哈工大选修课 LINEAR ALGEBRA 试卷及答案

合集下载

(完整版)哈工大选修课LINEARALGEBRA试卷及答案,推荐文档

(完整版)哈工大选修课LINEARALGEBRA试卷及答案,推荐文档

LINEAR ALGEBRAANDITS APPLICATIONS 姓名:易学号:成绩:1. Definitions(1) Pivot position in a matrix;(2) Echelon Form;(3) Elementary operations;(4) Onto mapping and one-to-one mapping;(5) Linearly independence.2. Describe the row reduction algorithm which produces a matrix in reduced echelon form.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒4. Find a basis for the null space of the matrix 361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦5. Find a basis for Col of the matrixA 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦6. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b +=7. Provide twenty statements for the invertible matrix theorem.8. Show and prove the Gram-Schmidt process.9. Show and prove the diagonalization theorem.10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Answers:1. Definitions(1) Pivot position in a matrix:A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.(2) Echelon Form:A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:1. All nonzero rows are above any rows of all zeros.2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.3. All entries in a column below a leading entry are zeros.If a matrix in a echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):4. The leading entry in each nonzero row is 1.5. Each leading 1 is the only nonzero entry in its column.(3) Elementary operations:Elementary operations can refer to elementary row operations or elementary column operations.There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):1. (Replacement) Replace one row by the sum of itself anda multiple of another row.2. (Interchange) Interchange two rows.3. (scaling) Multiply all entries in a row by a nonzero constant.(4) Onto mapping and one-to-one mapping:A mapping T : R n → R m is said to be onto R m if each b in R m is the image of at least one x in R n.A mapping T : R n → R m is said to be one-to-one if each b in R m is the image of at most one x in R n.(5) Linearly independence:An indexed set of vectors {V1, . . . ,V p} in R n is said to be linearly independent if the vector equationx 1v 1+x 2v 2+ . . . +x p v p = 0Has only the trivial solution. The set {V 1, . . . ,V p } is said to be linearly dependent if there exist weights c 1, . . . ,c p , not all zero, such thatc 1v 1+c 2v 2+ . . . +c p v p = 02. Describe the row reduction algorithm which produces a matrix in reduced echelon form.Solution:Step 1:Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.Step 2:Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.Step 3:Use row replacement operations to create zeros in all positions below the pivot.Step 4:Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there all no more nonzero rows to modify.Step 5:Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operation.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒Solution:If ψ=π/2, then sin ψ=1 and cos ψ=0. Then we have⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110003.00003.01y x y x scale ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−110003.00003.010*******y x Rotate⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−110003.00003.0100001010125.0010001y x Translate The matrix for the composite transformation is⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003.00003.0100001010125.0010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10003.00003.0125.0001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=125.0003.003.004. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦Solution:First, write the solution of A X=0 in parametric vector form:A ~ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000023021010002001x 1-2x 2 -x 4+3x 5=0x 3+2x 4-2x 5=00=0The general solution is x 1=2x 2+x 4-3x 5, x 3=-2x 4+2x 5, with x 2, x 4, and x 5 free.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--+=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10203012010001222325425454254254321x x x x x x x x x x x x x x x xu v w=x 2u+x 4v+x 5w (1)Equation (1) shows that Nul A coincides with the set of all linear conbinations of u, v and w. That is, {u, v, w}generates Nul A. In fact, this construction of u, v and w automatically makes them linearly independent, because (1) shows that 0=x 2u+x 4v+x 5w only if the weightsx 2, x 4, and x 5 are all zero.So {u, v, w} is a basis for Nul A.5. Find a basis for Col of the matrix A 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦Solution:A ~ , so the rank of A is 3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---07490012002300130001Then we have a basis for Col of the matrix:A U = , v = and w = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0013⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--07496. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b+=Solution:We claim that E is the image of the unit disk D under the linear transformation Tdetermined by the matrix A=, because if u= , x=, and x = Au, then ⎥⎦⎤⎢⎣⎡b a 00⎥⎦⎤⎢⎣⎡21u u ⎥⎦⎤⎢⎣⎡21x x u 1 =and u 2 = a x 1bx 2It follows that u is in the unit disk, with , if and only if x is in E , with 12221≤+u u1)()(2221≤+x a x . Then we have{area of ellipse} = {area of T (D )}= |det A| {area of D} = ab π(1)2 = πab7. Provide twenty statements for the invertible matrix theorem.Let A be a square matrix. Then the following statements are equivalent. That is, for a n n ⨯given A, the statements are either all true or false.a. A is an invertible matrix.b. A is row equivalent to the identity matrix.n n ⨯c. A has n pivot positions.d. The equation Ax = 0 has only the trivial solution.e. The columns of A form a linearly independent set.f. The linear transformation x Ax is one-to-one.→g. The equation Ax = b has at least one solution for each b in R n .h. The columns of A span R n .i. The linear transformation x Ax maps R n onto R n .→j. There is an matrix C such that CA = I.n n ⨯k. There is an matrix D such that AD = I.n n ⨯l. A T is an invertible matrix.m. If , then 0A ≠()()T11T A A --=n. If A, B are all invertible, then (AB)* = B *A *o. T**T )(A )(A =p. If , then 0A ≠()()*11*A A--=q. ()*1n *A 1)(A --=-r. If , then ( L is a natural number )0A ≠()()L 11L A A--=s. ()*1n *A K)(KA --=-t. If , then 0A ≠*1A A1A =-8. Show and prove the Gram-Schmidt process.Solution:The Gram-Schmidt process:Given a basis {x 1, . . . , x p } for a subspace W of R n , define11x v = 1112222v v v v x x v ⋅⋅-= 222231111333v v v v x v v v v x x v ⋅⋅-⋅⋅-=. ..1p 1p 1p 1p p 2222p 1111p p p v v v v x v v v v x v v v v x x v ----⋅-⋅⋅⋅-⋅⋅-⋅⋅-=Then {v 1, . . . , v p } is an orthogonal basis for W. In additionSpan {v 1, . . . , v p } = {x 1, . . . , x p } for pk ≤≤1PROOFFor , let W k = Span {v 1, . . . , v p }. Set , so that Span {v 1} = Span p k ≤≤111x v ={x 1}.Suppose, for some k < p, we have constructed v 1, . . . , v k so that {v 1, . . . , v k } is an orthogonal basis for W k . Define1k w 1k 1k x proj x v k +++-=By the Orthogonal Decomposition Theorem, v k+1 is orthogonal to W k . Note that proj Wk x k+1 is in W k and hence also in W k+1. Since x k+1 is in W k+1, so is v k+1 (because W k+1 is a subspace and is closed under subtraction). Furthermore, because x k+1 is not in W k = Span {x 1, . . . , 0v 1k ≠+x p }. Hence {v 1, . . . , v k } is an orthogonal set of nonzero vectors in the (k+1)-dismensional space W k+1. By the Basis Theorem, this set is an orthogonal basis for W k+1. Hence W k+1 = Span {v 1, . . . , v k+1}. When k + 1 = p, the process stops.9. Show and prove the diagonalization theorem.Solution:diagonalization theorem:If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.PROOFLet v 1 and v 2 be eigenvectors that correspond to distinct eigenvalues, say, and . To 1λ2λshow that , compute0v v 21=⋅ Since v 1 is an eigenvector2T 12T 11211v )(Av v )v (λv v λ==⋅()()2T 12T T 1Av v v A v ==)(221v v Tλ= 2122T 12v v λv v λ⋅==Hence , but , so ()0v v λλ2121=⋅-()0λλ21≠-0v v 21=⋅10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Solution:If v 1, . . . , v r are eigenvectors that correspond to distinct eignvalues λ1, . . . , λr of an n n ⨯matrix A.Suppose {v 1, . . . , v r } is linearly dependent. Since v 1 is nonzero, Theorem, Characterization of Linearly Dependent Sets, says that one of the vectors in the set is linear combination of the preceding vectors. Let p be the least index such that v p +1 is a linear combination of he preceding (linearly independent) vectors. Then there exist scalars c 1, . . . ,c p such that (1)1p p p 11v v c v c +=+⋅⋅⋅+Multiplying both sides of (1) by A and using the fact that Av k = λk v k for each k, we obtain111+=+⋅⋅⋅+p p p Av Av c Av c (2)11111++=+⋅⋅⋅+p p p p p v v c v c λλλMultiplying both sides of (1) by and subtracting the result from (2), we have1+p λ (3)0)()(11111=-+⋅⋅⋅+-++p p p p c v c λλλλSince {v 1, . . . , v p } is linearly independent, the weights in (3) are all zero. But none of thefactors are zero, because the eigenvalues are distinct. Hence for i = 1, . . . , p. 1+-p i λλ0=icBut when (1) says that , which is impossible. Hence {v 1, . . . , v r } cannot be linearly 01=+p v dependent and therefore must be linearly independent.。

哈工大集合论习题课第六章树及割集习题课(学生)

哈工大集合论习题课第六章树及割集习题课(学生)

第六章树及割集习题课 1讲堂例题例1 设 T 是一棵树, T 有 3 个度为 3 极点, 1 个 2 度极点,其余均是 1 度极点。

则( 1)求 T 有几个 1 度极点?( 2)画出知足上述要求的不一样构的两棵树。

剖析:关于任一棵树 T ,其极点数 p 和边数 q 的关系是:q p 1且pdeg(v i )2q ,依据这些性质简单求解。

i 1解:(1)设该树T的极点数为p,边数为q,并设树T中有x个 1 度极点。

于是pdeg(v i ) 3 3 1 2 x 2q 且 p 3 1 x, q p 1,得x 5 。

i 1( 2)知足上述要求的两棵不一样构的无向树,如图 1 所示。

图1例 2 设 G 是一棵树且(G ) k ,证明G中起码有k个度为1极点。

证:设T 中有 p 个极点,s个树叶,则 T 中其余 p s 个极点的度数均大于等于 2,且起码有一个极点的度大于等于k 。

由握手定理可得:ps ,有s k 。

2q 2 p 2deg( v i ) 2( p s 1) ki 1所以 T 中起码有 k 个树叶。

习题例1 若无向图G中有p个极点,p 1条边,则G为树。

这个命题正确吗?为何?解:不正确。

K 3与平庸图构成的非连通图中有四个极点三条边,明显它不是树。

例2 设树T中有2n个度为 1 的极点,有3n个度为 2 的极点,有n个度为 3 的极点,则这棵树有多少个极点和多少条边?解:设 T 有 p 个极点, q 条边,则q p 12n 3n n 1 6n 1。

由deg(v) 2q 有: 1 2n 2 3n 3 n 2q 2(6n 1)12n 2 ,解得: n =2。

v V故 q 11, p12 。

例 3 证明恰有两个极点度数为 1 的树必为一条通路。

证:设 T 是一棵拥有两个极点度数为 1 的( p,q)树,则q p 1且p2( p 1) 。

deg(v i ) 2qi 1又 T 除两个极点度数为 1 外,其余极点度均大于等于 2,故p p 22( p 1) ,即deg(v i )2deg(v i )i 1i 1p22) 。

哈工大深圳研究生院组合数学部分作业题答案习题课6,8

哈工大深圳研究生院组合数学部分作业题答案习题课6,8

Homework 613.Let A={A1,A2,A3,A4,A5,A6} whereA1={1,2} A2={2,3} A3={3,4} A4={4,5} A5={5,6} A6={6,1}Determine the number of different SDR’s that A has. Generalize to n sets.Solution: When we choose 1 in A 1, if we choose 3 in A 2, we can choose 4 only in A 3, we can choose 5 only in A 4, and we can choose 6 only in A 5, however, we can choose 1 only in A 6,it will contract with 1 in A 1Hence, we can choose only 2 in A .2 if we choose 1 in A 1,3 in A 3,4 in A 4,5 in A 5,6 in A When we choose 2 in A 6.1, we can only choose 3 in A 3, 4 in A 4, 5 in A 5, 1 in A 1That is SDR . Hence, there are only two SDRs in A . 1={1,2,3,4,5,6}and SDR 2Similarity, we can generalize to n sets. There are only two SDRs in n-sets the same.={2,3,4,5,6,1}That is SDR 1={1,2,…,n} and SDR 2={2,3,4,…,n,1}23. Use the deferred acceptance algorithm to obtain both the women-optimal and men-optimal stable complete marriage for the preferential ranking matrix.Conclude that for the given preferential ranking matrix there is onlyone stable complete marriage.a b c dAA BB CC DD�1,32,3 1,44,13,24,33,32,2 2,21,4 4,12,23,44,13,11,4�Solution:(1) women-optimalThe results of the algorithm are as follows:1)A choose a, B choose a, C choose b, D choose d; a rejects B2)B choose d; d rejects D.3)D choose b; b rejects C.4)C choose a; a rejects A.5)A choose c.In 5), there are no rejections, and(2) men-optimalThe results of the algorithm are as follows:1)a choose D, b choose B, c choose D, d choose C; D rejects a.2)a choose C, C rejects d.3)d choose B, B rejects b.4)b choose D, D reject c.5)c choose A.In 5), there are no rejections, anda C,b D,c A,d B.Conclude that, for given preferential ranking matrix, there is only one stable complete marriage.3. Consider an m-by-n chessboard where at least one of m and n is even. The board has an equal number of white and black squares. Show that if m and n are at least 2 and if exactly one white and exactly one black square are forbidden, the resulting board has a perfect cover with dominoes.Solution:Let n be even, there are even numbers of columns. From top row, if the top row has no squares forbidden, then that row can be covered by dominoes. So we can remove this row. Repeat this till the new top row has a forbidden square. Do the same thing from the bottom row. So we can assume that forbidden squares are on the top and bottom rows.Let’s consider the first two columns from the left. If there is nofirst two columns, they can be covered by forbidden square in thedominoes and we can remove them. Repeat this till there is a forbidden square in the first two columns. Do the same from the right side so we ca n also assume the forbidden squares lie in the first two columns and the last two columns. After the above have been done, we can assume that chessflip board is of one of the following three situations (with rotation or ofover the chess board if needed). In each of the case, there are even numbers of columns.(A) (B) (C)So the two forbidden squares have one black and the other white, there are even numbers of columns. We draw the figures, in the cases (A) and (B), there has to be odd number of rows while in the case (C), there are even number of rows. Then we divide the board into pieces as shown in the following such each piece is rectangular with at least one side being even, thus can be covered by dominoes respectively.So the entire board has a perfect cover by dominoes.(A) (B) (C)4. Determine the max-matching and the min-cover of the right graph by applying the matching algorithm. We choose the red edges and obtain a matching M1.Find a minimum edge cover for the right graph.Answer:Now we get the matching )},(),,{(44121y x y x M = and U 131,x x = {}. (i) The vertices 31,x x are labeled (*).x 1y 1x x y 2 y 3 y 4y 5(ii) Scan the vertices in U 154321,,,,y y y y y in turn, and label with (1x ), since all vertices incident to 3x .already have a label, no vertex of Y get label (3x ).(iii) Scan the vertices 5431,,,y y y y labeled in (ii), and label 2x with (1y ), label 4x with (4y ).(*)x 1y 1(1x )x(*)x 3x y 2 y 3(1x ) y 4(1x )y 5(1x )(*)x 1 y1x (*)x 3x y 2 y 3 y 4y 5(iv) We scan the vertices 2x and 4x labeled in (iii), and label 2y with (2x ).(v) Scan the vertices 2y labeled in (iv), and find that no new labels are possible.We have achieved breakthrough. We find the 1M -augmenting path11221x y x y r = using the labels as a guide. Then )},(),,(),,{(4411222y x y x y x M =(*)x 1y 1(1x )(1y )x 2(*)x 3(4y )x y 2(2x ) y 3(1x ) y 4(1x )y 5(1x )(*)x 1 y 1(1x )(1y )x 2(*)x 3(4y )x y 2 y 3(1x ) y 4(1x )y 5(1x )and }{32x U =.(vi) The vertices 3x are labeled (*).(vii) Scan the vertices in U 25y in turn, and label with (3x )x 1y 1x 2(*)x 3x 4y 2 y 3 y 4y 5x 1y 1x 2x 3x 4y 2 y 3 y 4y 5(Viii) Scan the vertex 5y labeled in (vii), and find that no new labels are possible.We have achieved breakthrough. We find the 2M -augmenting path352x y r = using the labels as a guide. Then)},(),,(),,(),,{(441122533y x y x y x y x M =is a matching of four edges.Now we can get thatx 1 y 1x 2x 3x 4y 2 y 3 y 4y 5x 1 y 1x 2(*)x 3x 4y 2 y 3 y 4y 5(3x )the max-matching )},(),,(),,(),,{(44112253y x y x y x y x M = and the min-cover= {54321,,,,y y y y y }.2) Find a minimum edge cover for the right graph.Follow the steps above; we can get a max-matching)},(),,(),,(),,{(44112253y x y x y x y x M =.And we can find that there are also some vertices uncovered by the max-matching. Obviously, the vertex 3y Now we can construct a subgraph composed of edges incident to the vertex is uncovered.3y , we find the max-matching of the subgraph, and add it to the max-matching of M, then we can get a minimum edge cover.Fig The subgraphThe max-matching of the subgraph is {(x 1,y 3)}. Now we can get a minimum edgecover={(x 1,y 3)}∪M ={(x 1,y 3)(x 3,y 5)(x 2,y 2)(x 1,y 1)(x 4,y 4)}x 1y 1x 2x 3x 4y 2 y 3y 4y 5x1y1x2 x3 x4y2 y3 y4y5Fig The minimum edge cover第八次作业16. Apply the algorithm for the GCD in Section 10.1 to 15 and 46, and then use the results to determine the multiplicative inverse of 15 in Z46Answer:.The result for Computing the GCD of 15 and 46 are displayed in the following:Now ,we write as a linear combination of 15 and 46:1=46-3*15From the above, 1 is the GCD of 15 and 46.Thus, we can get the multiplicative inverse of 15 in Z4615:-121. Determine the complementary design of the BIBD with parameters bb=vv=77,kk=rr=33,λλ=11in Section 10.2= – 3 = 43.•b: the number of blocks;•v: the number of varieties;•k: the number of varieties in each block;• r : the number of blocks containing each variety• λλ: the number of blocks containing each pair of varieties. Answer:Apply ()11−−=k v r λ to this case, now we have b =v =7,k =r =3,λ=1.Hence, we can get ()()311717111≠=−−×=−−=k v r λ. Thus, we can design such a complementary.We can get the complementary design of the BIBD withparametersb’ = b = 7, v’ = v = 7, k’ = v-k = 4, r’ = b-r = 4 ,213272'=+×−=+−=λλr b .28. Show that BB={00,11,33,99}is a difference set in Z13 Answer:, and use thisdifference set as a starter block to construct an SBIBD. Identify the parameters of the block design.We compute the subtraction table and obtain:We can find that non-zero integers in Z13}{9,3,1,0=B occur exactly once as adifference, hence is a difference set in Z1332. Use Theorem 10.3.2 to construct a Steiner triple system of index 1 having 21 varieties..•Hints:• 1. construct two Steiner triple systems B1 and B2• 2. construct B based on B with 3 and 7varieties, respectively.1and B2. Answer:1)Construct two Steiner triple systems B1 and B2 with 3 and 7 varieties, respectively.Let X={a0,a1,a2}and Y={b0,b1,b2,b3,b4,b5,b6}be two sets of varieties.Let B1={a0,a1,a2}and B2=�{b0,b1,b3},{b1,b2,b4}, {b2,b3,b5},{b3,b4,b6},{b4,b5,b0},{b5,b6,b1},{b6,b0,b2}�be the Steiner triple systems of X and Y, respectively.2)Construct B based on B1 and B2.We define a set B of triples of the elements of X. Let {c ir, c js, c kt} be a set of 3 elements of X. then {c ir, c js, c kt} is a triple of B iff one of the following holds:i) r = s = tIf r=s=t=1, we can get {0,3,9}, {3,6,12}, {6,9,15}, {9,12,18}, {12,15,0},{15,18,3}, {18,0,6};If r=s=t=2, we can get {1,4,10}, {4,7,13}, {7,10,16}, {10,13,19},{13,16,1}, {16,19,4}, {20,1,7};If r=s=t=3, we can get {2,5,11}, {5,8,14}, {8,11,17}, {11,14,20},{14,17,2}, {17,20,5}, {20,2,8};ii) i = j = k, We can get {0, 1, 2}, {3, 4, 5}, {6, 7, 8},{9, 10, 11}, {12, 13,14}, {15, 16, 17}, {18, 19, 20};(iii) i, j and k are all different and {a i, a j, a k} is a triple of B1, and r, s and t are all different and {b r, b s, b t} is a triple of B2. Put another way, c ir, c js, and c kt are in 3 different rows and 3 different columns of the array, and the rows in which they lie correspond to a triple of B1 and the columns inwhich they lie correspond to a triple of B2 If {a .i, a j, a k If {a }={0, 1, 3},we can get {0, 4, 11}, {0, 10, 5}, {3, 1, 11}, {3, 10, 2}, {9, 1, 5}, {9, 4, 2};i, a j, a k If {a }={1, 2, 4}, we can get {3, 7, 14}, {3, 13, 8}, {6, 4, 14}, {6, 13, 5}, {12, 4, 8}, {12, 7, 5};i, a j, a k If{a }={2, 3, 5},we can get {6, 10, 17}, {6, 16, 11}, {9, 7, 17}, {9, 16,8},{15,7,11},{15,10, 8};i, a j, a k If {a }={3,4,6}, we can get {9,13,20},{9,19,14},{12,10, 20},{12,19,11},{18,10,14},{18,13,11};i, a j, a k If {a }={4, 5, 0},we can get {12,16,2}, {12, 1,17}, {15,13,2},{15,1,14}, {0,13,17}, {0,16,14};i, a j, a k If {a }={5,6, 1},we can get {15, 19, 5},{15,4,20},{18, 16, 5},{18, 4, 17},{3,16,20},{3,19,17};i, a j, a k}={6,0, 2},we can get {18, 1, 8}, {18, 7, 2}, {0, 19, 8}, {0, 7,20}, {6, 19, 2}, {6, 1, 20};52. Construct a completion of the 3-by-6 Latin rectangleAnswer:According to theorem 10.4.11(390页), this 3-by-6 Latin rectangle has a completion. Let X={x 0, x 1, x 2, x 3, x 4, x 5} representing the 6 elements, and Y= {y 0, y 1, y 2, y 3, y 4, y 5} representing the columns. An edge (x i, yj ) in denotes element i doesn’t appear in column j. Then we construct a regular of degree 3 Bipartite graph of X and Y ,G=(X, Δ, Y) as follows.y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5(1)Computing the perfect matching using the matching algorithm (312页) and the results are as follows. The red lines represent the maximum matching. (找出一个完美匹配即可,不必写出寻找的步骤,建议通过观察得出完美匹配最好,匹配算法太麻烦了)0 1 2 3 4 5 4 3 1 5 2 0 54312y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5So a new row is{x 2, x 0, x 4, x 1, x 5, x 3Similarly, we can draw the graph for the above matrix as follows.} could be added to the original matrix as follows.�01243134552054324012153� y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5(2)Computing the perfect matching and the results are as follows. The red lines represent the maximum matching.y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5Hence a new row is{x 1, x 5, x 0, x 2, x 3, x 4Similarly, we can draw the graph for the above matrix as follows.} and the new Latin rectangle is⎣⎢⎢⎢⎡012431345520543204150012153234⎦⎥⎥⎥⎤ y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5From the graph, we can easily know that all the lines construct a perfect matching. So we the final answer as follows⎣⎢⎢⎢⎢⎡012431543335520012204150325153234401⎦⎥⎥⎥⎥⎤58. Construct a completion of the semi-Latin squareAnswer :思路:构造二分图,找完美匹配(匹配算法)。

(完整版)哈工大选修课LINEARALGEBRA试卷及答案,推荐文档

(完整版)哈工大选修课LINEARALGEBRA试卷及答案,推荐文档

LINEAR ALGEBRAANDITS APPLICATIONS 姓名:易学号:成绩:1. Definitions(1) Pivot position in a matrix;(2) Echelon Form;(3) Elementary operations;(4) Onto mapping and one-to-one mapping;(5) Linearly independence.2. Describe the row reduction algorithm which produces a matrix in reduced echelon form.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒4. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦5. Find a basis for Col of the matrixA 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦6. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b +=7. Provide twenty statements for the invertible matrix theorem.8. Show and prove the Gram-Schmidt process.9. Show and prove the diagonalization theorem.10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Answers:1. Definitions(1) Pivot position in a matrix:A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.(2) Echelon Form:A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:1. All nonzero rows are above any rows of all zeros.2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.3. All entries in a column below a leading entry are zeros.If a matrix in a echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):4. The leading entry in each nonzero row is 1.5. Each leading 1 is the only nonzero entry in its column.(3) Elementary operations:Elementary operations can refer to elementary row operations or elementary column operations.There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):1. (Replacement) Replace one row by the sum of itself anda multiple of another row.2. (Interchange) Interchange two rows.3. (scaling) Multiply all entries in a row by a nonzero constant.(4) Onto mapping and one-to-one mapping:A mapping T : R n → R m is said to be onto R m if each b in R m is the image of at least one x in R n.A mapping T : R n → R m is said to be one-to-one if each b in R m is the image of at most one x in R n.(5) Linearly independence:An indexed set of vectors {V1, . . . ,V p} in R n is said to be linearly independent if the vector equationx 1v 1+x 2v 2+ . . . +x p v p = 0Has only the trivial solution. The set {V 1, . . . ,V p } is said to be linearly dependent if there exist weights c 1, . . . ,c p , not all zero, such thatc 1v 1+c 2v 2+ . . . +c p v p = 02. Describe the row reduction algorithm which produces a matrix in reduced echelon form.Solution:Step 1:Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.Step 2:Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.Step 3:Use row replacement operations to create zeros in all positions below the pivot.Step 4:Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there all no more nonzero rows to modify.Step 5:Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operation.3. Find the matrix that corresponds to the composite transformation of a scaling by 0.3, 33⨯a rotation of , and finally a translation that adds (-0.5, 2) to each point of a figure.90︒Solution:If ψ=π/2, then sin ψ=1 and cos ψ=0. Then we have⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110003.00003.01y x y x scale ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−110003.00003.010*******y x Rotate⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−110003.00003.0100001010125.0010001y x Translate The matrix for the composite transformation is⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003.00003.0100001010125.0010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10003.00003.0125.0001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=125.0003.003.004. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦Solution:First, write the solution of A X=0 in parametric vector form:A ~ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000023021010002001x 1-2x 2 -x 4+3x 5=0x 3+2x 4-2x 5=00=0The general solution is x 1=2x 2+x 4-3x 5, x 3=-2x 4+2x 5, with x 2, x 4, and x 5 free.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--+=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10203012010001222325425454254254321x x x x x x x x x x x x x x x xu v w=x 2u+x 4v+x 5w (1)Equation (1) shows that Nul A coincides with the set of all linear conbinations of u, v and w. That is, {u, v, w}generates Nul A. In fact, this construction of u, v and w automatically makes them linearly independent, because (1) shows that 0=x 2u+x 4v+x 5w only if the weights x 2, x 4, and x 5 are all zero.So {u, v, w} is a basis for Nul A.5. Find a basis for Col of the matrixA 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦Solution:A ~ , so the rank of A is 3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---07490012002300130001Then we have a basis for Col of the matrix:A U = , v = and w = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0013⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--07496. Let and be positive numbers. Find the area of the region bounded by the ellipse a b whose equation is22221x y a b+=Solution:We claim that E is the image of the unit disk D under the linear transformation Tdetermined by the matrix A=, because if u= , x=, and x = Au, then ⎥⎦⎤⎢⎣⎡b a 00⎥⎦⎤⎢⎣⎡21u u ⎥⎦⎤⎢⎣⎡21x x u 1 = and u 2 = a x 1bx 2It follows that u is in the unit disk, with , if and only if x is in E , with12221≤+u u1)()(2221≤+x a x . Then we have{area of ellipse} = {area of T (D )}= |det A| {area of D} = ab π(1)2 = πab7. Provide twenty statements for the invertible matrix theorem.Let A be a square matrix. Then the following statements are equivalent. That is, for a n n ⨯given A, the statements are either all true or false.a. A is an invertible matrix.b. A is row equivalent to the identity matrix.n n ⨯c. A has n pivot positions.d. The equation Ax = 0 has only the trivial solution.e. The columns of A form a linearly independent set.f. The linear transformation x Ax is one-to-one.→g. The equation Ax = b has at least one solution for each b in R n .h. The columns of A span R n .i. The linear transformation x Ax maps R n onto R n .→j. There is an matrix C such that CA = I.n n ⨯k. There is an matrix D such that AD = I.n n ⨯l. A T is an invertible matrix.m. If , then 0A ≠()()T11T A A --=n. If A, B are all invertible, then (AB)* = B *A *o. T**T )(A )(A =p. If , then 0A ≠()()*11*A A--=q. ()*1n *A 1)(A --=-r. If , then ( L is a natural number )0A ≠()()L 11L A A--=s. ()*1n *A K)(KA --=-t. If , then 0A ≠*1A A1A =-8. Show and prove the Gram-Schmidt process.Solution:The Gram-Schmidt process:Given a basis {x 1, . . . , x p } for a subspace W of R n , define11x v = 1112222v v v v x x v ⋅⋅-= 222231111333v v v v x v v v v x x v ⋅⋅-⋅⋅-=. ..1p 1p 1p 1p p 2222p 1111p p p v v v v x v v v v x v v v v x x v ----⋅-⋅⋅⋅-⋅⋅-⋅⋅-=Then {v 1, . . . , v p } is an orthogonal basis for W. In additionSpan {v 1, . . . , v p } = {x 1, . . . , x p } for pk ≤≤1PROOFFor , let W k = Span {v 1, . . . , v p }. Set , so that Span {v 1} = Span p k ≤≤111x v ={x 1}.Suppose, for some k < p, we have constructed v 1, . . . , v k so that {v 1, . . . , v k } is an orthogonal basis for W k . Define1k w 1k 1k x proj x v k +++-=By the Orthogonal Decomposition Theorem, v k+1 is orthogonal to W k . Note that proj Wk x k+1 is in W k and hence also in W k+1. Since x k+1 is in W k+1, so is v k+1 (because W k+1 is a subspace and is closed under subtraction). Furthermore, because x k+1 is not in W k = Span {x 1, . . . , 0v 1k ≠+x p }. Hence {v 1, . . . , v k } is an orthogonal set of nonzero vectors in the (k+1)-dismensional space W k+1. By the Basis Theorem, this set is an orthogonal basis for W k+1. Hence W k+1 = Span {v 1, . . . , v k+1}. When k + 1 = p, the process stops.9. Show and prove the diagonalization theorem.Solution:diagonalization theorem:If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.PROOFLet v 1 and v 2 be eigenvectors that correspond to distinct eigenvalues, say,and . To 1λ2λshow that , compute0v v 21=⋅ Since v 1 is an eigenvector2T 12T 11211v )(Av v )v (λv v λ==⋅()()2T 12T T 1Av v v A v ==)(221v v Tλ= 2122T 12v v λv v λ⋅==Hence , but , so ()0v v λλ2121=⋅-()0λλ21≠-0v v 21=⋅10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Solution:If v 1, . . . , v r are eigenvectors that correspond to distinct eignvalues λ1, . . . , λr of an n n ⨯matrix A.Suppose {v 1, . . . , v r } is linearly dependent. Since v 1 is nonzero, Theorem, Characterization of Linearly Dependent Sets, says that one of the vectors in the set is linear combination of the preceding vectors. Let p be the least index such that v p +1 is a linear combination of he preceding (linearly independent) vectors. Then there exist scalars c 1, . . . ,c p such that (1)1p p p 11v v c v c +=+⋅⋅⋅+Multiplying both sides of (1) by A and using the fact that Av k = λk v k for each k, we obtain111+=+⋅⋅⋅+p p p Av Av c Av c (2)11111++=+⋅⋅⋅+p p p p p v v c v c λλλMultiplying both sides of (1) by and subtracting the result from (2), we have1+p λ (3)0)()(11111=-+⋅⋅⋅+-++p p p p c v c λλλλSince {v 1, . . . , v p } is linearly independent, the weights in (3) are all zero. But none of the factors are zero, because the eigenvalues are distinct. Hence for i = 1, . . . , p.1+-p i λλ0=i cBut when (1) says that , which is impossible. Hence {v 1, . . . , v r } cannot be linearly 01=+p v dependent and therefore must be linearly independent.。

线性代数习题 1解析【哈工大版】

线性代数习题 1解析【哈工大版】

·1·习 题 一1.按自然数从小到大的自然次序,求解各题. (1) 求1至6的全排列241356的逆序数. 解:(241356)0021003t =+++++=.(2) 求1至2n 的全排列135(21)246(2)n n - 的逆序数.解:(1)(13(21)242)000(1)(2)2102n n t n n n n --=++++-+-+++= . (3) 选择i 与j ,使由1至9的排列,9127456i j 成偶排列. 解:由9127456i j 是从1至9的排列,所以,i j 只能取3或8.当8,3i j ==时,(912748563)01112133618t =++++++++=,是偶排列. 当3,8i j ==时(912743568)01112322113t =++++++++=,是奇排列,不合题意舍去.(4) 选择i 与j ,使由1至9的排列7125489i j 成奇排列.解:由7125489i j 是从1至9的排列,所以,i j 只能取3或6.当3,6i j ==时,(713256489)0112113009t =++++++++=,是奇排列. 当6,3i j ==时,(716253489)01122330012t =++++++++=,是偶排列,不合题意舍去.2.计算下列行列式 (1)9182613a b b a ; (2) 32153320537528475184;(3) 108215123203212; (4) abac ae bdcdde bf cfef---. 解:(1)229182913117(4)26132a b a ba b b a b a=⨯=-.(2) 3215332053320531003205332053320531003205375284751847518410075184751847518410075184+==++ 0751840032053004313100=+-=.(3) 1082222151235433302032124812=⨯=.·2·(4) 111111111002111020abac ae bdcd de abcdef abcdef bfcfef ----=-=-- 111204002abcdef abcdef -=-=. 3.已知3021111xy z=,利用行列式性质求下列行列式. (1) 33332222xyzx y z x y z +++++; (2) 111302413x y z +++. 解:(1) 3333230223022222222111xyzxy zxyzx y z x y z ++===+++. (2)111111302302302413413413x y z x y z +++=+ 111302302101111111xy z=+=+=.4.用行列式定义计算:(1)12345; (2) 010000200001000n n - .解:(1)1234512345()1234512(1)345t p p p p p p p p p p a a a a a =-∑(54321)1524334251(1)t a a a a a =-10(1)12345120=-⨯⨯⨯⨯⨯=.·3·(2)1212()120102(1)01n n t p p p p p np a a a n n=∑--(231)1223(1)1(1)t nn n n a a a a -=-11(1)123(1)!n n n n --=-⨯⨯⨯⨯⨯=- 5.用行列式的定义证明:(1) 11121314152122232425343544455455000000000a a a a a a a a a a a a a a a a =; (2)11122122333411123132333443442122414244450000a a a a a a a a a a a a a a a a a a a a =⋅. 证:(1) 123451234511121314152122232425()12345343544455455(1)0000000t p p p p p p p p p p a a a a a a a a a a D a a a a a a a a a a a ==- 假设有12345123450P P P P P a a a a a ≠,由已知345,,p p p 必等于4或5,从而345,,p p p 中至少有两个相等,这与12345,,,,p p p p p 是1,2,3,4,5的一个全排列矛盾,故所有项12345123450P P P P P a a a a a =,因此0D =.(2)1234123411122122()123431323334414243440000(1)t p p p p p p p p a a a a a a a a a a a a a a a a =-∑,由已知,只有当12,p p 取1或2时,123412340p p p p a a a a ≠,而1234,,,p p p p 是1,2,3,4的一个全排列,故34,p p 取3或4,于是·4·(1234)(1243)(2134)112233441122344312213344(2143)12213443(1)(1)(1)(1)t t t t D a a a a a a a a a a a a a a a a =-+-+-+-11223344112234431221334412213443a a a a a a a a a a a a a a a a =--+从而33341112112212213344344343442122()()a a a a a a a a a a a a a a a a ⋅=--11223344112234431221334412213443a a a a a a a a a a a a a a a a =--+ D = 6.计算(1)305002123000a b c d; (2) 121102*********110----; (3) n x a a a x aD a a x=; (4) 123110010101001n n D -=--; (5) 001000000100n a a D a a = ; (6) 1111111111111111n D -=--.解:(1)4433305304 3 0023(1)00(1)123012000a ab a d b dc abcd c b c d++--=按第按第行展开列展开.(2)12111211121102111021110211121440366036621110033120036==-----·5·12111211121101220122012233390211100370037003600360001=-=-=-=------. (3) 12131 (1)(1)(1) n n r r x a a n a x n a x n a xr r a xa ax aD a ax aa xr r +-+-+-++=+111[(1)]a x an a x a a a a a=-+1111000[(1)]000000x an a x x a x a-=-+--1[(1)]()n n a x x a -=-+-.(4) 12131123123231100010********* 10010001n nnn nc c c c D c c+++++-+=-+-(1)1232n n n +=++++= .(5) 001000000100n a a D a a=·6·11100000000100(1)(1)0000100n a a a a a a a++-+-按第行展开 1112(1)(1)n n n n a a +-+-=+-- 2nn a a-=-.(6) 11111111111102001111002011110002n D --==----111(2)(1)2n n n ---=-=-. 7.证明(1) 22222()111a ab b aa b b a b +=-证:222221223(1) 22222(1)111001a ab b a abab b b c c aa b ba ab a b b bc c --+-+--+-+-33()()(1)a a b b a b a b a b +--=---23()()11a b a b a b =-=- (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++证:等式左端2222222222222222214469214469214469214469a a a a a a ab b b b b b bc c c c c c cd d d d d d d ++++++++++++=++++++++++++·7·2221223222314322412144692126(1) (2) 21446921260(1)2144692126(3)(1)2144692126a a a a a a c c c cb b b b b bc c cc c c cc c c c c dd d d d d +++++-+-++++=+-+++++-+-++++(3)2322311111211121311123223212122212223222232233131323132333332322341414241424344411111111x a x b x b x c x c x c x x x x a x b x b x c x c x c x x x x a x b x b x c x c x c x x x x a x b x b x c x c x c x xx++++++++++++=++++++++++++证:等式左端2321111111212112322212212222323213313313232324314414414241() 1()1()1x x b x x c x c x c a c x x b x x c x c x c b c x x b x x c x c x c c c x x b x x c x c x ++++-++++-++++-+++232231111111123223312413222122222322333313333422232234441444411()()1111()11x x x c x x x x c b c c c c xx x c x x x x x x x c x x x x c c c x xx c xx xx++-+-+=++-+等式右端.8.解关于未知数x 的方程(1) 12326001xx x -=-解:121326(1)3201xx x x x x -=---2(1)[(2)3](1)[23](1)(3)(1)0x x x x x x x x x =---=---=--+= 所以1231,3, 1.x x x ===-(2) 0(0)aa xmm m m bx b=≠·8·解:00111111aa x a a x x amm m m m bx b b x b b xb-==11()()()0m x a m x a x b b x=-=--=因0m ≠,所以12,x a x b ==.9.设111212122212nn n n nn a a a a a a a a a a =,求下列行列式:(1)122122211121n n nn nn a a a a a a a a a ; (2)112112222121nn nn n n a a a a a a a a a;(3)12121212111222n nnnp p p p p p p p p np np np a a a a a a a a a ∑,其中“∑”是对1,2,,n 的所有全排列12np p p 取和,2n ≥.解:(1)经行的交换得原式111211213132321222(1)nn n nn n n na a a a a a a a a a a a -=- =1112121222(1)(2)2112(1)nnn n n n nna a a a a a a a a -+-+++=-(1)2(1)n n a -=-.(2) 与(1)类似,经列的交换得·9·原式(1)2(1)n n a -=-.(3) 经列的交换,得12121212121111112122221222()()12(1)(1)n nn n np p p np p p np p p p p p np np np n n nna a a a a a a a a a a a a a a a a a a ττ=-=-故原式1212()111111(1)0111n np p p p p p a aτ=-==∑ .10.计算行列式(1)112233440000000a b a b b a b a ; (2) 100011001100011011aaa a a aa a a---------;(3) 6111116111116111116111116; (4) 1000010000100001000k λλλλλ----. 解:(1)1111112244443333334422220000000000000000000a b a b a b a b b a b a b a b a a b b a a b b a =-= 1133141423234422()()a b a b a a b b a a b b b a b a ==--.(2) 将前4行依次加到第5行,再按第5行展开得原式10110011000110001aa a a a a a aa---=-----51001100110011a a a a a a aa---=-+----·10·5100110011001a a a aa a aa ---=-+---541011011a a a a a a a-=-++---- 54101101aaa a a a a-=-++---543111a aa a a a-=-+-+--23451a a a a a =-+-+-(3) 6111110101010101611116111116111161111161111611111611116= 111111111116111050001010116110050011161000501111600005== 41056250=⨯=. (4) 按最后一行展开得10001100010010001000100100010001001000000k k λλλλλλλλλλλλλ------=+-----5k λ=+11.计算行列式(1)1111111111111111111111111x x x x x --+---+---+--; (2) 1111222233334444x m x x x x x m x x x x x m x x x x x m----解:(1) 依次将第2,3,4,5列加到第1列得原式1111111111111111111111111x x x x x x x x x +--++--=+-+-+--+-- 1111111111(1)111111111111111x x x x x --+--=+-+----- 10001000(1)1000100010000xx x x x =+4(41)442(1)(1)(1)x x x x -=-+=+(2) 依次将第2,3,4行加到第1行得原式44441111222233334444iiiii i i i x m x m x m x mx x m x x x x x m x x x x x m====-----=--∑∑∑∑422221333344441111()i i x x m x x x m x x x m x x x x x m=-=---∑411111000()000000i i m x m m m=-=---∑431()i i m x m==-∑12.计算行列式(1)11121314212223243132333441424344a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ++++++++++++++++;(2) 111213142122232431323334414243441111111111111111a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ++++++++++++++++(3) 1234100110011001a a a a ---; (4)2311111231491827xx x 解:(1)依次将第3,2,1行乘1-加到第4,3,2行得原式111213142121212132323232434343430a b a b a b a b a a a a a a a a a a a a a a a a a a a a a a a a ++++----==--------(2) 依次将第3,2,1行乘1-加到第4,3,2行得原式111213141212213214211322323324321432433434431111()()()()()()()()()()()()a b a b a b a b b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a b a a ++++----=--------111213141234213243123412341111()()()0a b a b a b a b b b b b a a a a a a b b b b b b b b ++++=---=(3) 按最后一列展开得原式4321100100111110110011011011001001001a a a a -=---+-+-----1234a a a a =+++(4) 由Vandermonde 行列式的计算公式得原式(3)(2)(1)(32)(31)(21)x x x =------ 2(1)(2)(3)x x x =--- 13.证明(1) 123121211100010000010n n n n n n na a x a x D a x a x a x a a x a x------==++++- 证:等式左端123121211000010000000()001000010n n n n n n a a x a x r x r a x a x a a xx ------+--+ 122233312110001000()0000()0010()0001()00n n n n n n n n n a a x r x r a x r x r a x r x r a x f x -------++-+-1(1)11(1)()()11n n xf x f x x +---=-=--阶其中111()n n n f x a xa x a --=+++ .(2) 21000121000120010002100012D n ==+证:11n =时,1211D ==+2假设当n k ≤时结论成立,当1n k =+时,若12k +=,22112D =41321=-==+结论成立. 若13k +≥,将1k D +按第一行展开得112112122(1)(11)(1)1112k k k D D D k k k +-==-=+--+=++由数学归纳法,对一切自然数n 结论成立.(3) 1211111111111(1),0,1,2,,1111nni i i i ina a D a a i n a a ==++==+≠=+∑∏. 证:(用加边法)等式左端1211111011110111101111na a a +=++121111100100100na a a -=--121211111110000000nna a a a a a ++++=1211121111(1)(1)n nn i i i n i a a a a a a a a ===++++=+=∑∏ 等式右端.(4) 1100010001000000001n n n x y xy x y xy x y x y D x y x y xy x y+++++-==-++ ,其中x y ≠.证:当1n =时,221x y D x y x y-=+=-,等式成立.假设n k ≤时等式成立,当1n k =+时,若12k +=,则332212k x y D D x xy y x y +-==++=-,等式成立. 若13k +≥,将1k D +按一列展开,得 111000100()(1)01000001k k x y xy x y xy D x y x y x y ++++=+-++ 阶21000010(1)0101xy x y xy x y x y +++-++ 阶由归纳法原理,等式对一切自然数n 都成立.14.设()f x 是一个次数不大于1n -的一元多项式,证明如果存在n 个互不相同的数12,,,n a a a 使()0,1,2,,i f a i n == . 则()0f x =.证:设121210()n n n n f x k x k x k x k ----=++++ ,依题意有10111110110n n n n n n k a k a k k a k a k ----⎧+++=⎪⎨⎪+++=⎩(1) 因12,,,n a a a 互不相同,故(1)的系数行列式211112122212111()01n n j i i j nn nn na a a a a a D a a a a a --≤<≤-==-≠∏,所以关于011,,,n k k k - 的线性方程组(1)只有零解,所以0110,()0n k k k f x -===== . 15.用Cramer 法则解方程组(1) 121254116520x x x x +=⎧⎨+=⎩解:5425241065D ==-=≠,方程组有唯一解.1114558025205D ==-=-,25111006634620D ==-=,由克莱姆法则,1125D x D ==-,2234Dx D ==(2) 121232356 1560 50x x x x x x x +=⎧⎪++=⎨⎪+=⎩解:56056305301561519119015010D --==-=--[5(19)(30)1]650=-⨯---⨯=≠,方程组有唯一解.1160560562561915015D ===-=,251016106505005D ==-=-, 356115150101010D ===. 所以由克莱姆法则得,111965D x D ==,22113D x D ==-,3165x =.。

哈工大近世代数习题参考答案

哈工大近世代数习题参考答案
1 b 则f x− , a a
−1
∈G 。
n k, 所以 n rk , 由已知 (n, r ) = 1 , 则有: 所以 k = n , 即 a r 的阶为 n , 从而 (a r ) = G 。
另证:由 (n, r ) = 1 ⇒ ∃k1 , k 2 ∈ Z , k1 ⋅ n + k 2 ⋅ r = 1 ,则有: a 1 = a k1 ⋅n + k 2 ⋅r = a k1 ⋅n a k 2 ⋅r = ea k 2 ⋅r = (a r ) k 2 ,即 a = (a r ) k 2 ,即 G 的生成元 a 可由 a r 生 成,故有: (a r ) = G 。 12.5.5 证明: 设 a r 的阶为 k , 则 (a r ) k = e , 即 a rk = e 。 又 an = e , 所以 n | rk , 又 ( r , n) = d ,
f ( x ∗ y ) = ψ ϕ ( x ∗ y ) = ψ (ϕ ( x ∗ y )) = ψ (ϕ ( x) • ϕ ( y )) = ψ (ϕ ( x))∆ψ (ϕ ( y )) = ψ ϕ ( x)∆ψ ϕ ( y ) = f ( x) f ( y )
所以 f = ψ ϕ 为 S1 → S 3 的同态,即两个同态的合成还是同态。
1)封闭性:对 ∀f , g ∈ G ,设 f ( x) = ax + b , g ( x) = cx + d , a ≠ 0, c ≠ 0 , 则 f g ( x) = f ( g ( x)) = f (cx + d ) = a (cx + d ) + b = (ac) x + ad + b ,所以 f g ∈ G 2)结合律:映射的复合满足结合律。 3)单位元: I R ( x) = x 4)逆元: 显然对 ∀f ∈ G , 由 f 为双射, 故 f 可逆, 且 f −1 ( x) = 12.5.3 证明:由 a r ∈ G ,则 (a r ) ⊆ G 。设 a r 的阶为 k ,即 (a r ) k = e 。 因为 (a r ) n = (a n ) r = e r = e ,所以 k n 。又由 (a r ) k = e ⇒ a rk = e ,而 a n = e ,

哈工大电气考研电气基础习题解答 (6)

哈工大电气考研电气基础习题解答 (6)

第6章 逻辑代数基础6.1对课程内容掌握程度的建议6.2 授课的几点建议6.2.1 基本逻辑关系的描述基本逻辑关系有“与”、“或”、“非”三种,在本教材中采用文字叙述和常开触点、常闭触点的串、并联等形式来加以描述。

还有一种描述逻辑关系的图,称为文氏图(Venn diagram )。

图6.1(a)圆圈内是A ,圆圈外是A ;图6.1(b)圆圈A 与圆圈B 相交的部分是A 、B 的与逻辑,即AB ;图6.1(c)圆圈A 与圆圈B 所有的部分是A 、B 的或逻辑,即A +B 。

与逻辑AB 也称为A 与B 的交集(intersection );或逻辑A +B 也称为A 和B 的并集(union )。

(a) 单变量的文氏图 (b) 与逻辑的文氏图 (c) 或逻辑的文氏图图6.1 文氏图6.2.2 正逻辑和负逻辑的关系正逻辑是将双值逻辑的高电平H 定义为“1”,代表有信号;低电平L 定义为“0”,代表无信号。

负逻辑是将双值逻辑的高电平H 定义为“0”,代表无信号;低电平L 定义为“1”,代表有信号。

正逻辑和负逻辑对信号有无的定义正好相反,就好象“左”、“右”的规定一样,设正逻辑符合现在习惯的规定,而负逻辑正好反过来,把现在是“左”,定义为“右”,把现在是“右”,定义为“左”。

关于正、负逻辑的真值表,以两个变量为例,见表6.1。

由表6.1可以看出,对正逻辑的约定,表中相当是与逻辑;对负逻辑约定,则相当是或逻辑。

所以正逻辑的“与”相当负逻辑的“或”;正逻辑的“或”相当负逻辑的“与”。

正与和负或只是形式上的不同,不改变问题的实质。

6.2.3 形式定理本书介绍了17个形式定理,分成五类。

需要说明的是,许多书上对这些形式定理有各自的名称,可能是翻译上的缘故,有一些不太贴切,为此,将形式定理分成5种形式表述,更便于记忆。

所以称为形式定理,是因为这些定理在逻辑关系的形式上虽然不同,但实质上是相等的。

形式定理主要用于逻辑式的化简,或者在形式上对逻辑式进行变换,它有以下五种类型:1.变量与常量之间的关系; 2.变量自身之间的关系; 3.与或型的逻辑关系; 4.或与型的逻辑关系;5.求反的逻辑关系——摩根(Morgan )定理。

线性代数习题3解析【哈工大版】

线性代数习题3解析【哈工大版】
(1) a b 是否与 c 平行; (2) 求 a b, a c, a, c ; (3) 求 a b, [abc] ; (4) 设 x 3a 4b c, y 2b c ,求 x, y . 解:(1) a b (1, 2,3) (2,1,0) (3, 1,3)
·40·
1 4 x 1 或 x , y 1或 y , 3 3 1 4 1 即c i k 或c i j k . 3 3 3 14.已知 (a b) c 2 ,求 [(a b) (b c)] (c a) .
又x y z 2
2 2
5 3 . 2
(a b) (a b) (a b) (a b) 0 ,
| a |2 2a b | b |2 | a |2 2a b | b |2 0 .
得 4a b 0 , 所以 a b 0. 6.试证: a b b c c a 0 的必要条件是 a, b, c 共面. 证:由等式 a b b c c a 0 两边与 c 作内积得
2 2 2

解: [ ( a b ) ( b c ) ] c ( a ) a [ b a c b c ] ( c a )
a b c a c c b c c a b a a c a b c a
. a b c b c a2 2 4 15.用数量积证明三角形的余弦定理. 证:考察三角形(如图所示) 记 a BC, b CA, c AB ,则



A
1.设 A 、 B 、 C 是任意三点,求 AB BC CA 解:由三角形法则
A B B C CA

最新哈工大计算力学考试题及答案

最新哈工大计算力学考试题及答案

(1)For a plane stress state, if the y-coordinate is regarded as a symmetric axis, try to make a sketch and write down the displacement boundary conditions at the symmetric axis in finite element modeling. (6 points) Solution:As shown in the figure, for a symmetric problem, we may define 0==A A v u at point A ; and at point B , 0=B u(2)Try to use the Castigliano’s first theorem to obtain the matrix equilibrium equations for the system of springs shown in the following Figure.(10 points)Solution :For the spring element, the strain energy is given by ()221u k U e ∆=In which, k – stiffness of the spring, u ∆ - deflection of the spring.The total strain energy of the system of four springs is expressed by means of the nodal displacements and spring constants as2454234322322121)(21)(21)(21)(21U U k U U k U U k U U k U e -+-+-+-=By application of the Castigliano’s first theorem for each element12111211)()1)((F U U k U U k U U e=-=--=∂∂23221212)()(F U U k U U k U U e=-+-=∂∂ 34332323)()(F U U k U U k U U e=-+-=∂∂ 45443434)()(F U U k U U k U U e=-+-=∂∂ 54545)(F U U k U U e=-=∂∂ The system stiffness matrix can be written as⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--+--+--+--54321432444433332222111100000000000000F F F F F U U U k k k k k k k k k k k k k k k k(3)The interpolation functions for a beam element of length L arewrite down a polynomial representation of the displacement field )(x v in terms of the above interpolation functions and show that 22/dx v d = constant for the beam element subject to pure bending. (12 points) Solution :The displacement field for a beam element is332220)(x a x a x a a x v +++=It can also be expressed in terms of interpolation functions and nodal variables as24231211)(θθN v N N v N x v +++=Substitute the interpolation functions into the above equation and after a few manipulations, we have24231211θθdxdN v dx dN dx dN v dx dN dx dv +++=22223221221322326634166θθ⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛+-=L x L x v L x L x L x L x v L x L x 2223212132226212664126θθ⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-=L x L v L x L L x L v L x L dx v d for the beam element subject to pure bending, we have21v v =, 21θθ-=So, constant 22411122=-=+-=θθθLL L dx v d (4)For a 2D problem, if the mid-points of each side of a triangular element are alsodefined as nodal points, try to write down an appropriate polynomial representationof the displacement field variable, and discuss its convergence conditions. (14 points )Solution :The polynomial representation of the displacement field variable can be written as26524321y a xy a x a y a x a a u +++++=21211210987y a xy a x a y a x a a v +++++=The convergence conditions include: (1) the compatibility conditions.Since the above equations are continuous within the element, so the displacement field iscontinuous in the element.On the common boundary, the side line is a quadratic function that has three independent constants. And since there are three nodes, the boundary curve can be uniquely determined by the quadratic function, so on the common boundary, there is no void, no material overlap either.(2) the completeness condition.The rigid body motion can be determined by the constants 1a and 7a The rigid body rotation can be realized by3a y u =∂∂, and 8a xv =∂∂ The constant strain condition can be satisfied by2a xux =∂∂=ε, 9a y v y =∂∂=ε, and 83a a x v y u xy +=∂∂+∂∂=γIn summary, convergence conditions are satisfied for the element.(5)Considering a beam element, Denoting the element length by L and the moment ofinertia of the cross-sectional area by z I , write down an appropriate function to express the displacement field, and finally, derive the finite element equation and nodal forces of the element by using the Galerkin ’s method. (18 points)Solution :The governing equation for the problem of beam flexure is)(d d d d 2222x q x v EI x z =⎪⎪⎭⎫ ⎝⎛ The displacement solution can be written as∑==+++=4124231211)()()()()()(i i i x N x N v x N x N v x N x v δθθTherefore, the element residual equations are4,10d )(d d d d )(212222==⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫⎝⎛⎰i x x q x v EI x x N x x z iIntegrating the derivative term by parts and assuming a constant z EI , we obtain4,10d )(d d d d d d d )(2121213333==--⎰⎰i x x q N x x vx N EI xvEI x N xx i x x i z x x z iand since3322d d d d d d d d x vEI x v EI x x M V z z -=⎪⎪⎭⎫ ⎝⎛-=-= Integrating again by parts and rearranging gives4,1d d d d d d d )(d d d d d 2121212122332222=+-=⎰⎰i xvEI x N x v EI N x x q N x x v x N EI x x z i x x z i xx i x x i zThe shear forces and bending moments at element nodes now explicitly appear in the element equations.The above equation can be written in the matrix form }{}]{[F k =δ where the terms of thestiffness matrix are defined by4,1,d d d d d 222221==⎰j i x x N xN EI k jx x i z ijThe terms of the element force vector are defined by4,1d d d d d d d )(2121212233=+-=⎰i xvEI x N x vEI N x x q N F x x z i x x x x z i i ior,4,1)(d d )(d )(212121=++=⎰i x M xN x V N x x q N F xx i x x xx i i iwhere the integral term represents the equivalent nodal forces and moments produced by the distributed load.(6)Consider the three-node line element with interpolation functionsUse the element as the parent element in the isoparametric mapping332211)()()(x r N x r N x r N x ++=with 321x x x << but otherwise arbitrary nodal coordinates. a.b. How does the x coordinate vary between nodes of the isoparametric element?c. Has the basic element geometry changed from that of the parent element?d.e.Determine the Jacobian matrix for the transformation ,and calculate the Jacobianmatrix for the basic element with nodal coordinates 03and ,0,0.2321.x x x ==-=.f. Find the inverse of the Jacobian matrix, and calculate its value for the above basic element too.g. Calculate the value of determinate J at a point with 25.0=r .(20 points)Solution :a. 332211)()()(x r N x r N x r N x ++=32212)2()44()132(x r r x r r x r r -+-++-=It can be seen that the x coordinate vary as a quadratic function between nodes of the isoparametric elementb. the basic element geometry may change from that of the parent element. The basic element is still a straight line element, however, its length may change. The length of the parent element is 1, and the length of the basic element is 13x x -.c. the Jocabian matrix can be written as[]⎥⎦⎤⎢⎣⎡∂∂=⎥⎦⎤⎢⎣⎡∂∂=∑=31i i i x r N r x JThat is 321)14()21(4)34(][x r x r x r J -+-+-=for the basic element with nodal coordinates 03and ,0,0.2321.x x x ==-=we have 3431268][+=-++-=r r r Jd. the inverse of the Jocabian matrix is 3211)14()21(4)34(1][x r x r x r J -+-+-=-for the basic element with nodal coordinates 03and ,0,0.2321.x x x ==-=we have 341][1+=-r Je. T he value of determinate J at a point with 25.0=r is calculated by434=+=r J。

哈工大《离散数学》教科书知识题目解析

哈工大《离散数学》教科书知识题目解析

教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。

解:2210x x ++=的根为1x =-,故所求集合为{1}-4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆;c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈;e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆;g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆;i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈;k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆;m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真5.设有n 个集合12,,,n A A A L 且121n A A A A ⊆⊆⊆⊆L ,试证:12n A A A ===L证明:由1241n A A A A A ⊆⊆⊆⊆⊆L ,可得12A A ⊆且21A A ⊆,故12A A =。

同理可得:134n A A A A ====L因此123n A A A A ====L6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。

证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。

(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。

那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。

哈工大泛函考试题

哈工大泛函考试题

P9-3 设A 为可列集,B 是有A 的有限子集构成的集合,证明B 可列。

证:记C n n C A A C⎧⎫⊂⎪⎪=⎨⎬⎪⎪⎩⎭且只有个元素则1nn B A ∞== ,设12,(,,,),in i j k N F k k k k k i j ⎧⎫∈⎪⎪=⎨⎬≠≠⎪⎪⎩⎭且则F 是可列集,对n A 中的每个元{}12,,n k k k a a a 素,令其对应于F 中的元素{}12,n k k k ,则nA 与F 中的一个子集对等,故nA 也是可列集,故B 也是可列集P9-6 证明以有理数为圆心且以有理数为半径的区间全体是可列集。

证:设{}12,,Q r r = ,用ij I 表示以i r 为中心,以jr 为半径的区间,则{},ij I I i j N =∈,令{}(,),i j i jB r r r r Q Q Q =∈=⨯是可列集,做映射:,()(,),,ij i j I B I r r i j N ψψ→=∈则ψ为一一映射,因而I 与B 的一个子集对等,由于B 为可列集,故I 也为可列集。

P16-8、对于点列,n x R ∈若11,1,2,...,2n n nx x n +-≤=求证n x 是cauchy 列。

犹若1lim 0n n n x x -→∞-=,问n x 是否一定为Cauchy 列?证:1)先证{}n x 为Cauchy 列。

由于对,n p N ∀∈有11111111...111(12)1221(12)2n p n p n p n n p n n np n p n p i i i n i ni nx x x x x x x x x x ++-++-+++-+-+-==-+-=--+--≤-≤=≤-∑∑而11lim0,2n n -→∞=故0,ε∀>00,N ∃>当n N >时有112n ε-<因而对,p N ∀∈当0n N >时,有112n ε-<因而对,p N ∀∈当0n N >时,有112n p n n x x ε+--≤<因此{}n x 为Cauchy 列。

哈工大《代数几何》试题(2008)_1模拟

哈工大《代数几何》试题(2008)_1模拟

哈尔滨工业大学远程教育学院 学期代数与几何 试题纸(闭卷,时间:90分钟)(所有答案必须写在答题纸上)一、填空题(每小题4分,共20分)1.设⎪⎪⎪⎭⎫ ⎝⎛--=219010003A ,则A 的行列式|A |= . 2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111111111111x x x x A ,且R (A )=1,则x= . 3.设设矩阵三阶方阵A 的特征值为1,2,-3,则|A +3E |= . 4.经过点M (1, 2, 3)且与直线11221-+=-=z y x 平行的直线方程为 . 5.已知⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=231,211βα,设A =αβ ′,其中β ′为β的转置,则A =.二、选择题(每小题4分,共20分) 1.设n (n ≥2)阶方阵A 满足A 2=E ,其中E 表示n 阶单位矩阵,则 【 】(A )A =A -1. (B )|A |=1.(C )A =E . (D )A =-E .2.设向量组α, β, γ线性无关,则 【 】(A )向量组α+β, α-β, γ线性无关. (B )向量组α, β-γ, α+β-γ线性无关.(C )向量组α+β, β+γ, α-γ线性无关. (D )向量组α, β+γ, α+β+γ线性无关.3. 曲面xy =z 在R 3中表示的图形是 【 】(A )椭圆面.(B )单叶双曲面. (C )马鞍面. (D )锥面.4. 下列论断中正确的是 【 】(A )相似矩阵有相同的特征值和特征向量.(B )有相同特征值的两个同阶方阵相似.(C )若两个矩阵相似,则它们相似于同一个对角矩阵.(D )有相同特征值的任意两个同阶对角矩阵一定相似.5.设A m ×n 为齐次线性方程组AX =O 的系数矩阵,其秩为r ,则AX =O 有非零解的充要条件是 【 】(A )r=n . (B )r<n .(C )r=m . (D )r<m .三、(10分)求矩阵方程中的未知矩阵A⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛123654*********A 四、(10分)求经过点M (-1, -2, -3),并垂直于平面x -2y +3z =1和2x +y -3z =2的交线的平面方程.五、(10分)设有向量组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=023,110,111,022,11154321ααααα 求其秩及一极大无关组.六、(20分)利用正交线性变换将二次型f (x 1,x 2,x 3)=2x 12-x 22-x 32-4x 1x 2+4x 1x 3+8x 2x 3化成标准形,写出所做的正交线性变换及相应的标准形.七、(10分)设λ为方阵A 的一个特征值,证明:2λ为矩阵2A 的一个特征值.参考答案一、6,1,0,132211--=-=-z y x ,⎪⎪⎪⎭⎫ ⎝⎛----462231231 二、A ,A ,C ,D ,B 三、 解:⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛≠=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--111611110011001123654111011001123654110011001111011001,111011001,0111101100112365411101100111A A 可逆故由于四、解:已知平面的法向量分别为n 1=(1,-2,3), n 2=(2,1,-3),所以,所求平面的法向量应与已知平面法向量垂直,可取所求平面的法向量为n =n 1×n 1,即又所求平面过点M (-1,-2,-3),从而所求平面的点法式方程为3(x +1)+9(y +2)+5(z +3)=0,即3x +9y +5z =-36k j i k j i n 593312321++=--=五、解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-==11000202200110101101211213012154321行αααααA因此,R (A )=3, α1, α1, α4为原向量组的一个极大无关组。

数电课后题答案(哈工大版)课后习题答案

数电课后题答案(哈工大版)课后习题答案

第6章 逻辑代数基础6.2 授课的几点建议6.2.1 基本逻辑关系的描述基本逻辑关系有“与”、“或”、“非”三种,在本教材中采用文字叙述和常开触点、常闭触点的串、并联等形式来加以描述。

还有一种描述逻辑关系的图,称为文氏图(V enn diagram )。

图6.1(a)圆圈内是A ,圆圈外是A ;图6.1(b)圆圈A 与圆圈B 相交的部分是A 、B 的与逻辑,即AB ;图6.1(c)圆圈A 与圆圈B 所有的部分是A 、B 的或逻辑,即A +B 。

与逻辑AB 也称为A 与B 的交集(intersection );或逻辑A +B 也称为A 和B 的并集(union )。

(a) 单变量的文氏图 (b) 与逻辑的文氏图 (c) 图6.1 文氏图6.2.2 正逻辑和负逻辑的关系正逻辑是将双值逻辑的高电平H 定义为“1”,代表有信号;低电平L 定义为“0”,代表无信号。

负逻辑是将双值逻辑的高电平H 定义为“0”,代表无信号;低电平L 定义为“1”,代表有信号。

正逻辑和负逻辑对信号有无的定义正好相反,就好象“左”、“右”的规定一样,设正逻辑符合现在习惯的规定,而负逻辑正好反过来,把现在是“左”,定义为“右”,把现在是“右”,定义为“左”。

关于正、负逻辑的真值表,以两个变量为例,见表6.1。

表6.1由表6.1可以看出,对正逻辑的约定,表中相当是与逻辑;对负逻辑约定,则相当是或逻辑。

所以正逻辑的“与”相当负逻辑的“或”;正逻辑的“或”相当负逻辑的“与”。

正与和负或只是形式上的不同,不改变问题的实质。

6.2.3 形式定理本书介绍了17个形式定理,分成五类。

需要说明的是,许多书上对这些形式定理有各自的名称,可能是翻译上的缘故,有一些不太贴切,为此,将形式定理分成5种形式表述,更便于记忆。

所以称为形式定理,是因为这些定理在逻辑关系的形式上虽然不同,但实质上是相等的。

形式定理主要用于逻辑式的化简,或者在形式上对逻辑式进行变换,它有以下五种类型:1.变量与常量之间的关系;2.变量自身之间的关系;3.与或型的逻辑关系;4.或与型的逻辑关系;5.求反的逻辑关系——摩根(Morgan )定理。

哈工大阵列信号处理答案2

哈工大阵列信号处理答案2

1.设一个辐射源距接收阵列的距离为r 0(该距离远大于天线的孔径),天线阵由M 个感应器构成,辐射源辐射的功率为P s ,噪声的平均功率为P n 。

设阵列的时延可以使阵列的主瓣与信号的传播方向匹配,且阵列的加权系数为1。

1) 在信号源处,信噪比是多少? 2) 在感应器处,信噪比是多少?3) 当阵列的主瓣方向与传播方向匹配时,阵列输出的信噪比是多少?4) 如信号源在接收阵列附近,发射的平均功率为P t ,信号以球面波的方式传播,到物体后备物体反射,且仍以球面波的方式传播,被物体反射的信号P s 为入射功率的ρ倍,物体到阵列中心位置的距离为r 0,计算阵列输出信号的信噪比(阵列的最大方向与目标反射信号的传播方向相同)? 解:1) 在信号源处,信噪比为0snP SNR P =2) 在感应器处,信噪比为0204s n P SNR SNR P r π''== 3) 当阵列主瓣方向匹配时,感应器处信噪比被加强,加强倍数为阵列增益。

阵列输出的信噪比是 0204s n P SNR SNR SNR G G M P r π''=⋅=⋅=⋅ 4) 近场时,位于阵列中心的感应器处接收到的信号功率为()2220044s t P P P r r ρππ⋅'==,噪声功率仍为n P 。

因此,该出的信噪比为:()2204t n n P PSNR P P r ρπ⋅==⋅计算得到阵列的输出信噪比为,中心点处信噪比乘以阵列增益G '。

()2204t n P G SNR SNR G P r ρπ'⋅⋅'=⋅=⋅阵列2.阵列的增益在频域可以表示为:⎰⎰⎰⎰⎰⎰⎰⎰∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-∞∞-=ωωωωωωωωωωd k d k S d k d k H k S d k d k S d k d k H k S G n n 222222),(/),(),(),(/),(),( 这里),(ωk S为信号的空时付氏变换,),(ωk H 为阵列的空时滤波函数,),(ωk S n 为噪声的空时付氏变换。

哈工大数电习题册答案

哈工大数电习题册答案

9、对逻辑运算判断下述说法是否正确,正确者在其后( )内打对号,反之打×。 (1) 若 X+Y=X+Z,则 Y=Z;( × ) (2) 若 XY=XZ,则 Y=Z;( × ) (3) 若 X Y=X Z,则 Y=Z;(√ ) 【3-2】用代数法化简下列各式 (1) F1 = ABC AB 1 (2) F2 = ABCD ABD ACD AD
【4-7】已知 TTL 逻辑门 UoH=3V,UoL=0.3V,阈值电平 UT=1.4V,试求图 4.9 电路中各电压 表的读数。 解: 电压表读数 V1=1.4V,V2=1.4V,V3=0.3V,V4=3V,V5=0.3V。
3.6 V
0. 3 V 3. 6 V
1.4V
V1
V2 1.4V
V3
0.3V
A B C F
A B C
(a) 图 4.7 (b)
解: 当 C 1 时, F AB ; 当 C 0 时, F A B A B 。 于是,逻辑表达式 F ABC ( A B )C F 的波形见解图所示。
A B C F
【4-6】图 4.8 所示电路中 G1 为 TTL 三态门,G2 为 TTL 与非门,万用表的内阻 20kΩ/V, 量程 5V。当 C=1 或 C=0 以及 S 通或断等不同情况下,UO1 和 UO2 的电位各是多少?请填入 表中,如果 G2 的悬空的输入端改接至 0.3V,上述结果将有何变化?
A B C F
【4-9】由 CMOS 传输门和反相器构成的电路如图 4.11(a)所示,试画出在图(b)波形作用下的 输出 UO 的波形(UI1=10V UI2=5V)
C
U I1 Uo 10V O UO
TG

哈尔滨工业大学代数与几何期末考试试题

哈尔滨工业大学代数与几何期末考试试题

哈尔滨工业大学2007级代数与几何期末考试试题哈尔滨工业大学2007级《代数与几何》期末试题(此卷满分50分)注:本试卷中、、分别表示的秩,的转置矩阵、的伴随矩阵;表示单位矩阵.一、填空题(每小题2分,共10分)1.若矩阵满足,则的特征值只能是 .2.在空间直角坐标系中方程的图形是 .3.向量组的秩为4.若矩阵满足,是行满秩阵,则 .5.空间直角坐标系中曲线绕轴旋转一周,所生成的旋转曲面的方程为.二、选择题(每小题2分,共10分)1.设是矩阵,则方程组有唯一解的充要条件是【】(A);(B);(C);(D).2.设有维列向量组(I); 可由向量组(II)线性表示,则【】(A)若(I)线性无关,则(II)线性无关;(B)若(I)线性相关,则(II)线性相关;(C)若(I)线性无关,则;(D)若(II)线性无关,则.3.设,则必有【】(A)是正交阵;(B)是正定阵;(C)是对称阵;(D).4.实二次型正定的充要条件是【】(A);(B);(C);(D).5.设, B都是阶实对称矩阵,则下列结论正确的是【】(A)若A与B等价,则A与B相似;(B)若A与B相似,则A与B合同;(C)若A与B合同,则A与B相似;(D)若A与B等价,则A与B合同.三、(本题5分)已知列向量组是的基,也是的基,求由基到基的过渡矩阵,并求在基下的坐标.四、(本题5分)设矩阵与相似,求.五、(本题6分)已知,其中,求.六、(本题6分)已知三阶实对称矩阵A的每行元素之和都等于2,且秩.(1)用正交变换将二次型化为标准形,并求所用的正交变换矩阵.(2)求, 其中m是大于等于1的自然数.七、(本题5分)设是阶方阵,,试证:若存在自然数使,则.八、(本题3分)设实矩阵,,是的列向量组. 实向量是齐次线性方程组的基础解系. 试证:向量组线性无关.参考答案一、填空题1、2.2、双叶双曲面.3、4、.5、.二、选择题1、A.2、C.3、 D.4、B.5、B.三、解:由知由基到基的过渡矩阵为在基下的坐标为四、解:由与相似,知是的特征值,所以,. 进而,由此得解得.五、解:. 由,得,整理得. 由知可逆,且,故.六、解:(1)因的每行元素之和都等于2,所以是的属于特征值2的特征向量. 因,所以是A特征值, 对应于有两个线性无关的特征向量.设是A的属于特征值的特征向量. 因实对称知X与正交,即.解得是A的属于特征值的特征向量,规范正交化得.将的属于特征值2的特征向量规范正交化得.令,则P为正交矩阵,在正交变换下,.(2),七、证:因,所以存在可逆矩阵使其中.于是故从而.八、证法1:设(1)因是齐次线性方程组的基础解系,用在左边乘(1)式两边得,进而,故,再由知由(1)知,由是基础解系,从而线性无关,于是,故线性无关.证法2:设(1)因是齐次线性方程组的基础解系,所以于是.由知线性无关,故的证明同上.证法3:设(1)得关于的齐次线性方程组系数行列式的证明同上.。

哈工大MATLAB选修课最终大作业

哈工大MATLAB选修课最终大作业

2014年春季学期MATLAB 课程考查题姓名:学号:11208学院:机电工程学院专业:机械设计制造及其自动化一.必答题(80分)1. 如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有何区别?答:设置当前目录和搜索路径:在File菜单中选择SetPath选项,之后选择AddFolder增加目录。

当前工作目录是指MATLAB运行文件时的目录,只有在当前工作目录或搜索路径下的文件、函数可以被运行或调用。

2. 创建符号变量和符号表达式有哪几种方法?答:(1)符号变量:x = sym(‘x’) 创建x为符号变量,默认复数区域x = sym(‘x’, ‘real’) 创建实数的符号变量xx = (‘x’, ‘positive’) 创建正数的符号变量xx = sym('x', 'clear')创建一个没有额外属性的纯形式上的符号变量xs=sym(‘ab’,’flag’) 创建flag数域(复数,实数,正数)符号变量名s,内容ab(2)符号表达式:①直接法:>> x=sym('x');>> a=sym('a');>> b=sym('b');>> f=sin(b*x)+exp(-a*x)②整体定义法:f=sym(‘expression’)③字符串符号表达式:f=‘expression’3. GUIDE提供哪些常用的控件工具,各有什么功能?(5分)答:按钮(Push Buttons) :通过鼠标单击按钮可以执行某种预定的功能或操作;静态文本框(Static Texts):仅用于显示单行的说明文字.文本编辑器(Editable Texts):用来使用键盘输入字符串的值,可以对编辑框中的内容进行编辑、删除和替换等操作;单选按钮(Radio Button):单个的单选框用来在两种状态之间切换,多个单选框组成一个单选框组时,用户只能在一组状态中选择单一的状态,或称为单选项;滚动条(Slider):可输入指定范围的数量值,通过移动滚动条来改变指定范围内的数值输入,滚动条的位置代表输入数值。

电磁学_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年

电磁学_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年

电磁学_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年1.图示为三种不同的磁介质的B-H关系曲线,其中虚线表示的是B=【图片】H的关系,铁磁质的关系曲线是::【图片】参考答案:a2.在线性、均匀、各向同性介质中,下列说法正确的是:参考答案:磁能密度同磁感应强度的平方成正比_磁能密度同磁场强度的平方成正比_电能密度同电场强度的平方成正比3.有磁介质存在的环路定理【图片】下列说法正确的是参考答案:磁场强度H 与整个磁场空间的传导电流和磁化电流有关_只与环路L内的传导电流有关4.在均匀磁化的无限大磁介质中挖去一半径为r高度为h的圆柱形空穴,其轴平行于磁化强度矢量,下列说法正确的是:参考答案:对于扁平空穴(h《r),空穴中点的B与磁介质中的B相等_对于细长空穴(h》r),空穴中点的H与磁介质中的H相等5.磁和电一样都可以实现屏蔽,但是无法像电一样实现完全屏蔽。

参考答案:正确6.当磁感强度B相同时,铁磁物质与非铁磁质中的磁场能量密度相比,非铁磁质中磁场能量密度较大参考答案:正确7.关于交流电,频率不太高时,以下说法正确的是参考答案:同一交流电路中各元件电压、电流频率相同。

8.描述交流电路中元件的物理参量为参考答案:阻抗和相位9.在我国,日常两相电的电压和频率分别是参考答案:220V,50Hz10.关于电路的暂态过程,以下说法错误的是:参考答案:电源的频率较高11.关于LR电路和RC电路的暂态过程,以下说法正确的是:参考答案:L越大,电流增长的越慢_C越大,电流增长的越慢12.真空中,一列平面电磁波沿着【图片】轴正方向传播,磁感应强度【图片】方向沿着【图片】轴正方向,则电场强度【图片】方向为参考答案:轴负方向13.关于真空中传播的平面电磁波,以下说法正确的参考答案:电场和磁场的能量密度相同,能流沿着波矢正方向14.关于电磁波产生和传播,以下说法正确的是参考答案:电磁波的传播不需要介质15.如图,电源电动势【图片】,【图片】,【图片】,则开关接通的瞬间,电容器极板间的位移电流为:【图片】参考答案:2A16.关于位移电流,以下说法正确的是参考答案:位移电流和传导电流都可以激发磁场_位移电流实质是变化的电场17.关于电磁波的波速,以下说法正确的是参考答案:电磁波在各向异性的介质中传播时,不同方向速度不同。

哈工大图论习题

哈工大图论习题

1.画出具有4个顶点的所有无向图(同构的只算一个)。

2.画出具有3个顶点的所有有向图(同构的只算一个)。

3.画出具有4个、6个、8个顶点的三次图。

4・某次宴会上,许多人互相握手。

证明:握过奇数次手的人数为偶数(注意• 0是偶数)。

5.证明:哥尼斯堡七桥问题无解。

6.设u与v是图G的两个不同顶点。

若u与v间有两条不同的通道(迹),则G中是否有回路?7.证明:一个连通的(p, q)图中q ^p-lo8.设G是一个(p, q)图,§(G)M[p/2h试证G是连通的。

9•证明:在一个连通图中,两条最长的路有一个公共的顶点。

10.在一个有n个人的宴会上,每个人至少有m个朋友(2WmWn)°试证:有不少于m+1 个人,使得他们按某种方法坐在一张圆桌旁,每人的左、右均是他的朋友。

11.一个图G是连通的,当且仅当将V划分成两个非空子集VI和V2时,G总有一条联结VI的一个顶点与V2的一个顶点的边。

12.设G是图。

证明:若§(G)工2,则G包含长至少是6 (0+1的回路。

13.设G是一个(p, q)图,证明:(a)qPp,则G中有回路;(b)若qMp+4,则G包含两个边不重的回路。

14•证明:若图G不是连通图,则是连通图。

15.设G是个(p, q)图,试证:(a) 5 (G) - 6 ©)W[(p-l)/2]([(p+l)/2]+l),若p三0, 1, 2 (mod 4)(b) 6 (G) • 6 ©)W[(p-3)/2] • t(p+l)/2],若p=3(mod 4)16•证明:每一个自补图有4n或4n+l个顶点。

17.构造一个有2n个顶点而没有三角形的三次图,英中n^3o18•给出一个10个顶点的非哈密顿图的例子,使得每一对不邻接的顶点u和v,均有degu+degv^919.试求Kp中不同的哈密顿回路的个数。

20.试证:图四中的图不是哈密顿图。

21.完全偶图Km, n为哈密顿图的充分必要条件是什么?22.菱形12而体的表而上有无哈密顿回路?23.设G是一个p(p^3)个顶点的图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LINEAR ALGEBRAANDITS APPLICATIONS 姓名:易学号:成绩:1. Definitions(1) Pivot position in a matrix; (2) Echelon Form; (3) Elementary operations;(4) Onto mapping and one-to-one mapping; (5) Linearly independence.2. Describe the row reduction algorithm which produces a matrix in reduced echelon form.3. Find the 33⨯ matrix that corresponds to the composite transformation of a scaling by 0.3, a rotation of 90︒, and finally a translation that adds (-0.5, 2) to each point of a figure.4. Find a basis for the null space of the matrix361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦5. Find a basis for Col A of the matrix1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦6. Let a and b be positive numbers. Find the area of the region bounded by the ellipse whose equation is22221x y ab+=7. Provide twenty statements for the invertible matrix theorem. 8. Show and prove the Gram-Schmidt process. 9. Show and prove the diagonalization theorem.10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent.Answers:1. Definitions(1) Pivot position in a matrix:A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.(2) Echelon Form:A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:1.All nonzero rows are above any rows of all zeros.2.Each leading entry of a row is in a column to the right of the leading entry of the row above it.3.All entries in a column below a leading entry are zeros.If a matrix in a echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):4.The leading entry in each nonzero row is 1.5.Each leading 1 is the only nonzero entry in its column.(3)Elementary operations:Elementary operations can refer to elementary row operations or elementary column operations.There are three types of elementary matrices, which correspond to three types of row operations (respectively, column operations):1.(Replacement) Replace one row by the sum of itself anda multiple of another row.2.(Interchange) Interchange two rows.3.(scaling) Multiply all entries in a row by a nonzero constant.(4)Onto mapping and one-to-one mapping:A mapping T : n →m is said to be onto m if each b in m is the image of at least one x in n.A mapping T : n →m is said to be one-to-one if each b in m is the image of at most one x in n.(5)Linearly independence:An indexed set of vectors {V1, . . . ,V p} in n is said to be linearly independent if the vector equationx 1v 1+x 2v 2+ . . . +x p v p = 0Has only the trivial solution. The set {V 1, . . . ,V p } is said to be linearly dependent if there exist weights c 1, . . . ,c p , not all zero, such that c 1v 1+c 2v 2+ . . . +c p v p = 02. Describe the row reduction algorithm which produces a matrix in reduced echelon form. Solution: Step 1:Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top. Step 2:Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position. Step 3:Use row replacement operations to create zeros in all positions below the pivot. Step 4:Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there all no more nonzero rows to modify. Step 5:Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 by scaling operation.3. Find the 33⨯ matrix that corresponds to the composite transformation of a scaling by 0.3, a rotation of 90︒, and finally a translation that adds (-0.5, 2) to each point of a figure. Solution:If ψ=π/2, then sin ψ=1 and cos ψ=0. Then we have ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110003.00003.01y x y x scale⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−110003.00003.0100001010y x R o t a t e⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−110003.00003.0100001010125.0010001y x T r a n s l a t eThe matrix for the composite transformation is ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003.00003.0100001010125.0010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=10003.00003.0125.0001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=125.0003.003.004. Find a basis for the null space of the matrix 361171223124584A ---⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦Solution:First, write the solution of A X=0 in parametric vector form: A ~ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---00002302101000201, x 1-2x 2 -x 4+3x 5=0 x 3+2x 4-2x 5=0 0=0The general solution is x 1=2x 2+x 4-3x 5, x 3=-2x 4+2x 5, with x 2, x 4, and x 5 free. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+--+=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10203012010001222325425454254254321x x x x x x x x x x x x x x x xu v w=x 2u+x 4v+x 5w (1)Equation (1) shows that Nul A coincides with the set of all linear conbinations of u, v and w . That is, {u, v, w}generates Nul A. In fact, this construction of u, v and w automatically makes them linearly independent, because (1) shows that 0=x 2u+x 4v+x 5w only if the weights x 2, x 4, and x 5 are all zero.So {u, v , w} is a basis for Nul A.5. Find a basis for Col A of the matrix 1332-9-2-22-822307134-111-8A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦Solution: A ~ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---07490012002300130001, so the rank of A is 3. Then we have a basis for Col A of the matrix: U = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001, v = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0013and w = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--07496. Let a and b be positive numbers. Find the area of the region bounded by the ellipse whose equation is22221x y ab+=Solution:We claim that E is the image of the unit disk D under the linear transformation Tdetermined by the matrix A=⎥⎦⎤⎢⎣⎡b a 00, because if u= ⎥⎦⎤⎢⎣⎡21u u , x=⎥⎦⎤⎢⎣⎡21x x , and x = Au, then u 1 =ax 1 and u 2 =bx 2It follows that u is in the unit disk, with 12221≤+u u , if and only if x is in E , with1)()(2221≤+b x a x . Then we have{area of ellipse} = {area of T (D )} = |det A| {area of D} = ab π(1)2= πab7. Provide twenty statements for the invertible matrix theorem.Let A be a square n n ⨯ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or false. a. A is an invertible matrix.b. A is row equivalent to the n n ⨯ identity matrix.c. A has n pivot positions.d. The equation Ax = 0 has only the trivial solution.e. The columns of A form a linearly independent set.f. The linear transformation x → Ax is one-to-one.g. The equation Ax = b has at least one solution for each b in n.h. The columns of A spann.i. The linear transformation x → Ax maps nonton.j. There is an n n ⨯ matrix C such that CA = I. k. There is an n n ⨯ matrix D such that AD = I. l. A T is an invertible matrix. m. If 0A ≠, then ()()T11T A A --=n. If A, B are all invertible, then (AB)* = B *A *o. T**T )(A )(A =p. If 0A ≠, then ()()*11*A A --=q. ()*1n *A 1)(A --=-r. If 0A ≠, then ()()L11L A A --= ( L is a natural number )s. ()*1n *A K)(KA --=-t. If 0A ≠, then *1A A1A =-8. Show and prove the Gram-Schmidt process.Solution:The Gram-Schmidt process:Given a basis {x 1, . . . , x p } for a subspace W of n, define11x v = 1112222v v v v x x v ⋅⋅-=222231111333v v v v x v v v v x x v ⋅⋅-⋅⋅-=. ..1p 1p 1p 1p p 2222p 1111p p p v v v v x v v v v x v v v v x x v ----⋅-⋅⋅⋅-⋅⋅-⋅⋅-=Then {v 1, . . . , v p } is an orthogonal basis for W. In additionSpan {v 1, . . . , v p } = {x 1, . . . , x p } for p k ≤≤1 PROOFFor p k ≤≤1, let W k = Span {v 1, . . . , v p }. Set 11x v =, so that Span {v 1} = Span {x 1}.Suppose, for some k < p, we have constructed v 1, . . . , v k so that {v 1, . . . , v k } is an orthogonal basis for W k . Define1k w1k 1k x p r o j x v k+++-= By the Orthogonal Decomposition Theorem, v k+1 is orthogonal to W k . Note that proj Wk x k+1 is in W k and hence also in W k+1. Since x k+1 is in W k+1, so is v k+1 (because W k+1 is a subspace and is closed under subtraction). Furthermore, 0v 1k ≠+ because x k+1 is not in W k = Span {x 1, . . . , x p }. Hence {v 1, . . . , v k } is an orthogonal set of nonzero vectors in the (k+1)-dismensional space W k+1. By the Basis Theorem, this set is an orthogonal basis for W k+1. Hence W k+1 = Span {v 1, . . . , v k+1}. When k + 1 = p, the process stops.9. Show and prove the diagonalization theorem. Solution:diagonalization theorem:If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal. PROOFLet v 1 and v 2 be eigenvectors that correspond to distinct eigenvalues, say, 1λand 2λ. T o show that 0v v 21=⋅, compute2T 12T 11211v )(A v v )v (λv v λ==⋅ Since v 1 is an eigenvector ()()2T12T T1Avv v A v ==)(221v v Tλ=2122T12v v λv v λ⋅==Hence ()0v v λλ2121=⋅-, but ()0λλ21≠-, so 0v v 21=⋅10. Prove that the eigenvectors corresponding to distinct eigenvalues are linearly independent. Solution:If v 1, . . . , v r are eigenvectors that correspond to distinct eignvalues λ1, . . . , λr of an n n ⨯ matrix A.Suppose {v 1, . . . , v r } is linearly dependent. Since v 1 is nonzero, Theorem, Characterization of Linearly Dependent Sets, says that one of the vectors in the set is linear combination of the preceding vectors. Let p be the least index such that v p +1 is a linear combination of he preceding (linearly independent) vectors. Then there exist scalars c 1, . . . ,c p such that 1p p p 11v v c v c +=+⋅⋅⋅+ (1) Multiplying both sides of (1) by A and using the fact that Av k = λk v k for each k, we obtain 111+=+⋅⋅⋅+p p p Av Av c Av c11111++=+⋅⋅⋅+p p p p p v v c v c λλλ (2) Multiplying both sides of (1) by 1+p λ and subtracting the result from (2), we have0)()(11111=-+⋅⋅⋅+-++p p p p c v c λλλλ (3) Since {v 1, . . . , v p } is linearly independent, the weights in (3) are all zero. But none of the factors 1+-p i λλ are zero, because the eigenvalues are distinct. Hence 0=i c for i = 1, . . . ,p. But when (1) says that 01=+p v , which is impossible. Hence {v 1, . . . , v r } cannot be linearly dependent and therefore must be linearly independent.。

相关文档
最新文档