6.3实践与探索(2)教案

合集下载

七年级数学下册第6章一元一次方程6.3实践与探索第1课时体积和面积问题教案华东师大版

七年级数学下册第6章一元一次方程6.3实践与探索第1课时体积和面积问题教案华东师大版

第1课时体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式?回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的错误!,求这个长方形的长和宽;(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x厘米,则宽为错误!x厘米.根据题意,得2(x+错误!x)=60,解这个方程,得x=18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x厘米,则宽为(x-4)厘米,根据题意,得2(x+x-4)=60,解这个方程,得x=17,所以S=13×17=221(平方厘米).(3)在(1)的情况下S=12×18=216(平方厘米);在(2)的情况下S=13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x平方厘米?如不能,怎么办?如果直接设长方形的面积为x平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知数的原则又是什么呢?结论:在周长一定的情况下,长方形的面积在长和宽相等的情况下最大;如果可以围成任何图形,则圆的面积最大.【例】将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0。

初中数学初三数学下册《实践与探索》教案、教学设计

初中数学初三数学下册《实践与探索》教案、教学设计
(三)学生小组讨论
1.教学内容:组织学生进行小组讨论,共同解决实际问题,培养学生的合作意识和交流能力。
教学过程:
(1)教师提出具有挑战性的问题,要求学生分组讨论,共同解决问题。
(2)学生分组讨论,分享解题思路,互相学习。
(3)教师巡回指导,关注学生的讨论过程,给予适当的提示和指导。
2.设计意图:通过小组讨论,培养学生合作解决问题的能力,提高学生的交流沟通能力。
4.注重实践与探索,让学生在实际操作中感受数学的魅力,提高学习兴趣。
(三)情感态度与价值观
1.培养学生热爱数学的情感,激发学生学习数学的兴趣。
2.培养学生严谨、细致的学习态度,提高学生的自主学习能力。
3.培养学生勇于探索、敢于创新的精神,增强学生的自信心。
4.培养学生的集体荣誉感,让学生在团队中学会尊重、关心、帮助他人。
5.引导学生认识到数学在生活中的重要性,培养学生将数学应用于实际生活的意识。
在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重激发学生的学习兴趣,营造轻松、愉快的学习氛围,使学生在愉快的氛围中掌握知识,提高能力。
二、学情分析
进入初三下学期的学生,经过前两年的数学学习,已具备了一定的数学基础和思维能力。在此基础上,他们对数学知识的理解能力、问题解决能力以及数学思维能力有待进一步提高。本章节《实践与探索》旨在让学生在实践中运用所学知识,培养创新精神和解决问题的能力。
(四)课堂练习
1.教学内容:设计具有针对性的练习题,巩固所学知识,提高学生的解题能力。
教学过程:
(1)教师根据教学内容,设计不同难度的练习题,让学生独立完成。
(2)学生完成练习题,教师及时批改,给予反馈。

§6.3 实践与探索(2)

§6.3  实践与探索(2)

§6.3 实践与探索(2)科目:七年级数学备课人:王淑轶导学目标:1、理解商品利润和储蓄问题中的数量关系,并能根据数量关系列出一元一次方程进行解答,并检验结果是否合理;2、进一步体会方程是刻画现实世界的有效数学模型,培养分析问题和用方程解决实际问题的能力;3、感受数学在实际生活中的应用价值。

内容分析:学习重点:分析问题中的等量关系,建立方程解决问题。

学习难点:确定题目中的等量关系。

导学过程:一、复习回顾,导入新课:1、王叔叔将a元钱存2年的定期储蓄。

已知年利率为p%,那么到期后王叔叔一共可以得到元。

2、某件商品标价a元,进价b元。

在促销活动期间打八折销售后,可获得利润元。

二、合作探究:1、小明爸爸前年存了年利率为2.43%的二年期定期储蓄。

今年到期后,所得利息正好为小明买了一只价值48.60元的计算器。

问小明爸爸前年存了多少元?2、某银行设立大学生助学贷款,分3~4年期和5~7年期两种。

贷款年利率分别为6.03%、6.21%,贷款利息的50%由国家财政贴补。

某大学生预计6年后能一次性偿还1.8万元,问他现在大约可以贷款多少元?(结果精确到0.1万元)思考:根据“预计6年后能一次性偿还1.8万元”,他应选择年期贷款,并由此可知贷款年利率为。

题中的等量关系为,列方程为。

解:3、学校准备添置一批课桌椅,原订购60套,每套100元。

店方表示:如果多购,可以优惠。

结果校方购了72套,每套减价3元,但商店获得同样多的利润。

求每套课桌椅的成本。

思考:设每套课桌椅成本为x元,那么“原订购60套,每套100元”时,售价为元,成本为元,利润为元;实际“购了72套,每套减价3元”,售价为元,成本为元,利润为元。

根据“获得同样多的利润”,可列方程为。

解:三、巩固练习:某商场将每台彩电按进价提高40%标价,然后在广告宣传中以八折的优惠价出售,实质上商场仍可每台获利300元。

这种彩电的进价和标价各是多少元?四、拓展延伸:实验中学去年为全体教职工投保了团体人身意外伤害保险,向保险公司缴纳了1200元保险费。

6.3实践与探索(2)-储蓄问题

6.3实践与探索(2)-储蓄问题

解:设小明爸爸前年存了 x 元,则根据题意,得
x 2.43% 2 80% 48 .6
0.03888 x 48 .6
48 .6 x 0.03888
经检验,符合题意
答:小明爸爸前年存了
x 1250
1250
元.
• 青青的妈妈前年买了某公司的二年期债券 4500元,今年到期,扣除利息税后,共得本 利和约4700元,利息税的税率为20%,问这 种债券的年利率是多少?(精确到0.01%)
x 0.1863 x 1.8
1.1863 x 1.8
x 1.8 1.1863
x 1 .5
答:他现在大约可以贷款 1.5万元.
数字问题
要理解十进制整数的表示方法
例:一个两位数的十位上的数是个位上的数的
两倍,若把两个数字对调,则新得到的两位数 比原两位数小36,求原两位数。 分析 :题中数量关系如下表 (若设原数的 个位数字为X) 十位数字 个位数字 本数 2X X 20X+X 原两位数 X 2X 10X+2X 新两位数
知识点
增长率问题
• 原始总量、增长量、增长后总量、增长率这四者之 间的关系: • (1)增长后总量=原始总量+增长量
增长长 • (2)增长率= ×100% 原始量
• 通过经历“问题情境——建立数学模型——解释、 应用与拓展”的过程,理解和体会数学建模思想在 解决实际问题中的作用.
做一做
1.某市去年年底人均居住面积为11平方米,计划在今年年 底增加到人均13.5平方米.求今年的住房年增长率. (精确到0.1%)
每件服装的实际售价为: 1 40%x 80% 每件服装的利润为: 1 40%x 80% 1 40%x 80% x 15 得方程:

华师版七年级数学下册全部教案

华师版七年级数学下册全部教案

第6章一元一次方程教材简析本章的内容包括:一元一次方程的相关概念及其解法;利用一元一次方程分析与解决实际问题.方程是一种重要的描述现实世界的数学模型.教材以实际问题为主线引入方程和方程的解的概念,探索等式的性质以及解一元一次方程,然后通过实践与探索,经历“问题情境——建立数学模型——解答——应用与拓展”的过程,体会数学建模思想.一元一次方程是中考的必考内容,题型主要是选择题和填空题,也有少量的解答题.主要考查一元一次方程的解的意义的理解、解一元一次方程以及列一元一次方程解决实际问题.贴近生活、具有时代气息的一元一次方程应用题是历年各地中考的热点题型之一.教学指导【本章重点】一元一次方程的解及应用.【本章难点】列一元一次方程解决实际问题,提高数学应用能力.【本章思想方法】1.区分解方程中的两种变形.一是“同解变形”,变形的实质是“形变解不变”;另一种是“恒等变形”,变形的实质是“形变值不变”.2.掌握方程思想.方程思想在本章内容的体现主要是列方程解决实际问题.解决问题的思路是分析题意,找出题目中的相等关系,列出一元一次方程,解方程,得出答案.课时计划6.1 从实际问题到方程1课时6.2 解一元一次方程6课时6.3 实践与探索3课时6.1 从实际问题到方程教学目标一、基本目标1.理解方程及方程的解的概念.2.掌握检验某个值是不是方程的解的方法.二、重难点目标【教学重点】根据实际问题中的等量关系,了解方程及方程的解的概念.【教学难点】会用方程描述具体问题中的数量关系和变化规律,建立数学模型.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.含有未知数的等式叫做方程.2.完成下面各题.(1)某校七年级328名师生乘车外出春游,已有2辆校车共可乘坐64人,还需租用44座的客车多少辆?解:设需要租用客车x辆,共可乘坐44x人.列方程为44x+64=328.(2)在课外活动中,张老师发现同学们的年龄基本都是13岁,就问同学们:“我今年45岁,经过几年后你们的年龄整好是我年龄的13?”解:设经过x年后同学的年龄是老师年龄的13,而经过x年后同学的年龄是(13+x)岁,老师的年龄是(45+x)岁.列方程为13+x=13(45+x).环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】根据题意设未知数,并列出方程(不必求解).(1)有两个工程队,甲队有30人,乙队有10人,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍;(2)七(1)班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?【互动探索】(引发学生思考)根据实际问题列方程的步骤有哪些?题目中有哪些等量关系?【解答】(1)设从乙队调x 人去甲队,则乙队现在有(10-x )人,甲队有(30+x )人.根据甲队的人数是乙队人数的7倍列出方程如下:30+x =7(10-x ).(2)设这个班共有x 名同学,则原计划租船可表示为⎝ ⎛⎭⎪⎫x 6-1条或⎝ ⎛⎭⎪⎫x 9+1条,由此联立可得如下方程:x 6-1=x9+1.【互动总结】(学生总结,老师点评)根据题意列方程的一般步骤:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出题目中有关数量的相等关系;(3)用代数式表示出这个等量关系中涉及的量,根据等量关系得到方程.【例2】检验2,1,0三个数是否为方程3(x +1)=2(2x +1)的解. 【互动探索】(引发学生思考)判断一个数是不是原方程的解,必须用这个数替换方程中的未知数,并计算方程左、右两边的值是否相等.【解答】将x =2分别代入原方程左、右两边,左边=3×(2+1)=9,右边=2×(2×2+1)=10.因为左边≠右边,所以x =2不是原方程的解.将x =1分别代入原方程左、右两边,左边=3×(1+1)=6,右边=2×(2×1+1)=6.因为左边=右边,所以x =1是原方程的解.将x =0分别代入原方程左、右两边,左边=3×(0+1)=3,右边=2×(2×0+1)=2.因为左边≠右边,所以x =0不是原方程的解.【互动总结】(学生总结,老师点评)使方程左、右两边相等的未知数的值称为方程的解.检验方程的解的步骤:(1)将数值分别带入原方程的左、右两边进行计算;(2)比较方程左、右两边的值;(3)下结论,若方程左右两边的值相等,则该数是方程的解;反之则不是方程的解.活动2 巩固练习(学生独学) 1.下列式子是方程的有 ( B )35+24=59;3x -18>33;2x -5=0;2x+15=0.A .1个B .2个C .3个D .4个2.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列所列方程正确的是 ( A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1003.检验下列数值是不是方程的解. (1)3y -1=2y +1(y =2;y =4); (2)3(x +1)=2x -1(x =2;x =-4).解:(1)y =2是方程3y -1=2y +1的解;y =4不是方程3y -1=2y +1的解. (2)x =2不是方程3(x +1)=2x -1的解;x =-4是方程3(x +1)=2x -1的解.环节3 课堂小结,当堂达标 (学生总结,老师点评)方程⎩⎨⎧概念方程的解根据实际问题列方程练习设计请完成本课时对应练习!6.2 解一元一次方程6.2.1 等式的性质与方程的简单变形第1课时 等式的性质教学目标 一、基本目标1.了解等式的两条性质.2.会用等式的性质将等式进行简单的变形. 二、重难点目标 【教学重点】理解和应用等式的性质.【教学难点】会运用等式的性质进行简单的变形.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P4~P5的内容,完成下面练习.【3 min反馈】1.等式的性质等式的性质1:等式两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式.符号语言:如果a=b,那么a+c=b+c,a-c=b-c.等式的性质2:等式两边都乘(或都除以)同一个数(除数不能为0),所得结果仍是等式.符号语言:如果a=b,那么ac=bc,ac=bc(c≠0).2.已知a=b,请用“=”或“≠”填空:(1)3a=3b;(2)a4=b4;(3)-5a=-5b.3.下列说法正确的是 ( B )A.在等式ab=ac两边都除以a,可得b=cB.在等式a=b两边都除以c2+1,可得ac2+1=bc2+1C.在等式ba=ca两边都除以a,可得b=cD.在等式2x=2a-b两边都除以2,可得x=a-b环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】说一说下面的变形是根据等式的哪条性质及怎样变形得到的?(1)如果2x+7=10,那么2x=10-7;(2)如果5x=4x+7,那么5x-4x=7;(3)如果-3x=18,那么x=-6.【互动探索】(引发学生思考)等式的性质有哪些?【解答】(1)等式性质1,两边减去7.(2)等式性质1,两边减去4x.(3)等式性质2,两边除以-3.【互动总结】(学生总结,老师点评)等式两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘(或都除以)同一个数(除数不能为0),所得结果仍是等式.活动2 巩固练习(学生独学)1.下列等式变形错误的是 ( B )A.若x-1=3,则x=4B.若12x-1=x,则x-1=2xC.若x-3=y-3,则x-y=0D.若3x+4=2x,则3x-2x=-42.若x=y,且a≠0,则下面各式中不一定正确的是 ( D ) A.ax=ay B.x+a=y+aC.xa=yaD.ax=ay3.已知m+a=n+b,根据等式的性质变形为m=n,那么a、b必须符合的条件是 ( C )A.a=-bB.-a=bC.a=bD.a、b可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x10=y5,那么x=-2y,根据等式的性质2,两边乘-10;(2)如果-2x=2y,那么x=-y,根据等式的性质2,两边除以-2;(3)如果23x=4,那么x=6,根据等式的性质2,两边乘32;(4)如果x=3x+2,那么x-3x=2,根据等式的性质1,两边减3x. 活动3 拓展延伸(学生对学)【例2】 已知3b -2a -1=3a -2b ,试利用等式的性质比较a 与b 的大小. 【互动探索】要比较a 与b 的大小,可以对等式化简,再利用作差法比较两个数的大小.【解答】根据等式的性质1,等式两边都减去3a -2b -1,得5b -5a =1. 根据等式的性质2,等式两边都除以5,得b -a =15,则有b >a .【互动总结】(学生总结,老师点评)运用等式的基本性质1时,一定要注意条件“同时”和“同一个”;运用等式的性质2时,除了要注意“同时”和“同一个”外,还要注意除数不能为0.环节3 课堂小结,当堂达标 (学生总结,老师点评)等式的性质⎩⎪⎨⎪⎧如果a =b ,那么a +c =b +c ,a -c =b -c如果a =b ,那么ac =bc ,a c =bc c ≠0等式的其他性质:(1)若a =b ,则b =a (对称性); (2)若a =b ,b =c ,则a=c (传递性); (3)若a =b ,c =d ,则a ±c =b ±d ,ac =bd ,a c =bd (c =d ≠0);(4)若a =b ,则a n =b n .练习设计请完成本课时对应练习!第2课时 方程的简单变形教学目标 一、基本目标1.理解并掌握方程的两个变形规则. 2.运用方程的两个变形规则解简单的方程. 二、重难点目标 【教学重点】掌握方程的两个变形规则.【教学难点】会运用方程的变形规则解简单方程.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P5~P7的内容,完成下面练习.【3 min反馈】1.由等式的基本性质,可以得到方程的变形规则:(1)方程两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程两边都乘(或都除以)同一个不等于0的数,方程的解不变.2.将方程中的某些项改变符号后,从方程的一边移到另一边,像这样的变形叫做移项.3.将方程的两边都除以未知数的系数,像这样的变形通常称作“将未知数的系数化为1”.4.解方程20-3x=5时,移项后正确的是 ( B )A.-3x=5+20 B.20-5=3xC.3x=5-20 D.-3x=-5-205.解下列方程:(1)x+7=26;(2)-5x=20;(3)9x=8x-4.解:(1)x=19. (2)x=-4. (3)x=-4.教师点拨:注意运用方程的变形规则对方程进行逐步变形,最终可变形为“x =a”的形式.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解方程:(1)x-5=-2; (2)3x=2x-5;(3)-3x=15;(4)12x=18.【互动探索】(引发学生思考)利用方程的变形规则将方程逐渐化为“x=a”的形式.【解答】(1)方程两边都加5,得x=3.(2)方程两边都减2x,得x=-5.(3)方程两边都除以-3,得x=-5.(4)方程两边都乘2,得x=1 4 .【互动总结】(学生总结,老师点评)利用方程的变形规则解方程时,要注意方程两边“同时”加、减、乘、除.活动2 巩固练习(学生独学)1.解方程-23x=32时,应在方程两边 ( C )A.同乘-23B.同除以23C.同乘-32D.同除以322.利用等式的性质解方程x2+1=2的结果是 ( A )A.x=2 B.x=-2 C.x=4 D.x=-4 3.方程x-5=0的解是x=5.4.由2x-1=0得到x=12,可分两步,按步骤完成下列填空:第一步:根据等式的性质1,等式两边加1,得到2x=1;第二步:根据等式的性质2,等式两边除以2,得到x=1 2 .5.利用等式的性质解方程:(1)8+x=-5;(2)4x=16;(3)3x-4=11.解:(1)方程两边减8,得x =-13. (2)方程两边除以4,得x =4.(3)方程两边加4,得3x =15.两边除以3,得x =5. 活动3 拓展延伸(学生对学)【例2】能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么? 【互动探索】方程的变形规则有哪些?需要注意什么? 【解答】当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数.而从x =b -1a +3可以得到等式(a +3)x =b -1,这是根据等式的性质2,且从x =b -1a +3可知,a +3≠0. 【互动总结】(学生总结,老师点评)运用方程的变形规则求解方程时,注意除数不能为0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 方程的变形规则:(1)方程两边都加上(或都减去)同一个数或同一个整式,方程的解不变; (2)方程两边都乘(或都除以)同一个不等于0的数,方程的解不变. 练习设计请完成本课时对应练习!第3课时 解方程教学目标 一、基本目标1.进一步熟悉方程的两个变形规则及解方程的两个重要步骤.2.引导学生自主探索复杂方程的解法,体会方程不同解法中所蕴含的转化思想.二、重难点目标【教学重点】让学生经历自主探索解方程的每一步变形依据,归纳解方程的一般步骤.【教学难点】灵活运用方程的变形规则解方程.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P7~P8的内容,完成下面练习.【3 min反馈】1.解方程的一般步骤:(1)移项;(2)合并同类项;(3)系数化为1. 2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变. 3.解形如ax+bx=c的一元一次方程先合并同类项,再将系数化为1. 4.方程3x+1=7的解是x=2.5.若x=1是关于x的方程3n-x2=1的解,则n=12.6.解下列方程:(1)-3x+7=1; (2)-y2-3=9;(3)512x-13=14;(4)3x+7=2-2x.解:(1)x=2. (2)y=-24. (3)x=75 .(4)x=-1.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x-2018=82-5x;(2)-2x+3.5=3x-8.【互动探索】(引发学生思考)解简单的方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x+5x=82+2018.合并同类项,得6x=2100.系数化为1,得x=350.(2)移项,得-2x-3x=-8-3.5.合并同类项,得-5x=-11.5.系数化为1,得x=2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.活动2 巩固练习(学生独学)1.下列各式的变形中,错误的是 ( C )A.由7x-6x=1,得x=1B.由3x-4x=10,得-x=10C.由x-2x+4x=15,得x=15D.由-7y+y=6,得-6y=62.已知关于x的方程4x-3m=2的解是x=m,则m的值是 ( A )A.2 B.-2C.27D.-273.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.4.解下列方程:(1)x-2=3-x;(2)-x=1-2x;(3)5=5-3x; (4)x-2x=1-23 x;(5)x-3x-1.2=4.8-5x.解:(1)x=52. (2)x=1. (3)x=0.(4)x=-3. (5)x=2.5.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x-2=2x-2.方程两边同时加上2,得5x-2+2=2x-2+2.①即5x=2x.方程两边同时除以x,得5=2.②”老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正.解:不正确.①正确,运用了等式的性质1.②不正确,因为方程两边同时除的数不能为0.由5x=2x,两边同时减去2x,得5x-2x=0,即3x=0,所以x=0.活动3 拓展延伸(学生对学)【例2】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片.(1)若这些卡片上的数字之和为342,小彬拿了哪3张卡片?(2)这3张卡片上的数的和能为86吗?如果能,请求出这3张卡片上的数各是多少;如果不能,请说明理由.【互动探索】(1)根据题意列方程即可求得所拿卡片;(2)假设这三个数字的和能为86,利用方程的解进行判断假设是否正确.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6.根据题意,得x-6+x+x+6=342,解得x=114,所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y +6.则有y-6+y+y+6=86,解得y≈28.67,显然不符合题意,说明上述假设不成立.所以这3张卡片上的数的和不能为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,设出未知数,然后根据每一问中的具体等量关系列出方程求解.环节3 课堂小结,当堂达标(学生总结,老师点评)解方程的步骤⎩⎨⎧ 移项合并同类项系数化为1练习设计请完成本课时对应练习!6.2.2 解一元一次方程第1课时 解一元一次方程(一)教学目标一、基本目标1.了解一元一次方程的概念.2.掌握含有括号的一元一次方程的解法.3.熟练地运用去括号法则解带有括号的方程.二、重难点目标【教学重点】了解一元一次方程的概念.【教学难点】会解含有括号的一元一次方程.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P9~P10的内容,完成下面练习.【3 min 反馈】1.只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数都是1,像这样的方程叫做一元一次方程.2.当方程中含有括号时,在解方程的过程中把方程含有的括号去掉的过程叫做去括号.3.方程中的去括号法则与整式运算中的去括号法则相同,它的依据是乘法分配律.4.去括号法则:(1)将括号外的因数连同前面的符号看作一个整体,按乘法分配律与括号内的各项相乘;(2)若括号外的因数是正数时,去括号后,原括号内各项的符号不变;(3)若括号外的因数是负数时,去括号后,原括号内各项的符号要变号.5.对于方程2(2x-1)-(x-3)=1,去括号正确的是 ( D )A.4x-1-x-3=1 B.4x-1-x+3=1C.4x-2-x-3=1 D.4x-2-x+3=1环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】下列方程:①x-2=2x;②0.3x=1;③x2=5x+1;④x2-4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( ) A.2 B.3C.4 D.5【互动探索】(引发学生思考)①x-2=2x分母含有未知数,是分式方程,故①不符合;②0.3x=1,即0.3x-1=0,符合一元一次方程的定义;③x2=5x+1,即9x+2=0,符合一元一次方程的定义;④x2-4x=3的未知数的最高次数是2,它属于一元二次方程,故④不符合;⑤x=6,即x-6=0,符合一元一次方程的定义;⑥x+2y=0中含有2个未知数,属于二元一次方程,故⑥不符合.综上所述,一元一次方程的个数是3.【答案】B【互动总结】(学生总结,老师点评)本题主要考查了一元一次方程的定义.一元一次方程必须满足的条件:(1)是整式,即分母中不含有未知数;(2)只含有一个未知数;(3)未知数的次数都是1,且系数不为0.【例2】解下列方程:(1)10-4(x +3)=2(x -1);(2)2(y -3)-(4y -1)=6(1-y ).【互动探索】(引发学生思考)由方程特点,运用去括号法则解方程.【解答】(1)去括号,得10-4x -12=2x -2.移项,得-4x -2x =-2-10+12.合并同类项,得-6x =0.系数化为1,得x =0.(2)去括号,得2y -6-4y +1=6-6y .移项,得2y -4y +6y =6+6-1.合并同类项,得4y =11.系数化为1,得y =114. 【互动总结】(学生总结,老师点评)解方程的基本程序又多了一步“去括号”.解含括号的一元一次方程的基本步骤:①去括号;②移项;③合并同类项;④未知数的系数化为1.活动2 巩固练习(学生独学)1.将方程2x -3(4-2x )=5去括号,正确的是 ( C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =5 2.方程2(x -3)+5=9的解是 ( B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2⎝⎛⎭⎪⎫x +12步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是 ( A )A .①B .②C .③D .①②4.判断下列哪些是一元一次方程?(1)34x =12;(2)3x -2;(3)13x -15=2x 3-1; (4)5x 2-3x +1=0;(5)2x +y =1-3y ;(6)1x -1=5. 解:(1)(3)是一元一次方程.(2)不是方程,是代数式.(4)不是一元一次方程,方程中未知数x 的次数是2.(5)不是一元一次方程,方程中含有2个未知数.(6)不是一元一次方程,1x -1不是整式. 5.解下列方程:(1)2(x -3)=5x ;(2)4x +3(2x -3)=12-()x +4;(3)6⎝ ⎛⎭⎪⎫12x -4+2x =7-⎝ ⎛⎭⎪⎫13x -1; (4)2-3(x +1)=1-2()1+0.5x .解:(1)x =-2. (2)x =1711. (3)x =6. (4)x =0.活动3 拓展延伸(学生对学)【例3】某供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原电价基础上每千瓦时上浮0.03元,谷段电价在原电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?【互动探索】(1)本题中存在的等量关系是:小明家支付平段用电费用+谷段用电费用=42.73元; (2)求出原售电价,已知5月份的用电量,就比较容易求出不使用分时电价结算,5月份小明家将支付的电费.【解答】(1)设原电价为每千瓦时x 元.根据题意,得40×(x +0.03)+60×(x -0.25)=42.73.去括号,得40x +1.2+60x -15=42.73.移项、合并同类项,得100x =56.63.化系数为1,得x =0.5653.当x =0.5653时,x +0.03=0.5953,x -0.25=0.3153.即平段电价为每千瓦时0.5953元,谷段电价为每千瓦时0.3153元.(2)100×0.5653-42.73=13.8(元).即如不使用分时电价结算,小明家5月份将多支付13.8元.【互动总结】(学生总结,老师点评)正确找出题目中的等量关系是列方程解应用题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)一元一次方程⎩⎨⎧ 定义解含括号的一元一次方程练习设计请完成本课时对应练习!第2课时 解一元一次方程(二)教学目标一、基本目标1.会解含有分母的一元一次方程.2.对于求解较复杂的方程,要自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯.二、重难点目标【教学重点】掌握解含分母的一元一次方程的方法.【教学难点】总结解一元一次方程的一般步骤,并能正确的求解一元一次方程.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P10~P11的内容,完成下面练习.【3 min反馈】1.方程中的系数为分数时,根据等式的性质2,将含分数系数的方程两边都乘同一个数(所有分母的最小公倍数),使方程中的分母为1,约去分母的过程叫做去分母.2.方程中含有分母,解方程时,一般先去分母,再进行其他变形.去分母时方程的两边应同乘各分母的最小公倍数.3.解方程:3x+x-12=x+14-2x-13.解:方程两边都乘12,去分母,得12×3x+6(x-1)=3(x+1)-4(2x-1).去括号,得36x+6x-6=3x+3-8x+4.移项,得36x+6x-3x+8x=3+4+6.合并同类项,得47x=13.系数化为1,得x=13 47 .环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解方程:x+12-4-3x8=1.【互动探索】(引发学生思考)解方程的一般步骤是什么?【解答】去分母,得4(x+1)-(4-3x)=8.去括号,得4x+4-4+3x=8.移项、合并同类项,得7x=8.系数化为1,得x=8 7 .【互动总结】(学生总结,老师点评)解一元一次方程的一般步骤:(1)去分母:方程两边都乘各分母的最小公倍数;(2)去括号:根据去括号法则,依次去小括号、中括号、大括号;(3)移项:将方程的项改变符号后,从方程的一边移到另一边;(4)合并同类项:利用合并同类项的法则,将方程化为ax=b的形式(a≠0);(5)系数化为1:将方程的两边都除以未知数的系数,得到方程的解.活动2 巩固练习(学生独学)1.方程3-1-x2=0可以变形为 ( C )A.3-1-x=0 B.6-1-x=0 C.6-1+x=0 D.6-1+x=22.解方程13-x-12=1的结果是 ( D )A.x=12B.x=-12C.x=13D.x=-133.若式子4x-5与2x-12的值相等,则x的值是 ( B )A.1 B.3 2C.23D.24.解下列方程:(1)x-32-4x+15=1;(2)2x+13=1-x-15.解:(1)x=-9. (2)x=1.5.当x取何值时,代数式5x-28-x的值比代数式x+112-3的值小1?解:根据题意,得5x-28-x=x+112-3-1.去分母,得5x-2-8x=4x+44-32.移项、合并同类项,得-7x=14.系数化为1,得x=-2.活动3 拓展延伸(学生对学)【例2】一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.【互动探索】应先设出飞机在无风时的速度,由此可知在顺风时的飞行以及在逆风时的飞行速度,又已知了顺风飞行和逆风飞行所用的时间,再根据路程相等,列出方程,求解即可.【解答】(1)设无风时飞机的飞行速度为x千米/小时.根据题意,得(x+24)×256=(x-24)×3,解得x=840,即无风时飞机的飞行速度为840千米/小时.(2)由(1)可知,两城之间的距离为(840-24)×3=2448(千米).【互动总结】(学生总结,老师点评)此题主要考查一元一次方程的实际运用,关键在于根据飞机在顺风时的速度为风速加上在无风中的速度,飞机在逆风中的速度等于在无风中的速度减去风速,列出等式.环节3 课堂小结,当堂达标(学生总结,老师点评)解一元一次方程的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.练习设计请完成本课时对应练习!第3课时解一元一次方程(三)教学目标一、基本目标1.理解一元一次方程解简单应用题的方法和步骤.2.会列一元一次方程解简单应用题.二、重难点目标【教学重点】弄清应用题题意并列出方程.【教学难点】会用一元一次方程解决实际问题.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P11~P13的内容,完成下面练习.【3 min反馈】1.天平的两个盘内分别盛有51 g和45 g的盐,其中盘A盛有51 g,盘B 盛有45 g,问应从盘A中拿出多少盐放到盘B中,才能使两者所盛盐的质量相等?分析:本题的等量关系:盘A现有盐的质量=盘B现有盐的质量.设应从盘A 中拿出x克盐放到盘B中,则列出方程为51-x=45+x.=3.故应从盘A中拿出3 g盐放到盘B中,才能使两者所盛盐的质量相等.2.学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人各搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:本题的等量关系:男同学的搬砖数+女同学的搬砖数=搬砖总数.设新团员中有x名男同学,则32x+24(65-x)=1800.=30.故这些新团员中有30名男同学.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】有一位工人师傅要锻造底面直径为40 cm的“矮胖”形圆柱,可他手上只有底面直径是10 cm,高为80 cm的“瘦长”形圆柱,试帮助这位师傅求出“矮胖”形圆柱的高.【互动探索】(引发学生思考)题中的等量关系:锻造前的体积=锻造后的体积.【解答】设锻造成“矮胖”形圆柱的高为x cm. 根据题意,得π·⎝ ⎛⎭⎪⎫1022·80=π·⎝ ⎛⎭⎪⎫4022·x .解得x =5.即“矮胖”形圆柱的高为5 cm.【互动总结】(学生总结,老师点评)圆柱的形状由“瘦长”变成“矮胖”,底面直径和高度都发生了变化,在不计损耗的情况下不变量是它们的体积,抓住这一不变量,就得到等量关系:锻造前的体积=锻造后的体积.【例2】在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10 000辆.” 乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?【互动探索】(引发学生思考)本题中的等量关系:三环路车流量的3倍-四环路车流量=二环路车流量的2倍.【解答】设三环路车流量为每小时x 辆,那么四环路车流量为每小时(x +2000)辆.依题意,得3x -(x +2000)=2×10 000, 解得x =11 000, 所以x +2000=13 000.即三环路车流量为每小时11 000辆,四环路车流量为每小时13 000辆. 【互动总结】(学生总结,老师点评)用一元一次方程解决实际问题,关键在于抓住问题中的等量关系,列出方程.求得方程的解后,经过检验,得到实际问。

七年级数学下册课时作业七第6章一元一次方程6.3实践与探索第2课时华东师大版

七年级数学下册课时作业七第6章一元一次方程6.3实践与探索第2课时华东师大版

课时作业(七)实践与探索(第2课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.一列火车由A城开往B城行驶了3h,第二天返回时因雾霾天气原因,车速每小时减慢10km,而多行了0.5h,则A,B两城的距离为( )A.345kmB.180kmC.240kmD.210km2.加工1500个零件,甲单独做需要12h,乙单独做需要15h,若两人合做xh可以完工,依题意可列方程为( )A.x=1500B.x=1500C.x=1500D.x=13.一列匀速前进的火车,从它进入600m的隧道到离开,共需30s,又知在隧道顶部的一固定的灯发出的一束光线垂直照射火车5s,则这列火车的长度是( )A.100mB.120mC.150mD.200m二、填空题(每小题4分,共12分)4.元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”,请你回答:良马天可以追上驽马.5.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合做,完成剩下的工作,设工作总量为1,工作进度如表:天数第3天第5天工作进度则完成这项工作共需天.6.一架飞机飞行于两城市之间,顺风需要5.5h,逆风需要6h,已知风速为每小时20km,则无风时飞机的速度为km/h.三、解答题(共26分)7.(8分)(2012·葫芦岛中考)如图,折线AC-CB是一条公路的示意图,AC=8km,甲骑摩托车从A地沿这条公路到B地,速度为40km/h,乙骑自行车从C地到B地,速度为10km/h,两人同时出发,结果甲比乙早到6分钟,求这条公路的长.8.(8分)七年级学生小华在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40km,摩托车的速度为45km/h,运货汽车的速度为35km/h,?(涂黑的部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.【拓展延伸】9.(10分)某工程队承包了某段全长1755m的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6m,经过5天施工,两组共掘进了45m.(1)求甲、乙两个班组平均每天各掘进多少(单位:m)?(2)为加快进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2m,乙组平均每天能比原来多掘进0.3m.按此施工进度,能够比原来少用多少天完成任务?答案解析1.【解析】选D.设A,B两城的距离为xkm,根据题意,可得方程=+10,解得x=210.2.【解析】选B.甲每小时加工个零件,乙每小时加工个零件,故甲、乙合做1h可加工个零件,而两人合做xh完工,即xh共加工1500个零件,所以列方程为x=1500.3.【解析】选B.设这列火车的长为xm,则火车从进入到离开,共走了(x+600)m.火车的速度为m/s,由题意得,×30=600+x,解得x=120.4.【解析】设良马x天可以追上驽马,根据题意,得240x=150(12+x),解得x=20.所以良马20天可以追上驽马.答案:205.【解析】由题意可知,甲的工作效率为÷3=,乙的工作效率为÷2=,设这项工作共需x天,则可得方程:+(x-3)=1,解得:x=9,所以完成这项工作共需9天. 答案:96.【解析】设飞机无风时飞行速度为xkm/h,根据题意得:×(x+20)=6×(x-20),解得x=460,所以无风时飞机的速度为460km/h.答案:460【变式训练】某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间距离x的方程是( )A.=B.-2=+2C.-=2D.=-2【解析】选B.根据“顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度”可得“静水速度=顺水速度-水流速度=逆水速度+水流速度”于是列方程-2=+2.7.【解析】设这条公路的长为xkm,由题意,得=-.解这个方程,得x=12.答:这条公路的长为12km.8.【解析】答案不唯一.例如,补充方法一:两车分别从甲、乙两地同时相向而行,经过几小时才能相遇? 解:若设两车经过xh才能相遇,根据题意得(45+35)x=40,解得x=0.5.答:两车分别从甲、乙两地同时相向而行,经过0.5h才能相遇.补充方法二:摩托车和运货汽车分别从甲、乙两地同向而行,经过几小时摩托车才能追上运货汽车? 解:若设经过xh摩托车才能追上运货汽车,根据题意得45x=40+35x,解得x=4.答:摩托车和运货汽车分别从甲、乙两地同向而行,经过4h摩托车才能追上运货汽车.9.【解析】(1)设乙班组平均每天掘进xm,则甲班组平均每天掘进(x+0.6)m,根据题意,得5x+5(x+0.6)=45,解得x=4.2,则x+0.6=4.8(m).答:甲班组平均每天掘进4.8m,乙班组平均每天掘进4.2m.(2)改进施工技术后,甲班组平均每天掘进:4.8+0.2=5(m);乙班组平均每天掘进:4.2+0.3=4.5(m).改进施工技术后,剩余的工程所用时间为:(1755―45)÷(5+4.5)=180(天).按原来速度,剩余的工程所用时间为:(1755―45)÷(4.8+4.2)=190(天).少用天数为:190―180=10(天).答:能够比原来少用10天完成任务.。

五年级上册数学教案-6.3 梯形的面积|冀教版(2)

五年级上册数学教案-6.3 梯形的面积|冀教版(2)

梯形的面积教学内容:教学目标:1、运用知识迁移类比规律和“转化”的数学思想,通过小组合作探索推导出梯形的面积计算公式。

2、运用梯形面积公式计算梯形面积。

3、培养操作、观察、分析、比较、概括及利用已有知识和经验解决新问题的能力。

4、通过自主探究,合作交流,体验成功,建立自信,激发学习兴趣,培养创新意识。

教学重点:理解并掌握梯形面积的计算公式,并能运用公式解决简单的实际问题。

教学难点:表达推导梯形面积的公式教学关键:让学生在动手实践与合作交流中将梯形转化成平行四边形和三角形。

教学准备:课件、梯形若干个(两个完全一样的一般梯形、一个形状不同的一般梯形)、剪刀、三角板教学过程一、创设情境,提出问题师:同学们,在我们的日常生活中,有很多人为了自己认为不公平的事吵得不可开交,今天老师也给大家带来了这样一个故事。

(老财主分地的故事)同学们,你们想做这个聪明人吗?那就先来看看老财主的那两块地吧!(媒体出示)师:那么怎样比出两块地的大小呢?(计算面积)(生交流)师:老大的这块地是平行四边形我们可以计算面积(口头计算)老二的这块地是什么图形呢?今天,我们就一起来探究解决梯形的面积计算的问题。

(板书:梯形的面积)二、动手实践,探究新知(一)复习梯形各部分的名称师:根据图形,你能说出梯形各部分的名称吗?(集体交流)(二)学习铺垫师:在学习梯形之前我们还认识了什么图形?(平行四边形、三角形)师:谁还记得我们探究平行四边形(三角形)面积时,是怎样推导出面积计算公式的?(生交流:平行四边形是通过转化成长方形推导的;三角形的面积是通过拼成平行四边形推导的。

)师:我们都是把它们转化为我们已经学过的图形,从而推导出它们的面积计算公式。

那么,凭借前面的学习经验,要推导梯形的面积公式,我们能否将梯形转化成我们所学过的图形,根据它们之间的联系,推导出梯形的面积公式呢?(三)合作探究师:在你们每个小组桌上老师已经为你们准备好了很多的材料。

华东师大版七年级下册数学教案全册

华东师大版七年级下册数学教案全册

1华东师大版七年级下册数学教案(全册)6.1 从实际问题到方程【教学目标】知识与能力1.掌握如何设未知数。

2.掌握如何找等式来列方程。

3.了解尝试、代人法寻找方程的解。

情感、态度、价值观通过本节的教学,应该使学生体会到数学与实际生活的密切联系,认识到数学的价值。

【重点难点】重点:1、确定所有的已知量和确定“谁”是未知数x ;2、列方程。

难点:1、找出问题中的相等关系。

2、使用数学符号来表示相等关系。

【教学过程】第一课时教学流程设计教师指导学生活动1、开场白 1、进入学习状态2、进行教学 2、配合教师学习3、总结,布置预习和练习 3、记录相关内容和任务一、谁能解决这个问题:23四、试一试,找出方程的解。

五、本课小结本节主要是学习分析问题列方程的三个步骤:1、确定未知量;2、找相等关系;3、列方程。

还学习了通过尝试、代入寻找方程的解。

这是一个很重要的思想和方法,要记住如何尝试以及如何代入。

(2)看题目问什么,就设什么为未知数x 。

(3)找出相等关系。

(4)根据相等关系列出方程。

(5)试着求出方程的解。

华师七下6.2.1 方程的简单变形【教学内容】本小节的内容在教材第4-7页。

主要内容为:通过对方程变形的分析,探索求解简单方程的规律,学会通过变形求解简单方程。

4【教学目标】了解方程的基本变形:移项和化简未知数的系数为1. 了解未知数的基本变形在解方程中的作用。

知识与能力1.了解方程可以进行的基本变形,知道通过变形可以求出方程的解。

2.了解移项的定义,注意移项要变号。

3.了解未知数系数化为1的方法。

4.知道方程的解的形式是“x=a”,学会通过变形求解简单方程。

情感、态度、价值观通过本节的教学,应该达到使学生体会数学的价值的目的。

【重点难点】重点:1、方程的简单变形;2,简单变形的简单应用。

难点:1、移项和简单变形的关系。

2、移项要变号,为什么要变号。

3、简单变形和方程的解的关系。

【教学过程】第一课时教学流程设计教师指导学生活动1、课堂教学试验 1、观察试验,分析结果2、讲解移项知识 2、学习3、讲解未知数系数化1 3、学习 4、布置练习 4、练习56五、本课小结初步按照分步骤学习通过方程的基本变形来求解简单方程,主要是按照“移项-把未知数的系数化为1”的思路来走,所得结果就是方程的解。

八年级数学下册实践与探讨二教案新人教版

八年级数学下册实践与探讨二教案新人教版

河南省洛阳市下峪镇低级中学八年级数学下册《实践与探讨(二)》教案新人教版时间参加人员地点主备人课题实践与探索(二)教学目标1.知识与技能:熟练掌握一次函数图象的画法,能通过函数图象获取信息,发展形象思维。

2.2. 过程与方法:体验一次函数图象与一元一次方程的解,一元一次不等式的解集之间关系的探索过程,3. 情感态度与价值观:培养学生图形语言,数学语言以及文字语言相互转化的能力。

重、难点及考点分析掌握一次函数图象的画法,能通过函数图象获取信息,发展形象思维。

课时安排一课时教具使用三角板教学环节安排一、范例1.画出函数y=x+3的图象,根据图象,指出:(1)x取什么值时,函数的值等于零?(2)x取什么值时,函数值y始终大于零?从函数y=x+3图象可以看出:当函数值y等于零时,直线y=x+3与x轴相交于点(-2,0),这时的横坐标就是所求的x值。

所以当x=-2时,函数值y等于零。

因为在x轴上方的函数图象每一点的纵坐标都大于0,横坐标都大于-2。

所以当x>-2时,函数值y始终大于零。

小结:在x轴上方的函数图象,任意一点的纵坐标都大于0,反映在函数解析式上,就是函数值大于0,在x轴下方的函数图象,任意一点的纵坐标都小于0,反映在函数解析上,就是函数值小于0。

提问:①当x取什么值时,函数值y始终小于零?②当x取什么值时,函数值y小于3?③当x取何值时,0≤y≤3?二、想一想由上例,想想看,一元一次方程 x+3=0的解,不等式x+3>0的解集与函数y =x+3的图象有什么关系?说说你的想法,并和同学讨论交流.在学生讨论、交流和发表意见后,教师加以引导,最后归纳.三、课堂练习P55页练习l、2.备注四、小结本节课,通过作函数图象、观察函数图象,并从中初步体会一元一次不等式、一元一次方程与一次函数的内在联系,使我们感受到不等式、方程、函数是紧密联系着的一个整体,今后,我们还要继续学习并研究它们之间的内在联系。

实践与探索(2)教学设计说明

实践与探索(2)教学设计说明

实践与探索(2)教学设计说明海口市第一中学陈佳琪“实践与探索(2)——探索一次函数与一元一次方程、一元一次不等式的联系”它是华东师大版九年义务教育八年级教科书下册第十八章第五节“实践与探索”的第2课时内容。

现对本课教案作如下说明:一、本节教学内容的本质、地位以及作用《义务教育数学课程标准》中提出:“应注重体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生,提高他们的推理能力、抽象能力、想象力和创造力。

在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景。

”《实践与探索(2)》是建立在学生对一元一次方程、一元一次不等式以及一次函数的图象、性质等内容的认识上,对已有知识进行更深入的讨论和探索。

在本节课的前一节,教材已经利用实际问题引入,让学生探索了一次函数和二元一次方程组的联系,而本节课就是在此基础上,进一步探索一次函数和一元一次方程以及一元一次不等式之间的联系,是对一次函数及相关内容更深入更全面的学习,对前面的知识进行了延伸和拓展。

从函数的角度对一次方程、一次不等式重新进行分析,这种再认识不是原来水平的回顾复习,而是站在更高起点上的动态分析,是用函数将上述三个内容统一起来,从“数”和“形”两个角度加深了对一元一次方程的解以及一元一次不等式的解集的理解。

“实践与探索”这一内容也是华东师大版教材的一大特色之一,发挥学生的主动性,让学生亲身经历知识的探索过程,进而获得对数学的兴趣。

二、教学目标分析鉴于对教学内容的分析,结合我所教学生的特点和他们已有的认知水平,确定本节课的教学目标为:1.经历知识探究的过程,理解一次函数与一元一次方程以及一元一次不等式之间的联系;2.通过对比、联系,渗透数形结合思想,并能应用其方法解决简单问题;3.在合作学习的过程中培养其观察、分析能力,并应用所学知识解决问题的能力;4.通过实践与探索的过程,加强知识间横向和纵向的融会贯通,体会数学的魅力所在。

七年级数学下册第6章一元一次方程6.3实践与探索第2课时商品销售与增长率问题课件

七年级数学下册第6章一元一次方程6.3实践与探索第2课时商品销售与增长率问题课件

(1)如何进货,使进货款恰好为 46 000 元? (2)如何进货,才能使商场销售完节能灯时获利为 13 500 元?
解:(1)设商场购进甲型节能灯 x 只,则购进乙型节能灯(1 200-x)只. 根据题意,得 25x+45(1 200-x)=46 000,解得 x=400. 则 1 200-x=1 200-400=800. 答:购进甲型节能灯 400 只,购进乙型节能灯 800 只进货款恰好为 46 000 元. (2)设商场购进甲型节能灯 y 只,则购进乙型节能灯(1 200-y)只. 根据题意,得(30-25)y+(60-45)(1 200-y)=13 500,解得 y=450, 则 1 200-y=1 200-450=750. 答:商场购进甲型节能灯 450 只,购进乙型节能灯 750 只时的获利为 13 500 元.
解:设今年一线城市销售金额比去年增加 x. 根据题意,得 40%x-(1-40%)×15%=5%, 解得 x=35%. 答:今年一线城市销售金额比去年增加 35%.
【点悟】 增长率问题的等量关系: 增长后的量=增长前的量×(1+增长率).
当堂测评
[学生用书P18]
1.[2018· 牡丹江二模]某款服装进价 80 元/件,标价 x 元/件,商店对这款 服装推出“买两件,第一件原价,第二件打六折”的促销活动.按促销方 式销售两件该款服装,商店仍获利 32 元,则 x 的值为( A.125 B.120 C.115 D.110
累计 购物 在甲商场 实际花费 在乙商场 实际花费 1 300 2 900 … … … x
1 270 _______ 1 260 _______
2 710 _______ 2 780 _______
0.9x+100 __________ 0.95x+25 __________

6.3.2华师大实践与探索(2)

6.3.2华师大实践与探索(2)

2、将一批工业最新动态信息输入管理储存网络, 甲独做需6小时,乙独做需4小时,甲先做30分钟, 然后甲、乙一起做,则甲、乙一起做还需多少小 时才能完成工作? 解:设甲乙一起做还需要x个小时才能完成工作。
1 1 1 1 根据题意得: ( ) x 1 2 6 6 4 11 解这个方程得:x 经检验,符合题意。5
第五类 ♥ (^ω^) ♥ 航行问题 解题思路:航行问题要涉及到的是干预到速度的量,也就是 风速和水流速度。如果是顺风顺水,那风速和水流就是加 速,因此,要将其与原速相加。如果是逆风逆水,那风速 和水流就是阻力,要将其与原速相减。 公式 顺风顺水 实际速度=静水速度+水流或者风速 逆风逆水 实际速度=静水速度-水流或者风速 (顺水速度+逆水速度)÷2=船速 (顺水速度-逆水速度)÷2=水速 顺水速=船速×2-逆水速=逆水速+水速×2 逆水速=船速×2-顺水速=顺水速-水速×2
第四类 ♥ (^ω^) ♥ 环形跑道问题 解题思路:环形跑道里含有一个固定值,就是跑道的长度 (一般都是400米)。因此,在做环形跑道问题的时候, 一定要看好这个400,它是解题的一个关键点。 公式 相遇型 慢行路程 + 快行路程 = 跑道长度 追及型 快行路程 - 慢行路程 = 跑道长度
4、甲、乙两人在周长是400米的环形跑道上散 步.若两人从同地同时背道而行,则经过2分钟 就相遇.若两人从同地同时同向而行,则经过20 分钟后两人相遇.已知甲的速度较快,求二人散 步时的速度. 解:设甲的速度为x,从而乙的速度为200-x。 根据题意得:20x=20(200-x)+400 解这个方程得:x=110 经检验,符合题意。 答:甲散步的速度为110米每分,乙散步的速度 为90米每分。
甲 原方案

华师版七年级数学下册优秀作业课件(HS) 第6章 一元一次方程 实践与探索 第2课时 商品销售问题

华师版七年级数学下册优秀作业课件(HS) 第6章 一元一次方程 实践与探索 第2课时 商品销售问题
A.不盈不亏 B.盈利20元 C.盈利10元 D.亏损20元 13.五一期间,某百货大楼推出全场八折的优惠活动,持贵宾卡可在八折的基 础上继续打折.小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则 用贵宾卡又继续打了_九___折.
14.(山西中考)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖 心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一 张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该 电饭煲时,使用一张家电消费券后,又付现金568元,求该电饭煲的进价.
解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+ 50%)x元.根据题意,得80%×(1+50%)x-128=568, 解得x=580.答:该电饭煲 的进价为580元
15.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如 果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样 多的利润.
数学 七年级下册 华师版
第6章 一一次方程 6.3 实践与探索
第2课时 商品销售问题
知识点❶ 打折销售问题 1.某服装进货价为80元/件,标价为200元/件,商店将此服装打x折销售后仍获 利50%,则x的值为( B ) A.5 B.6 C.7 D.8 2.(南阳淅川县期末)某品牌旗舰店平日将某商品按进价提高40%后标价,在某 次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的 进价是_2_0_0_0_元. 3.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实 际售价为_1_6_0__元.
解:设此次购书的总价值是x元,则x-12=20+80%x,解得x=160.答:李华 同学此次购书的总价值是160元

二年级上学期音乐全册教案(人教版)

二年级上学期音乐全册教案(人教版)

二年级上学期音乐全册教案(人教版)第一章:课程介绍与目标1.1 课程背景音乐教育是培养学生综合素质的重要途径,对于二年级的学生来说,音乐教育不仅可以提高他们的音乐素养,还能培养他们的审美情趣、团队合作和创新能力。

本课程旨在通过生动有趣的教学活动,让学生感受音乐的魅力,掌握基本的音乐知识和技能,培养他们热爱音乐、表现音乐的情感。

1.2 教学目标(1) 让学生了解并体验音乐的基本元素,如节奏、音高、音色等。

(2) 培养学生的音乐听觉,提高音乐鉴赏能力。

(3) 教授简单的音乐符号和记谱法,使学生能够阅读简单的乐谱。

(4) 通过集体合作的形式,培养学生的团队合作精神和协调能力。

第二章:教学内容2.1 第一单元:认识音乐(1) 学习音乐的基本元素:节奏、音高、音色。

(2) 体验音乐的基本表现形式:旋律、节奏、和声。

(3) 学习简单的音乐术语。

2.2 第二单元:学习乐谱(1) 学习五线谱的基本知识。

(2) 学习简单的音符、休止符、附点、连音等记谱法。

(3) 通过实例教授简单的乐谱阅读技巧。

2.3 第三单元:体验音乐(1) 学习简单的合唱、合奏形式。

(2) 培养学生的音乐听觉,进行音乐鉴赏。

(3) 进行音乐游戏,提高学生的音乐兴趣。

第三章:教学方法3.1 直观演示法:通过教师的现场演示,让学生直观地感受音乐的魅力。

3.2 情境教学法:创设生动有趣的情境,让学生在情境中体验音乐。

3.3 互动教学法:鼓励学生积极参与,进行师生互动、生生互动。

3.4 游戏教学法:通过音乐游戏,激发学生的学习兴趣,提高学生的音乐素养。

第四章:教学评价4.1 课堂表现评价:观察学生在课堂上的参与程度、学习态度等,给予相应的评价。

4.2 音乐作品评价:对学生的音乐作品进行评价,关注学生的创作能力和表现力。

4.3 音乐考试评价:定期进行音乐考试,检验学生的学习成果。

第五章:教学计划5.1 第一单元:认识音乐课时:2课时内容:学习音乐的基本元素,体验音乐的基本表现形式。

2022年华师大版《 实践与探索2》公开课教案

2022年华师大版《 实践与探索2》公开课教案

26.3 实践与探索〔2〕教学目标【知识与能力】图象与x轴交点的个数与一元二次方程的根的个数之间的关系.2.理解二次函数与一元二次方程、一元二次不等式之间的联系,会利用二次函数的图象求一元二次方程的近似解、一元二次不等式的解集。

【过程与方法】能够从函数表达式的角度分析二次函数与一元二次方程和一元二次不等式之间的关系,同时也能够从函数图象的角度分析函数与方程、不等式之间的关系。

【情感态度价值观】通过观察二次函数的图象与x轴的交点个数,讨论一元二次方程根的情况,进一步体会数形结合思想。

教学重难点【教学重点】利用二次函数图象求一元二次方程的近似解及一元二次不等式的解集。

【教学难点】理解二次函数的图象与x轴的交点个数与一元二次方程的根的个数之间的关系,渗透数形结合思想是教学的难点。

课前准备多媒体教学过程图26-3-55-3-55所示,以40 m/s的速度将小球沿与∴抛物线的函数表达式为y=x2-4x+3.【拓展提升】例3 如图26-3-60,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.图26-3-60(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.解:(1)将点A(1,0)的坐标代入y=(x-2)2+m得(1-2)2+m=0,解得m=-1,所以二次函数的表达式为y=(x-2)2-1=x2-4xx=0时,y=4-1=3,所以点C的坐标为(0,3),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=2,所以点B的坐标为(4,3),将A(1,0),B(4,3)的坐标代入y=kx+b,所以一次函数表达式为y=x-1.(2)当kx+b≥(x-2)2+m时,1≤x≤4.师生活动:学生自主解答后,教师进行讲解,学生再次审题,完成对题目的重新整理.【达标测评】1.4 解直角三角形教学重点归纳直角三角形的边、角之间的关系,利用这些关系式解直角三角形,并利用解直角三角形的有关知识解决实际问题.教学难点利用解直角三角形的有关知识解决实际问题.教学用具执教者教学内容共案个案一、新课引入:1、什么是解直角三角形?2、在Rt△ABC中,除直角C外的五个元素间具有什么关系?请学生答复以上二小题,因为本节课主要是运用以上关系解直角三角形,从而解决一些实际问题.学生答复后,板书:(1)三边关系:a2+b2=c2;(2)锐角之间关系:∠A+∠B=90°;(3)边角之间关系第二大节“解直角三角形〞,安排在锐角三角函数之后,通过计算题、证明题、应用题和实习作业等多种形式,对概念进行加深认识,起到稳固作用.同时,解直角三角形的知识可以广泛地应用于测量、工程技术和物理之中,主要是用来计算距离、高度和角度.其中的应用题,内容比较广泛,具有综合技术教育价值.解决这类问题需要进行运算,但三角的运算与逻辑思维是密不可分的;为了便于运算,常常先选择公式并进行变换.同时,解直角三角形的应用题和实习作业也有利于培养学生空间想象能力,要求学生通过观察,或结合文字画出图形,总之,解直角三角形的应用题和实习作业可以培养学生的三大数学能力和分析问题、解决问题的能力.解直角三角形还有利于数形结合.通过这一章学习,学生才能对直角三角形概念有较完整认识,才能把直角三角形的判定、性质、作图与直角三角形中边、角之间的数量关系统一起来.另外,有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章知识加以处理.基于以上分析,本节课复习解直角三角形知识主要通过几个典型例题的教学,到达教学目标.二、新课讲解:1、首先出示,通过一道简单的解直角三角形问题,为以下实际应用奠定根底.根据以下条件,解直角三角形.教师分别请两名同学上黑板板演,同时巡视检查其余同学解题过程,对有问题的同学可单独指导.待全体学生完成之后,大家共同检查黑板上两题的解题过程,通过学生互评,到达查漏补缺的目的,使全体学生掌握解直角三角形.如果班级学生对解直角三角形掌握较好,这两个题还可以这样处理:请二名同学板演的同时,把下面同学分为两局部,一局部做①,另一局部做②,然后学生互评.这样可以节约时间.2、出例如题2.在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB.此题一方面可引导学生复习仰角、俯角的概念,同时,可引导学生加以分析:如图6-39,根据题意可得AB⊥BC,得∠ABC=90°,△ABD和△ABC都是直角三角形,且C、D、B在同一直线上,由∠ADB=45°,AB=BD,CD=20米,可得BC=20+AB,在Rt△ABC中,∠C=30°,可得AB与BC之间的关系,因此山高AB可求.学生在分析此题时遇到的困难是:在Rt△ABC中和Rt△ABD中,都找不出一条边,而题目中的条件CD=20米又不会用.教学时,在这里教师应着重引②,通过①,②两式,可得AB长.解:根据题意,得AB⊥BC,∴∠ABC=Rt△.∵∠ADB=45°,∴AB=BD,∴BC=CD+BD=20+AB.在Rt△ABC中,∠C=30°,通过此题可引导学生总结:有些直角三角形的条件中没有一条边,但二边的关系,结合另一条件,运用方程思想,也可以解决.3.例题3(出示投影片)如图6-40,水库的横截面是梯形,坝顶宽6m,坝高23m,斜坡AB坝底宽AD(精确到0.1m).坡度问题是解直角三角形的一个重要应用,学生在解坡度问题时常遇到以下问题:1.对坡度概念不理解导致不会运用题目中的坡度条件;2.坡度问题计算量较大,学生易出错;3.常需添加辅助线将图形分割成直角三角形和矩形.因此,设计此题要求教师在教学中着重针对以上三点来考查学生的掌握情况.首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,那么BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.。

夏集乡一初中师生共用教学案云秀

夏集乡一初中师生共用教学案云秀

夏集乡一初中师生共用教学案年级:七年级科目:数学执笔:程云秀审该:课题:6.2 解一元一次方程课型:新授学习目标:理解一元一次方程解简单应用题的方法和步骤,并会列一元一次方程解简单应用题。

学习重点:弄清应用题题意列出方程学习难点:弄清应用题题意列出方程教学方法:观察、类比一、自主学习(一)、复习1、什么叫一元一次方程?2、解一元一次方程的理论根据是什么?(二)新授阅读课本例6、例7生思考下列问题:1、根据例6生思考后填表,结合表探索已知量和未知量的关系,题中的等量关系是什么?如何列出方程?2、完成后,让学生检验所求出的解是否合理?(培养学生自学反思求解过程和自觉检验方程的解是否正确的良好习惯)3、针对例7,回答下列问题。

(1)题目中有哪些已知量?(2)题中求什么?(3)等量关系是什么?二、巩固练习教科书第11面练习1、2、3(第1题引导学生画图分析,找出等量关系)三、课堂小结本节课我们学习了什么?教(学)后感:夏集乡一初中师生共用教学案年级:七年级科目:数学执笔:程云秀审该:课题:6.3.1实践与探索课型:新授学习目标:1、掌握常用面积和体积公式2、以不变应万变,寻找不变的量作为等量关系列方程解应用题学习重点:应用面积及体积的等量关系解决实际问题学习难点:等量关系的确定一、自主学习(1)复习提问1、列一元一次方程解应用题的步骤是什么?2、长方形的周长公式、面积公式。

二、合作交流阅读问题1相互交流、讨论。

(1)每小题中如何设未知数?(2)第(2)小题设元可不可以直接设面积为x平方厘米?如不能,该怎么办?(3)问题(1)(2)中长方形的长宽是怎样变化的?你发现了什么?(4)如果把(2)中的宽比长少“4cm”改为3cm、2cm、1cm、0.5cm长方形的面积有什么变化?(5)猜想宽比长少多少时,长方形的面积最大?并加以验证。

三、巩固练习教科书第14页练习1、2第1题,组织学生讨论,寻找本题的“等量关系”第2题,先让学生根据生活经验,开展讨论,解这道题的关键是什么?题中的等量关系是什么?四、达标练习1、将一个底面半径是5厘米,高为10厘米的冰淇淋盒改造成一个直径为20厘米的圆柱体,若体积不变,高为多少?2、一个大人一餐能吃四个面包,四个幼儿一餐只吃一个面包,现有大人和幼儿共100人,一餐刚好吃100个面包,这100人中大人和幼儿各有多少人?教(学)后感:夏集乡一初中师生共用教学案年级:七年级科目:数学执笔:程云秀审该:课题:6.3.2实践与探索课型:新授学习目标:通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型。

(第3课时)6.3实践与探索

(第3课时)6.3实践与探索

小张和父亲预定搭乘家门口的公共汽车 赶往火车站,去家乡看望爷爷.在行驶了一 半路程时,小张向司机询问行车时间,司机 估计继续乘公共汽车到火车站时火车将正好 开出.根据司机的建议小张和父亲随即下车 改乘出租车,车速提高了一倍,结果赶在火 车开车前15分钟到达火车站.已知公共汽车 的平均速度是30千米/时,问小张家到火车 站有多远?
初中数学资源网
华东师大版七年级下册
第6章 一元一次方程
初中数学资源网
想一想
行程问题中的基本数量关系有哪些?
路程=速度×时间
路程 速度= 时间
路程 时间= 速度
想一想
小彬和小明每天早晨坚持跑步,小彬每 秒跑4米,小明每秒跑6米。 (1)如果他们站在百米跑道的两端同时 相向起跑,那么几秒后两人相遇? (2)如果小明站在跑道的起点处,小 彬站在他前面10米处,两人同时同向起跑, 几秒后小明能追上小彬?
1 30 x 60( x ) 4 1 解得: x= 2 1 30 2 x 30 2 30 2
所得的答案与以上解法相同.
小结: (1)学会借助线段图分析较复杂 的数量关系; (2)在探索解决实际问题时,应从 多角度思考问题.
作业:
课本习题第4~பைடு நூலகம்题
另解:设实际上乘公共汽车行驶了x千米, 则从小张家到火车站的路程是2x千米, 1 乘出租车行驶了x千米.注意到提前的 4 小时是由于乘出租车而少用的, 可列出方程: x x 1
30 60 4
解这个方程,得
x=15. 2x=30. 所得的答案与解法一相同.
另解:设实际乘公共汽车x小时, 则可得方程:
解:设小张家到火车站的路程是x千米,由 实际乘车时间比原计划乘公共汽车提前了 1/4小时,可列出方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?
先让学生思考,试着列出方程,对有困难的学生,教师可引导他们进行分析,找出等量关系.
利息-利息税=48.6
可设小明爸爸前年存了x元,那么二年后共得利息为
教学过程设计
一、复习
1.储蓄中的利息、本金、利率、本利和等含义,它们之间的数量关系利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2.商品利润等有关知识.
利润=售价-成本=商品利润率
二、新授
在本章6.l练习中讨论过的教育储蓄,是我国目前暂不征收利息税的储种,国家对其他储蓄所产生的利息征收20%的个人所得税,即利息税.今天我们来探索一般的储蓄问题.
2.43%×X×2,利息税为2.43%X×2×20%
根据等量关系,得2.43%x·2-2.43%x×2×20%=48.6
问,扣除利息的20%,那么实际得到的利息是多少?你能否列出
较简单的方程?
扣除利息的20%,实际得到利息的源自0%,因此可得2.43%x·2·80%=48.6
解方程,得x=1250
例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
大家想一想这15元的利润是怎么来的?
标价的80%(即售价)-成本=15
若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x
每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%-x
由等量关系,列出方程:
(1+40%)x·80%-x=15
解方程,得x=125
答:每件服装的成本是125元.
三、巩固练习
教科书第15页,练习1、2.
四、小结
本节课我们利用一元一次方程解决有关储蓄、商品利润等实际问题,当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性.应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”.
五、作业
教科书第16页,习题6.3.1,第4、5题.
教学札记
针对问题2,本节课特地安排了“用一元一次方程解决百分数应用题”这节,首先是以利率问题和打折问题展开教学,此外又补充了课后的习题,如机票中的行李费是按一定的重量和机票的价格来计算的.此外学生对利息税的问题出现了税前利息×20%=税后利息的错误典型.事先应做好铺垫准备.
课题
一元一次方程
第8课时
实践与探索(二)
课时教学目标
通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型.
教学重点
探索这些实际问题中的等量关系,由此等量关系列出方程.
教学难点
找出能表示整个题意的等量关系.
课前准备
多媒体课件
相关文档
最新文档