(完整版)万有引力知识点详细归纳
万有引力定律知识点总结
万有引力定律知识点总结引力是自然界中一种普遍存在的力量,它负责维持着行星、恒星和其他天体之间的相互作用。
而万有引力定律则是描述了引力的基本规律,由英国科学家牛顿在17世纪提出。
万有引力定律可以简洁地表述为:任何两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
下面将详细介绍这个定律的几个重要知识点。
1. 引力的大小与质量成正比:根据万有引力定律,两个物体之间的引力与它们的质量成正比。
这意味着质量越大的物体之间的引力越强。
例如,地球的质量远远大于一个苹果的质量,因此地球对苹果的引力要比苹果对地球的引力大得多。
2. 引力的大小与距离的平方成反比:万有引力定律还指出,两个物体之间的引力与它们之间的距离的平方成反比。
这意味着物体之间的距离越近,它们之间的引力越强。
例如,当我们离地球表面更近时,我们能感受到的地球引力也更强。
3. 引力的方向:根据万有引力定律,引力的方向始终指向两个物体之间的中心。
例如,地球对一个物体的引力指向地球的中心,而物体对地球的引力也指向地球的中心。
这解释了为什么物体会朝着地球的中心下落。
4. 引力的公式:万有引力定律的数学表达式为F = G * (m1 * m2) / r^2,其中F表示引力的大小,G是一个常数,m1和m2分别表示两个物体的质量,r表示它们之间的距离。
这个公式可以用来计算任意两个物体之间的引力大小。
5. 引力的应用:万有引力定律不仅可以解释地球上物体的运动,还可以解释行星绕太阳的运动、卫星绕地球的运动等。
它是天体力学的基础,对于研究宇宙的结构和演化具有重要意义。
总结起来,万有引力定律是描述引力作用的基本规律,它告诉我们引力的大小与物体的质量成正比,与它们之间的距离的平方成反比。
这个定律的发现对于我们理解宇宙的运行机制和天体运动具有重要的意义。
通过应用这个定律,我们可以解释和预测天体的运动,深入探索宇宙的奥秘。
(完整版)高中物理万有引力部分知识点总结
高中物理——万有引力与航天知识点总结一、开普勒行星运动定律(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。
(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。
3.适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离。
对于均匀的球体,r是两球心间的距离。
三、万有引力定律的应用1.解决天体(卫星)运动问题的基本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM.2.天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3).(1)若已知天体的半径R,则天体的密度ρ=V(M)=πR3(4)=GT2R3(3πr3)(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π)可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.3.人造卫星(1)研究人造卫星的基本方法看成匀速圆周运动,其所需的向心力由万有引力提供.G r2(Mm)=m r(v2)=mr ω2=m 224T πr^2=ma 向.(2)卫星的线速度、角速度、周期与半径的关系①由GMm/r^2=mv^2/r 得v =GM/r ,故r 越大,v 越小②由GMm/r^2=mr ω2得ω=GMm/r^3,故r 越大,ω越小③由GMm/r^2=m(4π^2/T^2)r 得T =GM 32r 4π,故r 越大,T 越大(3)人造卫星的超重与失重①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态。
高中物理万有引力公式的知识点
高中物理万有引力公式的知识点1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11N&;m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
拓展阅读一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何像法,求解运动好方法。
自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。
中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等aT平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
二、力1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
万有引力知识点(精华)
万有引力定律备注:在天文上的应用:(G 万有引力常量;M 中心天体质量;m 环绕天体质量;g 天体表面重力加速度;R :天体自身半径;r 表示卫星或行星的轨道半径;h 表示离地面或天体表面的高度 h R r +=)1、开普勒三定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴a 的三次方跟公转周期T 的二次方的比值都相等。
表达式为: k T a =23 ⎪⎭⎫ ⎝⎛=24πGM k 其中 只与中心天体质量有关与行星无关。
2 、万有引力公式:221r m m GF =万 (适用条件:只适用于质点间的相互作用)G 为万有引力常量:G = 6.67×10-11 N ·m 2 / kg 23、万有引力−−→−提供向心力ma 2r GMa =轨道半径越大,向心加速度越小=2r MmG rv m 2轨道半径越大,线速度越小 r m 2ω 轨道半径越大,角速度越小r T m 224π 轨道半径越大,周期越大4、中心天体质量MrGMv =GMr T 324π=3r GM =ω 结论:轨道半径r 大,除了周期T 大之外都小(1)由 r Tm r Mm G 2224π= 得 ,注意是被围绕天体(处于圆心处)的质量。
(2)由 mg R Mm G =2 得 GgR M 2= , R 为地球自身半径;g 为地球表面重力加速度。
5、黄金代换: mg RMmG=2 2gR GM =在不知地球质量的情况下可用其自身半径R 和表面的重力加速度g 来表示。
6、天体的平均密度:32332323344R GT r R GT r V M ⋅⋅===πππρ 特别地:若为近地卫星,即r=R 时:23GT πρ=7、天体的追击问题:最近 最近最远 最远最近 最远 最远 最近8、双星系统:对1m : 12212214r Tm Lm m G π= 对2m : 22222214r Tm Lm m G π=关系 : L r r =+219、宇宙速度:第一宇宙速度:s km v /9.71=人造卫星的最小发射速度;最大环绕速度:结论: 232214GTl m m π=+ 和 121221v v r r m m == 2324GT r M π=n t t ⋅=-πωω221)(1221-⋅=-n t t πωω 1m2mL2r(特点:角速度、周期相等;质量大的半径小)s km gR RGMv /9.71===3由 R vm R Mm G 212= 得 RGM v =1由 Rvm mg 21= 得 gR v =1第二宇宙速度:s km v /2.112=,使物体挣脱地球引力束缚的最小发射速度。
《认识万有引力定律》 知识清单
《认识万有引力定律》知识清单一、什么是万有引力定律万有引力定律是指任何两个物体之间都存在相互吸引的力,这个力的大小与这两个物体的质量成正比,与它们之间距离的平方成反比。
用公式表示就是:F = G (m1 m2) / r²,其中 F 表示两个物体之间的引力,G 是万有引力常量,约为 667×10⁻¹¹ N·m²/kg²,m1 和 m2 分别表示两个物体的质量,r 是两个物体质心之间的距离。
二、万有引力定律的发现者万有引力定律是由英国科学家艾萨克·牛顿发现的。
据说,牛顿是在看到苹果从树上落下时,开始思考物体下落的原因,并最终发现了万有引力定律。
这个故事虽然简单,但却生动地展示了牛顿敏锐的观察力和深刻的思考能力。
三、万有引力定律的意义1、解释天体运动万有引力定律成功地解释了天体的运动规律,包括行星绕太阳的运动、卫星绕行星的运动等。
它使得人们能够准确地预测天体的位置和运动轨迹,为天文学的发展奠定了坚实的基础。
2、统一了地上和天上的力学在牛顿之前,人们认为天上和地上的物体遵循不同的力学规律。
万有引力定律的发现表明,无论是地球上的物体还是天体,都受到相同的引力作用,从而统一了地上和天上的力学。
3、推动科学技术的发展万有引力定律在航天技术、卫星通信、导航等领域有着广泛的应用。
例如,在计算卫星的轨道、发射火箭时,都需要用到万有引力定律。
四、万有引力定律的适用范围1、宏观物体万有引力定律适用于宏观物体,对于微观粒子,由于量子力学效应的影响,万有引力定律不再适用。
2、弱引力场在强引力场中,如黑洞附近,万有引力定律需要进行修正,需要用到广义相对论。
五、万有引力常量的测量1、卡文迪许扭秤实验英国科学家亨利·卡文迪许通过巧妙的扭秤实验,成功地测量出了万有引力常量 G 的值。
他的实验设计非常精巧,利用了微小的引力作用产生的扭转力矩来测量引力的大小。
万有引力知识点汇总
万有引力开普勒行星运动定律1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不同的星系中,此比值是不同的.(R 3T 2=k ) 一、对开普勒三定律的理解1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点.2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小.3.开普勒第三定律的表达式为a 3T2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关.二、开普勒三定律的应用1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转.2.表达式a 3T2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关.三、太阳与行星间的引力1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力2.万有引力的三个特性(1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力.(2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.(3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.四、万有引力和重力的关系1. 万有引力和重力的关系如图6-2、3-3所示,设地球的质量为M ,半径为R ,A 处物体的质量为m ,则物体受到地球的吸引力为F ,方向指向地心O ,由万有引力公式得F =G Mmr2.引力F 可分解为F 1、F 2两个分力,其中F 1为物体随地球自转做圆周运动的向心力F n ,F 2就是物体的重力mg2.近似关系:如果忽略地球的自转,则万有引力和重力的关系为:mg =GMm R 2,g 为地球表面的重力加速度.关系式2G Mm/R mg =即2gr G M =3.随高度的变化:在高空中的物体所受到的万有引力可认为等于它在高空中所受的重力mg ′=G Mm(R +h )2,在地球表面时mg =G Mm R 2,所以在距地面h 处的重力加速度g ′=R 2(R +h )2g . 五.计算天体的质量行星绕太阳,卫星绕行星做匀速圆周运动,为他们提供向心力的就是他们之间的万有引力,测量出环绕周期和环绕半径。
万有引力知识点
第六章 万有引力与航天7.万有引力与重力的关系:(1)“黄金代换”公式推导:当F G =时,就会有22gR GM RGMm mg =⇒=。
(2)注意:①重力是由于地球的吸引而使物体受到的力,但重力不是万有引力。
②只有在两极时物体所受的万有引力才等于重力。
③重力的方向竖直向下,但并不一定指向地心,物体在赤道上重力最小,在两极时重力最大。
④随着纬度的增加,物体的重力减小,物体在赤道上重力最小,在两极时重力最大。
⑤物体随地球自转所需的向心力一般很小,物体的重力随纬度的变化很小,因此在一般粗略的计算中,可以认为物体所受的重力等于物体所受地球的吸引力,即可得到“黄金代换”公式。
8.万有引力定律与天体运动:运动性质:通常把天体的运动近似看成是匀速圆周运动。
从力和运动的关系角度分析天体运动:天体做匀速圆周运动运动,其速度方向时刻改变,其所需的向心力由万有引力提供,即F 需=F 万。
如图所示,由牛顿第二定律得:2m ,LGM F ma F ==万需,从运动的角度分析向心加速度: .)2(22222L f L T L L v a n ππω=⎪⎭⎫ ⎝⎛=== (3)重要关系式:.)2(222222L f m L T m L m L v m L GMm ππω=⎪⎭⎫ ⎝⎛=== 2、地球绕太阳公转的角速度为ω1,轨道半径为R 1,月球绕地球公转的角速度为ω2,轨道半径为R 2,那么太阳的质量是地球质量的多少倍?解析:地球与太阳的万有引力提供地球运动的向心力,月球与地球的万有引力提供月球运动的向心力,最后算得结果为321221 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛R R ωω。
9.计算大考点:“填补法”计算均匀球体间的万有引力: 谈一谈:万有引力定律适用于两质点间的引力作用,对于形状不规则的物体应给予填补,变成一个形状规则、便于确定质点位置的物体,再用万有引力定律进行求解。
模型:如右图所示,在一个半径为R ,质量为M 的均匀球体中,紧贴球的边缘挖出一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d 的质点m 的引力是多大?思路分析:把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可求解。
必修二万有引力与航天知识点总结完整版
第六章 万有引力与航天知识点总结一. 万有引力定律:①容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。
即: 其中G =6. 67×10-11N ·m 2/kg 2 ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。
忽略地球自转可得: 二. 重力和地球的万有引力: 1. 地球对其表面物体的万有引力产生两个效果:(1)物体随地球自转的向心力:F 向=m ·R ·(2π/T 0)2,很小。
由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。
(2)重力约等于万有引力:在赤道处:mg F F +=向,所以R m RGMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m RGMm 22自ω>>,所以2R GM g =。
地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重力大小相等。
如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。
如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。
在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g +=。
强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。
2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。
即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2122m m F Gr =2R Mm Gmg =一、人类认识天体运动的历史1、“地心说”的容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、“日心说”的容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略)二、开普勒行星运动定律的容推论:开普勒第二定律:v v >远近开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的环绕星体才可以列比例,太阳系: 333222===......a a a T T T 水火地地水火a---半长轴或半径,T---公转周期 三、万有引力定律1、容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
高一物理万有引力知识点总结
高一物理万有引力知识点总结
一、引力
1、引力是指物体之间的相互之间的作用力。
2、引力的定义是:质点之间的相互作用力,由距离决定,两者
距离越近,作用力越大,质点距离越远,作用力越小。
3、引力法则:引力作用力是双向的,即两质点之间的引力是相
等的。
二、引力的类型
1、斥力:即两物体间的反作用力。
2、弹力:物体之间的弹力也可以理解为引力,如弹簧的弹力。
3、磁力:当有磁体存在时,它们之间会产生的磁力。
4、重力:重力也是一种引力,也是宇宙中最有名的引力,它是
引起物体的自由落体运动的主要原因。
三、引力的实验
1、布拉格实验:是实验物理学家布拉格(1887年)用来测量引力的实验,该实验就揭示了物质间的相互引力。
2、太阳引力实验:该实验是行星发射实验的一种,它使用火箭
向太阳系内的行星发射小卫星,测量其飞行到临近太阳时引力的变化。
四、引力的其他知识
1、引力的公式:引力公式为F=G×m1×m2/r2,其中F表示引力,G表示万有引力常数,m1、m2表示两个作用质点的质量,r表示两个质点之间的距离。
2、万有引力常数:万有引力常数是宇宙中最基本的常数,它的值大约为6.67×10-11 N·m2/kg2。
重力的知识点总结归纳
重力的知识点总结归纳一、理论基础1. 万有引力定律万有引力定律是牛顿在17世纪提出的,它描述了两个物体之间的引力与它们的质量和距离的平方成反比。
具体公式为:F=G*(m1*m2/r^2)其中,F为物体之间的引力,G为引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
2. 引力场引力场是指物体周围存在的引力作用区域,它是引力作用的场所。
在引力场中,物体受到的引力大小与它们的质量和位置有关。
3. 引力势能引力势能是在引力场中的物体所具有的势能,它与物体的质量以及引力场中的位置有关。
当物体在引力场中移动时,它会具有不同的引力势能。
4. 重力波重力波是由引力场的扰动产生的波动,它是爱因斯坦广义相对论的预言,近年来得到了实验上的证实。
重力波对宇宙中的天体运动和引力场的研究具有重要的意义。
二、地球重力地球作为我们生活的星球,其重力对我们的生活和环境具有重要的影响。
下面将从地球的重力加速度、重力对天体的影响、地球引力场等方面进行介绍。
1. 重力加速度地球的重力加速度约为9.8m/s²,这意味着在没有空气阻力的情况下,物体在地面自由下落时,其速度每秒增加9.8米。
2. 重力对天体的影响地球的重力对天体的影响非常显著,它使得地球围绕太阳运动,同时也影响了月球绕地球的轨道。
地球的引力还对地球周围的卫星和宇宙空间中的天体运动产生影响。
3. 地球引力场地球表面及其周围空间存在着引力场,引力场的作用区域称为地球引力场。
地球引力场的特点是不均匀分布,这导致了地球表面不同位置的重力加速度可能有所差异。
三、重力对物体的影响重力是一个普遍存在的自然现象,在日常生活中,重力对物体产生了许多重要的影响。
从物体的重量、垂直自由落体运动、斜面运动等方面进行总结归纳。
1. 物体的重量重力对物体的作用使得物体具有重量,其大小与物体的质量成正比。
物体的重量可以通过重力与物体的质量之间的关系来计算。
2. 垂直自由落体运动在地球的重力场中,物体做垂直自由落体运动的特点是加速度恒定,大小为重力加速度。
【高中物理】高中物理知识点(万有引力定律)
【高中物理】高中物理知识点(万有引力定律)高中物理知识点(万有引力定律),希望同学们牢牢掌握,不断取得进步!(1)万有引力定律:宇宙间的一切物体都就是互相迎合的。
两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。
公式:(2)★★★应用领域万有引力定律分析天体的运动①基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。
即f引=f向得:应用领域时可以根据实际情况采用适度的公式展开分析或排序。
②天体质量m、密度ρ的估计:(3)三种宇宙速度①第一宇宙速度:v1=7.9km/s,它就是卫星的最轻升空速度,也就是地球卫星的最小环绕速度。
②第二宇宙速度(脱离速度):v2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度。
③第三宇宙速度(逃逸速度):v3=16.7km/s,并使物体逃脱太阳引力束缚的最轻升空速度。
(4)地球同步卫星所谓地球同步卫星,就是相对于地面恒定的,这种卫星坐落于赤道上方某一高度的平衡轨道上,且拖地球运动的周期等同于地球的进动周期,即t=24h=86400s,距地面高度同步卫星的轨道一定在赤道平面内,并且只有一条。
所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着。
(5)卫星的Immunol和舱内“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同。
“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用。
本文就是为大家整理的高中物理知识点(万有引力定律),期望能够为大家的自学增添协助,不断进步,获得出色的成绩。
万有引力定律知识点总结
万有引力定律知识点总结万有引力定律一.开普勒运动定律 (1)开普勒第一定律:所有的行星绕太阳运动的轨道都是,太阳处在所有椭圆的一个上.相等.D.两个物体间的引力总是大小相等,方向相反的,是一对平衡力:三、万有引力和重力不考虑自转的情况下,F 万=mg(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的 (3)开普勒第三定律:所有行星的轨道的的比值都相等.四.天体表面重力加速度问题)例 1:火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知(A.火星与木星公转周期相等 B.火星和木星绕太阳运行速度的大小始终相等 C.太阳位于木星运行椭圆轨道的某焦点上 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积设天体表面重力加速度为 g,天体半径为 R,由重力加速度的关系为g1 R22 M 1 ? ? g 2 R12 M 2得 g= GM ,由此推得两个不同天体表面 R2例3:据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的 6.4 倍,一个在地球表面重量为 600 N 的人在这个行星表面的重量将变为960 N,由此可推知该行星的半径与地球半径之比约为 A.0.5 B.2. C.3.2 D.4 五.天体质量和密度的计算二.万有引力定律 (1) 公式:F= ,其中 G ? 6.67 ? 10?11 N ? m 2 / kg 2 ,称为为有引力恒量。
间的相互作用,当两个物体间的距离远远大于物体本身间的距离.对于均匀的球体,r 是两1.只能求中心天体的质量2. 只要用实验方法测出卫星做圆周运动的半径 r 及运行周期 T,就可以算出天体的质量 M.若知道行星的半径则可得行星的密度 4? 2 3?r 2 4? 2 r 3 M mM M G 2 =m 2 r,由此可得:M= ;ρ = = = (R 为行星的半径) 2 4 3 GT 2 R 3 V GT T r ?R3(2) 适用条件:严格地说公式只适用于的大小时,公式也可近似使用,但此时 r 应为两物体间的距离对于质量为 m 1 和质量为 m 2 的两个物体间的万有引力的表达式 F=Gm1m2 r2例 2:下()例4:登月火箭关闭发动机在离月球表面112 km 的空中沿圆形轨道运动,周期是 120.5 min,月球的半径是 1740 km,根据这组数据计算月球的质量和平均密度.土星 29.5列说法正确的是公转周期(年)水星 0.241金星 0.615地球 1.0火星 1.88木星 11.86A.公式中的 G 是引力常量,它是人为规定的 B.当两物体间的距离 r 趋于零时,万有引力趋于无穷大 C.两物体间的引力大小一定是相等的六、讨论天体运动规律的基本思路基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。
万有引力与航天知识点归纳
万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。
2. 公式,其中,称为引力常量。
3. 适用条件适用于两个质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,为两球心间的距离。
二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。
若已知环绕天体的线速度和轨道半径,则。
若已知环绕天体的角速度和轨道半径,则。
若已知环绕天体的周期和轨道半径,则。
2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。
由,天体的体积。
当卫星绕天体表面运行时,则。
三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。
2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。
3. 卫星的角速度由可得,轨道半径越大,角速度越小。
4. 卫星的周期由可得,轨道半径越大,周期越大。
5. 地球同步卫星特点:周期,与地球自转周期相同。
轨道平面与赤道平面重合。
高度,线速度。
四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。
计算:由(为地球半径),可得。
这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。
2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。
3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。
五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。
2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。
物理万有引力知识点大全
物理万有引力知识点大全物理万有引力知识点一、行星运动1.地心说和日心说地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮及其它行星都绕地球运动,日心说认为太阳是静止不动的,地球和其它行星都绕太阳运动,日心说是形成新的世界观的基础,是对宗教的挑战。
2.开普勒第一定律开普勒第一定律指出:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,这个定律也叫做“轨道定律”,它正确描述了行星运动轨道的形状。
3.开普勒第三定律开普勒第三定律指出:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,即R3/T2=k.这个定律也叫“周期定律”.行星运动三定律是开普勒根据第谷连续20年对行星运动进行观察记录的数据,经过刻苦计算而得出的结论.二、万有引力定律1.万有引力定律的内容(l)万有引力是由于物体具有质量而在物体之间产生的一种相互作用.它的大小和物体的质量及两个物体之间的距离有关:两个物体质量越大,它们间的万有引力越大;两物体间距离越远,它们间的万有引力越小.通常两个物体之间的万有引力极其微小,在天体系统中,万有引力的作用是决定性的.(2)万有引力定律的公式是:.即两物体间万有引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比.2.引力常量及其测定(1)万有引力常量G=6.__10-11 N?m2/kg2,通常取G=6.67×10-11 N?m2/kg2.(2)万有引力常量G的值是由英国物理学家卡文迪许用扭秤装置首先准确测定的.G的测定不仅用实验证实了万有引力的存在,同时也使万有引力定律有了实用价值.3.万有引力定律的应用万有引力定律在研究天体运动中起着决定性的作用,它把地面上物体的运动规律与天体运动的规律统一起来,是人类认识宇宙的基础.万有引力定律在天文学上的下列应用:(1)用万有引力定律求中心星球的质量和密度当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M,半径为R,环绕星球质量为m,线速度为v,公转周期为T,两星球相距r,由万有引力定律有:,可得出,由r、v或r、T就可以求出中心星球的质量;如果环绕星球离中心星球表面很近,即满足r≈R,那么由可以求出中心星球的平均密度ρ。
(完整版)万有引力与航天重点知识归纳
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
万有引力定律知识点总结
万有引力定律知识点总结1.定律表述2.牛顿的发现牛顿通过研究苹果掉落的问题,发现了地球对苹果的引力,进而猜测物体间存在一种普遍的引力现象,并开始研究重力的本质。
3.引力的普遍性4.引力的性质引力是一种吸引力,它的大小与物体的质量成正比,与距离的平方成反比。
质量越大,引力越大;距离越近,引力越大。
5.引力的作用对象引力的作用对象包括任何有质量的物体,从微观粒子到宇宙天体都受到引力的作用。
例如,地球对人和物体的引力可以使人和物体保持在地面上。
6.引力的无质量物体根据等效原理,无论物体的质量大小,无质量的物体受到的引力都是相同的。
也就是说,无论是一个质量为1kg的物体,还是一个质量为10kg的物体,它们在地球上受到的重力都相同,都是9.8N。
7.引力的矢量性质引力是一个矢量,具有大小、方向和作用点。
它的方向始终指向两物体之间的连线方向,作用点位于两物体连线上。
8.引力的非接触性引力不需要物体之间的接触就可以产生作用,即使物体之间存在遮挡,仍然可以相互吸引。
9.引力的远程性引力是一种远程相互作用力,两个物体之间即使距离很远,仍然可以相互产生引力作用。
10.引力的作用力对根据牛顿第三定律,如果物体1对物体2施加一定的引力,那么物体2对物体1也会施加相同大小、相反方向的引力,这称为引力的作用力对。
11.引力的宏观表现在宏观尺度上,引力主要表现为星体之间的相互吸引作用,例如行星公转、卫星绕地球运动等。
12.引力在宇宙中的作用引力在宇宙中起着至关重要的作用,控制了星系、星云的形成与演化,维持了银河系的稳定,也决定了宇宙的大尺度结构。
总结起来,万有引力定律是描述物质之间相互作用的力的定律,它展示了物体之间的普遍吸引现象。
引力的表达式为F=G×m1×m2/r^2,其中F为引力大小,G为万有引力常数,m1和m2为物体的质量,r为物体之间的距离。
这一定律对于解释行星运动、人造卫星轨道等有着重要的意义。
万有引力定律知识点总结
一、开普勒行星运动定律定律内容图示第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
第二定律(面积定律)对任意一个行星来说,他与太阳的连线在相等的时间内扫过相等的面积。
第三定律(周期定律)所有行星的轨道半径的半长轴的三次方跟它的公转周期的平方的比值都相等,a3/T2=k。
注意:1. 开普勒行星运动定律不仅适用于行星绕太阳运转,对于卫星绕行星运转,也遵循类似的运动规律。
2.比例系数k与中心天体质量有关,与行星或卫星质量无关,是个常量,但不是恒量,在不同的星系中,k值不相同。
3. T为公转周期,不是自转周期。
二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。
2.表达式:F=G221 r mm其中G=×10-11N•m2/kg2,称为为有引力恒量。
3.适用条件:用于计算引力大小的万有引力公式严格地说只适用于两质点间引力大小的计算,如果相互吸引的双方是质量分布均匀的球体,则可将其视为质量集中于球心的质点,此时r是两球心间的距离。
4.对万有引力定律的理解(1)普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物体之间的基本的相互作用之一,任何客观存在的两部分有质量的物体之间都存在着这种相互作用。
(2)相互性:两个物体相互作用的引力是一对作用力与反作用力.它们大小相等,方向相反,分别作用在两个物体上。
(3)宏观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间,它的存在才有宏观物理意义。
二、重力加速度重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.1.若不计地球自转的影响,则物体在地球表面的重力等于地球对物体的万有引力,即2GMmmgR=, 则星球表面的重力加速度为:2GMgR=2.同理,若不计地球自转的影响,在距地球表面高h处的重力加速度为:2()hGMgR h=+3.若考虑地球自转的影响,(1)在赤道处,物体的万有引力分解为两个分力F向和mg刚好在一条直线上,则有F=F向+mg,所以mg=F一F向=2GMmR-mRω自2则赤道处重力加速度为:g=2GMR-Rω自2(而地球赤道处的向心加速度a n= Rω自2 =s2,因此一般不计其自转的影响;注意:当题目中出现地球自转时需要考虑此问题。
万有引力知识点总结
万有引力知识点总结在我们的日常生活中,万有引力是一个常常被忽视的物理现象。
然而,它不仅是物理学中的重要概念,也是解释宇宙宏观运动的基础。
本文将带领读者深入了解万有引力,从基本定义到应用,以及与其他物理学概念的关系。
一、什么是万有引力?万有引力是指所有物质之间的相互作用力,它由英国科学家牛顿在17世纪提出并进一步发展。
这个概念告诉我们,地球上的每一个物体都对其他物体产生引力,而且这种引力的大小与物体的质量有关。
而引力的方向则是指向物体之间的中心。
二、万有引力公式万有引力的大小可以通过万有引力公式计算得出。
根据牛顿的定律,两个物体之间的引力大小与它们的质量和距离有关。
公式如下:F = (G * m1 * m2) / r²其中,F表示物体之间的引力,G是万有引力常量,m1和m2分别为两个物体的质量,r为它们之间的距离。
三、万有引力常数万有引力常数G是一个非常小的值,约等于6.674 × 10⁻¹¹N·(m/kg)²。
它决定了万有引力的强度,与其他物理学量相比较而言,G 的值较为微小。
四、重力加速度除了万有引力的概念,我们还需要了解重力加速度。
地球的质量使得我们所处的表面对我们产生一个向下的力,这就是重力。
重力加速度的大小约为9.8 m/s²。
根据万有引力公式,我们可以知道这个重力加速度与地球的质量和半径有关。
五、万有引力与地球上的物体运动万有引力不仅存在于地球上,还贯穿了整个宇宙。
它不仅解释了地球上物体的运动,还解释了行星、卫星等天体的运动。
根据万有引力法则,行星围绕太阳运动,卫星围绕行星运动。
六、万有引力的应用万有引力不仅在天文学领域有重要应用,还在现实生活中发挥作用。
例如,工程师需要了解物体之间的引力,以确保建筑物的稳固;宇航员需要了解万有引力,以便在太空中进行运动和操纵飞船。
七、万有引力与其他物理学概念的关系万有引力与其他物理学概念有一定的关联性。
(完整版)万有引力知识点详细归纳
第五章:万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值)丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数学才华,开普勒在其导师弟谷连续20年对行星的位置进行观测所记录的数据研究的基楚上,通过四年多的刻苦计算,最终发现了三个定律。
第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等; 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k T r =23开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。
2.万有引力定律及其应用(1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。
2r MmGF =(1687年) 2211/1067.6kg m NG ⋅⨯=-叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。
万有引力常量的测定——卡文迪许扭秤 实验原理是力矩平衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。
万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有2EE R m m G mg =(式中R E 为地球半径或物体到地球球心间的距离),可得到G gR m EE 2=。
(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。
万有引力知识点总结
万有引力知识点总结《万有引力与航天》知识点回顾1.“地心说”和“日心说”的发展过程:“地心说“代表―托勒密;“日心说”代表―哥白尼2.开普勒行星运动定律(1)开普勒第一定律(轨道定律)行星运动的轨道不是正圆,行星与太阳的距离一直在变。
有时远离太阳,有时靠近太阳。
它的速度的大小、方向时刻在改变。
示意图如下:所有的行星围绕太阳运行的轨道都是椭圆,太阳处在椭圆的一个焦点上,这就是开普勒第一定律。
(2)开普勒第二定律(面积定律)―对于任意一个行星而言,太阳和行星的连线在相等的时间内扫过相等的面积。
根据开普勒第二定律可得,行星在远日点的速率较小,在近日点的速率较大。
(3)开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,这是开普勒第三定律。
每个行星的椭圆轨道只有一个,但是它们运动的轨道的半长轴的三次方与公转周期的平方的比值是相等的。
R3我们用R表示椭圆的半长轴,T代表公转周期,表达式可为2 k T显然k是一个与行星本身无关的量,只与中心体有关。
开普勒第三定律对所有行星都适用。
对于同一颗行星的卫星,也符合这个运动规律。
3、万有引力定律(2)定律的内容:自然界中任何两个物体都相互吸引,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
(3)定律的公式:如果用m1和m2表示两个物体的质量,用r表示它们的距离,那么万有引力定律可以用下面的公式来表示F Gm1m2 2r (4)说明:①万有引力定律的适用条件:万有引力定律中的物体是对质点而言,不能随意应用于一般物体。
对于相距很远因而可以看作质点的物体,公式中的r 就是指两个质点间的距离;对均匀的球体,可以看成是质量集中于球心上的质点,这是一种等效的简化处理方法。
思考:在公式中,当r→0时,F→∞是否有意义?②.万有引力的普遍性:任何客观存在的有质量的物体之间都存在着这种相互吸引的力。
③.万有引力的相互性:两物体间相互作用的引力,是一对作用力和反作用力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章:万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值)丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数学才华,开普勒在其导师弟谷连续20年对行星的位置进行观测所记录的数据研究的基楚上,通过四年多的刻苦计算,最终发现了三个定律。
第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k Tr =23开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。
2.万有引力定律及其应用(1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。
(1687年)2r MmGF =叫做引力常量,它在数值上等于两个质量都是1kg 的物体2211/1067.6kg m N G ⋅⨯=-相距1m 时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。
万有引力常量的测定——卡文迪许扭秤实验原理是力矩平衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。
万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有(式中R E 为地球半径或物体到地球球心间的距离),可得到。
2EE R m m G mg =G gR m EE 2=(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。
注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1kg 的两个质点相距1m 时相互作用的万有引力.(3) 地球自转对地表物体重力的影响。
重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所ϕ需的向心力 F 向=mRcos ·ω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是ϕ通常所说的重力mg ,其方向与支持力N 反向,应竖直向下,而不是指向地心。
由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极R 逐渐减小,向心力mRcos ·ω2减小,重力逐渐增大,相应重力加速度g 也逐渐增大。
ϕ在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有F =F 向+m 2g ,所以m 2g=F 一F 向=G -m 2Rω自2 。
221rmm 物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体受到的万有引力F 引和支持力N 是一对平衡力,此时物体的重力mg =N =F 引。
综上所述重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但差别很小。
重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。
由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,在此基础上就有:地球表面处物体所受到的地球引力近似等于其重力,即≈mg 2RGmM说明:由于地球自转的影响,从赤道到两极,重力的变化为千分之五;地面到地心的距离每增加一千米,重力减少不到万分之三,所以,在近似的计算中,认为重力和万有引力相等。
万有引力定律的应用:基本方法:卫星或天体的运动看成匀速圆周运动, F 万=F 心(类似原子模型)方法:轨道上正常转:rT m r m r v m r Mm G 222224πω===地面附近:G= mg GM=gR 2 (黄金代换式) 2RMm⇒(1)天体表面重力加速度问题通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G, 221R m m g=GM/R 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(R+h )2,比较得g h =()2·g hR r+设天体表面重力加速度为g ,天体半径为R ,由mg=得g=,由此推得两个不2Mm GR 2MG R同天体表面重力加速度的关系为21212212g R Mg R M=*(2)计算中心天体的质量某星体m 围绕中心天体m 中做圆周运动的周期为T ,圆周运动的轨道半径为r ,则:由得:r T m r m m G 222⎪⎭⎫ ⎝⎛=π中2324GT r m π=中例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。
可以注意到:环绕星体本身的质量在此是无法计算的。
(3)计算中心天体的密度ρ===V M334R M ⋅π3223R GT r ⋅π由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度(4)发现未知天体用万有引力去分析已经发现的星体的运动,可以知道在此星体附近是否有其他星体,例如:历史上海王星是通过对天王星的运动轨迹分析发现的。
冥王星是通过对海王星的运动轨迹分析发现的人造地球卫星。
这里特指绕地球做匀速圆周运动的人造卫星,实际上大多数卫星轨道是椭圆,而中学阶段对做椭圆运动的卫星一般不作定量分析。
1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有r T m r m r m ma rGmM 22222(πωυ====实际是牛顿第二定律的具体体现3、表征卫星运动的物理量:线速度、角速度、周期等:(1)向心加速度与r 的平方成反比。
向a =当r 取其最小值时,取得最大值。
向a 2r GM向a a 向max ==g=9.8m/s 22RGM(2)线速度v 与r 的平方根成反比v =∴当h↑,v↓rGM当r 取其最小值地球半径R 时,v 取得最大值。
v max ===7.9km/s RGMRg (3)角速度与r 的三分之三次方成百比ω=∴当h↑,ω↓ω3r GM当r 取其最小值地球半径R 时,取得最大值。
max ==≈1.23×10-3rad/s ωω3RGM R g(4)周期T 与r 的二分之三次方成正比。
T=2∴当h↑,T↑GMr 3π当r 取其最小值地球半径R 时,T 取得最小值。
T min =2=2≈84 minGM R 3πgRπ卫星的能量:(类似原子模型)r 增v 减小(E K 减小<E p 增加),所以 E 总增加;需克服引力做功越多,地面上需要的发射⇒速度越大应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s , 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2 月球公转周期30天4.宇宙速度及其意义(1)三个宇宙速度的值分别为第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度):物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为:km/s 9.71=v 第一宇宙速度的计算.方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力.G=m ,v=。
当h↑,v↓,所以在地球表面附近卫星的速度是它运()2h r mM+()h r v +2hr GM +行的最大速度。
其大小为r >>h (地面附近)时,.9×103m/s 1V =方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力..当r >>h 时.g h ≈g ()21v mg mr h =+所以v 1==7.9×103m/sgr 第二宇宙速度(脱离速度):如果卫生的速大于而小于 ,卫星将做椭圆运动。
当卫星的速度等于km/s 9.7km/s 2.11或大于的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,km/s 2.11或飞到其它行星上去,把叫做第二宇宙速度,第二宇宙速度是挣脱地球引km/s 2.112=v 力束缚的最小发射速度。
第三宇宙速度:物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度,又称逃逸速度,其值为:km/s7.163=v (2)当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同①当v <v 1时,被发射物体最终仍将落回地面;②当v 1≤v <v 2时,被发射物体将环绕地球运动,成为地球卫星;③当v 2≤v <v 3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;④当v ≥v 3时,被发射物体将从太阳系中逃逸。
5.同步卫星(所有的通迅卫星都为同步卫星)⑴同步卫星。
“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T =24h ,⑵特点(1)地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。
这是因为:不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F 1,而另一个分力F 2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。
(2)地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。
(3)同步卫星必位于赤道上方h 处,且h 是一定的.rm r MmG22ω=得故 23ωGMr =kmR r h 35800=-=(4)地球同步卫星的线速度:环绕速度由得r m rMm G 22υ=s km r GM v /08.3==(5)运行方向一定自西向东运行人造天体在运动过程中的能量关系当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人造天体却具有较小的动能。
反之,如果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。
同样质量的卫星在不同高度轨道上的机械能不同。