2016离散数学练习题 (答案修改)

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

离散数学试题与参考答案

离散数学试题与参考答案

离散数学试题与参考答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1A (B) {1,2, 3}A (C) {{4,5}}A (D) A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>} 5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共20分。

把答案填在对应题号后的横线上。

6. 设集合A ={,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><, 那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系. 9. 写出一个不含“→”的逻辑联结词的完备集 . 10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C) 12. (10分)构造证明:(P (Q S))∧(R ∨P)∧Q R S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

《离散数学》练习题答案

《离散数学》练习题答案

《离散数学》练习题一答案一、单项选择题(每小题2分,共8分) 1—5 . D C B C C 6—10 . A B D C A11—15 C B C D A 16—20 C C B D C 21—25 C C B D C 26—30. D C B A D 31. C二、填空题(每空1分,共11分)1. nn 2. P 、Q 的真值同时为1 3.4. 奇5. 126. Q P ⌝∧7. 9 8.Q P ⌝→ 9.P ,Q 的真值都为010.D B C A ⊆⊆ , 11. 0 12. c b =13. 14 14. c 15. P Q ↔ 或 Q P ↔ 16. b 17. 假 18. 219. 17 20. 0 21. 有余(补)分配格 22. 假 23. 2 24. 17 25. 0 26. 有余(补)分配格 27. ()()Q P Q P ⌝∧∨∧⌝28.{}d d a b b a a c a d c b a b b a , , , , , , , , , , , , , , ,, ,29.⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=100000010000101000110100101010111101R M30. 7 31.1968339=三、解答题(共81分)3.(10分)设G 是平面图,有n 个顶点,m 条边,f 个面,k 个连通分支,证明:1+=+-k f m n 。

证明:对于图G 的每个连通分支都是连通平面图,因此由欧拉公式,有2111=+-f m n 2222=+-f m n… …2=+-k k k f m n其中i i i f m n , , 分别是第i 个连通分支中的顶点数、边数和面数,则1 , , 212121-+=+++=+++=+++k f f f f m m m m n n n n k k k将上述k 个等式相加,有k k f m n 21=-++-,即1+=+-k f m n4.(8分)化简下列布尔表达式。

离散数学自考题真题2016年04月_真题(含答案与解析)-交互

离散数学自考题真题2016年04月_真题(含答案与解析)-交互

离散数学自考题真题2016年04月(总分100, 做题时间90分钟)第Ⅰ部分选择题一、单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的)1.下列命题公式为永假式的是______SSS_SINGLE_SELA ﹁(P→Q)B ﹁(P→Q)∧QC (P→Q)∨QD ﹁P∧(P→Q)该问题分值: 1答案:B[解析] 当且仅当P的真值为T,Q的真值为F时,P→Q为F,其余情况P→Q为T。

则选项A的真值可为T也可为F。

同理选项C、选项D可为F亦可为T,只有选项B在任何情况下均为F。

2.偏序关系一定不是______SSS_SINGLE_SELA 自反的B 传递的C 反自反的D 反对称的该问题分值: 1答案:C3.下列语句为复合命题的是______SSS_SINGLE_SELA 今天天气凉爽B 今天天气炎热,有雷阵雨C x+y>16D 今天天气多好呀,外面景色多美呀该问题分值: 1答案:B[解析] 判断命题有两个条件:(1)语句本身是陈述句;(2)它有唯一的真值。

因此C、D不是命题更不是复合命题;A是简单命题;只有B是复合命题。

4.设R(x):x是实数,L (x,y):x<y,语句“没有最大的实数”可符号化为______A.B.C.D.SSS_SIMPLE_SINA B C D该问题分值: 1答案:A5.下列集合关于数的加法和乘法运算不能构成环的是______SSS_SINGLE_SELA 自然数集合B 整数集合C 有理数集合D 实数集合该问题分值: 1答案:A6.5个结点的非同构的无向树的数目是______SSS_SINGLE_SELA 5B 4C 3D 2该问题分值: 1答案:C[解析] 5个结点的非同构无向树有3个,具体如下:7.设A={1,2,3,4,5,6},为A上的整除关系,则A的最小元为______ SSS_SINGLE_SELA 1B 3C 4D 6该问题分值: 1答案:A[解析] A={1,2,3,4,5,6},则其哈斯图为,则其最小元是1。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

2016离散数学练习题 (答案修改)分析

2016离散数学练习题 (答案修改)分析

2016注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。

2、第二遍复习按照考试大纲的总结把重点内容再做复习。

另外,把大纲中指定的例题及书后习题认真做一做。

检验一下主要内容的掌握情况。

3、第三遍复习把随后发去的练习题认真做一做,检验一下复习情况,要认真理解,注意做题思路与方法。

离散数学综合练习题一、选择题1.令p : 今天下雪了,q :路滑,r :他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( A )。

A. p q r ∧→ B. p q r ∨→ C. p q r ∧∧D. p q r ∨↔2.设()P x :x 是整数,()f x :x 的绝对值,(,)L x y :x 大于等于y ;命题“所有整数的绝对值大于等于0”可符号化为( B )。

A. (()((),0))x P x L f x ∀∧ B. (()((),0))x P x L f x ∀→ C. ()((),0)xP x L f x ∀∧ D. ()((),0)xP x L f x ∀→3.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为(D )。

A .(()())x F x G x ∀∧B . (()())x F x G x ⌝∃→⌝C .(()())x F x G x ⌝∃∧D . (()())x F x G x ⌝∃∧⌝ *4.下列命题公式不是永真式的是( A )。

A . ()p q p →→B . ()p q p →→C . ()p q p ⌝∨→D . ()p q p →∨5.设p :我们划船,q :我们跳舞,命题“我们不能既划船又跳舞”符号化正确的是( B )。

A. p q ∧ B. ()p q ⌝∧ C. p q ⌝∧⌝ D. p q ⌝∧6.设()R x :x 为有理数;()Q x :x 为实数。

命题“任何有理数都是实数”的符号化为( A )A .()(()())∀→x R x Q xB .()(()())∀∧x R x Q xC .()(()())x R x Q x ∃∧D .(()())x R x Q x ∃→ 7. 设个体域{,}D a b =,与公式()xA x ∃等价的命题公式是( C )A .()()A a A b ∧B .()()A a A b →C .()()A a A b ∨D .()()A b A a →8.无向图G 有20条边,4个6度顶点,2个5度顶点,其余均为2度顶点,则G 一共有( C )个顶点。

离散数学习题答案解析

离散数学习题答案解析

离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。

习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。

*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。

B. 有向图中的边无方向性,无向图中的边有方向性。

C. 无向图和有向图都是由顶点和边组成的。

D. 无向图和有向图都只由边组成。

答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。

B. 若集合A和B相交为空集,则A和B相等。

C. 若集合A和B相等,则A和B互相包含。

D. 若集合A和B相等,则A和B相交为空集。

答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。

答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。

答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。

答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。

答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。

答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。

证明过程:假设A和B互相包含,即A包含于B且B包含于A。

设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。

同理,对于集合B中的任意元素y,y也属于集合A。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。

A。

p∧┐p∧qB。

┐p∨qC。

┐p∧qD。

┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。

A。

p→┐qB。

p∨┐qC。

p∧qD。

p∧┐q3.只有语句“1+1=10”是命题(A)。

A。

1+1=10B。

x+y=10___<0D。

x mod 3=24.下列等值式不正确的是(C)。

A。

┐(x)A(x)┐AB。

(x)(B→A(x))B→(x)A(x)C。

(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。

(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。

A。

(x)Q(x,z)→(x)(y)R(x,y,z))B。

Q(x,z)→(y)R(x,y,z)C。

Q(x,z)→(x)(y)R(x,y,z)D。

Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。

}∪IA则对应于R的A的划分是(D)。

A。

{{a},{b,c},{d}}B。

{{a,b},{c},{d}}C。

{{a},{b},{c},{d}}D。

{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。

A。

{Ø,{Ø}}∈BB。

{{Ø,Ø}}∈BC。

{{Ø},{{Ø}}}∈BD。

{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。

A。

(X-Y)-Z=X-(Y∩Z)B。

(X-Y)-Z=(X-Z)-YC。

(X-Y)-Z=(X-Z)-(Y-Z)D。

(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。

A。

a*b=min(a,b)B。

a*b=a+bC。

a*b=GCD(a,b) (a,b的最大公约数)D。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。

答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。

答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。

答案:满射4. 在图论中,一个没有环的连通图被称为_________。

答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。

答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

2016离散数学练习题-(答案修改)

2016离散数学练习题-(答案修改)

2016离散数学练习题-(答案修改)2016注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。

2、第二遍复习按照考试大纲的总结把重点内容再做复习。

另外,把大纲中指定的例题及书后习题认真做一做。

检验一下主要内容的掌握情况。

3、第三遍复习把随后发去的练习题认真做一做,检验一下复习情况,要认真理解,注意做题思路与方法。

离散数学综合练习题一、选择题1.令p : 今天下雪了,q :路滑,r :他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( A )。

A. p q r ∧→B. p q r ∨→C. p q r ∧∧D. p q r ∨↔2.设()P x :x 是整数,()f x :x 的绝对值,(,)L x y :x 大于等于y ;命题“所有整数的绝对值大于等于0”可符号化为( B )。

A. (()((),0))x P x L f x ∀∧ B. (()((),0))x P x L f x ∀→ C. ()((),0)xP x L f x ∀∧ D. ()((),0)xP x L f x ∀→3.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为(D )。

A .(()())x F x G x ∀∧B . (()())x F x G x ⌝∃→⌝C .(()())x F x G x ⌝∃∧D . (()())x F x G x ⌝∃∧⌝ *4.下列命题公式不是永真式的是( A )。

A. ()p q p →→B. ()p q p →→C. ()p q p ⌝∨→D. ()p q p →∨5.设p :我们划船,q :我们跳舞,命题“我们不能既划船又跳舞”符号化正确的是( B )。

A. p q ∧ B. ()p q ⌝∧ C. p q ⌝∧⌝ D. p q ⌝∧6.设()R x :x 为有理数;()Q x :x 为实数。

命题“任何有理数都是实数”的符号化为( A )A .()(()())∀→x R x Q xB .()(()())∀∧x R x Q xC .()(()())x R x Q x ∃∧D .(()())x R x Q x ∃→ 7. 设个体域{,}D a b =,与公式()xA x ∃等价的命题公式是( C )A .()()A a A b ∧B .()()A a A b →C .()()A a A b ∨D .()()A b A a →8.无向图G 有20条边,4个6度顶点,2个5度顶点,其余均为2度顶点,则G 一共有( C )个顶点。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

离散数学考试题详细答案

离散数学考试题详细答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(P⇄Q)(P⇄R S)b)我今天进城,除非下雨。

设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。

设P表示命题“你走”,Q表示命题“我留下”,命题符号化为: Q→P2.用谓词逻辑把下列命题符号化a)有些实数不是有理数设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为:x(R(x) Q(x)) 或x(R(x) →Q(x))b)对于所有非零实数x,总存在y使得xy=1。

设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为:x(R(x) E(x,0) →y(R(y) E(f(x,y),1))))c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)⇄∀a(A(a)→∃b(B(b) ∧ E(f(a),b) ∧∀c(S(c) ∧ E(f(a),c) →E(a,b))))二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)(P→(Q→R))(R→(Q→P))(P Q R)(P Q R)((P Q R)→(P Q R)) ∧((P Q R) →(P Q R)).((P∧Q∧R) (P Q R)) ∧ ((P∧Q∧R) (P Q R))(P Q R) ∧(P Q R) 这是主合取范式公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)(P∧Q∧R)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)a) T b) F3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016注意事项:1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。

2、第二遍复习按照考试大纲的总结把重点内容再做复习。

另外,把大纲中指定的例题及书后习题认真做一做。

检验一下主要内容的掌握情况。

3、第三遍复习把随后发去的练习题认真做一做,检验一下复习情况,要认真理解,注意做题思路与方法。

离散数学综合练习题一、选择题1.令p : 今天下雪了,q :路滑,r :他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( A )。

A. p q r ∧→ B. p q r ∨→ C. p q r ∧∧D. p q r ∨↔2.设()P x :x 是整数,()f x :x 的绝对值,(,)L x y :x 大于等于y ;命题“所有整数的绝对值大于等于0”可符号化为( B )。

A. (()((),0))x P x L f x ∀∧ B. (()((),0))x P x L f x ∀→ C. ()((),0)xP x L f x ∀∧ D. ()((),0)xP x L f x ∀→3.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为(D )。

A .(()())x F x G x ∀∧B . (()())x F x G x ⌝∃→⌝C .(()())x F x G x ⌝∃∧D . (()())x F x G x ⌝∃∧⌝ *4.下列命题公式不是永真式的是( A )。

A . ()p q p →→B . ()p q p →→C . ()p q p ⌝∨→D . ()p q p →∨5.设p :我们划船,q :我们跳舞,命题“我们不能既划船又跳舞”符号化正确的是( B )。

A. p q ∧ B. ()p q ⌝∧ C. p q ⌝∧⌝ D. p q ⌝∧6.设()R x :x 为有理数;()Q x :x 为实数。

命题“任何有理数都是实数”的符号化为( A )A .()(()())∀→x R x Q xB .()(()())∀∧x R x Q xC .()(()())x R x Q x ∃∧D .(()())x R x Q x ∃→ 7. 设个体域{,}D a b =,与公式()xA x ∃等价的命题公式是( C )A .()()A a A b ∧B .()()A a A b →C .()()A a A b ∨D .()()A b A a →8.无向图G 有20条边,4个6度顶点,2个5度顶点,其余均为2度顶点,则G 一共有( C )个顶点。

A .7B .8C .9D .10*9.设集合A ={c , {c }},下列命题是假命题的为( C )。

A .{}()c P A ∈B . {{}}()c P A ∈C . {}()c P A ⊆D .{{}}()c P A ⊆ 10.设X ={,{},{,}}a a ∅∅,则下列陈述正确的是( C )。

A .a X ∈ B .{,}a X ∅⊆ C .{{,}}a X ∅⊆D .{}X ∅∈11.有向图D 是连通图,当且仅当( D )。

A . 图D 中至少有一条通路B . 图D 中有通过每个顶点至少一次的通路C . 图D 的连通分支数为一D . 图D 中有通过每个顶点至少一次的回路 12.设A={a,b,c},则下列是集合A 的划分的是( B ) A .{{,},{}}b c c B . {{},{,}}a b c C .{{,},{,}}a b a c D . {{,},}a b c 13.下列谓词公式中是前束范式的是( D )。

A .()()()xF x x G x ∀∧⌝∃B .()()xF x yG y ∀∨∀C .(()(,))x P x yQ x y ∀→∃D .(()(,))x y P x Q x y ∀∃→ 14. 设简单图G 所有结点的度数之和为50,则G 的边数为( B )。

A. 50B. 25C. 10D. 515.设集合{1,2,3,4}A =,A 上的等价关系{1,1,3,2,2,3,R =<><><> 4,4}A I <>,则对应于R 的划分是( A )。

A . {{1},{2,3},{4}} B . {{1,3},{2,4}} C . {{1,3},{2},{4}} D . {{1},{2},{3},{4}}16. 设{1,2,3},{,,,},{1,,2,,3,}X Y a b c d f a b c ===<><><>,则f 是( C )。

A .从X 到Y 的双射B .从X 到Y 的满射,但不是单射C .从X 到Y 的单射,但不是满射D .从X 到Y 的二元关系,但不是从X 到Y 的映射 17.下列图是欧拉图的是( D )。

18.给定一个有n 个结点的无向树,下列陈述不正确的是( A )。

A .所有结点的度数≥2B .无回路但若增加一条新边就会变成回路C .连通且1e v =-,其中e 是边数,v 是结点数D .无回路的连通图19.若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( C )。

A. (1,2,2,3,4,5) B. (1,2,3,4,5,5) C. (1,1,1,2,3)D. (2,3,3,4,5,6)20. 设{,{},{,{}}}A a a a a =则其幂集()P A 的元素总个数为( C )。

A. 3 B. 4 C. 8 D. 1621. 设简单图G 所有结点的度数之和为48,则G 的边数为( B ) A. 48 B. 24 C. 16 D. 1222.下面既是哈密顿图又是欧拉图的图形是( B )。

23.下列必为欧拉图的是( D ) A.有回路的连通图B.不可以一笔画的图C.有1个奇数度结点的连通图D.无奇数度结点的连通图24.二部图 3,3K 是( B )。

A.欧拉图B. 哈密顿图C.平面图D. 完全图25.下列所示的哈斯图所对应的偏序集中能构成格的是( C )。

A .B .C .D .26.设集合{,,}A a b c =,A 上的关系{,,,,,}R a a a c c a =<><><>,则R 是( B ) A .自反的 B .对称的 C .传递的 D .反对称的 27.设12,R R 是集合{,,,}A a b c d =上的两个关系,其中1{,,,,R a a b b =<><> ,,,}b c d d <><>,2{,,,,,,,,,}R a a b b c b b c d d =<><><><><>,则2R 是1R 的( B )闭包。

A .自反 B .对称C .传递D .自反、对称且传递闭包28. 下列公式是前束范式的是( A )。

A .()()((,)())x y F z x G y ∀∀⌝∨B .(()()()())()x F x y G y H z ⌝∃∨∀∧C .()(,)()()x F x y y G y ∃→∀D .()((,)()(,))x F x y y G x y ∀→∀ 29. 设R 为实数集,函数:f R R →,2()25f x x x =-++,则f 是( D )。

A .单射而非满射B .满射而非单射C .双射D .既不是单射,也不是满射30.下列各图中既是欧拉图,又是汉密尔顿图的是( C )。

A .B .C .D .12.设12{|()0},{|()0}M x f x N x f x ====,则方程12()()0f x f x ⋅=的解为(B )。

A .M ∩NB .M ∪NC .M ⊕N C .M-N13.设,G A =<*>是群,则下列陈述不正确的是( C )。

A . 11()a a --=B . n m n m a a a +=C . 111()ab a b ---=D . 11()n n a ba a b a --=二、填空题1.命题公式()p p q →∧的成真指派为 00 01 11, 成假指派为_10__。

2.公式()()(()(,))()(,)x y P y Q x z y R x y ∀∀→∧∃约束变元为 x ,y ,自由变元为 x ,z 。

3.设{,,{,}}A a b a b =,{,}B a b =,则B A - , ,A B ⊕= {{a,b}} 。

4.设{,,}A a b c =,A 上的关系{,,,}R a b b a =<><>,则对称闭包()s R ={,,,}a b b a <><>,传递闭包()t R ={,,,,,,,}a b b a a a b b <><><><>。

5.一棵无向树的顶点数n 与边数m 的关系是 n-1 。

6阶无向连通图至多有 6 棵不同构的生成树。

6.设()1f x x =-,2()g x x =,则复合函数()()f g x =2(1)x -,()()g f x =21x -。

7. ,n Z <⊕>是一个群,其中{0,1,2,,1}n Z n =-,()mod x y x y n ⊕=+,则当n =6时,在6,Z <⊕>中,2的阶为__3____, 3的阶为_2 。

8.设<A ,≤>是格,其中A={1, 3,4,6,8,12,24},≤为整除关系,则1的补元是___24 __,3的补元是__8__。

9.设A={<1,3>,<3,5>,<4,4>},B={<1,3>,<4,5>,<5,5>},那么dom()A B ={1,3,4,5} ran ()A B = {3} _。

10. 设A ={l,2,3,4},A 上的二元关系R ={<1,2>,<2,3>,<3,2>},S ={<l,3>,<2,3>,<4,3>},则R S = {<1,3>,<3,3>} ,1()R S -= {<3,1>,<3,3>} 。

11.设复合函数g f 是从A 到C 的函数,如果g f 是满射,那么__g ___必是满射,如果g f 是单射,那么__f _必是单射。

12.给出A ={l ,2}上的一个等价关系{1,1,2,2}<><>,并给出其对应的划分{{1},{2}}。

相关文档
最新文档