⎧+=⎨=⎩. 这是xOy 面上的一个圆, 于是所求立体在xOy 面上的投影, 就是该圆在xOy 面上所围的部分:221x y +≤.。

《高等数学》 第八章(上)

《高等数学》 第八章(上)

第一节 空间解析几何简介
设点 M1(x1 ,y1 ,z1) 和 M2 (x2 ,y2 ,z2 ) 是空间两点,如图 所示,则根据立体几何知识可知,长方体的各棱长分别为
| x2 x1 | , | y2 y1 | , | z2 z1 | . 长方体对角线的平方等于三条棱长的平方和,即
M1M2 (x2 x1)2 (y2 y1)2 (z2 z1)2 . 特 别 地, 如果 一 点 是 原点 O(0,0,0) , 另一 点是 点 M (x ,y ,z) ,则
坐标面上和坐标轴上的点,其坐标各有一定的特征.例 如,点 M 在 yOz 面上,则 x 0 ;在 zOx 面上的点,y 0 ; 在 xOy 面上的点,z 0 .如果点 M 在 x 轴上,则有 y z 0 ; 在 y 轴上,有 z x 0 ;在 z 轴上,有 x y 0 .如果点 M 为原点,则 x y z 0 .
例如,方程 y2 2x 表示母线平行于 z 轴的柱面, 它的准线是 xOy 面上的抛物线 y2 2x , 该柱面称为抛物柱面,如图所示.
第一节 空间解析几何简介
又如,方程 x y 0 表示母线平行于 z 轴的柱面, 其准线是 xOy 面的直线 x y 0 , 所以它是过 z 轴的平面,如图所示.
第一节 空间解析几何简介
例 7 将 zOx 坐标面上的双曲线 x2 z2 1和 x2 z2 1 分别绕 z 轴旋转
a2 c2
c2
一周,求所生成的旋转曲面的方程.
解 双曲线 x2 z2 1绕 z 轴旋转所得的旋转曲面的 a2 c2
方程为
x2 y2 a2
z2 c2
1,称此曲面为旋转双叶双曲面,如
所示.
第一节 空间解析几何简介
2.一般二次曲面

最新文档-1空间解析几何15814-PPT精品文档

最新文档-1空间解析几何15814-PPT精品文档

a
b
2
数量积的坐标表达式
a aa
a b a x b x a y b y a z b z
两向量夹角余弦的坐标表示式
co s
axbxaybyazb z
ax2ay2az2 bx2by2b z2
ห้องสมุดไป่ตู้
ab
ab 0
a x b x a yb y a zb z 0
求|ab|.
4
解: ab 2(a b )(a b )
a a2abbb
a2 2 abco b s2
(2 )2223co 3 s3 2
4 17
ab 17
例4. 已知三点 A ( 1 , 2 , 3 ) ,B ( 3 , 4 , 5 ) C ( 2 ,, 4 , 7 ) ,求三
向量 c 模 : c a b sin
称 c为向a与 量 b的 向量积 , 记作 cab (叉积)
b a
几何意义:右图三角形面积
cab
S=
1 2
ab
a b
性质
(1) aa0 (2) a, b为非零向量, 则 ab0 a∥ b
ax ay az bx by bz
运算律
直的单位向量.


c

ab

i ax
j ay
ki az 3
j 2
k

4 1j0 5k,
bx by bz 1 1 2
|c |120 5255
c0

|
c c |

2
j
5
15k.
例3. 已知向量 a , b 的夹角 3 ,且 |a| 2,|b|3,

高等数学《空间解析几何(第1章)》课件

高等数学《空间解析几何(第1章)》课件
个或三个以上平行于同一平面的一组向量叫做___ 共__面__向__量___; 7、两向量_模__相__等__且__方__向,相我同们称这两个向量相等; 8、两个模相等、__方__向__相__反____的向量互为逆向量; 9、把空间中一切单位向量归结到共同的始点,则终点
构成__半__径__为__1_的__球_; 面
|
a
|
|
a
|
a
0
a 0
a与a 反向,
|
a
||
|
|
a
|
a
2a
1
a
2
数与向量的乘积符合下列运算规律:
(1)结合律:
(
a)
(
a)
(
)a
(2)分配律: ( )a a a
(a
b)
a
b
思考
1.向量 a ,b 平行(共线)条件是什么?
2.与向量 a 0共线的单位向量________.
e3 O e2
e1
一个空间标架,决定一个空间坐标系
z
e3
O
e2
e1 x
当{O; e1, e2 , e3 }确定后, e1, e2 , e3依次确定以O为原点 的三数轴:x轴(横轴),y轴(纵轴), y z轴(竖轴),统称坐标轴. 它们构成空间坐标系o xyz.
也用{O; e1, e2 , e3 }表示. 把e1, e2 , e3称为坐标向量.
e3
F
的中点为P1 , 其余各组对边
中点分别为P2 , P3 .
A
P1
e2
C
只需证明P1, P2 , P3三点
重合即可.
E
e1 B
取 AB e1, AC e2 , AD e3 , 先求 AP1用e1, e2 ,e3表示的关系式.

空间解析几何

空间解析几何

b
a
机动 目录 上页 下页 返回 结束
3. 向量与数的乘法
是一个数 , 与 a 的乘积是一个新向量, 记作 a .
规定 :
总之:
a a
运算律 : 结合律
(
a)
(
a)
a
11可aa见a;a ;
分配律
(a
b)
a
b
则有单位向量 a
1 a
a.
因此
a
a
a
机动 目录 上页 下页 返回 结束
a ax i ay j az k b bx i by j bz k
及实数 1,
解: 设 M 的坐标为
如图所示
AM MB
AM OM OA MB OB OM
OM O A (OB OM )
A
M B
o
A
得 即
OM
1
1
(OA
OB
B
1
1
(x1 x2 , y1 y2 , z1 z2 )
M
机动 目录 上页 下页 返回 结束
说明: 由
1
1
(x1 x2 , y1 y2 , z1 z2 )
机动 目录 上页 下页 返回 结束
例1. 证明三角形余弦定理
c2 a2 b2 2ab cos
证: 如图 . 设
CB a, C A b, AB c

A b
c
C
Ba
c 2 (a b)(a b) aa bb2ab
a 2 b 2 2 a b cos
a a ,b b ,c c
c2 a2 b2 2ab cos
b

a
上的投影为
b
记作 Pr ja b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a b) c
c
bc
a (b c)
a
三角形法则:
ab b
ab b a
a 运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
三角形法则可推广到多个向量相加 .
机动 目录 上页 下页 返回 结束
s a1 a2 a3 a4 a5
(
b
a
)
A
a
B
MC
1 2
(
a
b
)
MD
1 2
(
b
a
)
机动 目录 上页 下页 返回 结束
三、空间直角坐标系
1. 空间直角坐标系的基本概念
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点

z z 轴(竖轴)

• 坐标轴

• 坐标面
• 卦限(八个) Ⅶ
x
x轴(横轴)

a4
a5
a3 s
a2 a1
机动 目录 上页 下页 返回 结束
2. 向量的减法 三角不等式
a
机动 目录 上页 下页 返回 结束
3. 向量与数的乘法
是一个数
,

a
的乘积是一个新向量,
记作
a
.
规定 :
总之:
a a
运算律 : 结合律 ( a) ( a) a
1可a见 a ; 1a a ;
第一节
第七章
向量及其线性运算
一、向量的概念 二、向量的线性运算 三、空间直角坐标系 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影
机动 目录 上页 下页 返回 结束
一、向量的概念
向量: 既有大小, 又有方向的量称为向量 (又称矢量).
表示法: 有向线段 M1 M2 , 或 a ,
向量的模 : 向量的大小, 向径 (矢径): 起点为原点的向量.
机动 目录 上页 下页 返回 结束
“ ” 已知 b= a , 则 b=0
a , b 同向
a∥b
a , b 反向
例1. 设 M 为 ABCD 对角线的交点,
试用a 与b 表示 MA, MB , MC , MD.
解: a b AC
2 MA
D
C
b a BD
2 MB
bM
MA
1 2
(a
b)
MB
1 2
与 a 的模相同, 但方向相反的向量称为 a 的负向量, 记作-a ;
因平行向量可平移到同一直线上, 故两向量平行又称 两向量共线 .
若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k 个向量共面 .
机动 目录 上页 下页 返回 结束
二、向量的线性运算
1. 向量的加法 平行四边形法则:
b ab
M B
o
A
中点公式:
B
x1
x2 2
,
y1 2
y2
,
z1 z2 2
M
机动 目录 上页 下页 返回 结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式

r
(x,
y , z ), 作 OM
r,
则有
r OM OP OQ OR
由勾股定理得
r OM
z R
M
o
Q y
P
x
N
x2 y2 z2
自由向量: 与起点无关的向量. 单位向量: 模为 1 的向量, 零向量: 模为 0 的向量,
M2 M1
机动 目录 上页 下页 返回 结束
若向量 a 与 b大小相等, 方向相同, 则称 a 与 b 相等, 记作 a=b ;
若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行,记作 a∥b ; 规定: 零向量与任何向量平行 ;
的坐标为 M (x , y , z), 则
z OM ON NM OA OB OC C
r
x
i
y
j
z
k
(x
,
y
,
z
)
此式称为向量 r 的坐标分解式 ,
ko i
j
r
M B y
A
x
N
沿三个坐标轴方向的分向量.
机动 目录 上页 下页 返回 结束
设四、a 利(aa用x ,坐bay标,(aa作zx),向bb量x, (a的byx线,bby性y,,ba运zz),算bz为) 实数,则
yoz面 o xoy面


y
y轴(纵轴)

机动 目录 上页 下页 返回 结束
在直角坐标系下
点 M 11 有序数组 (x, y, z) 11 向径 r
(称为点 M 的坐标) 特殊点的轴上的点 P, Q , R ;
坐标面上的点 A , B , C
z
R(0,0, z)
B(0, y, z)
C(x, o, z)
r
o
x P(x,0,0)
M y
Q(0, y,0)
A(x, y,0)
机动 目录 上页 下页 返回 结束
z
o
x
坐标面 :
坐标轴 :
y
机动 目录 上页 下页 返回 结束
2. 向量的坐标表示
在空 间 直 角坐标系下, 任意向量 r 可用向径 OM 表示. 以 i , j , k 分别表示 x , y , z 轴上的单位向量 , 设点 M
A
M B
o
A
得 即
OM
1
1
(
OA
OB
B
1
1
(x1 x2 , y1 y2 , z1 z2 )
M
机动 目录 上页 下页 返回 结束
说明: 由
1
1
(x1 x2 , y1 y2 , z1 z2 )
得定比分点公式:
A
x1 x2 1
,
y1 y2 1
,
z1 z2 1
当 1时, 点 M 为 AB 的中点 ,于是得
对两点


得两点间的距离公式:
(x2 x1)2 ( y2 y1)2 (z2 z1)2
解:
2×①
x
-23a× ②3b,得
(7
,
1,10)
代入②得
y
1
(3
x
b)
(11,
2 ,16)
2
机动 目录 上页 下页 返回 结束
例3. 已知两点 在AB直线上求一点 M , 使
及实数 1,
解: 设 M 的坐标为
如图所示
AM MB
AM OM OA MB OB OM
OM O A (OB OM )
分配律
(a
b)
a
b
则有单位向量 a
1
a.
因此 a
a
a
a
机动 目录 上页 下页 返回 结束
定理1. 设 a 为非零向量 , 则
a∥b
( 为唯一实数)
证: “ ”. 设 a∥b , 取 =±
, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且
b
故 b a. 再证数 的唯一性 . 设又有 b= a , 则 ( ) a 0 故 0, 即 .
a
(
ax
,
a
y
,
az
)
平行向量对应坐标成比例:

a
0
时,
bx ax by ay
bx by bz ax ay az
bz az
机动 目录 上页 下页 返回 结束
例2. 求解以向量为未知元的线性方程组
其中
a
5x
3x
3 2
y y
a b
(2,1,2), b (1,1,
2).
① ②
相关文档
最新文档