15-16-2概率统计A期中试卷(定稿)

合集下载

2022概率统计期中考试卷

2022概率统计期中考试卷

2022概率统计期中考试卷《概率论与数理统计》期中考试试卷一、选择题(每小题4分,共24分)1.P(A)1/4P(B)1/2A.B相互独立,则P(AB)().A)1/2B)1/4C)1/8D)5/8 2D某DY1,E某EY0,2.设随机变量某,Y相互独立,则E某(Y)1()A.3B.2C.1D.63.随机事件A、B互斥,且P(A)0,P(B)0,则()A.P(B/A)0B.P(A/B)P(A)C.P(A/B)0D.P(AB)P(A)P(B)4.设甲、乙进行象棋比赛,考虑事件A{。

甲胜乙负},则A()A.{甲负乙胜}B.{甲乙平局}C.{甲负}D.{甲负或平局}5.设A1,A2,,An相互独立,P(Ak)pkk1,,n,则n个事件都发生的概率为().nnA.piB.pi(1pj)C.1(1pj)D.pii1i1j1j16.设事件A和B满足PBA1,则有().nnA.A是必然事件B.PBA0C.ABD.AB二、填空题(每小题5分,共30分)1.设对于事件A,B,C有PAPBPCPAC1,PABPBC0,41,则A,B,C三事件中至少有1个发生的概率为.82.设D某DY2,某与Y的相关系数1,则3D(某Y)_____________.3.设随机变量某服从二项分布B(n,p),且E某3,D某2.1,则n____,P____.14.设随机变量(某,Y)具有D某9,DY4,某y,则D(某3Y4)____.63A5.设离散型随机变量的分布律为P{某k}k(k1,2,),则A____.26.一批产品共100件,其中95件是合格品,5件是次品,现从中任取3件,则这3件中有次品的概率为___________.三、解答题(第1小题6分,其余每小题10分,共46分)111,P(B),P(AB),求P(AB),P(AB),P(AB).4222.某射击小组共有20名选手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。

概率统计A题库(1)

概率统计A题库(1)

概率统计A 复习题一一、选择题(共8题,每小题3分)1.设A 与B 相互独立, P(A) =0.2,P(B)==0. 4,则P (|)A B =( ) A.0.2 B. 0.4 C. 0.6 D. 0. 82.下列各函数可作为随机变量分布函数的是( )A .F 1(x )=B .F 2(x )=C .F 3(x )=.D .F 4(x )=.3.设随机变量X 的概率密度为 f (x )=则P {-1<X <1}=( ) A .41 B .21 C .43D .1 4.设连续型随机变量X~N (1,4),则21-X ~( ) A .N (3,4) B .N (0,2)C .N (0,1)D .N (1,4)5.设二维随机变量(X ,Y )具有联合密度函数, 0<<1,0<y<1;(,)0, cx x f x y ⎧=⎨⎩其他.则常数C =( ) A .1 B.2C.3D.46.设二维随机变量则P{XY=2}=( )A .15B.310C.12 D.357.设随机变量X 服从参数为2的指数分布,则E (2X -1)=( ) A.0 B.1 C.3D.48.设随机变量X 与Y 不相关,则以下结论中错误..的是( ) A .E(X+Y)=E(X)+E(Y)B.D(X+Y)=D(X)+D(Y)C.E(XY)=E(X)E(Y)D.D(XY)=D(X)D(Y)二、填空题(共8题,每小题3分)9.设随机事件A 与B 相互独立,且()0.5,()0.3P A P AB ==,则()P B =______. 10.设A ,B 为随机事件,()0.5,()0.4,()0.8P A P B P A B ===,则()P B A =______.11、随机变量X 的分布函数为⎩⎨⎧>-=-其他0)1()(2x e A x F x ,常数A= 。

12、设X ~N (3,4),常数c 满足P {X<c }=P {X>c },则常数c= 。

学应用概率统计大学数学2试卷(A卷)附答案

学应用概率统计大学数学2试卷(A卷)附答案

2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===U ,则()P A B =U ______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________.3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). A. 0.05B. 0.06C. 0.07D. 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤D. ()()B A P A P ≥3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).A. 21,0()11,0x F x x x ⎧≤⎪=+⎨⎪>⎩ B. 0,0() 1.1,011,1x F x x x <⎧⎪=≤≤⎨⎪>⎩14. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ). A. (1,41)N B. (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A. 100B. 10C. 5D. 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A. XB. 123X X X +-C. 1230.20.30.5X X X ++D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1) 常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分) 4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)(2){}(,)y xP Y X f x y dxdy <<=⎰⎰330[]xy e dy dx -=⎰⎰ (6分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分)因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异.(8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86yx =-+ (8分)。

应用概率统计大学数学2试卷(A卷)附答案

应用概率统计大学数学2试卷(A卷)附答案

2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===,则()P AB =______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________. 3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). ﻩ A. 0.05ﻩB . 0.06ﻩC. 0.07ﻩﻩD . 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤ D. ()()B A P A P ≥ 3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).1,0x ⎧≤⎪0,0x <⎧⎪C . x x F sin )(= D. 211)(x x F +=4. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ).A. (1,41)N B . (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A . 100 B. 10 C. 5 D . 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A . X B. 123X X X +- C. 1230.20.30.5X X X ++ D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率; (2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1)常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(2xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分)4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分) 因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异. (8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分)。

张广亮概率论与数理统计期中测试试卷答案.doc

张广亮概率论与数理统计期中测试试卷答案.doc

经济与管理学院2012/2013学年(一)学期试卷《概率论与数理统计》期中测试试卷答案专业________ 年级 _____ 班级_姓名_____ 学号题号—二三四五六七八九十总分得分一、填空题(每小题3分,共15分):1、设A、B 为随机事件,P (A)=0.5 , P(B)=0.6, P(B|A)=0.8 .则P(BU/!)= 0. 73 0 < x < 丨2、设随机变量X的密度函数为/(x) = ^X’,设r表示对X的10次独0,具匕立观察中事件<! X S 出现的次数,则= 2) = O.24^C?o(|)2(|y3、设£(;0 =仏£>(;0 = /?,则£(X2) = “2+/?。

4、三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是_ 0.6 __________ 。

5、设随机变量f的密度函数为/?(x) = Ce_2v,x〉0,則常数C的值为 2 。

二、选择题(每小题3分,共15分):1、从一个由五男生和二女生组成的学习小组屮随机地抽出三个人,则“抽出的三人中至少有一个是男学生”的事件为(C)(A)随机事件(B)不可能事件(C)必然事件(D)偶然事件2、设随机变量《服从正态分布的yv(o,i),其密度函数为炉(%),则炉(o)= (A )3、若每次试验的成功率为(0 < /? < 1),则在3次重复试验中至少失败一次的概率为(B )(A)(l —厂)3(B) 1-p3(C) 3(1 —p) (D) (1 —/))3+p(l —/?)2+p2(l —p).4、甲乙进行乒乓球比赛,一局甲的胜率大于二分之一。

对乙而言,下列哪种赛制较有利(A )(A)三局两胜(B)五局三胜(C)七局四胜(D)九局五胜5、设事件A与B互不相容,= = 则尸(25)= (A )(A) 1 —(“ + /?)(B) 2 — 6/ — /? (C) (1 — 6/)(1—b)(I)) 1 —ab三、(8分)已知男人中有5%是色盲,女人中有0.25%是色盲.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:rdA :挑选出的人是男人;B :挑选出的人是色盲. 取{A ,为样本空间的划分. 由w 叶斯公式:馴娜)_ _P(B | A)P(A) + P {B | A)P(A)0.05x0.5_ 0.05x0.5 + 0.0025x0.5四、(8分)某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概 率为0.4,如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多 少?五、(9分)一个机床冇三分之一的时间加工零件A,其余时间加工零件B,加工 零件A 吋,停机的概率吋0.3,加工零件B 时,停机的概率是0.4,求这个机床 停机吋正在生产零件A 的概率.解:设A 表示生产零件A ,B 表示生产零件B ,C 表示机床停机,由题意可得 勝謂= 0.4P(C|A)P(A)P(C\A)P(A)-hP(C\B)P(B) 常数A; (2) PfX<\}; (3) X 的数学期望£(X)和方差解:由密度函数的归一性得1 = f Ar(l - x)dx = A 丄,故 A = 6 Jo6P{ X < 1 / = J f( x )dx = £ 6x( 1 - x )dx = (3%2 - 2x 3) |r=, = 1= 20/21设A 表示“能活20岁以上”的事件,B 表示“能活25岁以上”的事件,则P(B|A) = P(AB)尸⑷因为 p(A) = 0.8,P(B) = 0.4, P(AB) = P(B),所以 P(B|A) =P(A8)_0A_l P(A)0i~2由贝叶斯公式得=0.4 + 04!六、(15分)设随机变量X 的密度函数为/(x) =Ax(l - x),0,0 < x < 1 其它£(X) = £x6x(l-x)t/x = 0.5 D(X) =J>26X (1-^A -0.25 = 0.05七、(20分)一种电子管的使用寿命X (单位:小吋)的概率密度函数为设某种仪器中装有5个这种工作相互独立的电子管,求: (1) 使用最初1500小时没有一个电子管损坏的概率; (2) 这段时间内至少有两个电子管损坏的概率。

高考数学 概率与统计中档题复习 理 学生 试题

高考数学 概率与统计中档题复习 理 学生 试题
甲、乙等五名奥运志愿者被随机(suí jī)地分到 四个不同的岗位效劳,每个岗位至少有一名志愿者.
〔Ⅰ〕求甲、乙两人同时参加 岗位效劳的概率;
〔Ⅱ〕求甲、乙两人不在同一个岗位效劳的概率;
〔Ⅲ〕设随机变量 为这五名志愿者中参加 岗位效劳的人数,求 的分布列.
解:〔Ⅰ〕甲、乙两人同时参加 岗位效劳的概率是 .
概率与统计中档题复习(fùxí)〔理科、学生(xué sheng)版〕
一、统计(tǒngjì):
〔一〕首先比照(bǐzhào)新旧考纲对数学才能的要求
旧考纲强调五种才能:“思维才能〞、“运算才能〞、“空间想象才能〞、“理论才能〞、“创新意识〞;而新考纲强调七种才能:“空间想象才能〞、“抽象概括才能〞、“推理论证才能〞、“运算求解才能〞、“数据处理才能〞、“应用意识〞、“创新意识〞。解读:原来的“思维才能〞拆成了“抽象概括才能〞和“推理论证才能〞;明确提出“数据处理才能〞和“应用意识〞。统计正好是培养学生“数据处理才能〞的很好载体。新课标要求:理解统计过程、注重统计思想;会用样本的频率分布估计总体分布,用样本的根本数字特征估计总体的根本数字特征。会求线性回归方程。关于HY性检验,虽然选修教材有要求,外考试虽有出现,但卷考试说明没要求。单独考统计大题是不可能的,可能和概率综合起来考察。
某商场为吸引顾客消费推出一项优惠活动.活动规那么如下:消费额每满100元可转动如下图的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.假设指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
〔Ⅰ〕假设(jiǎshè)某位顾客消费128元,求返券金额不低于30元的概率;
〔Ⅱ〕甲、乙两人不在同一岗位效劳的概率是 .

16-17-02概率统计A期末试卷(1)

16-17-02概率统计A期末试卷(1)
(3)求 。
六(12分)设总体 的概率密度函数为
是来自该总体 的样本,其观测值为 ,分别用矩估计法和极
大似然估计法求 的估计量。
附: ; ; ;
, ;
, , ;
, , ,
第4页共4页
10.医生测得9例慢性病患者的脉搏平均值 (单位:次/分钟),方差 ,设患者的脉搏 ,要检验患者的脉搏均值与正常人的脉搏均值72(次/分钟)是否有显著差异,即 ,可用检验法,选用的检验统计量为,在显著性水平 下,经检验,应(此空格填拒绝或者接受)原假设。
三(14分)设二维随机变量 的联合概率分布律为
Y
0
1
0
0.2
b
1
a
0.5
且 .
(1)求a和b;
(2)求 和
(3)判断 与 是否相关?说明理由。
第3页共4页
四(12分)设随机变量X的概率密度为
对X独立观测3次,求至少有2次观测的结果大于1的概率.
五(12分).已知二维随机变量 的联合概率密度为
(1)求常数 ;
(2)求 与 的边缘概率密度,并判断 与 是否相互独立;
4 3 2 1
9.在假设检验中, 下列说法错误的是()。
为真时拒绝 ,称为犯第一类错误
为假时接受 ,称为犯第二类错误
当样本容量一定时,若减少犯第一类错误的概率,则犯第二类错误的概率增大。
若减少犯第一类错误的概率,则犯第二类错误的概率增大。
10.若 且 与 相互独立,令 ,则以下正确的是( )
二.填空题(本大题共_15_空格,每空格2分,共__30__分)
服从的分布为.
7.设离散型随机变量 的概率分布律:
0
1
0.5
0.5

新版概率论期中试卷-高中课件精选

新版概率论期中试卷-高中课件精选

努力必有回报班 级(学生填写): 姓名: 学号: 命题: 审题: 审批: ------------------------------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 -----------------------------------------------------------(答题不能超出密封装订线)2010 ~2011 学年第 一 学期 概率统计期中 试卷使用班级(教师填写):一、单项选择题(分) (1) 在某学校学生中任选一名学生,设事件A =“选出的学生是男生”;B =“选出的学生是三年级学生”;C =“选出的学生是篮球运动员”.则ABC 的含义是( B )(A ) 选出的学生是三年级男生 (B ) 选出的学生是三年级男子篮球运动员 (C ) 选出的学生是男子篮球运动员 (D ) 选出的学生是三年级篮球运动员 (2) 掷一颗 的试验,观察其出现的点数,记A =“掷出偶数点”;B =“掷出奇数点”;C =“掷出的点数小于5”;D =“掷出1点”.则下述关系错误的是( C )(A ) B A = (B ) A 与D 互不相容 (C ) C D = (D ) A B Ω=+(3) 某事件的概率为0.2,如果试验5次,则该事件 ( D )(A ) 一定会出现1次 (B ) 一定会出现5次(C ) 至少会出现1次 (D ) 出现的次数不确定(4) 对一个有限总体进行有放回抽样时,各次抽样的结果是 ( A )(A ) 相互独立 (B ) 相容的 (C ) 互为逆事件 (D ) 不相容但非逆事件(5) 某人花钱买了,,A B C 三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为()p A =0.03, ()0.01p B =,()0.02p C =,如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率是 ( B )(A ) 0.05 (B ) 0.06 (C ) 0.07 (D ) 0.08 (6) 三人抽签决定谁可以得到唯一的一张足球票.现制作两张假票与真足球票混在一起,三人依次抽取,则( C )(A ) 第一人获得足球票的机会最大 (B ) 第三人获得足球票的机会最大(C ) 三人获得足球票的机会相同 (D ) 第三人获得足球票的机会最小 (7) 随机变量的取值总是 ( D )(A ) 正的数 (B ) 整数 (C ) 有限个数 (D ) 实数 (8)下面哪一个符合概率分布的要求第 2 页 (共8 页) 2 ( A )(A ) }{(1,2,3)6xp X x x === (B ) }{(1,2,3)4xp X x x === (C ) }{(1,1,3)3x p X x x ===- (D ) }{2(1,1,3)8x p X x x ===-(9) 两人独立破译密码,他们能单独译出的概率分别为11,54则此密码被译出的概率为( C )11()54A + (B )1154⨯ 1111()5454c +-⨯ (10) 设连续型随机变量X 的分布函数是()F x ,密度函数是()f x ,则}{p X x == ( C )(A )()F x (B )()f x (C ) 0 (D ) 以上都不对(11)设 E(X)=μ,Var(X)=2s ,则对任意常数 C , 必有( D )222222222(1) [()]()(2) [()][()](3) [()][()](4) [()][()]μμμ-=--=--<--≥-E X C E X C E X C E X E X C E X E X C E X二 填空题(每小题3分,共18分)1、设 随 机 变 量X 的 分 布 函 数 为()00sin 0212x F x A xx x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩则 A = 1 。

南京信息工程大学概率统计期中考试试卷

南京信息工程大学概率统计期中考试试卷

南京信息工程大学试卷- 学年 第 1 学期 概率统计课程期中试卷答案本试卷共 2 页;考试时间 120 分钟; 出卷时间 年 月学院 专业 年级 班 学号 姓名 得分一、填空题 (每空 3 分,共 15 分) 1、设31)(,21)|()|(===A P A B P B A P ,则=⋃)(B A P . 2、从数4,3,2,1中任取一个数,记为X ,再从X ,,2,1 中任取一个数,记为Y ,则)2(=Y P = .3、设随机变量1X 和2X 均服从正态分布)0(),,0(2>σσN ,且41)2,2(21=-≤≤X X P ,则)2,2(21->>X X P = .4、若)0(),,(~2>σσμN K ,则方程042=++K x x 无实根的概率是21,则μ= .5、设随机变量X 服从泊松分布)(λP ,则,,1,0,!)( ===-k k e k X P k λλ其中λ不是整数。

则当k = 时,能够使得)(k X P =最大。

二、选择题 (每空 3 分,共 15 分)1、设A 和B 互为对立事件,则下列结论中不正确的是( ) (A ) 0)|(=A B P (B ) A 与B 独立 (C ) 1)|(=B A P (D ) 1)(=+B A P2、设随机变量X 的分布函数为)(x F ,则13+=X Y 的分布函数)(y G 为( ) (A ))3131(-y F (B ))13(+y F (C )1)(3+y F (D )31)(31-y F 3、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p(C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p4、设离散型随机变量X 的分布律为:()(1,2),kP X k b k λ===且0b >,则λ为( )。

概率统计中期考试试题及答案

概率统计中期考试试题及答案

概率统计中期考试试题及答案 一选择题1 设A ,B ,C 为三个独立事件,则下列等式中不成立的是( ) (A ) )()()(B P A P B A P = (B ) )()()(B P A P B A P = (C ) )()()(C P A P AC P = (B ) )()()()(C P B P A P ABC P =解 A ,B ,C 为三个独立事件 ,则A 与B 相互独立 )()()(B P A P B A P = 所以 (B )不成立2 如果事件A 与B 相互对立,则下面结论错误的是( ) (A ) A+B 是必然事件 (B )B A +是必然事件 (C ) B A 是不可能事件 (D )A 与B 一定不互斥解 如图 :事件A 与B 相互对立,则 A B ==,Φ=B A所以(D )是错误的 3 给出下列命:(1) 互斥事件一定对立 (2) 对立事件一定互斥 (3) 互斥事件不一定对立(4) 事件A 与B 的和事件的概率一定大于事件A 的概率 (5) 事件A 与B 互斥,则P(A)=1-P(B) 其中命题正确的个数为( )(A) 0 (B) 1 (C) 2 (D) 3 解 (1) 错误 (2) 正确 (3) 正确(4) 如果 A B ⊆,则 )()(A P B A P =+ 所以错误(5) 事件A 与B 互斥,则)()()(B P A P B A P +=+ 但)(B A P +不一定等于1 所以错误4 一个员工一周需要值班二天,其中恰有一天是星期六的概率为( ) ( A) 1/7 (B) 2/7 (C) 1/49 (D) 2/49 解 A={ 恰有一天是星期六} 726)(27==C A P 5 有三个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有二人在车厢内相遇的概率( )(A) 29/200 (B) 7/25 (C) 29/144 (D) 7/18 解 A={至少有二人在车厢内相遇} 则2571089101)(1)(3=⨯⨯-=-=A P A P二 填空题1 袋中3红球,2白球,每次取1个,取后放回,再放入相同颜色的球1个,则连续三次取得红球的概率 解 i A 第i 次取红球(i=1,2,3)则 )|()|()()(213121321A A A P A A P A P A A A P =756453⨯⨯=72= 2 有两箱同类的零件,第一箱有50只,其中有10件一等品,第二箱有30只,其中有18件一等品,今从两箱中任取一箱,然后从该箱中取零件两次,每次取一只,不放回,则第一次取到一等品的概率是解 A------取到第一只箱子 B------第一次取到红球)|()()|()()(A B P A P A B P A P B P +=4.0301821501021=⨯+⨯=3某射手命中率为0.9,他射击10次恰好中9次的概率为 解 X------10次射击命中的次数,则 )9.0,10(~B X1.09.0}9{9910C X P ===0.387424设8支枪中已有5支经试射校正,有3支未校正,一射手用校正过的枪命中率为0.8,用未校正过的枪命中率为0.3,今从8支枪中选一支进行射击,结果中靶,则所用枪是校正过的概率为解 A------取到校正过的枪 B-----射击命中目标 )|()()|()()(A B P A P A B P A P B P += 3.0838.085⨯+⨯=)()|()()()()|(B P A B P A P B P AB P B A P ==3.0838.0858.085⨯+⨯⨯==0.8163275 设随机变量X 的分布律为 kb k X P )32(}{== (k=1,2,3,…) 则常数b=解 132132)32(1=-=∑∞=b b k k5.0=⇒b6 事件A ,B ,C 三事件相互独立,A 发生的概率为1/2,A ,B ,C 同时发生的概率为1/24,A ,B ,C 都不发生的概率为1/4,则A ,B ,C 只有一个发生的概率为 解 事件A ,B ,C 三事件相互独立21)(=A P 241)()()()(==C P B P A P ABC P 41))(1))((1))((1()()()()(=---==C P B P A P C P B P A P C B A P 则 31)(=B P 41)(=C P )()()()(P P P P ++=++)()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=413221433121433221⨯⨯+⨯⨯+⨯⨯=2411=7设某项实验成功率是失败率的2倍,用X 表示一次实验成功的次数,则P{X=0}= 解 A={成功} 则 32)(=A P 31)0(==X P 8 已知a A P =)( b B P =)( c B A P =+)( 则 =)(B A P 解 )()()])[()(B P B A P B B A P B A P -+=-+==c-b9 从1到100共100个整数中任取一个数,在已知这个数是3的倍数的条件下,这个数能被5整除的概率为解 A={这个数是3的倍数} B={这个数能被5整除}则 112100331006)()()|(===A P AB P A B P三 设连续型随机变量的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Axx x F 求(1)A=? (2)P{0.3<X<0.7} (3) X 的概率密度解 (1)因为为F(x)连续函数,特别地,在X=1处连续, 有A=1(2) 4.03.07.0)3.0()7.0(}7.03.0{22=-=-=<<F F X P(3) ⎪⎩⎪⎨⎧≥<≤<='=1010200)()(x x x x x F x f四 测量到某目标的距离时发生的随机误差X 具有概率密度3200)20(22401)(--=x ex f π求在一次测量中误差的绝对值不超过30米的概率 解 224020213200)20(24012401)(⎪⎭⎫ ⎝⎛----==x x eex f ππ)40,20(~2N X)25.1()25.0()402030()402030(}3030{}30|{|-Φ-Φ=--Φ--Φ=≤≤-=≤X P X P 4931.018944.05981.0)]25.1(1[)25.0(=-+=Φ--Φ=五 设随机变量X 服从均匀分布U (0,1),试求Xe Y = 概率密度函数与分布函数解 )1,0(~U X ⎪⎩⎪⎨⎧≥<≤<=1010100)(x x x x f Xx e y =单调上升,其反函数为: y x ln = 导数为: yx y 1='(1) Xe Y = 概率密度函数为:|)(|))(()(y h y h f y f X Y '∙=⎪⎪⎩⎪⎪⎨⎧≥<≤<=1ln 01ln 010ln 0y y y y ⎪⎪⎩⎪⎪⎨⎧≥<≤<=e y e y y y 0111(2) 分布函数为 dy y f y F Y Y ⎰=)()(⎪⎩⎪⎨⎧≥<≤+<=e y c e y c y y c 3211ln 1根据)(y F Y 的连续性,及,0)(=-∞Y F 1)(=+∞Y F 有 1,0,0321===c c c所以 =)(y F Y ⎪⎩⎪⎨⎧≥<≤<=e y e y y y 11ln 10。

安徽大学《概率论与数理统计A》2021-2022学年第一学期期中考试试卷

安徽大学《概率论与数理统计A》2021-2022学年第一学期期中考试试卷

安徽大学20 21—20 22学年第 1 学期《概率论与数理统计A 》期中考试试卷(闭卷 时间120分钟)考场登记表序号一、选择题(每小题3分,共15分)1. 设随机事件A B 、互斥,且()()0,0,P A P B >>则下列式子中一定成立的是( ).A. ()0P A B >B. ()()P A B P A =C. ()()()P AB P A P B =D. ()0P A B =2. 设A B C 、、三个随机事件两两独立,则A B C 、、相互独立的充要条件是( ). A . A 与BC 独立 B. AB 与A C 独立 C. AB 与AC 独立 D. A B 与A C 独立3. 三人独立地破译一个密码,他们能破译的概率分别为111,,543,则三人合作能将此密码破译出的概率为( ).A. 0.6B. 0.4C. 0.24D. 0.564. 设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为使12()()()F x aF x bF x =- 必是某一变量的分布函数,在下列给定的各组数值中应取( ).A. 22,33a b ==B. 32,55a b ==-C. 31,22a b ==-D. 31,22a b ==5. 设随机变量X 的分布函数0,0,1(),01,21,1.xx F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩则(1)P X == ( ).A. 0B.12 C. 112e -- D. 11e -- 二、填空题(每小题3分,共15分)6. 设随机事件A B 、满足()0.4,()0.5,()()P A P B P A B P A B ===,则()P AB = .7. 设袋中装有40个白球,20个黑球,从中不放回地抽取两次,每次取一个,则第二次取到黑球的概率为 . 8. 设随机变量X 服从参数为λ(0λ>为常数)的 Poisson 分布,满足(2)2(1)P X P X ===,则(0)P X == .9. 设某电子元件使用寿命X 服从参数为1的指数分布,则(12)P X <<= . 10. 一实习生用同一台机器独立地制造了3个同种零件,已知第i 个零件不合格的概率为院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------1,(1,2,3)1i p i i==+,以X 表示3个零件中合格品的个数,则(2)P X == . 三、分析计算题(每题10分,合计40分)11. 将3个球随机地投入4个盒子中,求下列事件的概率: (1)任意3个盒子中各有1个球; (2)任意1个盒子中有3个球.12. 设随机变量X 的分布列为1(),0,1,2,32kP X k c k ⎛⎫==⋅= ⎪⎝⎭,求:(1)c 的值;(2)关于t 的一元二次方程2+30t t X +=有实根的概率. 13. 设连续型随机变量X 的密度函数为cos ,,()20.A x x f x π⎧≤⎪=⎨⎪⎩,其他求:(1)A 的值;(2)X 落在区间0,4π⎛⎫⎪⎝⎭的概率.14. 设某连续型随机变量(3,4)X N ,(1)求概率(24)P X ≤≤,(已知(0.25)0.5987Φ=,(0.5)0.6915Φ=); (2)试确定常数c 使得()()P X c P X c ≥=<. 四、实际应用题(每题10分,合计30分)15. 设电灯泡使用时数在1000小时以上的概率为0.2,假设现有3只灯泡在独立地使用,求:(1)3只灯泡在使用了1000小时后全都坏了的概率;(2)3只灯泡在使用了1000小时后最多只有一只坏了的概率.16. 某发报台分别以0.7和0.3的概率发出信号0和1,(例如:分别用低电频和高电频表示). 由于受随机干扰的影响,当发出信号0时,接收台不一定收到0,而是以概率0.8和0.2收到信号0和1. 同样地,当发报台发出信号1时,接收台以0.9和0.1的概率收到信号1和0. 试求:(1)接收台收到信号0的概率;(2)当接收台收到信号0时,发报台确实是发出信号0的概率.17. 设某种圆盘的直径服从区间(0,1)上的均匀分布,试求此种圆盘面积S 的概率密度.。

江苏省大丰市新丰中学2015-2016学年高二数学下学期期中试题 理

江苏省大丰市新丰中学2015-2016学年高二数学下学期期中试题 理

(第3题)2400 2700 3000 3300 3600 3900 体重0 001频率/组距2015-2016学年大丰区新丰中学第二学期期中考试高二数学(理)试题参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.一.填空题(本大题共14小题;每小题5分,共70分.不需写出解答过程,请将答案直接写在答题卷上)1.命题“x ∃∈R ,02>x”的否定是________________2.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个为0015,则抽取的第40个为. 3.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000]的频率为__________4.右图中程序执行后输出的结果是___________.I ←1F or n from 1 to 11 step 2 I ←2I+1 I f I >20 Then I ←I -20 E nd if E nd for Print I (第4题)5.设1i i1ia b+=+-(i为虚数单位,a,b∈R),则ab的值为________________6.已知实数,x y满足40yx yx y⎧⎪-⎨⎪+-⎩≥≥≤,则23x y--的最大值是________________7.如图,为了估计阴影部分的面积,向边长为6的正方形内随机投掷800个点,恰有200个点落在阴影部分内,据此,可估计阴影部分的面积为_______(第7题)8.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为42a.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为____________9.7名同学排成一排,其中甲、乙两人必须排在一起的不同排法有_____种.10. 函数xxxf ln21)(2-=的单调递减区间为________.11.已知44:<-<-axp,0)3)(2(:>--xxq,若⌝p是⌝q的充分条件,则实数a的取值X围是________________.12.某医院有内科医生5名,外科医生6名,现要派4名医生参加赈灾医疗队,如果要求内科医生和外科医生中都有人参加,则有_______种选法(用数字作答).第8题13. 函数45)(22++=x x x f 的最小值为________14.如图,已知椭圆C 的方程为:22221(0)x y a b a b+=>>,B 是它的下顶点,F 是其右焦点,BF 的延长线与椭圆交及其右准线分别交于P 、Q 两点,若点P 恰好是线段BQ 的中点,此椭圆的离心率是______________二.解答题(本大题共6小题,满分90分.解答须写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知函数()2(),f x x ax b a a b R =++-∈. (1) 若关于x 的不等式()0f x >的解集为(,1)(3,)-∞-+∞,某某数,a b 的值;(2) 设2a =,若不等式2()3f x b b >-对任意实数x 都成立,某某数b 的取值X 围; 16.(本小题满分14分)在数列{}n a 中,11=a ,11+=+n nn a a a (n =1,2,3,…). (1)求2a ,3a , 4a(2)猜想数列{}n a 的通项公式,并用数学归纳法证明你的结论.17.(本小题满分14分)某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据, 制成如图所示的茎叶图.(1)根据样本数据,计算甲、乙两个车间产品重量的甲 乙2 12 4 43 1 1 11 0 2 57 10 8 9 第17题图均值与方差,并说明哪个车间的产品的重量相对稳定;(2)若从乙车间6件样品中随机抽取两件,求所抽取两件样品重量之差不超过2克的概率.18.(本小题满分16分)如图,在直三棱柱111ABC A B C -中,已知90BAC ∠=o ,1AB AC ==,13AA =,点E ,F 分别在棱1BB ,1CC 上,且1113C F C C =,1BE BB λ=,01λ<<.(1)当13λ=时,求异面直线AE 与1A F 所成角的大小;(2)当直线1AA 与平面AEF 所成角的正弦值为229时,求λ的值.19.(本小题满分16分)已知函数32(1)()ln (1)x x bx c x f x a xx ⎧-+++<=⎨≥⎩的图象过点(1,2)-,且在点(1,(1))f --处的切线与直线510x y -+=垂直. (1) 某某数,b c 的值;FEB 11A CBA1C (第18题图)(2) 求()f x 在[1,]e - (e 为自然对数的底数)上的最大值;20.(本小题满分16分)已知椭圆E :22221(0)x y a b a b+=>>上任意一点到两焦点距离之和为23,离心率为33,左、右焦点分别为12,F F ,点P 是右准线上任意一点,过2F 作直线2PF 的垂线2F Q 交椭圆于Q 点.(1)求椭圆E 的标准方程;(2)证明:直线PQ 与直线OQ 的斜率之积是定值; (3)证明:直线PQ 与椭圆E 只有一个公共点.第20题图yxOF 1F 2· ·2015-2016学年大丰区新丰中学第二学期期中考试数学(理)试题答题卷一、填空题(本大题共14小题;每小题5分,共70分.不需写出解答过 题 1. 2. 3. 4. 6. 7. 8. 9. 10. 11. 12. 13. 14.二.解答题(本大题共6小题,满分90分.解答须写出文字说明、证明过 明15.(本题满分14分)_ 学……16.(本题满分14分)—————————————————————————————————17.(本题满分14分)18.(本题满分16分)FEB 11A CB A1C (第18题图)—————————————————————————————————19.(本题满分16分)20.(本题满分16分)2015-2016学年大丰区新丰中学第二学期期中考试数学(理)试题答案一.填空题1.x ∀∈R ,20x ≤2. 0795 . 3.0.34.___7___________.5.06.57.9 8.83a9. 1 440 10. (0,1] 11. -1≤a ≤6 12. 310 13. 52 143二.解答题15.(本小题满分14分)解:(1)因为不等式2()0f x x ax b a =++->的解集为(,1)(3,)-∞-+∞,所以由题意得1,3-为函数20x ax b a ++-=的两个根,所以()()22110330a b a a b a ⎧-+-+-=⎪⎨++-=⎪⎩,解得2,5a b =-=-.……………………………………7分(2)当2a =时,22223x x b b b ++->-恒成立,即22224x x b b +->-恒成立. 因为()2222133x x x +-=+--≥ ,所以243b b -<-, ………………………………10分解之得13b <<,所以实数b 的取值X 围为13b <<.……………………………………14分16.(本小题满分14分)17.(本小题满分14分)解:(1)设甲、乙两个车间产品重量的均值分别为X 甲X 乙,方差分别为2s 甲、2s 乙,则1221141131111111071136X +++++==甲,……………………………1分1241101121151081091136X +++++==乙,………………………………2分()()()222211221131141131131136s ⎡=-+-+-⎣甲()()()222111113111113107113⎤+-+-+-⎦21=, ………………………4分()()()222211241131101131121136s ⎡=-+-+-⎣乙()()()222115113108113109113⎤+-+-+-⎦29.33=, …………………6分由于22s s <甲乙,所以甲车间的产品的重量相对稳定;………………………………7分(2)从乙车间6件样品中随机抽取两件,结果共有15个:()()()()()124,110,124,112,124,115,124,108,124,109,()()()()()110,112,110,115,110,108,110,109,112,115,()()()()()112,108,112,109,115,108,115,109,108,109.…………………………9分设所抽取两件样品重量之差不超过2克的事件为A ,则事件A 共有4个结果:()()()()110,112,110,108,110,109,108,109.………………………………………11分所以抽取两件样品重量之差不超过2克的概率为()415P A =.………………………14分 18.(本小题满分16分)解:建立如图所示的空间直角坐标系A xyz -.(1)因为AB =AC =1,1AA =3,13λ=, 所以各点的坐标为(0,0,0)A ,(1,0,1)E ,1(0,0,3)A ,(0,1,2)F .(1,0,1)AE =,1(0,1,1)A F =-. …………4分因为12AE A F ==,11AE A F ⋅=-, 所以111,1cos 222AE A F AE A F AE A F⋅===-⨯.所以向量AE 和1A F 所成的角为120o ,所以异面直线AE 与1A F 所成角为60. ……………8分 (2)因为(1,0,3)E λ,(0,1,2)F ,所以(1,0,3),(0,1,2)AE AF λ==.设平面AEF 的法向量为(,,)x y z =n ,则0AE ⋅=n ,且0AF ⋅=n .即30x z λ+=,且20y z +=.令1z =,则3,2x y λ=--. 所以(3,2,1)λ=--n 是平面AEF 的一个法向量. 12分 又1(0,0,3)AA =,则11221,1cos 39595AA AA AA λλ===++n n n ,又因为直线1AA 与平面AEF 229,222995λ=+12λ=. ………………16分 zy xFEB 11A CB A1C解.(1)当1x <时,2'()32f x x x b =-++,由题意得:(1)2'(1)5f f -=⎧⎨-=-⎩,22325b c b -+=⎧⎨--+=-⎩, 解得:0b c ==。

概率统计试题及答案

概率统计试题及答案

<概率论〉试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件,,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。

5,现已知目标被命中,则它是甲射中的概率为6。

设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则 _________9。

一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10。

若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。

用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15。

已知,则=16。

设,且与相互独立,则17。

设的概率密度为,则=18。

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~ 。

特别是,当同为正态分布时,对于任意的,都精确有~或~ .21。

设是独立同分布的随机变量序列,且,那么依概率收敛于 .22.设是来自正态总体的样本,令则当时~。

23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。

专题2 A卷15题【统计与概率】专题练习(原卷版)

专题2 A卷15题【统计与概率】专题练习(原卷版)

A卷15题:【统计与概率】专题练习1.(2022·成都中考)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长:(单位:分钟)人数所占百分比t£<4xA02t£<20B24C46t£<36%D6t³16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x的值为_________;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.2.(2021·成都中考)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021-025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成如下不完整的统计图表.课程人数篮球m足球21排球30乒乓球n根据图表信息,解答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.3.(2020·成都中考)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有_________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为_________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.4.(2019·成都中考)随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.5.(2022·成都新都区·九年级期末)第24界冬奥会将于2022年2月在北京举行,为推广冰雪运动,发挥冰雪项目的育人功能,教育部近年启动了全国冰雪运动特色学校的遴选工作.某中学通过将冰雪运动“旱地化”的方式积极开展了基础滑冰、旱地滑雪、旱地冰球、旱地冰壶等运动项目,现就“学生冰雪活动兴趣爱好”问题,随机调查了该校三年级2班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图.(1)这次统计共抽查了______名学生,请将条形统计图补充完整;(2)如果该校初三年级共有480名学生,估计全校初三年级学生中喜欢基础滑冰项目有多少人?(3)在被调查的学生中,喜欢旱地滑雪的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校旱地滑雪队,请用列表或画树状图的方法求出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.(2022·四川成都·模拟预测)为了了解同学们寒假期间每天健身的时间t(分),校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表,已知C组所在扇形的圆心角为108°.频数统组别计t<)8A(20t£<)12B(2040t£<)aC(4060t£<)15D(6080E(80t£)b请根据如图图表,解答下列问题:(1)填空:这次被调查的同学共有______人,a=______,b=______,m=______;(2)求扇形统计图中扇形E的圆心角度数;(3)该校共有学生1200人,请估计每天健身时间不少于1小时的人数7.(2022·四川成都·二模)睡眠是人的机体复原整合和巩固记忆的重要环节,对促进中小学生大脑发育、骨骼生长、视力保护、身心健康和提高学习能力与效率至关重要.某校为了解本校学生的睡眠情况,随机调查了40名学生一周(7天)平购每天的睡眠时间x(单位:小时),并根据调查结果绘制成不完整的频数分布表和扇形统计图.组别A组B组C组D组平均每天睡眠时间x<88≤x<99≤x<10x≥10平均每天睡眠情况频数分布表组别频数A组4B组mC组20D组n(1)分别求出表中m,n的值;(2)抽取的40名学生睡眠时间的中位数落在的组别是 组;(3)若该校共有1200名学生,请估计该校学生睡眠时间达到9小时的学生人数.8.(2022·成都九年级阶段练习)某学校课后服务,为学生们提供了手工烹饪,文学赏析,体育锻炼,编导表演四种课程(依次用A,B,C,D表示),为了解学生对这四种课程的喜好情况,校学生会随机抽取部分学生进行了“你最喜欢哪一种课外活动(必选且只选一种)”的问卷调查.根据调查结果,小明同学绘制了如图所示的不完整的两个统计图.(1)请根据统计图将下面的信息补充完整:①参加问卷调查的学生共有________人;②扇形统计图中“D”对应扇形的圆心角的度数为________;(2)若该校共有学生1500名,请你估计该校全体学生中最喜欢C课程的学生有多少人?(3)现从喜欢编导表演课程的甲、乙、丙、丁四名学生中任选两人搭档表演双人相声,请用树状图或列表法求“恰好甲和丁同学被选到”的概率.9.(2022·四川成都·二模)2022年是中国共青团建团100周年,某学校组织学生开展庆祝建团100年的文艺作品征集活动,作品形式有A :绘画:B :书法:C :征文这三种类型,每个学生选择一种作品类型完成,根据某班学生完成作品的类型和数据,绘制成如图所示的条形统计图和扇形统计图.(1)根据图中信息,回答下列问题:①=a _______,n =________;②补全条形统计图;(2)如果小红和小明每人随机选择一种作品类型来完成,请用画树状图或列表的方法,计算他们恰好选择完成同一种作品类型的概率是多少.10.(2022·四川成都·二模)龙泉驿区于4月顺利完成了中招体考.某校为了了解体考测试成绩,从初三学生中随机调查了若干名学生,调查结果分以下四种:“4650-”,“4145-”,“3640-”,“35及以下”,分别记为“A ”,“B ”,“C ”,“D ”.其中得分为“B ”的有5人,得分为“C ”的有2人,根据调查结果绘制了如下不完整的扇形统计图,请你根据统计图提供的信息解答以下问题;(1)本次调查人数为_______人,并把扇形统计图补充完整;(2)体育组调出了这些学生的九年级开学测试成绩,按照成绩上升幅度排序后﹐前五名为3男2女,现在要从他们5人中选2人在升旗仪式时给全校经验交流,请用画树状图或列表法求选中的两人恰好为一男一女的概率.11.(2022·四川成都·二模)为庆祝中国共产主义青年团成立100周年,某校举行共青团团史知识竞赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A、B、C、D四个等级,并绘制了如下不完整的统计表和统计图.等级成绩(x)人数A80≤x≤100mB70≤x<8015C60≤x<70nD X<604根据图表信息,回答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中,D等级对应的扇形圆心角度数;若全校共有1800名学生参加了此次知识竞赛活动,请估计该校成绩为A等级的学生人数.(3)学校拟在成绩为100分的甲、乙、丙、丁四名学生中,随机抽取两名学生参加市级比赛,请用树状图或列表法表示所有可能的结果,并求甲、乙两名学生中恰好只有1人被选中的概率.12.(2022·四川成都·二模)为了落实教育部“双减”工作要求,促进学生全面发展,丰富学生的课外生活,挖掘学生的兴趣、特长,某中学面向校内全体学生开设课后延时服务,延时课内容包括:A舞蹈、B 篮球、C美术、D腰鼓、E合唱、F排球共六个兴趣组,每个学生只能选择其中一项参加.现随机调查了部分学生参加兴趣组的情况,将调查结果绘制成如下不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次调查的学生有__________人,补全条形统计图;(2)在扇形统计图中,C美术兴趣组所在扇形的圆心角为__________°;(3)八(二)班有3名男同学和2名女同学参加了学校的腰鼓兴趣小组,现需选派其中的2名同学外出参加表演,用树状图或列表法求恰好抽到一男一女的概率.13.(2022·四川成都·模拟预测)2021年7月24日,中共中央办公厅,国务院办公厅发布《关于进一步减轻义务教育阶段学生作业负担和课外培训负担的意见》,该意见要求初中书面作业平均完成时间不超过90分钟.为了解实施情况,天府新区某调查组随机调查了某初中学校部分同学最近一周完成家庭作业的时间,得到他们平均每天完成家庭作业时长x (单位:分)的一组数据,将所得数据分为四组(A :60x <,B :6090x £<,C :90120x £<,D :120x ³),并绘制成如图所示两幅不完整的统计图.根据如图所示信息,解答下列问题:(1)调查组一共抽样调查了____________名同学;在扇形统计图中,表示A 组的扇形圆心角的度数为____________;(2)将条形统计图补充完整;(3)D 组的4名学生是3名男生.和1名女生,若从他们中任选2人了解最近一周平均每天完成家庭作业时间较长的原因,试求恰好选中1名男生和1名女生的概率.14.(2022·四川成都·模拟预测)“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.我市某小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗;B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种.图1与图2是根据此次调查得到的统计图(不完整).请根据统计图回答下列问题(1)此次抽样调查的人数是 人.(2)接种B类疫苗的人数在扇形统计图中所占圆心角 ;接种C类疫苗的人数是 人.(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.15.(2022·四川成都·二模)为庆祝“五一国际劳动节”,激发学生热爱劳动的兴趣,提高学生尊重劳动成果的意识,某校计划利用课后服务时间以“我劳动•我快乐”为主题开展系列劳动教育活动,为学生提供“组装维修”“手工烹饪”“整理收纳”和“陶艺制作”四种课程(依次用A,B,C,D表示)为了解学生对这四种课程的喜好情况,学校随机抽取部分学生进行了“你最喜欢哪一种课外活动(必选且只选一种)”的问卷调查,并根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)参加问卷调查的学生人数是 人,扇形统计图中“D”对应扇形的圆心角的大小为 °,估计全校2100名学生中最喜欢C活动的人数约为 人;(2)现从喜欢“整理收纳”的甲、乙、丙、丁四名学生中任选两人,合作展示收纳整理小技巧,请用画树状图或列表法求恰好选到甲和丙两位同学的概率.16.(2022·四川成都·九年级期末)某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100,并绘制出如图不完整的统计图.解答下列问题:(1)本次调查的学生共有 人.(2)求被抽取的学生成绩在C:80≤x<90组的有多少人?并补齐条形统计图.(3)学校要将D组最优秀的4名学生分成两组,每组2人到不同的社区进行“交通法规”知识演讲.已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求九年级的2名学生恰好分在同一个组的概率.17.(2022·四川成都·二模)“五四”青年节来临之际,某校团委组织新团员开展了主题为“青年大学习,青春勇担当”的知识竞赛活动,将成绩分成A,B,C三个等级,并绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加本次知识竞赛活动的新团员共有______人;(2)扇形统计图中“A”所对应的扇形圆心角的度数为______;(3)将本次知识竞赛成绩获得A等级的新团员依次用1A,2A,3A……表示,该校团委决定从这些A等级的新团员中,随机选取两名新团员在校团课中进行“勇担使命,争做有为青年”的发言,请用树状图或列表的方法求恰好抽到新团员1A,3A的概率.。

(整理版)市十五中高二期中考试(理科)数学试题

(整理版)市十五中高二期中考试(理科)数学试题

市十五中高二期中考试〔理科〕数学试题本试题卷包括选择题、填空题和解答题三局部,共4页。

时量120分钟。

总分值150分。

〔温馨提示:请将所有答案填写在答卷上〕一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中, 只有一项为哪项符合题目要求的.1.椭圆2211625x y +=的焦点坐标为 〔A 〕(0, ±3) 〔B 〕(±3, 0) 〔C 〕(0, ±5) 〔D 〕(±4, 0)2.曲线221259x y +=与221259x y k k+=-- (k <9)有相同的 〔A 〕短轴长 〔B 〕焦点 〔C 〕长轴长 〔D 〕离心率3.用二分法求方程022=-x 的近似根的算法中,要用到的算法结构为A 顺序结构B 条件结构C 循环结构D 以上都用4、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设11A B a =, b D A =11,c A A =1,那么以下向量中与M B 1相等的向量是 A 、c b a ++-2121 B 、 c b a ++2121 C 、 c b a +-2121 D 、 c b a +--2121 “假设x+y=0,那么x ,y 互为相反数〞6.如果执行右面的框图,输入N=5,那么输出的数等于〔A 〕54〔B 〕45〔C 〕65〔D 〕56 7.设[]0,απ∈,那么方程22sin cos 1x y αα+=不能表示的曲线为 A 、椭圆 B 、双曲线 C 、抛物线 D 、圆8.设椭圆12622=+y x 和双曲线1322=-y x 的公共焦点为21,F F ,P 是两曲线的一个公共点,那么21cos PF F ∠的值等于A 、17B 、15C 、0D 、31二、填空题 :本大题共7小题,每题5分,共35分.将最简答案填在答题卷规定位置。

人. 10.如图,为了估算函数12+-=x y 的图像与x 轴围成的阴影面积,现在该阴影区域中放置一边长为32的小正方形ABCD ,并在上述阴影区域内随机撒300粒芝麻,据统计,其中约100粒落入正方形ABCD 中,那么阴影区域的面积约为 .11、以(1,1)-为中点的抛物线28y x =的弦所在直线方程为: 。

概率论与数理统计期中试卷A评析

概率论与数理统计期中试卷A评析

杉达 各 专业 2007 级 本 科《概率论与数理统计》期中试卷A 评析一、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题3分,共21分。

)1.设事件A 与B 相互独立,且P(A)>0, P(B)>0,则下列等式成立的是 ( )A 、AB=∅B 、P(AB ¯)=P(A)P(B ¯)C 、P(B)=1-P(A)D 、P(B |A¯)=0 【讲评】考点:事件的相互独立的性质。

如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。

本题: 因为A 与B 独立⇔事件A 与事件B  ̄独立⇔ P(AB¯)=P(A)P(B ¯) 选B 。

2.设甲、乙两人向同一目标射击,事件A, B 分别表示甲、乙击中目标,则AB¯¯表示 ( )A 、两人都没有击中目标B 、两人都击中了目标C 、至少有一人击中目标.D 、至少有一人没有击中目标.【讲评】考点:事件的运算的算律与实际意义。

对偶律:AB¯¯=A ¯∪B ¯ 本题: 因为AB ¯¯=A ¯∪B ¯,所以其实际意义为至少有一人没有击中目标. 选D 。

3.一批产品共10件,其中有3件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为 ( )A 、1/60B 、21/40C 、1/5D 、7/15【讲评】考点:P(A)=A 包含样本总个数样本点总数=N(A)N(S), 本题: N(S)= C 103=10×9×8/3! = 120 . N(A)= C 31×C 72= 63,P(A)=N(A)/N(S)=63/120 = 21/40 .选B 。

4.下列各函数中可作为随机变量分布函数的是 ( )A 、F 1(x)=⎩⎨⎧2x 0≤x ≤1 0 其他B 、F 2(x)=⎩⎨⎧0 x<0x 0≤x<11 x ≥1C 、F 3(x)=⎩⎨⎧-1 x<-1x -1≤x<11 x ≥1D 、F 4(x)=⎩⎨⎧0 x<02x 0≤x<12 x ≥1【讲评】考点:分布函数的性质。

浙江温州市十五校2016-2017学年高二数学下学期期中联考试题(a卷)

浙江温州市十五校2016-2017学年高二数学下学期期中联考试题(a卷)

2016学年第二学期温州市“十五校联合体”期中考试联考高二年级数学学科 A 卷考生须知 :1.本试题卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟。

2.考生答题前,须将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净4.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,答案写在本试题卷上无效。

选择题部分 (共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2230M x x x =+->,{}2N x x =≤,则M N =(▲)A. {}21x x -≤<- B.{}12x x -<≤C. {}21x x -≤<D. {}12x x <≤2.“1a =”是“直线20ax y +-=和直线(2)10a x ay -++=垂直”的(▲) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件3.在等差数列{}n a 中,n S 为其前n 项和,若1560S =,则9113a a -的值为(▲) A.4B.8C. 12D. 164.设()f x 为定义在R 上的奇函数,当0x ≥时,2()log (2)3(R)f x x x a a =+-+∈,则(2)f -=(▲)A .1-B .5-C .1D .55.将函数y cos(2)4x π=-的图象向右平移8π个单位,得到函数y ()f x =的图象,则()f x 的表达式可以是(▲)A. ()sin 2f x x =-B. ()cos(2)8f x x π=-C. 3()cos(2)8f x x π=-D. ()sin 2f x x =6.已知1F 、2F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,点P 在C 上,123PF PF =,且121cos 3F PF ∠=,则双曲线的离心率e =(▲)A BC .2D .37.已知2430x xy +-=,其中0,R x y >∈,则x y +的最小值是(▲)A .32B .3C .1D .28.已知向量a 、b 的夹角为θ,6a b +=,23a b -=,则θ的取值范围是(▲) A .03πθ≤≤B .32ππθ≤<C .62ππθ≤<D .203πθ<<9.设椭圆22:142x y C +=与函数3y x =的图象相交于,A B 两点,点P 为椭圆C 上异于,A B 的动点,若直线PA 的斜率取值范围是[]3,1--,则直线PB 的斜率取值范围是(▲) A. []6,2--B. []2,6C. 11,26⎡⎤--⎢⎥⎣⎦D. 11,62⎡⎤⎢⎥⎣⎦10.如图,在矩形ABCD 中,2,1AB AD ==,点E 为CD 的中点,F 为线段CE (端点除外)上一动点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将上述各题答案填入下列表格中:
1
2
3
4
5
6
7
8
9
10
二、填空题(本大题共_10_空格,每空格2分,共_20__分)
1. 一个盒子中装有红色球5个,黄色球3个,现随机地不放回摸球,则第3次摸球摸到红色球的概率为。
2. 寝室共住了4位同学,则至少有2位同学的生日同在星期一的概率为。
3.根据以往经验,某射击运动员在10次射击中,至少1次没有击中目标的概率为, 则在随机的一次射击中,该运动员没有击中目标的概率为。
(1)该孩子患有此遗传病的概率;
(2)若已知被抽取的孩子具有此遗传病,求该孩子的父母双方都患有遗传病的概率。
(要求引入事件的定义,给出分析过程。)
五(15分)、设随机变量 的概率密度为
,
(1)求常数 的值;
(2)证明随机变量 服从区间 的均匀分布;
(3)求随机变量 的概率密度函数。
六(8分)、设二维随机变量 的联合概率密度函数为
(1)用事件 的运算关系表示事件 和 ;
(2)求事件 和 发生的概率。
四(10分)、遗传学研究表明,某种遗传病的遗传风险为:如果夫妻双方均无病,子女一般不发病;如果夫妻有一方患病,子女的发病概率为3/4;如果夫妻双方都发病,子女一定发病。对某一该遗传病高发的地区随机调查了1000对夫妻,发现900对夫妻双方均没有该遗传病,70对夫妻中有一方患有该遗传病,30对夫妻双方都患有该遗传病。现从该地区中随机抽取1位孩子,求
诚信应考 考出水平 考出风格
浙江大学城市学院
2015—2016学年第二学期期中考试试卷
《概率统计A》
开课单位:计算分院;考试形式:闭卷;考试时间:_2016_年__5_月_7_日;
所需时间:120分钟;允许带:计算器
题序







总 分
得分
评卷人
一.单项选择题(本大题共_10__题,每题2分,共__20分)
8.设某玻璃瓶制造厂有生产流水线A和B,分别生产具有相同高度但不同瓶口内径的圆柱形瓶子,其中生产线A生产的瓶子内径服从正态分布 ,生产线B生产的瓶子内径直径服从正态分布 ,现从两条生产线上各随机抽取一个瓶子,则从B生产线抽取的瓶子能装进A生产线中抽取的瓶子的概率为。
三(12分)、已知事件 发生的概率均为1/4,事件 与事件 不能同时发生,事件 与事件 同时发生的概率为1/16,事件 与事件 同时发生的概率为1/8。记事件 代表 都不发生,事件 代表 恰好有一个发生。
6.若函数 是随机变量 的密度函数,则区间 为 ( )
7.在区间 上产生3个随机数,则至少有两个随机数大于0的概率为( ).
8.设随机变量 ,则事件“ ”的概率( )。
随 的增大而增大 随 的增大而减小 与 无关 不确定
9.设 与 相互独立且有如下相同的分布律,则下列等式正确的是( )
-1
1
P
10. 已知独立随机变量 、 ,则 服从( )
4.设某城市每周发生交通事故的次数服从参数为 的泊松分布,已知该城市每周没有发生交通事故的概率为,则该城市每周发生交通事故次数刚好为1次的概率为。
5. 设随机变量 的分布函数为 ,则 的概率分布律为

6.设 与 相互独立,其联合分布律为
Y
X
1
2
3
1
2
a
b
则a=,b=.
7. 已知二维随机向量 服从区域 上的均匀分布,区域 由曲线 与 所围,则 的联合概率密度函数 , 的边缘密度为 。

(1)求 与 的边缘概率密度;
(2)判断 与 是否独立,说明理由。
七(15分)、已知一个系统L由元件L1和元件L2串联而成,如下图所示:
AAA
设元件L1的寿命 和元件L2的寿命 都服从指数分布(单位:年),其密度函数分别为:

假定两元件是否正常工作是独立的,以随机变量 代表系统L的寿命。
(1)求元件L1的寿命大于元件L2的寿命的概率;
1.设 , ,且事件A与B相互独立,则必有( )
A与B为互斥事件 A与B不互斥
A与B为对立事件
2.设 则下列关系式成立的是( )
3. 设随机变量 的分布函数为 ,下列说法不一定成立的是( )
为连续函数
4.设随机变量 的概率密度函数为 ,且 ,又 为分布函数,则对任意实数 ,有( )
5.设随机变量 的概率密度函数 ,且已知 的分布函数 ,则有( )
(2)求系统L的寿命的概率密度函数 ;
(3)已知系统正常工作了2年,求系统还能正常工作4年的概率。
精心搜集整理,只为你的需要
相关文档
最新文档