分式提高题(有问题详解)
分式解答题(提升篇)(Word版 含解析)
(2)当 时,求 的最小值.
(3)如图,四边形ABCD的对角线AC,BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
【答案】(1)2,-2;(2)11;(3)25
【解析】
【分析】
(1)当x>0时,按照公式a+b≥2 (当且仅当a=b时取等号)来计算即可;x<0时,由于-x>0,- >0,则也可以按照公式a+b≥2 (当且仅当a=b时取等号)来计算;
(2)若甲工程队每天可以改造 米道路,乙工程队每天可以改造 米道路,(其中 ).现在有两种施工改造方案:
方案一:前 米的道路由甲工程队改造,后 米的道路由乙工程队改造;
方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造.
根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.
一、八年级数学分式解答题压轴题(难)
1.某市为了做好“全国文明城市”验收工作,计划对市区 米长的道路进行改造,现安排甲、乙两个工程队进行施工.
(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.
∴四边形ABCD面积=4+9+x+
当且仅当x=6时取等号,即四边形ABCD面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.
3.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍.若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍.
中考数学总复习《分式》专项提升训练(附带答案)
中考数学总复习《分式》专项提升训练(附带答案)学校:___________班级:___________姓名:___________考号:___________限时:分钟1. 把分式aa+b的分子、分母都扩大2倍,那么分式的值( )A. 不变B. 变为原来的2倍C. 变为原来的12D. 变为原来的4倍2. 分式x 2−xx−1的值为0,则x的值是( )A. 0B. −1C. 1D. 0或13. [2023·河南]化简a−1a +1a的结果是( )A. 0B. 1C. aD. a−24. 下表为张小亮的答卷,他的得分应是( )姓名:张小亮得分:判断题(每小题20分,共100分)(1)当x≠0时,分式1x有意义. (√)(2)当x=−1时,分式x+1x−2的值为0. (√)(3)a 2+b2a+b=a+b.(×)(4)nm =n2mn. (√)(5)x 3−xx+1÷x=x+1.(√)A. 40分B. 60分C. 80分D. 100分5. [2023·北京]若代数式5x−2有意义,则实数x的取值范围是 .6. [2023·衡阳]已知x=5,则代数式3x−4−24x2−16的值为 .7. [2023·宁德二检]先化简,再求值:(1x−1+1)÷xx2−1,其中x=2.8. [2023·厦门二检]先化简,再求值:a 2−2a+1a2+a÷(1−2a+1),其中a=√3.9. [2023·漳州二检]化简求值:(1x+1+1x2−1)÷xx−1,其中x=√2−1.提升练10. [2023·武汉]已知x2−x−1=0,计算(2x+1−1x)÷x2−xx2+2x+1的值是( )A. 1B. −1C. 2D. −211. 已知直线y=2x−4与双曲线y=2x 相交于点(m,n),则1m−2n= .12. [2023·通辽]以下是某同学化简分式a−ba ÷(a−2ab−b2a)的部分运算过程:解:原式=a−ba ÷a−a−ba÷2ab−b2a……第一步=a−ba ⋅1a−a−ba⋅a2ab−b2……第二步=a−ba2−a−b2ab−b2……第三步……(1)上面的运算过程中第步开始出现了错误;(2)请你写出完整的解答过程.综合练13. [2023·无锡]已知曲线C1,C2分别是函数y=−2x (x<0),y=kx(k>0,x>0)的图象,边长为6的正三角形ABC的顶点A在y轴正半轴上,顶点B,C在x轴上(点B在点C的左侧),现将△ABC绕原点O顺时针旋转,当点B在曲线C1上时,点A恰好在曲线C2上,则k的值为 .【参考答案】课时训练(四)分式A 基础练1. A2. A3. B4. B[解析](1)(2)(3)判断正确;当n=0时,n 2mn 无意义,(4)判断错误;x3−xx+1÷x=x(x+1)(x−1)x+1×1x=x−1,(5)判断错误.∴张小亮答对了3道题.∴他的得分应是20×3=60(分).5. x≠26. 137. 解:原式=1+x−1x−1⋅(x+1)(x−1)x=x+1当x=2时,原式=2+1=3.8. 解:原式=a 2−2a+1a2+a÷a−1a+1=(a−1)2a(a+1)⋅a+1a−1=a−1a.当a=√3时,原式=√3−1√3=3−√33.9. 解:原式=[x−1(x+1)(x−1)+1(x+1)(x−1)]÷xx−1=x(x+1)(x−1)⋅x−1x=1x+1.当x=√2−1时,原式=√2−1+1=√22.B 提升练10. A11. −2[解析]将点(m,n)的坐标分别代入y=2x−4和y=2x ,可得n=2m−4,n=2m,∴n−2m=−4,mn=2.∴1 m −2n=n−2mmn=−42=−2.12. (1)一(2)原式=a−ba ÷a2−2ab+b2a=a−ba⋅a(a−b)2=1a−b.C 综合练13. 6[解析]如图,连接AO,过点A,B分别作x轴的垂线,交x轴于点E,F.∵△ABC为等边三角形且AO⊥BC,∴∠BAO=30∘∴tan∠BAO=tan30∘=OBOA =√33.∵∠BFO=∠AEO=∠AOB=90∘∴∠BOF=90∘−∠AOE=∠EAO.∴△BFO∼△OEA.∴S△BFOS△AOE =(OBOA)2=1 3.∵S△BFO=|−2|2=1,∴S△AOE=3.∴k=6.。
【精选】八年级上册分式解答题(提升篇)(Word版 含解析)
一、八年级数学分式解答题压轴题(难)1.已知:12x M +=,21xN x =+. (1)当x >0时,判断M N -与0的关系,并说明理由;(2)设2y N M=+. ①当3y =时,求x 的值;②若x 是整数,求y 的正整数值.【答案】(1)见解析;(2)①1;②4或3或1 【解析】 【分析】(1)作差后,根据分式方程的加减法法则计算即可; (2)①把M 、N 代入整理得到y ,解分式方程即可; ②把y 变形为:221y x =++,由于x 为整数,y 为整数,则1x +可以取±1,±2,然后一一检验即可. 【详解】(1)当0x >时,M -N ≥0.理由如下:M -N =()()21122121x x xx x -+-=++ .∵x >0,∴(x -1)2≥0,2(x +1)>0,∴()()21021x x -≥+,∴M -N ≥0.(2)依题意,得:4224111x x y x x x +=+=+++. ①当3y =,即2431x x +=+时,解得:1x =.经检验,1x =是原分式方程的解,∴当y =3时,x 的值是1.②2422222111x x y x x x +++===++++ . ∵x y ,是整数,∴21x +是整数,∴1x +可以取±1,±2.当x +1=1,即0x =时,22401y =+=> ;当x +1=﹣1时,即2x =-时,2201y =-=(舍去); 当x +1=2时,即1x =时,22302y =+=> ;当x +1=-2时,即3x =-时,22102y =+=>-() ; 综上所述:当x 为整数时,y 的正整数值是4或3或1. 【点睛】本题考查了分式的加减法及解方式方程.确定x +1的取值是解答(2)②的关键.2.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma,+2020ma a ;(3)两组一起收割完这块麦田需要2241n nn --小时. 【解析】 【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0, ∴原分式方程的解为x =4, ∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨,根据题意得:20m m y y a+=+解得;y =20ma ,经检验:y =20ma是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a+; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n nn --小时.【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.3.阅读下面的解题过程:已知2113x x =+,求241x x +的值。
分式部分的经典提高题
分式部分的经典提高题分式总复定义:分式是指分母含有未知数的方程,例如 A/B(B中含有字母)。
通分:A/B = AA*M / BB*M (M ≠ 0)约分:A/B = A÷M / B÷M (M ≠ 0)分式方程转化为整式方程的思想:把分式方程转化为整式方程。
方法:两边同乘以最简公分母。
解法:依据等式的基本性质,必须验根。
应用:列分式方程解应用题及在其它学科中的应用。
分式的有意义应用要判断分式是否有意义,需要看其分母是否为零。
例1:若 ab + a - b - 1 = 1/(a-1)(b+1),试判断是否有意义。
解:ab + a - b - 1 = (b+1)(a-1)b+1)(a-1) = 0,即 b+1=0 或 a-1=0因此,分式中至少有一个无意义。
简化分式运算例2:计算 a² + a - 1 / a+1a-3.解:原式 = [a(a+1) - 1] / [a(a-3) + 1] = [(a-1) - (a+1)] /[a+1)(a-3)] = -2 / (a+1)(a-3)例3:解方程 1 - 2x / (x+7)(x+6) = 1 / (x-2)(x-3)。
解:最简公分母为 (x+1)(x+6)(x-2)(x-3)。
因为 x+7x+6 = (x+1)(x+6),x-5x+6 = (x-2)(x-3),所以可以采用“分离分式法”简化计算。
得到原方程变为 1 - 11 / (x²-5x+6) = 1 / (x²+7x+6)。
化简后得到 x²+7x+6 = x²-5x+6,解得 x = -1.经检验,x=-1是原方程的根。
以上是分式总复的知识点,其中包括了通分、约分、分式方程转化为整式方程的思想、简化分式运算和分式的有意义应用等内容。
在实际应用中,我们需要掌握这些知识点,以便更好地解决问题。
Q=mc(t-t')根据公式,Q表示热量,m表示物体的质量,c表示物体的比热容,t表示物体的初始温度,t'表示物体的最终温度。
中考数学总复习《分式》专项提升练习题(附答案)
中考数学总复习《分式》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式中,属于分式的是( ) A.1π B. a C.3a D.a 32.若分式x -2x +1无意义,则( ) A.x =2 B.x =-1 C.x =1 D.x ≠-13.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 4.下列运算中,错误的是( )A.=++x y y xx y y x -- B.=1+a b a b --- C.0.5+5+10=0.20.323a b a b a b a b -- D.=(0)a ac c b bc ≠ 5.把分式11361124x x -+的分子与分母各项系数化为整数,得到的正确结果是( ) A.3624x x -+ B.4263x x -+ C.2121x x -+ D.2234x x -+ 6.解分式方程1-x x -2=12-x﹣2时,去分母变形正确的是( ) A.﹣1+x =﹣1﹣2(x ﹣2) B.1﹣x =1﹣2(x ﹣2)C.﹣1+x =1+2(2﹣x)D.1﹣x =﹣1﹣2(x ﹣2)7.老师设计了接力游戏,用合作的方式完成分式化简.规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图5-3-1所示,接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁8.化简2x x 2+2x -x -6x 2-4的结果为( ) A.1x 2-4 B.1x 2+2x C.1x -2 D.x -6x -29.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A.120x =150x -8 B.120x +8=150x C.120x -8=150x D 120x =150x +810.对于两个不相等的实数a ,b ,我们规定符号max{a ,b}表示a ,b 中的较大值,如max{2,4}=4.按这个规定,方程max{x ,﹣x}=2x +1x的解为( ) A.1﹣ 2 B.2﹣ 2 C.1+2或1﹣ 2 D.1+2或﹣1二、填空题11.如果x =-1,那么分式 x -2x 2-4的值为________. 12.填空:a 2-2a +1a -1÷(a 2-1)= . 13.分式方程1x -1=a x 2-1的解是x =0,则a = . 14.化简:(1+1x -1)÷x 2+x x 2-2x +1=________. 15.端午节当天,“味美早餐店”的粽子打九折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x 元,列方程为 .16.若关于x 的分式方程x +m x -2+2m 2-x =3的解为正实数,则实数m 的取值范围是_________三、解答题17.化简:(1-1x +1)÷x x 2-1.18.化简:a2-b2a÷(a﹣2a-b2a).19.解分式方程:xx-7﹣17-x=2;20.解分式方程:2x2-4+xx-2=1.21.化简:(x+2x2-2x-x-1x2-4x+4)÷x-4x,并从0≤x≤4中选取合适的整数代入求值.22.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2)得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.23.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?24.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?参考答案1.C2.B3.A4.A5.B6.D7.D8.C.9.D10.D11.答案为:112.答案为:1a+1.13.答案为:1.14.答案为:x-1 x+1.15.答案为:54x=540.9x﹣3.16.答案为:m<6且m≠2.17.解:原式=x+1-1x+1·(x+1)(x-1)x=xx+1·(x+1)(x-1)x=x-1.18.解:原式=a +b a -b19.解:去分母,得x +1=2x ﹣14,解得x =15经检验x =15是分式方程的解故原分式方程的解为x =15;20.解:去分母,得2+x(x +2)=x 2﹣4解得x =﹣3检验:当x =﹣3时,(x +2)·(x ﹣2)≠0故x =﹣3是原方程的根.21.解:原式==1(x -2)2. ∵⎩⎨⎧x ≠0,x -2≠0,x -4≠0,∴⎩⎨⎧x ≠0,x ≠2,x ≠4,∴当0≤x ≤4时,可取的整数为x =1或x =3.当x =1时,原式=1;当x =3时,原式=1.22.解:有错误,错在第①步,正确解法为:方程两边同乘(x ﹣2)得x ﹣3+x ﹣2=﹣3解得x =1经检验x =1是分式方程的解所以原分式方程的解是x =1.23.解:(1)设第一次每支铅笔进价为x 元根据题意列方程得,﹣=30,解得x =4经检验:x =4是原分式方程的解.答:第一次每支铅笔的进价为4元.(2)设售价为y 元,第一次每支铅笔的进价为4元则第二次每支铅笔的进价为4×54=5元根据题意列不等式为:×(y﹣4)+×(y﹣5)≥420,解得y≥6.答:每支售价至少是6元.24.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
分式方程提高练习(含答案)
分式方程复习提高)(11b a x b b x a a ≠+=+ b x a 211+=)2(a b ≠ 417425254=-+-x x x x (换元法)87329821+++++=+++++x x x x x x x x (分离常数法) 41315121+++=+++x x x x (分组通分法)569108967+++++=+++++x x x x x x x x 41215111+++=+++x x x x6811792--+-+=--+-x x x x x x x x 65322176+++++=+++++x x x x x x x x分式方程求待定字母的方法例1.若关于x 的分式方程3132--=-x m x 有增根,求m 的值.例2.若分式方程122-=-+x a x 的解是正数,求a 的取值范围.提示:032>-=a x 且2≠x ,例3.若分式方程xm x x -=--221无解,求m 的值。
例4.若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值。
例5.若关于x 分式方程432212-=++-x x k x 有增根,求k 的值。
例6、关于x 的方程的解为非负数,求m 的取值范围是.例7、关于x 的方程的解为非正数,求m 的取值范围.例8、若关于x 的方程233x k x x =+--无解,求k 的值例9、已知方程无解,求k 的值.例10、已知关于x 的方程3)1(2122-=+++x x x x ,求11++x x 的值。
分式方程练习:一、选择题1.若73212++y y 的值为81,则96412-+y y 的值是( ) (A )21-(B )171- (C )71- (D )71 2.已知xz z y x +=+=531,则z y y x +-22的值为( ) (A )1 (B )23 (C )23- (D )41 3.若对于3±=x 以外的一切数98332-=--+x x x n x m 均成立,则mn 的值是( ) (A )8 (B )8- (C )16 (D )16-4.有三个连续正整数,其倒数之和是6047,那么这三个数中最小的是( ) (A )1 (B )2 (C )3 (D )45.若d c b a ,,,满足a d d c c b b a ===,则2222d c b a da cd bc ab ++++++的值为( ) (A )1或0 (B )1- 或0 (C )1或2-(D )1或1-6.设轮船在静水中的速度为v ,该船在流水(速度为v u <)中从上游A 驶往下游B,再返回A ,所用的时间为T,假设0=u ,即河流改为静水,该船从A 至B 再返回A,所用时间为t ,则( )(A )t T = (B )t T < (C )t T > (D )不能确定T 与t 的大小关系二、填空题7.已知:x 满足方程20061120061=--x x,则代数式2007200520062004+-x x 的值是_____. 8. 已知:b a b a +=+511,则ba ab +的值为_____. 9.方程71011=++zy x 的正整数解()z y x ,,是_____. 10. 若关于x 的方程122-=-+x a x 的解为正数,则a 的取值范围是_____. 11. 若11,11=+=+zy y x ,则=xyz _____. 12.设y x ,是两个不同的正整数,且5211=+y x ,则._____=+y x 三、解答题(每题10分,共40分)13. 已知2+x a 与2-x b 的和等于442-x x ,求b a ,之值.14.解方程: 708115209112716512311222222-+=+++++++++++++x x x x x x x x x x x x .15. a 为何值时,分式方程()01113=++++-x x a x x x 无解?16. 某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶?练习答案:一、选择题1.解:根据题意, 8173212=++y y .可得1322=+y y . 所以().7932296422-=--=-+y y y y所以7196412-=-+y y . 故选(C )2.解:由xz z y x +=+=531得x x z x z y 5,3=+=+.从而.,4x y x z -== 所以.2342222=+-+=+-x x x x z y y x 故选(B )3.解: 98332-=--+x x x n x m . 左边通分并整理,得()()9893322-=-+--x x x n m x n m . 因为对3±=x 以外的一切数上式均成立,比较两边分子多项式的系数,得⎩⎨⎧=+=-.033,8n m n m 解得⎩⎨⎧-==.4,4n m所以()1644-=-⨯=mn .故选(D )4. 解:设这三个连续的正整数分别为2,1,++x x x .则有 604721111=++++x x x . 根据题意,得⎪⎪⎩⎪⎪⎨⎧⨯<+⨯>.3604721,360471x x 解得.4739347391<<x 因x 是正整数,所以2=x 或3=x .经检验2=x 适合原方程.故选(B )5. 解:设 k ad d c c b b a ====,则ak d dk c ck b bk a ====,,,. 上述四式相乘,得4abcdk abcd =.从而1±=k .当1=k 时,d c b a ===, 12222=++++++dc b a da cd bc ab ; 当1-=k 时, d c b a -==-=.144222222-=-=++++++aa d cb a da cd bc ab . 故选(D )6. 解:设B A ,相距为s ,则.2,222vs t u v vs u v s u v s T =-=-++= 所以1222>-=uv v t T ,即t T > 故选(C )二、填空题7. 解:由20061120061=--x x,得200612006=--x x . 所以01=--x x .所以0=x .经检验0=x 满足原方程.故200720052007200520062004-=+-x x . 8. 解: 由b a b a +=+511,得ba ab b a +=+5. 所以()ab b a 52=+.所以().33252222==-=-+=+=+ab ab ab ab ab ab ab b a ab b a b a a b9. 解:由71011=++z y x ,得73111+=++z y x . 因为是正整数,故必有1=x ,因而 312371+==+z y . 又因为z y ,也是正整数,故又必有3,2==z y .经检验()3,2,1是原方程的根.因此,原方程的正整数解()z y x ,,是()3,2,1.10. 解:由方程122-=-+x a x ,得x a x -=+22,从而.32a x -= 又由题意,得⎪⎪⎩⎪⎪⎨⎧≠->-.232,032a a 所以⎩⎨⎧-≠<.4,2a a 故a 的取值范围是2<a 且4-≠a .11. 解:由11,11=+=+z y y x ,得yz y y y x -=-=-=11,111. 所以1111-=-••-=y y y y xyz . 12. 解:由条件5211=+y x 得512121=+y x . 显然52,52>>y x ,故可设.52,5221t y t x +=+=则51515121=+++t t .去分母并整理,得2521=t t . 因为y x ,是两个不同的正整数,所以21t t ≠.所以25,121==t t 或1,2521==t t .所以.182261021025252121=+=++=+++=+t t t t y x 三、解答题13. 解:根据题意,有 2+x a +2-x b =442-x x . 去分母,得()()x x b x a 422=++-.去括号,整理得()()x a b x b a 42=-++.比较两边多项式系数,得0,4=-=+a b b a .解得2==b a .14. 解:因为方程的左边()()()()()()()()()().5551151414131312121111115414313212111120911271651231122222+=+-=⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-=+++++++++++++=+++++++++++++x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 故原方程可变为()708115552-+=+x x x x . 所以()7081152-+=+x x x x .解得118=x .经检验118=x 是原方程的根.15. 解:方程()01113=++++-x x a x x x 的两边同乘以()1+x x ,去分母,得 ()().013=++-+a x x x整理,得033=++a x 。
北师大版八年级上册数学 分式解答题(提升篇)(Word版 含解析)
一、八年级数学分式解答题压轴题(难)1.已知:12x M +=,21x N x =+. (1)当x >0时,判断M N -与0的关系,并说明理由;(2)设2y N M=+. ①当3y =时,求x 的值; ②若x 是整数,求y 的正整数值.【答案】(1)见解析;(2)①1;②4或3或1【解析】【分析】(1)作差后,根据分式方程的加减法法则计算即可;(2)①把M 、N 代入整理得到y ,解分式方程即可;②把y 变形为:221y x =++,由于x 为整数,y 为整数,则1x +可以取±1,±2,然后一一检验即可.【详解】(1)当0x >时,M -N ≥0.理由如下: M -N =()()21122121x x x x x -+-=++ . ∵x >0,∴(x -1)2≥0,2(x +1)>0,∴()()21021x x -≥+,∴M -N ≥0. (2)依题意,得:4224111x x y x x x +=+=+++. ①当3y =,即2431x x +=+时,解得:1x =.经检验,1x =是原分式方程的解,∴当y =3时,x 的值是1. ②2422222111x x y x x x +++===++++ . ∵x y ,是整数,∴21x +是整数,∴1x +可以取±1,±2. 当x +1=1,即0x =时,22401y =+=> ; 当x +1=﹣1时,即2x =-时,2201y =-=(舍去); 当x +1=2时,即1x =时,22302y =+=> ;当x +1=-2时,即3x =-时,22102y =+=>-() ; 综上所述:当x 为整数时,y 的正整数值是4或3或1.【点睛】 本题考查了分式的加减法及解方式方程.确定x +1的取值是解答(2)②的关键.2.小明和小强两名运动爱好者周末相约到滨江大道进行跑步锻炼.(1)周六早上6点,小明和小强同时从家出发,分别骑自行车和步行到离家距离分别为4500米和1200米的滨江大道入口汇合,结果同时到达.若小明每分钟比小强多行220米,求小明和小强的速度分别是多少米/分?(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的m 倍,两人在同起点,同时出发,结果小强先到目的地n 分钟.①当3m =,6n =时,求小强跑了多少分钟?②小明的跑步速度为_______米/分(直接用含m n ,的式子表示).【答案】(1)小强的速度为80米/分,小明的速度为300米/分;(2)①小强跑的时间为3分;②1000(1)m mn-. 【解析】【分析】 (1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分,根据路程除以速度等于时间得到方程,解方程即可得到答案;(2)①设小明的速度为y 米/分,由m =3,n =6,根据小明的时间-小强的时间=6列方程解答;②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.【详解】(1)设小强的速度为x 米/分,则小明的速度为(x+220)米/分, 根据题意得:1200x =4500220x +. 解得:x =80. 经检验,x =80是原方程的根,且符合题意.∴x+220=300.答:小强的速度为80米/分,小明的速度为300米/分.(2)①设小明的速度为y 米/分,∵m =3,n =6, ∴1000100063y y -=,解之得10009y =.经检验,10009y =是原方程的解,且符合题意, ∴小强跑的时间为:10001000(3)39÷⨯=(分) ②小强跑的时间:1n m -分钟,小明跑的时间:11n mn n m m +=--分钟, 小明的跑步速度为: 1000(1)10001mn m m mn -÷=-分. 故答案为:1000(1)m mn-. 【点睛】 此题考查分式方程的应用,正确理解题意根据路程、时间、速度三者的关系列方程解答是解题的关键.3.已知11x a b c ⎛⎫=+ ⎪⎝⎭,11y b a c ⎛⎫=+ ⎪⎝⎭,11z c a b ⎛⎫=+ ⎪⎝⎭. (1)当1a =,1b =,2c =时,求1111x y +--的值; (2)当0ab bc ac ++≠时,求111111x y z +++++的值. 【答案】(1)4;(2)1【解析】【分析】 (1)分别对x 、y 进行化简,然后求值即可;(2)分别求出1x +、1y +、和z 1+值,然后代入化简即可.【详解】(1),,ac ab bc ab bc ac x y z bc ac ab+++===, 当1,1,2a b c ===时, 1211111=;122x ⨯+⨯∴-=-⨯ 1211111=122y ⨯+⨯∴-=-⨯ 1111=4111122x y ∴+=+-- (2)11ac ab ac ab bc x bc bc ++++=+=,11bc ab bc ab ac y ac ac ++++=+=, 11bc ac bc ac ab z ab ab++++=+=, ∵+0ab bc ac +≠, ∴111111;+++x y z bc ac ab ab bc ac ab bc ac ab bc ac+++++=+++++ ++ab bc ac ab bc ac+=+ =1.【点睛】 本题考查了整式的化简求值问题,解题的关键是仔细认真的进行整式的化简.4.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h 米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h 的代数式表示)【答案】(1)甲的平均攀登速度是12米/分钟;(2)360h h+倍. 【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.【详解】(1)设乙的速度为x 米/分钟, 900900151.2x x+=, 解得,x=10,经检验,x=10是原分式方程的解,∴1.2x=12,即甲的平均攀登速度是12米/分钟;(2)设丙的平均攀登速度是y 米/分,12h +0.5×60=h y ,化简,得 y=12360h h +, ∴甲的平均攀登速度是丙的:1236012360h h h h ++=倍,即甲的平均攀登速度是丙的360h h+倍.5.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a b a b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.6.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元. (1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1)B型商品的进价为120元, A型商品的进价为150元;(2)5500元.【解析】分析:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.详解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意: =×2,解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∵﹣10<0,∴m=50时,w有最小值=5500(元)点睛:此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.7.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【答案】(1)0x=;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x-得()5321x+-=-解得0x=经检验,0x=是原分式方程的解.(2)设?为m,方程两边同时乘以()2x-得()321m x+-=-由于2x=是原分式方程的增根,所以把2x=代入上面的等式得()3221m+-=-1m=-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:48728x x=+,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y 元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y 的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.9.按要求完成下列题目.()1求:()11111223341n n +++⋯+⨯⨯⨯+的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成()11n n +的形式,而()11111n n n n =-++,这样就把()11n n +一项(分)裂成了两项. 试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出111112233420162017+++⋯+⨯⨯⨯⨯的值. ()2若()()()()()112112A B n n n n n n n =++++++①求:A 、B 的值:②求:()()11112323412n n n ++⋯+⨯⨯⨯⨯++的值. 【答案】()()()3412n n n n +++【解析】【分析】(1)根据题目的叙述的方法即可求解;(2)①把等号右边的式子通分相加,然后根据对应项的系数相等即可求解; ②根据()()()()()11111..1221212n n n n n n n =-+++++把所求的每个分式化成两个分式的差的形式,然后求解.【详解】解:(1)112⨯+123⨯+134⨯+…+120161017⨯ =1-12+12-13+13-14+…+12016-12017 =1-12017=20162017; (2)①∵()1A n n ++()()12B n n ++=()()()2n 12A B n A n n ++++ =()()1n 12n n ++, ∴120A B B ⎧=⎪⎨⎪+=⎩, 解得1212A B ⎧=⎪⎪⎨⎪=-⎪⎩. ∴A 和B 的值分别是12和-12; ②∵()()1n 12n n ++=12•()11n n +-12•()()1n 12n n ++ =12•(1n -1n 1+)-12(11n +-12n +) ∴原式=12•112⨯-12•123⨯+12•123⨯-12•134⨯+…+12•()11n n +-12•()()112n n ++ =12•112⨯-12•()()112n n ++ =14-()()1212n n ++ =()()()3412n n n n +++.【点睛】本题考查了分式的化简求值,正确理解()()1n 12n n ++=12•()1n 1n +-12•()()112n n ++是关键.10.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.。
分式提高练习(附答案)资料
分式提高练习(附答案)提高练习一、选择题1.下列各式中,不是分式方程的是( ) 111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是( ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值( ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是( ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为( )A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是( ) ....a ba b a b a b A B a ba b a b a b a ba ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是( ) 22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a--=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x= ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______.9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.四、应用题1、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度是大队的1.2倍,以便提前21 小时到达目的地做准备工作,求先遣队与大队的速度各是多少?2、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D ) 111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A )A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C ) ....a ba b a b a b A B a ba b a b a b a ba ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B ) 22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x --的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h .三、解答题1.计算题. 2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.四、应用题1、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度是大队的1.2倍,以便提前21 小时到达目的地做准备工作,求先遣队与大队的速度各是多少? 解:设大队的速度是x 千米/时,则先遣队的速度是1.2x 千米/时,由题意得:15x - 151.2x = 12解之得:x=5经检验:x=5是原方程的根且符合题意∴原方程的根是x=5∴ 1.2x=1.2×5=6(千米/时)答:先遣队的速度是6千米/时,大队的速度是5千米/时2、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?(本题5分)解:设规定日期是x 天,则甲队独完成需要x 天,乙队独完成需要(x+3)天,由题意得:2x + x x+3 = 1 解之得:x=6经检验:x=6是原方程的根且符合题意∴原方程的根是x=6答:规定日期是6天。
人教版初中八年级数学上册第十五章《分式》提高卷(含答案解析)(1)
一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数2.如果分式2121x x -+的值为0,则x 的值是( ) A .1 B .0 C .1- D .±13.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .3 4.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .35.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,16006.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④ 7.计算()3222()m m m -÷⋅的结果是( ) A .2m - B .22m C .28m - D .8m - 8.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( )A .7500980020x x 10-=- B .9800750020x 10x -=-C .7500980020x x 10-=+D .9800750020x 10x-=+ 9.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .5 10.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++ 11.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .112.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a +=0 D .11a b b a+--=0 13.2a ab b a++-的结果是( ). A .2a - B .4a C .2b a b -- D .b a- 14.020*******)(0.125)8+⨯的结果是( )AB2 C .2 D .015.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8- B .7- C .15 D .15-二、填空题16.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.17.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 18.若关于x 的分式方程233x m x x=---的解为正数,则常数m 的取值范围是______. 19.计算:22x x xy x y x-⋅=-____________________. 20.计算:22311x x x -=+-____________. 21.分式2222,39a b b c ac 的最简公分母是______. 22.已知215a a+=,那么2421a a a =++________. 23.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________.24.已知114y x-=,则分式2322x xy y x xy y +---的值为______. 25.若关于x 的分式方程11222mx x x -=---无解,则m =______. 26.计算:262393x x x x -÷=+--______. 三、解答题27.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 28.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 29.解答下面两题:(1)解方程:35322x x x-+=-- (2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭30.(1)计算:0)4π+-(2)解不等式:452(1)x x +≤+。
奋斗中学八年级数学上册第十五章《分式》提高卷(含解析)
一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定 2.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数 3.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28 4.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >-B .1m ≠C .1mD .1m >-且1m ≠ 5.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 6.下列各分式中,最简分式是( )A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ 7.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯ 8.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .49.计算2m m 1m m-1+-的结果是( )A .mB .-mC .m +1D .m -110.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=-B .4605801140x x =--C .4605801x 140x =+-D .4605801140x x-=- 11.若分式293x x -+的值为0,则x 的值为( ) A .4B .4-C .3或-3D .3 12.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003x x +-= C .0.50.01100203x x +-= D .50513x x +-= 13.下列各式中正确的是( )A .263333()22=x x y yB .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<< 15.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2-二、填空题16.计算2216816a a a -++÷428a a -+=__________. 17.计算22a b a b a b-=-- _________. 18.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 19.已知实数a 、b 满足32a b =,则a b a b +-_________. 20.计算:22311x x x -=+-____________.21.若分式2221x x --的值为正整数,则x =_____________. 22.方程111x x x x -+=-的解是______. 23.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 24.计算:262393x x x x -÷=+--______. 25.已知:4a b +=,2210a b +=,求11a b +=______. 26.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题27.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解)28.2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品,爱民药店准备购进95N 和普通医用两种类型的口罩,已知每个普通医用口罩的进价比每个95N 口罩的进价少8元,且用300元购进普通医用口罩的数量与用1500元购进95N 口罩的数量相同,设每个普通医用口罩进价为x 元.(1)每个95N 口罩的进价为________元,1500元购进95N 口罩的数量为________个(用含x 的式子表示);(2)求每个普通医用口罩、每个95N 口罩的进价分别为多少元?(3)若爱民药店本次购进这两种口罩共800个,并将两种口罩均按进价加价50%全部售出利润不少于1600元(不考虑其他因素),则这次至少购进95N 口罩多少个?29.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 30.解答下面两题:(1)解方程:35322x x x-+=-- (2)化简:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭。
新疆哈密市八年级数学上册第十五章《分式》提高练习(答案解析)
一、选择题1.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m =B .2m =-C .5m =D .5m =- D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】 5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.2.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2B .3C .6D .11B 解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>, ∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.3.计算233222()m n m n -⋅-的结果等于( ) A .2m n B .2n m C .2mn D .72mn A 解析:A【分析】根据整数指数幂的运算法则进行运算即可.【详解】解:原式=43431222m m m n n m nn---=⋅=⋅= 故选:A .【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键4.下列各式中,正确的是( ) A .22a a b b= B .11a a b b +=+ C .2233a b a ab b = D .232131a ab b ++=-- C 解析:C【分析】 利用分式的基本性质变形化简得出答案.【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误; B .11a a b b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a ab b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C .【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.6.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.7.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .5A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.8.若分式293x x -+的值为0,则x 的值为( ) A .4 B .4- C .3或-3 D .3D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1-B .1C .3D .3- D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程. 10.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.二、填空题11.方程31x x x x -=+的解是______.【分析】两边同时乘以x(x+1)化分式方程为整式方程求解即可【详解】∵∴(x+1)(x-3)=∴-2x-3=∴2x+3=0∴x=经检验x=是原方程的解故填【点睛】本题考查了分式方程的解法熟练把分式方 解析:32-. 【分析】 两边同时乘以x(x+1),化分式方程为整式方程求解即可.【详解】 ∵31x x x x -=+, ∴(x+1)(x-3)= 2x ,∴2x -2x-3= 2x ,∴2x+3=0,∴x=32-, 经检验,x=32-是原方程的解, 故填32-. 【点睛】 本题考查了分式方程的解法,熟练把分式方程转化为整式方程是解题的关键,验根是解题的一个重要环节,不能忽视.12.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.13.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键 解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 14.101()()2π-+-=______,011(3.14)2--++=______.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12= 【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可.15.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.16.2112111a a a a +-+--=___________.0【分析】先通分再分母不变分子相减即可求解【详解】故答案为:0【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键解析:0【分析】先通分,再分母不变,分子相减即可求解.【详解】2211211201111a a a a a a a a -++-+-==+---. 故答案为:0.【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.17.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键.18.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.【分析】设慢车的速度为x 千米/小时则快车的速度为12x 千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了 解析:15011502 1.2x x-= 【分析】设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可. 【详解】解:设慢车的速度为xkm /h ,则快车的速度为1.2xkm /h , 根据题意得:1501150x 2 1.2x-=. 故答案为:1501150x 2 1.2x-=. 【点睛】 本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.19.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.已知:4a b +=,2210a b +=,求11a b+=______.【分析】根据a2+b2=(a+b )2-2ab 把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b )2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?解析:(1)这项工程的规定时间是30天;(2)该工程的费用为225000元(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】(1)设这项工程的规定时间是x 天,根据题意得:1110()1513x x x+⨯+=, 解得:x =30.经检验x =30是原分式方程的解.答:这项工程的规定时间是30天;(2)该工程由甲、乙队合做完成,所需时间为:111()22.530303÷+=⨯(天), 则该工程施工费用是:()22.565003500225000⨯+=(元).答:该工程的费用为225000元.【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.22.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?解析:(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验; (2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.23.(1)先化简,再求值:22228424m m m m m m +-⎛⎫+÷ ⎪--⎝⎭,其中m 满足2430m m ++=.(2)如图,在等边ABC 中,D .E 分别在边BC 、AC 上,且//DE AB ,过点E 作EF DE ⊥交BC 的延长线于点F .若3cm CD =,求DF 的长.解析:(1)()212m +,1;(2)6cm【分析】 (1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将已知方程变形后代入计算即可求出值 (2) 先求得CD =DE ,然后由Rt △DEF 中30°所对的边等于斜边的一半进行求解即可.【详解】(1)解:原式()2(2)28(2)(2)(2)m m m m m m m m +-⎛⎫+=+÷⎪--+⎝⎭ ()()()()()()()()()()()2222822222222212m m m m m m m m m m m m m m m m +-=⨯-++--=⨯+-+-=+ 2430m m ++=∴22(2)44341m m m +=++=-+=∴原式1=;(2)∵ABC 是等边三角形,∴60B A ︒∠=∠=,∵//DE AB ,∴60EDC B ︒∠=∠=,60DEC A ︒∠=∠=,∴EDC △是等边三角形.∵EF DE ⊥,∴90DEF ︒∠=,∴9030F EDC ︒︒∠=-∠=;∴26cm DF DE ==.【点睛】本题有两个问题第(1)题考查了分式的化简求值,以及分式的乘除法,熟练掌握运算法则是解本题的关键. 第(2)题主要考查的是等边三角形的性质和30°所对的边等于斜边的一半,熟练掌握相关知识是解题的关键.24.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力.25.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 解析:11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝ ()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+; 当12m =-时,原式1123112--==--+. 【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.26.计算:0212|( 3.14)()2π---+-解析:5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解:0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +.解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.观察下列等式:第1个等式:111122=-⨯; 第2个等式:1112323=-⨯; 第3个等式:1113434=-⨯;…… (1)写出第5个等式:________________;(2)探究规律:猜想第n 个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,……,第n 次倒出的水量是1n 升的11n +,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?解析:(1)1115656=-⨯ (2)()11111n n n n =-++;证明见解析 (3)不能;见解析 【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式; (2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确; (3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明:等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.。
上海辽阳中学八年级数学上册第十五章《分式》提高练习(含解析)
一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定2.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度 B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度3.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .34.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.化简分式2xy xx+的结果是( ) A .y x B .1y x+ C .1y +D .y xx+ 6.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a+的值相等B .当a 取互为倒数的值时,221a a+的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a +的值就越大7.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d ab d+++++=4,那么d a a b c b c d ++++++b ca c d ab d+++++的值为( )A .1B .12C .0D .48.若使分式2xx -有意义,则x 的取值范围是( ) A .2x ≠B .0x =C .1x ≠-D .2x =9.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .410.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>-B .x 4<-C .x 2>D .x 2<11.计算221(1)(1)x x x +++的结果是( )A .1B .1+1xC .x +1D .21(+1)x12.下列各式计算正确的是( ) A .()23233412a b a b-=-B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba bb -÷=- D .()325339a ba b -=-13.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=. A .2B .3C .4D .514.22()-n b a(n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a15.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<<B .b a c d <<<C .b a d c <<<D .a b d c <<<二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知5,3a b ab -==,则b aa b+的值是__________. 18.计算22a b a b a b-=-- _________.19.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x ++,11z x y ++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.20.已知2510m m -+=,则22125m m m -+=____. 21.计算:22311x x x -=+-____________. 22.H 7N 9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小为________米.23.计算:201(1)32|2π-⎛⎫++-= ⎪⎝⎭_____. 24.已知114y x-=,则分式2322x xy y x xy y +---的值为______.25.若关于x 的分式方程232x mx +=-的解是正数,则实数m 的取值范围是_________ 26.方程11212x x =+-的解是x =_____. 三、解答题27.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-.28.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.29.2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品,爱民药店准备购进95N 和普通医用两种类型的口罩,已知每个普通医用口罩的进价比每个95N 口罩的进价少8元,且用300元购进普通医用口罩的数量与用1500元购进95N 口罩的数量相同,设每个普通医用口罩进价为x 元.(1)每个95N 口罩的进价为________元,1500元购进95N 口罩的数量为________个(用含x 的式子表示);(2)求每个普通医用口罩、每个95N 口罩的进价分别为多少元?(3)若爱民药店本次购进这两种口罩共800个,并将两种口罩均按进价加价50%全部售出利润不少于1600元(不考虑其他因素),则这次至少购进95N 口罩多少个? 30.阅读理解材料1:小学时常常会遇到将一个假分数写成带分数的问题,在这个计算的过程中,先计算分子中有几个分母求出整数部分,再把剩余的部分写成一个真分数,例如:52211333=+=. 类似的,我们可以将下列的分式写成一个整数与一个新分式的和. 例如:111x x x+=+. 1(1)221111x x x x x +-+==+---. 材料2:为了研究字母x 和分式1x值的变化关系,小明制作了表格,并得到数据如下: 0.3 0.5- 0.30.25请根据上述材料完成下列问题:(1)把下面的分式写成一个整数与一个新分式的和的形式:2x x +=__________________;12x x +=-___________________;(2)当0x >时,随着x 的增大,分式2x x+的值___________(增大或减小); (3)当1x >-时,随着x 的增大,分式231x x ++的值无限趋近一个数,请写出这个数,并说明理由.。
沈阳市八年级数学上册第十五章《分式》提高卷(含答案解析)
一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28 2.关于x 的分式方程5222m x x+=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-3.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .34.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m = 5.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 6.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,16007.若a 与b 互为相反数,则22201920212020a b ab+=( ) A .-2020 B .-2 C .1 D .28.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2 9.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .7510.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .211.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003x x +-= C .0.50.01100203x x +-= D .50513x x +-= 12.下列各式计算正确的是( ) A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a b a b b -÷=-D .()325339a b a b -=-13.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1 B .1 C .-3 D .314.2a ab b a++-的结果是( ). A .2a - B .4a C .2b a b -- D .b a- 15.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b=+++,则M ,N 的关系为( ) A .M N >B .M N <C .M N =D .M ,N 的大小不能确定二、填空题 16.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.17.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________;(2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 18.计算22a b a b a b-=-- _________. 19.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________. 20.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 21.若13x x +=,则231x x x ++的值是_______. 22.若分式2221x x --的值为正整数,则x =_____________.23.计算:201(1)2|2π-⎛⎫++-= ⎪⎝⎭_____. 24.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.25.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 26.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题27.(1)填空:①32(2)(5)x xy ⋅-=____________;②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =. 28.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 29.先化简,再求值:2222224414y x x xy y x x x y ⎛⎫+-++-÷ ⎪-⎝⎭,其中x ,y 满足()2230x y ++-=.30.计算: (1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---.。
2021年八年级数学上册第十五章《分式》提高卷(答案解析)
一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( )A .x >0B .x >-4C .x ≠0D .x >-4且x ≠02.若整数a 使得关于x 的方程3222ax x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .283.关于x 的分式方程5222mx x+=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-4.如果关于x 的分式方程6312233ax x x x --++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.化简分式2xy xx+的结果是( ) A .y x B .1y x+ C .1y +D .y xx+ 6.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2-B .2C .3-D .37.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++D .222()x y x y -+8.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .49.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( ) A .20本B .25本C .30本D .35本10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -111.下列变形不正确...的是( ) A .1a ba b a b -=-- B .1a b a b a b +=++ C .221a b a b a b+=++D .221-=-+a b a b a b12.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-13.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 14.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 15.22()-n b a (n为正整数)的值是( )A .222+n n b aB .42n n b aC .212+-n n b aD .42-nn b a二、填空题16.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 17.计算:111x x---的结果是________. 18.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 19.某校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要224 000元,购买B 型计算机需要240 000元.求一台A 型计算机和一台B 型计算机的售价分别是多少元. 设一台B 型计算机的售价是x 元,依题意列方程为__.20.当x _______时,分式22x x-的值为负. 21.若13x x +=,则231xx x ++的值是_______.22.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.23.已知1112a b -=,则ab a b-的值是________. 24.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________. 25.已知:4a b +=,2210a b +=,求11a b+=______. 26.计算:()3120202-⎛⎫---= ⎪⎝⎭______. 三、解答题27.计算:(1)|﹣3|12(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5.28.计算:21311211a a a a a a --+÷-+++. 29.观察下列等式:第1个等式:111122=-⨯; 第2个等式:1112323=-⨯; 第3个等式:1113434=-⨯;…… (1)写出第5个等式:________________; (2)探究规律:猜想第n 个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,……,第n 次倒出的水量是1n 升的11n +,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?30.计算:)03-。
2021年八年级数学上册第十五章《分式》提高练习(答案解析)
一、选择题1.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5 C .6 D .33.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯ C .-87.610⨯ D .-97.610⨯4.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x5.计算2m m 1m m-1+-的结果是( ) A .m B .-m C .m +1 D .m -1 6.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+B .1524x x 3=-C .1524x 3x =+D .1524x 3x =- 7.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .28.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .5 9.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .810.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 11.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .6 12.计算23211x x x x +-++的结果为( ) A .1 B .3 C .31x + D .31x x ++ 13.若实数a 使关于x 的不等式组313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .114.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a+=0 D .11a b b a +--=0 15.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2-二、填空题16.已知5a b +=,6ab =,b a a b+=______. 17.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 18.若关于x 的分式方程233x m x x=---的解为正数,则常数m 的取值范围是______. 19.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y =+_____.20.23()a -=______(a≠0),2-=______,1-=______.21.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 22.化简:(﹣2y x)3÷(223⋅y x x y )=_______________. 23.已知关于x 的分式方程211a x +=+的解是负数,则a 的取值范围_____________. 24.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________. 25.已知114y x-=,则分式2322x xy y x xy y +---的值为______. 26.已知(3)1a a -=,则整数a 的值为______.三、解答题27.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?28.2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品,爱民药店准备购进95N 和普通医用两种类型的口罩,已知每个普通医用口罩的进价比每个95N 口罩的进价少8元,且用300元购进普通医用口罩的数量与用1500元购进95N 口罩的数量相同,设每个普通医用口罩进价为x 元.(1)每个95N 口罩的进价为________元,1500元购进95N 口罩的数量为________个(用含x 的式子表示);(2)求每个普通医用口罩、每个95N 口罩的进价分别为多少元?(3)若爱民药店本次购进这两种口罩共800个,并将两种口罩均按进价加价50%全部售出利润不少于1600元(不考虑其他因素),则这次至少购进95N 口罩多少个?29.“圣诞节”前期,某水果店用1000元购进一批苹果进行销售,由于销售良好,该店又以2500元购进同一种苹果,第二次进货价格比第一次每千克贵了1元,第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍.求该水果店第一次购进苹果的单价.30.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.。
分式提高练习(附详细标准答案)
提高练习一、选择题1.下列各式中,不是分式方程地是( )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+地值为0,那么x 地值是( ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中地x ,y 都扩大2倍,则分式地值( ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-地解是( ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-地值为( ) A .-13.55B -C .1D .无法确定 7.关于x 地方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程地最简公分母为0,则k 地值为( )A .3B .0C .±3D .无法确定8.使分式224x x +-等于0地x 值为( ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确地是( )....a b a b a b a bA B a b a b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确地是( )22222211..()223..()955b a a b A B a ab a b aba a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--地值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--地值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式地值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x= ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式地值为0;当x=-2时,分式地值为_______.b5E2R 。
分式部分的经典提高题
- 1 -分式总复习【知识精读】【分类解析】1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。
分析:要判断1111a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。
解: ab a b +--=10即()()b a +-=110∴+=b 10或a -=10 ∴-+1111a b ,中至少有一个无意义。
2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。
例2. 计算:a a a a a a 2211313+-+--+- 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。
解:原式=+-+--+-a a a a a a ()()111313例3. 解方程:11765556222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。
由于x x x x x x x x x x 222225556561561156-+-+=-+--+=--+故可得如下解法。
解: x x x x x x 222561561156-+--+=--+ 原方程变为1176115622-++=--+x x x x 经检验,x =0是原方程的根。
3. 在代数求值中的应用例4. 已知a a 269-+与||b -1互为相反数,求代数式- 2 -()42222222222a b a b ab a b a ab b a b ab b a -++-÷+-++的值。
分析:要求代数式的值,则需通过已知条件求出a 、b 的值,又因为a a a 226930-+=-≥(),||b -≥10,利用非负数及相反数的性质可求出a 、b 的值。
人教版初中八年级数学上册第十五章《分式》提高卷(含答案解析)(1)
一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数C 解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 3.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2-B .2C .3-D .3D解析:D【分析】根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 4.下列各分式中,最简分式是( )A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ C 解析:C【分析】 分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y -+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.5.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 6.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.7.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.8.分式242x x -+的值为0,则x 的值为( ) A .2-B .2-或2C .2D .1或2C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.下列式子的变形正确的是( ) A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- C 解析:C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.10.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a+=0 D .11a b b a +--=0D 解析:D【分析】直接根据分母不变,分子相加运算出结果即可. 【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误; C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b---=0,故正确. 故选D .【点睛】 本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单.二、填空题11.计算2216816a a a -++÷428a a -+=__________.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2.【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.12.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x -=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.13.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k 则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k-+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 14.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y =+_____.1【分析】先进行分式计算再解方程组代入即可求解【详解】解:原式==xy+2x+2y 解方程组得:当x=3y=﹣1时原式=﹣3+6﹣2=1故答案为:1【点睛】此题考查了分式的化简求值熟练进行分式化简解出解析:1【分析】先进行分式计算,再解方程组,代入即可求解.【详解】解:原式=()22xy x y x y x y++⋅++=xy +2x +2y , 解方程组30233x y x y +=⎧⎨+=⎩得:31x y =⎧⎨=-⎩, 当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为:1.【点睛】此题考查了分式的化简求值,熟练进行分式化简,解出二元一次方程组是解本题的关键. 15.计算211()(1)11m m m -⨯--+的结果是______.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键解析:2【分析】利用乘法分配律展开括号,再计算加减法.【详解】()211()(1)11211m m m m m -⨯-=+--=-+.故答案为:2.【点睛】此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.16.化简:(﹣2y x)3÷(223⋅y x x y )=_______________.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣25y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】 解:原式=﹣36y x ÷y x=﹣36y x •x y=﹣25y x, 故答案为:﹣25y x. 【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键.17.已知0534x y z ==≠,则2222x y z xy xz yz -+=+-______.1【分析】设从而可得再代入所求的分式化简求值即可得【详解】由题意设则因此故答案为:1【点睛】本题考查了分式的求值根据已知等式将字母用同一个字母表示出来是解题关键 解析:1【分析】 设0534x y z k ===≠,从而可得5,3,4x k y k z k ===,再代入所求的分式化简求值即可得.【详解】 由题意,设0534x y z k ===≠,则5,3,4x k y k z k ===, 因此22222222(3)(4(5))535434x y z k k xy x k z yz k k k k k k-+-⋅+=+-⋅+⋅-⋅,222222181615201252k k k k k k-+=+-, 222323k k=, 1=,故答案为:1.【点睛】本题考查了分式的求值,根据已知等式,将字母,,x y z 用同一个字母表示出来是解题关键.18.计算:201(1)2|2π-⎛⎫++-= ⎪⎝⎭_____.【分析】先利用零次幂绝对值负整数次幂化简然后再计算即可【详解】解:故答案为:【点睛】本题主要考查了零次幂绝对值负整数次幂以及实数的运算灵活应用相关知识点成为解答本题的关键解析:1--【分析】先利用零次幂、绝对值、负整数次幂化简,然后再计算即可.【详解】解:201(1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-.故答案为:1-【点睛】本题主要考查了零次幂、绝对值、负整数次幂以及实数的运算,灵活应用相关知识点成为解答本题的关键.19.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 20.计算:()30120202-⎛⎫---= ⎪⎝⎭______.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.小强家距学校3000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有23分钟,于是他立刻步行回家取课本,随后小强爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,且小强爸骑电瓶车的平均速度是小强步行的平均速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸骑电瓶车的平均速度;(2)请你判断小强上学是否迟到,并说明理由.解析:(1)小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)小强不能按时到校,将会迟到,理由见解析【分析】(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,据此列方程求解; (2)计算出小强从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.【详解】解:(1)设小强步行的平均速度为x 米/分钟,则小强爸骑电瓶车的平均速度为5x 米/分钟,根据题意得:30003000245x x-=, 解得100x =,经检验,100x =是分式方程的解,且符合题意,∴5500x =,即小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟; (2)由(1)得,小强半途步行返家所需时间为3000210015÷÷=分钟,小强爸骑电瓶车送小强到学校所需时间为30005006÷=分钟,所以,从小强半途步行返家到小强爸骑电瓶车送他到学校共用时间为154625++=分钟23>分钟,故小强不能按时到校,将会迟到.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.(1)解分式方程:23193x x x +=-- (2)先化简代数式+⎛⎫+÷ ⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值.解析:(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解.(2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1a a 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.23.已知:240x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 解析:21x x +,14【分析】 根据分式的运算法则对原式进行化简,再把已知条件变形为化简算式可以利用的形式后代入求解即可 .【详解】 解:原式321121x x x x x -=÷--+ 21(1)1(1)(1)x x x x x -=⋅-+- 21x x=+. 由已知可得:24x x +=, 把上式代入经化简后的原式可得原式14=. 【点睛】本题考查分式的化简与求值,熟练掌握分式的运算方法与整体代入的思想方法是解题关键.24.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺地多少平方米?解析:原计划每天铺地75平方米.【分析】设原计划每天铺x 平方米,根据题意即可列出方程进行求解.【详解】解:设原计划每天铺地平方米, 根据题意锝:112511253341.5x x x -⎛⎫-+= ⎪⎝⎭解得:75x =经检验,75x =是原方程的解.答:原计划每天铺地75平方米.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.解析:(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义,∴2a =,此时原分式32=.【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.26.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+x y ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元,故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.27.计算:21311211a a a a a a --+÷-+++. 解析:21a + 【分析】根据分式混合运算的运算顺序,先算分式的除法,再算加法,即可求出结果.【详解】 解:21311211a a a a a a --+÷-+++ 21311(1)1a a a a a -+=+-+- 13=1(1)1a a a a -+-+-() 13(1)1(1)1a a a a a a +-=++-+-()() 22(1)1a a a -=+-() 2(1)(1)1a a a -=+-() 21a =+. 【点睛】此题考查了分式的混合运算,掌握分式的除法法则及异分母分式加减法法则是解题的关键.28.(1)计算:0)4π+-(2)解不等式:452(1)x x +≤+解析:(1)3-;(2)x≤32-. 【分析】 (1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x≤-3,解得x≤32-. 【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式提高题一.选择题(共6小题)1.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.22.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或23.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣4.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠45.若数a使关于x的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣36.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二.填空题(共3小题)7.已知﹣=3,则=.8.如果x2+x﹣5=0,那么代数式(1+)÷的值是.9.已知a+=4,则(a﹣)2=.三.解答题(共16小题)10.化简:(﹣)÷.11.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.12.先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.13.化简:(a+1﹣)÷,然后给a从1,2,3中选取一个合适的数代入求值.14.先化简,再求值:(﹣)÷,其中x=2y(xy≠0).15.先化简,再求值:(﹣)(﹣),其中x=4.16.解方程:=1﹣.17.解方程:﹣=1.18.解分式方程:﹣=.19.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?20.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示).(2)求点P原来的速度.21.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.22.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.23.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.24.已知a、b、c为实数,且.求的值25.因汛期防洪的需要,黄河河务局计划对某段河堤进行加固.此项工程若由甲、乙两队同时干,需要天完成,共支付费用180 000元;若甲队单独干2天后,再由乙队单独完成还需3天,共支付费用179 500元.但是为了便于管理,决定由一个队完成.(以下均需通过计算加以说明)(1)由于时间紧迫,加固工程必须在5天内完成,你认为应选择哪个队?(2)如果时间充裕,为了节省资金,你认为应选择哪个队?分式提高题参考答案与试题解析一.选择题(共6小题)1.若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.2.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或2【解答】解:∵a2﹣ab=0(b≠0),∴a=0或a=b,当a=0时,=0.当a=b时,=,故选C.3.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.4.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.5.若数a使关于x的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,﹣1,0,1,3,∴满足条件的整数a的值之和是1.故选:B.6.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.二.填空题(共3小题)7.已知﹣=3,则=﹣.【解答】解:∵﹣=3,∴3y﹣2x=3xy∴原式===故答案为:﹣8.如果x2+x﹣5=0,那么代数式(1+)÷的值是5.【解答】解:当x2+x=5时,∴原式=×=x2+x=5故答案为:59.已知a+=4,则(a﹣)2=12.【解答】解:∵(a+)2=42,∴a2++2=16∴a2+﹣2=14﹣2,∴(a﹣)2=12,故答案为:12三.解答题(共16小题)10.化简:(﹣)÷.【解答】解:(﹣)÷=====.11.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=312.先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【解答】解:÷(﹣x+1)====,∵﹣<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=﹣2时,原式=﹣.13.化简:(a+1﹣)÷,然后给a从1,2,3中选取一个合适的数代入求值.【解答】解:原式=•=•=2(a+2)=2a+4,当a=3时,原式=6+4=10.14.先化简,再求值:(﹣)÷,其中x=2y(xy≠0).【解答】解:(﹣)÷====,当x=2y时,原式=.15.先化简,再求值:(﹣)(﹣),其中x=4.【解答】解:原式=[+]•[﹣]=•(﹣)=•=x﹣2,当x=4时,原式=4﹣2=2.16.解方程:=1﹣.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.17.解方程:﹣=1.【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣15,检验:x=﹣15代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣15,18.解分式方程:﹣=.【解答】解:去分母得:6x﹣3﹣4x﹣2=x+1,解得:x=6,经检验x=6是分式方程的解.19.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.20.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为x cm/s(用含x的代数式表示).(2)求点P原来的速度.【解答】解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;(2)AC===5,CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),答:点P原来的速度为cm/s.21.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.22.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.23.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.24.已知a、b、c为实数,且.求的值【解答】解:将已知三个分式分别取倒数得:,即,将三式相加得;,通分得:,即=.25.因汛期防洪的需要,黄河河务局计划对某段河堤进行加固.此项工程若由甲、乙两队同时干,需要天完成,共支付费用180 000元;若甲队单独干2天后,再由乙队单独完成还需3天,共支付费用179 500元.但是为了便于管理,决定由一个队完成.(以下均需通过计算加以说明)(1)由于时间紧迫,加固工程必须在5天内完成,你认为应选择哪个队?(2)如果时间充裕,为了节省资金,你认为应选择哪个队?【解答】解:(1)设甲乙两队单独完成任务分别需要x,y天.由题意得:,解得:.经检验:x=4,y=6是原方程组的解.∵4<5,6>5,∴应选择甲队.(2)设给甲乙两队每天需支付的费用分别为m,n元.由题意得:,解得:.∵甲单独完成任务需支付的费用为mx=45500×4=182000.乙单独完成任务需支付的费用为ny=29500×6=177000.显然mx>ny又∵时间充裕,∴应选择乙队.。