自动控制系统位置随动系统课程设计
《自动控制原理》课程设计位置随动系统的超前校正
位置随动系统的超前校正1 设计任务及题目要求1.1 初始条件图1.1 位置随动系统原理框图图示为一随动系统,放大器增益为Ka=59.4,电桥增益Kτ=6.5,测速电机增益Kt=4.1,Ra=8Ω,La=15mH,J=0.06kg.m/s2JL =0.08kg.m/s2,fL=0.08,Ce=1.02,Cm=37.3,f=0.2,Kb=0.1,i=11.2 设计任务要求1、求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数;2、出开环系统的截至频率、相角裕度和幅值裕度,并设计超前校正装置,使得系统的相角裕度增加10度。
3、用Matlab对校正前后的系统进行仿真分析,比较其时域相应曲线有何区别,并说明原因。
2 位置随动系统原理2.1 位置随动系统工作原理工作原理:该系统为一自整角机位置随动系统,用一对自整角机作为位置检测元件,并形成比较电路。
发送自整角机的转自与给定轴相连;接收自整角机的转子与负载轴(从动轴)相连。
TX 与TR 组成角差测量线路。
若发送自整角机的转子离开平衡位置转过一个角度1θ,则在接收自整角机转子的单相绕组上将感应出一个偏差电压e u ,它是一个振幅为em u 、频率与发送自整角机激励频率相同的交流调制电压,即sin e em u u t ω=⋅在一定范围内,em u 正比于12θθ-,即12[]em e u k θθ=-,所以可得12[]sin e e u k t θθω=-这就是随动系统中接收自整角机所产生的偏差电压的表达式,它是一个振幅随偏差(12θθ-)的改变而变化的交流电压。
因此,e u 经过交流放大器放大,放大后的交流信号作用在两相伺服电动机两端。
电动机带动负载和接收自整角机的转子旋转,实现12θθ=,以达到跟随的目的。
为了使电动机转速恒定、平稳,引入了测速负反馈。
系统的被控对象是负载轴,被控量是负载轴转角2θ,电动机施执行机构,功率放大器起信号放大作用,调制器负责将交流电调制为直流电供给直流测速发电机工作电压,测速发电机是检测反馈元件。
位置随动系统建模与分析--自控课设教材
课程设计任务书学生姓名: 专业班级: 指导教师: 工作单位: 自动化学院题 目: 位置随动系统建模与分析 初始条件:图示为一位置随动系统,放大器增益为8=a k ,电桥增益2=εk ,测速电机增 益15.0=t k V.s ,Ω=5.7a R ,La=14.25mH ,J=0.0006kg .m 2, C e =Cm=0.4N.m/A, f=0.2N.m.s, 减速比i=10 。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数;2、 当Ka 由0到∞变化时,用Matlab 画出其根轨迹。
3、 Ka =10时,用Matlab 画出此时的单位阶跃响应曲线、求出超调量、超调时间、 调节时间及稳态误差。
4、 求出阻尼比为0.7时的Ka ,求出此时的性能指标与前面的结果进行对比分析。
时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录1 位置随动系统原理 (3)1.1 位置随动系统原理框图 (3)1.2 元件结构图分析 (3)1.3 位置随动系统各元件传递函数 (5)1.4 位置随动系统的结构框图 (5)1.5 位置随动系统的信号流图 (6)1.6 相关函数的计算 (6)2根轨迹曲线 (7)2.1参数根轨迹转换 (7)2.2绘制根轨迹 (7)3单位阶跃响应分析 (8)3.1单位阶跃响应曲线 (8)3.2单位阶跃响应的时域分析 (9)4系统性能对比分析 (11)4.1 新系统性能指标计算 (11)4.2 系统性能指标对比分析 (11)5 总结体会 (12)参考文献 (13)位置随动系统建模与分析1 位置随动系统原理1.1 位置随动系统原理框图图1.1位置随动系统原理框图工作原理:用一对电位器作为位置检测元件,并形成比较电路。
两个电位器分别将系统的输入和输出位置信号转换成与位置比例的电压信号,并做出比较。
自动控制原理课程设计
前言一般来说,随动控制系统要求有好的跟随性能。
位置随动系统是非常典型的随动系统,是个位置闭环反馈系统,系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器、自整角机、旋转变压器、感应同步器等。
位置随动系统中的给只给定量是经常变动的,是一个随机量,并要求输出量准确跟随给定量的变化,输出响应具有快速性、灵活性和准确性。
为了保证系统的稳定性,并具有良好的动态性能,必须设有校正装置,如在正向通道中设置串联校正装并联校正装置等,为了提高位置随动系统的控制精度,还需要增加系统的开环放大倍数或在系统中增加积分环节等。
坦克火控系统等控制系统归根结底主要是依赖于位置随动系统的控制问题,其根本任务就是以足够的控制精度通过执行机构实现被控目标即输出位置对给定量即输入位置的及时和准确的跟踪。
1.控制系统的设计步骤根据综述所述,坦克火炮控制系统可抽象为位置随动系统,主要解决位置跟随的控制问题,其根本任务就是通过执行机构实现被控量即输出位置对给定量即输入位置的及时和准确的跟踪,并要求具有足够的控制精度。
根据设计任务的要求,本设计采用双闭环系统,实现输出信号对输入信号的跟踪和复现。
初步设计的环节如下角差检测装置可以选择电位器组成的检测器,或者自整角机检测装置。
有两个运算放大器环节:第一个运放为角差检测装置,它可以选择可以选择电位器组成的检测器,或者自整角机检测装置。
第二个运算放大器:给定电压与反馈电压在此合成,产生偏差电压,将经过该运算放大器放大。
功率放大器:给定电压与反馈电压在此合成,产生偏差电压,经过放大器放大。
执行部件:系统中执行元件可选用电枢控制直流伺服电动机和两相伺服电动机,电枢控制的直流伺服电动机在控制系统中广泛用作执行机构,能够实现对被控对象的机械运动的快速控制。
减速器:减速器对随动系统的工作有重大影响,减速器速比的选择和分配将影响到系统的惯性矩,并影响到快速性。
自动控制原理课程设计位置随动系统
,从而拖动负载运动。
~5~
重庆邮电大学自动化学院自动控制原理课程设计
直流电动机:微分方程式为 :
Tm
d M dt
m K mua K c M c
式中 Tm , K m , K c 及 M c 是考虑减速器和负载后,折算到电动机轴上的等效值。
测速发电机
是用于测量角速度并且将角速度转换成电压量的装置, 本设计中是永磁式直流测速 发电机。测速发电机的转子与带测量的轴相连接,在点电枢两端输出与转子角速度成正 比的直流电压,即 U T KT , 式中 K T 是测速发电机的比例系数。是测速发电机的输 出斜率,表示单位角速度的输出电压。
重庆邮电大学自动化学院自动控制原理课程设计
目录
一、设计题目 ....................................................................................................................... 2 1.1 设计目的 ............................................................................................................ 2 1.2 设计内容与任务 ............................................................................................... 2 二、报告正文 ....................................................................................................................... 3 2.1 任务一的分析与求解 ........................................................................................ 4 2.1.1 系统原理图 ..................................................................................................... 4 2.1.2 系统工作原理 ................................................................................................. 4 2.1.3 系统结构框图 ................................................................................................. 4 2.1.4 系统各环节传递函数..................................................................................... 5 2.2 任务二的分析与求解 ........................................................................................ 7 2.2.1 时域分析 ......................................................................................................... 7 2.2.2 频域分析 ....................................................................................................... 10 2.3 任务三的分析及求解 ...................................................................................... 11 2.3.1 校正要求 ...................................................................................................... 11 2.3.2 校正系统的函数的求解 ............................................................................... 12 2.3.3 通过 Matlab 仿真得到校正后传递函数的频域曲线特性 ............................ 12 三、设计总结及体会 .......................................................................................................... 15 3.1 总结 ................................................................................................................ 15 3.2 体会 ................................................................................................................. 15 四、参考文献: ................................................................................................................. 16 五、附录 ............................................................................................................................. 17 MATLAB 仿真函数 ............................................................................................... 17
位置随动系统课程设计概要
第一章位置随动系统的概述1.1 位置随动系统的概念位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。
位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。
位置随动系统是应用非常广泛的一类工程控制系统。
它属于自动控制系统中的一类反馈闭环控制系统。
随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。
例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。
随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。
1.2 位置随动系统的特点及品质指标位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。
对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。
对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。
位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。
位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。
根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。
总结后可得位置随动系统的主要特征如下:1.位置随动系统的主要功能是使输出位移快速而准确地复现给定位移。
2.必须具备一定精度的位置传感器,能准确地给出反映位移误差的电信号。
3.电压和功率放大器以及拖动系统都必须是可逆的。
4.控制系统应能满足稳态精度和动态快速响应的要求,其中快速响应中,更强调快速跟随性能。
自动控制原理课程设计——位置随动系统
自动控制原理课程设计——位置随动系统
在工业自动化领域,位置随动系统扮演着重要的角色。
它能够使驱动装置根据指令精确地移动到指定位置,并保持稳定。
位置随动系统的核心是自动控制系统,该系统通过反馈机制实时监测和调整驱动装置的位置。
在位置随动系统中,通常采用步进电机或伺服电机作为驱动装置。
这些电机能够根据控制系统的指令精确地转动一定的角度,从而实现位置的精确控制。
为了确保系统的稳定性,通常会采用闭环控制,即通过位置传感器实时监测电机的位置,并将位置信息反馈给控制系统。
在自动控制原理课程设计中,学生需要了解并掌握位置随动系统的基本原理、组成和实现方法。
学生需要自行设计并实现一个简单的位置随动系统,通过实验验证系统的性能和稳定性。
在设计过程中,学生需要考虑系统的硬件组成、控制算法的选择和实现、传感器选择和校准、系统调试和优化等方面的问题。
学生需要通过理论分析和实验验证相结合的方法,不断优化和完善系统设计。
通过这个课程设计,学生可以深入了解自动控制原理在实际应用中的重要性,提高自己的动手能力和解决问题的能力。
同时,这个课程设计也可以为学生未来的学习和工作打下坚实的基础。
位置随动系统的分析与设计_自动控制原理课程设计
《自动控制原理》课程设计(简明)任务书——供09级电气工程与自动化专业学生用引言:《自动控制原理》课程设计是该课程地一个重要教案环节,既有别于毕业设计,更不同于课堂教案.它主要是培养学生统筹运用自动控制原理课程中所学地理论知识,掌握反馈控制系统地基本理论和基本方法,对工程实际系统进行完整地全面分析和综合. 一、设计题目:位置随动系统地分析与设计 二、系统说明:该系统结构如下图所示其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s2,JL=0.03kg.m/s2,fL=0.08,Ce=1,Cm=3,f=0.1,Kb =0.2,i=0.02三、系统参量: 系统输入信号:)(t 1θ 系统输出信号:)(t 2θ 四、设计指标:设定:输入为r(t)=a+bt (其中:a=10, b=5) 在保证静态指标(ess≤0.3)地前提下, 要求动态期望指标:σ p ﹪≤15﹪;ts≤5sec ;五、基本要求:1. 建立系统数学模型——传递函数;2. 利用根轨迹方法分析系统:(1)作原系统地根轨迹草图;(2)分析原系统地性能,当原系统地性能不满足设计要求时,则进行系统校正.3.利用根轨迹方法综合系统:(1)画出串联校正结构图,分析并选择串联校正地类型(微分、积分和微分-积分校正);(2)确定校正装置传递函数地参数;(3)画出校正后地系统地根轨迹图,并校验系统性能;若不满足,则重新确定校正装置地参数.4.完成系统综合前后地有源物理模拟电路;六、课程设计报告:1、课程设计计算说明书一份;2、原系统组成结构原理图一张(自绘);3、系统分析,综合用根轨迹图一张;4、系统综合前后地模拟图各一张;5、总结(包括课程设计过程中地学习体会与收获、对本次课程设计地认识等内容);6、提供参考资料及文献;7、排版格式完整、报告语句通顺、封面装帧成册摘要随动系统是指系统地输出以一定地精度和速度跟踪输入地自动控制系统,并且输入量是随机地,不可预知地.在很多情况下,随动系统特制被控量是机械位移地比还控制系统 .控制技术地发展,使随动系统得到了广泛地应用.位置随动系统是反馈控制系统,是闭环控制,调速系统地给定量是恒值,希望输出量能稳定,因此系统地抗干扰能力往往显得十分重要.而位置随动系统中地位置指令是经常变化地,要求输出量准确跟随给定量地变化,输出响应地快速性、灵活性和准确性成了位置随动系统地主要特征.简言之,调速系统地动态指标以抗干扰性能为主,随动系统地动态指标以跟随性能为主.在控制系统地分析和设计中,首先要建立系统地数学模型.控制系统地数学模型是描述系统内部物理量(或变量)之间关系地数学表达式.在自动控制理论中,数学模型有多种形式.时域中常用地数学模型有微分方程、差分方程和状态方程;复数域中有传递函数、结构图;频域中有频率特.本次课程设计研究地是位置随动系统地滞后校正,并对其进行分析.关键字:随动系统性能分析digestServo system is to point to the output of the system with a certain the precision and speed of tracking input of the automatic control system, and is the input of random, unpredictable. In many cases, servo system special was charged with volume is mechanical displacement control system than also. Control the development of technology, make servo systems have been widely used.Position servo system is feedback control system, is the closed-loop control and speed regulation system for the quantitative value is constant, want to output quantity can stable, so the anti-interference ability of the system often become very important. And with the position of the position servo system instructions are often changes, requirement output accurate quantitative change to follow, the response of the output, flexibility and accuracy position servo system became the main features. In short, speed regulation system in dynamic index to anti-jamming performance is given priority to, servo system dynamic index to follow performance primarily.In the control system of the analysis and design, the first to establish the mathematical model of the system. The mathematical model of the control system is to describe the system internal parameters (or variables) of the relationship between the mathematical expressions. In automatic control theory, the mathematical model has a variety of forms. Commonly used in time domain of mathematical model of the ordinary differential equations, difference equation and state equation。
数字位置随动控制系统的设计
《计算机控制系统》课程设计题目:数字位置随动控制系统设计学院:电气与信息工程学院班级:姓名:学号:指导老师:目录一、题目说明 (2)二、设计要求 (2)三、控制系统的工作原理说明 (2)四、控制器设计 (3)五、组成系统的主要硬件 (5)1、信号发生器 (5)2、角度采样(电位器) (5)3、通讯电路 (9)4 、电机 (9)六、系统软件 (10)七、PID前馈补偿控制实验 (10)八、结束语 (11)参考文献 (12)一、题目说明利用位置传感器和直流电动机的位置随动系统,见图a 。
该系统是利用位置传感器形成位置环,由所选定的单片机来完成数字控制器。
图a 全数字位置随动系统示意图二、设计要求:定位精度0.4°。
定位过程超调量<10%。
输入阶跃、速度、加速度转角信号时,调节时间为250ms 。
三、控制系统的工作原理说明:1 系统结构与工作流程本文设计了一种电流 、位置双闭环反馈控制系统 。
如图 1所示 ,硬件系统包括了信号发生器 、TM$320LF2407 (以下 简称 F2407)控制器 、电机驱动 、电机及负载 、电流采样 、角度采样和通讯电路几个模式。
手柄 角度盘单片机 驱动电路 A/D 转换 位置反馈 位置给定 电源 直流电机 键盘输入图1 整体电路功能框图为了更好地模拟工业中实际的随动系统,采用SPCEO61A 作为信号发生器,F2407通过ADC 单元采样SPCE061A产生的波形,作为系统的被跟踪信号。
F2407的ADC单元(ADIN2、ADIN4)采样反映通过机的电流值和电机转动角度值的电压信号,作为系统的反馈。
F2407通过串口SCl单元实时向PC机发送系统状态信息。
一方面,PC机实时显示系统状态曲线,创造了良好的人机界面,实现了对系统状态的实时监控。
另一方面可以保存统状态信息,为系统建模及控制算法研究提供了试验数据。
每个采样周期开始,DSP首先采样给定信号、位置反馈信号和电流反馈信号,然后执行随动系统的PID等控制策略计算输出加在电机两端的PWM 电压信号量,最后通过电机驱动芯A3952进行功率放大,驱动电机转动,实现随动控制。
位置随动系统的分析与设计自动控制原理课程设计627036讲课教案
《自动控制原理》课程设计(简明)任务书引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。
它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。
一、设计题目:位置随动系统的分析与设计二、系统说明: 该系统结构如下图所示BSTBSR相敏电流功率放大SM负载TG减速器θ1θ2K εuaun其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s 2,J L =0.03kg.m/s 2,f L =0.08,C e =1,Cm=3,f=0.1,K b =0.2,i=0.02三、系统参量:系统输入信号:)(t 1θ 系统输出信号:)(t 2θ 四、设计指标:设定:输入为r(t)=a+bt (其中:a=10, b=5) 在保证静态指标(ess ≤0.3)的前提下,要求动态期望指标:σp ﹪≤15﹪;ts≤5sec;五、基本要求:1.建立系统数学模型——传递函数;2.利用根轨迹方法分析系统:(1)作原系统的根轨迹草图;(2)分析原系统的性能,当原系统的性能不满足设计要求时,则进行系统校正。
3.利用根轨迹方法综合系统:(1)画出串联校正结构图,分析并选择串联校正的类型(微分、积分和微分-积分校正);(2)确定校正装置传递函数的参数;(3)画出校正后的系统的根轨迹图,并校验系统性能;若不满足,则重新确定校正装置的参数。
4.完成系统综合前后的有源物理模拟电路;六、课程设计报告:1、课程设计计算说明书一份;2、原系统组成结构原理图一张(自绘);3、系统分析,综合用根轨迹图一张;4、系统综合前后的模拟图各一张;5、总结(包括课程设计过程中的学习体会与收获、对本次课程设计的认识等内容);6、提供参考资料及文献;7、排版格式完整、报告语句通顺、封面装帧成册摘要随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的。
自控原理基础实验课程设计(随动系统校正修正) 2
实验六随动系统的校正(课程设计)一、实验目的1.学习使用SIMULINK进行系统仿真的方法。
2.掌握如何运用最常用的校正方法对线性系统性能进行校正。
3.借助SIMULINK验证自行设计的校正方案的正确性。
4.掌握校正的概念和设计方法。
二、实验原理及内容:SIMULINK是MATLAB的重要组成部分。
它具有相对独立的功能和使用方法,实际上它是对系统进行建模、仿真和分析的软件包。
SIMULINK的基本功能模块包括连续系统、离散系统、非线性系统、函数与表、数学运算、信号与系统、输入模块、接收模块等组成。
在这里,我们主要针对实验涉及的有关部分作简要地介绍。
1.1 SIMULINK的基本操作1.1.1SIMULINK的进入只要在MATLAB命令窗口的提示符下输入“Simulink”或者“simulink”(注意两者间大小写的区别),按回车键即可启动SIMULINK软件窗体。
如果输入的是“Simulink”,按回车键后出现的是“library:simulink”窗体(图1),此窗体内包含了SIMULINK的基本功能模块,双击其中任何一项,均会弹出此模块包含的所有子模块的窗体(图2)如下图所示:双击图1 “library:simulink” 窗体图2 “Sources”模块包含的所有子模块的窗体如果输入的是“simulink”,按回车键后出现的是“Simulink library Brower”窗体(图3),此窗体内的左下子窗体显示了SIMULINK的基本功能模块,右下的窗体显示了左边窗体选中的基本功能模块的所有子模块。
图3 “Simulink library Brower” 窗体1.1.2 窗体介绍在建模之前,你需要创建一个工作区域窗体。
创建一个工作区域的方法为,选择“File”项,然后再选择“New”菜单中的“Model”子菜单,这将弹出一个新的窗体,这个窗体就是用于构造系统模型,仿真等操作的工作区域,故称这个窗体为工作窗体。
位置随动系统课程设计
位置随动系统课程设计引言:位置随动系统是一种能够根据外部环境和任务需求自动调整位置和姿态的系统。
在本文中,我将介绍一个关于位置随动系统的课程设计。
通过这个课程设计,学生们将能够深入了解位置随动系统的原理、设计和应用,并通过实践项目提升他们的实践能力和团队合作能力。
一、引入位置随动系统位置随动系统是一种智能系统,能够通过传感器和控制算法实现自动调整位置和姿态。
它可以广泛应用于工业生产、医疗器械、机器人等领域,提高生产效率和工作质量。
二、课程设计目标本课程设计的主要目标是让学生们了解位置随动系统的基本原理和设计方法,培养他们的创新思维和实践能力。
通过项目实践,学生们将能够独立设计和实现一个简单的位置随动系统,并通过团队合作完成一个应用案例。
三、课程设计内容1. 位置随动系统原理介绍:学生们将学习传感器原理、控制算法和运动规划等基础知识,了解位置随动系统的工作原理。
2. 设计与建模:学生们将学习如何设计和建模一个位置随动系统,包括选择合适的传感器、控制器和执行器,以及进行系统建模和仿真。
3. 控制算法设计:学生们将学习如何设计合适的控制算法,以实现位置和姿态的自动调整,并优化系统的性能。
4. 系统实现与调试:学生们将利用硬件平台和软件工具,实现他们设计的位置随动系统,并进行调试和优化。
5. 应用案例实践:学生们将以小组为单位,选择一个实际应用场景,设计和实现一个位置随动系统的应用案例,并进行演示和评估。
四、课程设计亮点1. 实践导向:本课程设计注重实践能力的培养,通过项目实践,学生们将能够将所学知识应用于实际问题的解决。
2. 团队合作:学生们将以小组为单位进行项目实践,培养他们的团队合作和沟通能力。
3. 创新思维:学生们将面临真实的问题和挑战,在解决问题的过程中培养创新思维和解决问题的能力。
五、总结通过本课程设计,学生们将能够全面了解位置随动系统的原理、设计和应用,并通过实践项目提升他们的实践能力和团队合作能力。
自动控制系统课程设计
自动控制系统课程设计一、课程目标知识目标:1. 让学生掌握自动控制系统的基本概念、分类及工作原理,理解并能够描述典型自动控制系统的结构组成。
2. 使学生了解自动控制系统中常用的数学模型,并能够运用这些模型分析系统的性能。
3. 让学生掌握自动控制系统的性能指标及其计算方法,能够评价系统的稳定性、快速性和准确性。
技能目标:1. 培养学生运用数学工具进行自动控制系统建模、分析及设计的能力。
2. 使学生具备使用相关软件(如MATLAB等)进行自动控制系统仿真的技能。
3. 培养学生解决实际自动控制工程问题的能力,提高团队协作和沟通表达能力。
情感态度价值观目标:1. 培养学生对自动控制技术的兴趣和热情,激发他们探索未知、勇于创新的精神。
2. 培养学生严谨的科学态度,注重实践,养成良好的学习习惯。
3. 增强学生的环保意识,让他们明白自动控制技术在节能、减排等方面的重要作用,提高社会责任感。
本课程针对高年级学生,结合自动控制系统的学科特点,注重理论联系实际,强调知识、技能和情感态度价值观的全面发展。
通过本课程的学习,使学生能够为从事自动控制领域的研究和实际工程应用打下坚实基础。
二、教学内容1. 自动控制系统概述:介绍自动控制系统的基本概念、分类、应用领域,使学生建立整体认识。
教材章节:第一章 自动控制系统导论2. 自动控制系统的数学模型:讲解线性微分方程、传递函数、状态空间等数学模型,以及它们在自动控制系统中的应用。
教材章节:第二章 自动控制系统的数学模型3. 自动控制系统的性能分析:讲解稳定性、快速性、准确性等性能指标,以及相应的计算方法。
教材章节:第三章 自动控制系统的性能分析4. 自动控制系统的设计方法:介绍PID控制、状态反馈控制、最优控制等设计方法,培养学生实际设计能力。
教材章节:第四章 自动控制系统的设计方法5. 自动控制系统仿真:结合MATLAB等软件,讲解自动控制系统仿真的基本方法。
教材章节:第五章 自动控制系统仿真6. 自动控制系统的应用案例分析:分析典型自动控制系统的实际应用案例,提高学生解决实际问题的能力。
位置随动系统课程设计
课程设计任务书学生姓名: 王吉彪 专业班级:自动化1007指导教师: 陈启宏 工作单位: 自动化学院题 目: 位置随动系统建模与分析初始条件:图示为一位置随动系统,放大器增益为Ka ,电桥增益2K ε=,测速电机增益0.15t k =V.s ,Ra=7.5Ω,La=14.25mH ,J=0.006kg.m 2,C e =Cm=0.4N.m/A,f=0.2N.m.s,减速比i=0.1要求完成的主要任务:1、求出系统各部分传递函数,画出系统结构图、信号流图,并求出闭环传递函数;2、当Ka 由0到∞变化时,用Matlab 画出其根轨迹。
3、Ka =10时,用Matla 画求出此时的单位阶跃响应曲线、求出超调量、超调时间、调节时间及稳态误差。
4、求出阻尼比为0.7时的Ka ,求出各种性能指标与前面的结果进行对比分析。
时间安排:任务 时间(天)审题、查阅相关资料1 分析、计算 1.5 编写程序 1 撰写报告 1 论文答辩0.5指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日1位置随动系统建模与分析1.1位置随动系统的原理分析1.1.1 位置随动系统原理图图1-1 位置随动系统原理图图示为一位置随动系统,放大器增益为Ka ,电桥增益2K ε=,测速电机增益0.15t k =V .s ,Ra=7.5Ω,La=14.25mH ,J=0.006kg.m2,Ce=Cm=0.4N.m/A,f=0.2N.m.s,减速比i=0.11.1.2 位置随动系统原理分析位置随动系统原理图如图1.1所示,主要由位置检测器、电压比较放大器、可逆功率放大器和执行机构几部分组成.系统中给定r θ为输入量,负载为受控量,它的转角为c θ,要求控制负载的转角位移c θ随着输入量r θ的变化变化并保持一致。
位置测量器为两个环形电位器构成的桥式电路,它测量出系统输入量个输出量的偏差角度c -r θθ并将其转换成为电信号,电信号经过放大后驱动电机旋转。
自动控制原理课程设计_位置随动系统的分析与设计说明
成绩课程设计报告课程设计名称:自动控制原理课程设计题目:位置随动系统的分析与设计姓名专业学号指导教师2012年12月24日设计任务书引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。
它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。
一. 设计题目:位置随动系统的分析与设计二.系统说明:该系统结构如下图所示其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s 2,J L =0.03kg.m/s 2,f L =0.08,C e =1,Cm=3,f=0.1,K b =0.2,i=0.02三.系统参量系统输入信号:)(tθ1系统输出信号:)(tθ2四.设计指标e;1.在单位斜坡信号x(t)=t作用下,系统的稳态误差01.0≤ss2.开环截止频率30>w;c3.相位裕度︒γ;>40c五.基本要求:1.建立系统数学模型——传递函数;2.利用频率特性法分析系统:(1)根据要求的稳态品质指标,求系统的开环增益值;(2)根据求得的值,画出校正前系统的Bode图,并计算出幅值穿越频率、相位裕量,以检验性能指标是否满足要求。
若不满足要求,则进行系统校正。
3.利用频域特性法综合系统:(1)画出串联校正结构图,分析并选择串联校正的类型(超前、滞后和滞后-超前校正);(2)确定校正装置传递函数的参数;(3)画出校正后的系统的Bode图,并校验系统性能指标。
若不满足,则重新确定校正装置的参数。
4.完成系统综合前后的有源物理模拟电路:六、课程设计报告:1.报告内容(包括课程设计的主要内容、基本原理以及课程设计过程中参数的计算过程和分析过程);(1)课程设计计算说明书一份;(2)原系统组成结构原理图一张(自绘);(3)系统分析,综合用精确Bode图各一张;(4)系统综合前后的模拟图各一张。
自控课程设计(位置随动系统)
位置随动系统建模与分析1位置随动系统的原理分析1.1位置随动系统的原理图位置随动系统的基本原理图如下所示:图1-1 位置随动系统的原理图1.2 位置随动系统工作基本原理位置随动系统工作原理:位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系以及绳轮等基本环节组成,它通常采用负反馈控制原理进行工作,其原理图如图1-1所示。
在图1-1中,测量元件为由电位器Rr 和Rc组成的桥式测量电路。
负载就固定在电位器Rc的滑臂上,因此电位器Rc的输出电压Uc和输出位移成正比。
当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。
当偏差ΔU=0时,电动,表明输出位移与输入位移相对应。
测机停止转动,负载停止移动。
此时δ=δL速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。
1.3 位置随动系统的基本组成环节1.3.1 自整角机作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。
自整角机作为角位移传感器,在位置随动系统中是成对使用的。
与指令轴相连的是发送机,与系统输出轴相连的是接收机。
u(t)=Kτ(θ1(t)−θ2(t))=Kτ∗∆θ(t) (1-1) 在零初始条件下,对上式求其拉普拉斯变换,可求得电位器的传递函数。
则其传递函数如下式所示:G(s)=U(s)/∆Θ(s)=Kτ(1-2) 根据所求得的传递函数,绘制出自整角机结构图可用图1-2表示如下:图 1-2 自整角机1.3.2 功率放大器由于运算放大器具有输入阻抗很大,输出阻抗小的特点,在工程上被广泛用来作信号放大器。
其输出电压与输入电压成正比,传递函数为:G(s)=Ua(s)/U1(s)=Ka(1-3) 式中参数Ua为输出电压,U1为输入电压,Ka为放大倍数。
功率放大器结构图可用图1-3表示:图 1-3 功率放大器1.3.3 两台伺服电动机列出其工作方程如下:T m∗[d2θ(t)/dt2]+dθ(t)/dt=K m∗u a(t) (1-4) 根据式(1-4),对两边进行拉普拉斯变换,可以求得其传递函数。
位置随动系统课程设计之欧阳治创编
第一章位置随动系统的概述1.1 位置随动系统的概念位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。
位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。
位置随动系统是应用非常广泛的一类工程控制系统。
它属于自动控制系统中的一类反馈闭环控制系统。
随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。
例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。
随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。
1.2位置随动系统的特点及品质指标位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。
对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。
对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。
位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。
位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。
根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。
总结后可得位置随动系统的主要特征如下:1.位置随动系统的主要功能是使输出位移快速而准确地复现给定位移。
2.必须具备一定精度的位置传感器,能准确地给出反映位移误差的电信号。
3.电压和功率放大器以及拖动系统都必须是可逆的。
4.控制系统应能满足稳态精度和动态快速响应的要求,其中快速响应中,更强调快速跟随性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。
在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。
位置随动系统要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性为位置随动系统的主要特征。
本次课程设计研究的是位置随动系统的超前校正,并对其进行分析。
关键词:随动系统超前校正相角裕度目录1 位置随动系统原理 (1)1.1 位置随动系统原理图 (1)1.2 各部分传递函数 (1)1.3 位置随动系统结构框图 (4)1.4 位置随动系统的信号流图 (4)1.5 相关函数的计算 (4)1.6 对系统进行MATLAB仿真 (5)2 系统超前校正 (6)2.1 校正网络设计 (6)2.2 对校正后的系统进行Matlab仿真 (8)3 对校正前后装置进行比较 (9)3.1 频域分析 (9)3.2 时域分析 (9)4 总结及体会 (10)参考文献 (12)位置随动系统的超前校正1 位置随动系统原理1.1 位置随动系统原理图图1-1 位置随动系统原理图系统工作原理:位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系及绳轮等组成,采用负反馈控制原理工作,其原理图如图1-1所示。
在图1-1中测量元件为由电位器Rr 和Rc 组成的桥式测量电路。
负载固定在电位器Rc 的滑臂上,因此电位器Rc 的输出电压Uc 和输出位移成正比。
当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc ,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。
当偏差ΔU=0时,电动机停止转动,负载停止移动。
此时δ=δL ,表明输出位移与输入位移相对应。
测速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。
1.2 各部分传递函数(1)自整角机:作为常用的位置检测装置,将角位移或者直线位移转换成模拟电压信号的幅值或相位。
自整角机作为角位移传感器,在位置随动系统中是成对使用的。
与指令轴相连的是发送机,与系统输出轴相连的是接收机。
12()(()())()u t K t t K t εεθθθ=-=∆ (1-1)零初始条件下,对上式求拉普拉斯变换,可求得电位器的传递函数为()()()U s G s K s ε==∆Θ (1-2)自整角机可用图1-2的方框图表示(2)功率放大器:由于运算放大器具有输入阻抗很大,输出阻抗小的特点,在工程上被广泛用来作信号放大器。
其输出电压与输入电压成正比,传递函数为1()()()a a U S G s K U S == (1-3)式中U a 为输出电压,U 1为输入电压,Ka 为放大倍数。
结构图如图1-3图1-3 功率放大器(3)两相伺服电动机:22()()()m m mm a d t d t T k u t dt dtθθ+= (1-4)拉普拉斯变换为2()()()m m m a T s s s k u s θ+=,于是可得伺服电机传递函数 ()()()(1)m ma m s k G s u s s T s θ==+ (1-5)其中 ()m a a m e T R J R f C C =+是电动机机电时间常数;()m m a m e K C R f C C =+是电动机传递系数。
伺服电机结构图可用图1-4表示:图1-2 自整角机(4)减速器:1()()O t t iθθ= (1-6)拉普拉斯变换为:1()()O s s iΘ=Θ (1-7)传递函数为:()1()()O s G s s iΘ==Θ (1-8)式中i 为转速比。
其结构图如图1-5所示(5)测速发电机测速发电机的输出电压Ut 与其转速ω成正比,即有t t u K ω= (1-9)于是可得测速发电机的微分方程t td u K dtθ= (1-10)经过拉普拉斯变换,可得传递函数()()()t t U S G S K s S ==Θ (1-11)测速发电机的结构图如图1-6图1-6 测速发电机图1-5 减速器图1-4 两相伺服电动机1.3 位置随动系统结构框图由以上各个部分的方框图及系统原理图不难作出系统的结构图,如图1-7所示图1-7 位置随动系统结构框图1.4 位置随动系统的信号流图图1-8 信号流图1.5 相关函数的计算由系统的结构图可写出开环传递函数2/()(1)a m m t a m K k k iG s T s k k k sε=++ (1-12)式中,K ε为电桥增益,ka 为放大器增益,t k 为测速电机增益,i 为齿轮系的减速比。
系统为单位负反馈,于是可得闭环传递函数2/()(1)/a m m t a m a m K k k is T s k k k s K k k iεεΦ=+++ (1-13)在MATLAB 中调用tf() 函数和feedback()函数,求系统的开、闭环传递函数代码如下:ka=20; kb=2.5;kt=0.12; ra=8; la=0.0015;1θθmk u u θ2θj=0.0055; cm=0.38; ce=0.38; f=0.22;i=0.4;tm=ra*j/(ra*f+cm*ce);km=cm/(ra*f+cm*ce);num=[ka*km*kb/i]; %开环传递函数分子系数,按s降幂排列den=[tm,ka*km*kt+1,0]; %开环传递函数分母系数,按s降幂排列s1=tf(num,den) %调用tf()函数,求出开环传递函数sys=feedback(s1,1) %调用feedback()函数,求出单位反馈闭环传递函数程序运行结果:开环传递函数:Transfer function:24.94--------------------------0.0231 s^2 + 1.479 s闭环传递函数:Transfer function:24.94------------------------------------0.0231 s^2 + 1.479 s + 24.941.6 对系统进行MATLAB仿真求系统的幅值裕度和相角裕度,可直接调用margin()函数。
margin()函数可以从频率响应数据中计算出幅值裕度、相位裕度及其对应的角频率。
调用格式为margin(sys)其中sys为系统的开环传递函数。
代码如下:figure(4);margin(s1); %调用margin()函数,求校正前系统的相角裕度和幅值裕度grid on;MATLAB运行结果:图1-9 校正前系统波特图由图1-9可知:校正前,截止频率 16.3/c rad s ω=;相角裕度75.7γ︒=;幅值裕度为dB +∞。
2 系统超前校正2.1 校正网络设计利用超前网络的相角超前特性,使已校正系统的截止频率和相角裕度满足性能指标要求,从而改善闭环系统的动态性能。
无源超前校正网络电路图如图2-1所示R2CU1U2图2-1 无源超前网络传递函数为:1()1c TsG S Tsαα+=+ (2-1)其中 122R R R α+=,1212R R T C R R =+ 采用无源超前校正时,整个系统开环增益要下降α倍,因此需提高放大器增益加以补偿。
在系统中把原放大器增益增加α倍,补偿增益损失,则有1()1c TsG S Tsα+=+ (2-2)经计算可得串联校正的最大超前角频率m ω=(2-3)最大超前角1arcsin 1m αφα-=+ (2-4)确定校正后系统的截止频率ωc2为了最大限度利用超前网络的相位超前量,ωc2应与ωm 相重合。
在ωm 处|αG(s)| 的增益为10lg α,所以ωc2应选在未校正系统的L(ω)= -10 lg α处。
调用leadc()函数求超前校正传递函数,调用格式为leadc(sys, γ),sys 为系统待校正开环传递函数,γ为需要校正的相角度数。
代码如下:[Gc]=leadc(s1,13) %调用leadc()函数,求超前校正的传递函数leadc()函数代码如下function [Gc]=leadc(sope,vars) gama=vars(1);[mag,phase,w]=bode(sope); %计算bode 图的输出数据,mag 为系统振幅值,%phase 为bode 图的相位值,w 为bode 图的频率点[mu,pu]=bode(sope,w);gam=gama*pi/180; %将角度值换成弧度alpha=(1+sin(gam))/(1-sin(gam)); %由式3-4计算校正函数中α的值 adb=20*log10(mu);am=-10*log10(alpha);wc=spline(adb,w,am); %spline()为线性插值函数,求得L(ω)= -10 lg α时%频率即为ωc2,也为 ωmT=1/(wc*sqrt(alpha)); %将ωm 和α带入式3-3,求出T alphat=alpha*T;Gc=tf([alphat 1],[T 1]); %求出串联超前校正传递函数 end程序运行结果:α= 1.5805 T = 0.0393串联超前校正传递函数:Transfer function: 0.06218 s + 1 ---------------- 0.03934 s + 12.2 对校正后的系统进行Matlab 仿真写出校正后的传递函数,然后调用margin()函数求出校正后的相角裕度,γ取不同的值,验证校正后传递函数的相角裕度,当γ=13时满足要求。
代码如下:s2=s1*Gc %校正后的开环传递函数 figure(5);margin(s2); %求校正后的相角裕度 grid on运行结果:校正后的开环传递函数为:Transfer function:1.551 s + 24.94---------------------------------------------- 0.000909 s^3 + 0.08129 s^2 + 1.479 s校正后系统bode 图:图2-2 校正后系统波特图根据图2-2可知:截止频率20.2/c rad s ω=;相角裕度85.5γ︒=;幅值裕度h dB =+∞。
由leadc()可得出串联校正传递函数的参数:α=1.5805 T =0.0393取R2=100k ,可求得R1=58k C=1uF校正电路如图2-3图2-3 校正网络3 对校正前后装置进行比较3.1 频域分析校正前,截止频率 16.3/c rad s ω=;相角裕度75.7γ︒=;幅值裕度h =+∞。