【数据的收集与表示】专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【数据的收集与表示】专题复习
一、知识网络
二、目标认知
学习目标:
1.了解总体、样本、个体等基本概念,;
2.知道调查的几种方式及其特点;
3.理解频数、频率以及扇形统计图的特点;
4.理解数据收集的一般步骤;
5.会画频数分布表和频数分布直方图,理解其意义和作用.
重点:
1.了解几种统计图侧重表达的信息,学会选择合适的统计图表并会绘制统计图表,能准确而迅速地反映出要表达的信息;
2.了解频数分布的意义和作用,会列频数分布表、会画频数分布直方图和频数折线图,并能解决简单的实际问题.
难点:根据统计的结果做出合理的判断和预测,体会统计对决策的作用,能清晰地表达自己的观点,并进行交流.
三、知识要点梳理
知识点一:总体、样本的概念
1.总体:要考察的全体对象称为总体.
2.个体:组成总体的每一个考察对象称为个体.
3.样本:被抽取的那些个体组成一个样本.
4.样本容量:样本中个体的数目叫样本容量(不带单位).
注意:为了使样本能较好地反映总体的情况,除了要有合适的样本容量外,抽取时还要尽量使每一个个体都有同等的机会被抽到.
知识点二:全面调查与抽样调查
调查的方式有两种:全面调查和抽样调查:
1.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,
调查的方法有:问卷调查、访问调查、电话调查等.
全面调查的步骤:
(1)收集数据;
(2)整理数据(划记法);
(3)描述数据(条形图或扇形图等).
2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.
抽样调查的意义:
(1)减少统计的工作量;
(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.
3.判断全面调查和抽样调查的方法在于:
知识点三:扇形统计图和条形统计图及其特点
1.生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.
(1)扇形统计图的特点:
①用扇形面积表示部分占总体的百分比;
②易于显示每组数据相对于总体的百分比;
③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只
要用各部分分量占总量的百分比之和是否为100%进行检查即可.
(2)扇形统计图的画法:
把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的
,即10%. 同理,圆心角是72°的扇形占整个圆面积的,即20%. 因此画扇形统计图的关键是算出圆心角的大小.
扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的
度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.
(3)扇形统计图的优缺点:
扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,
无法知道每组数据的具体数量.
2.用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.
(1)条形统计图的特点:
①能够显示每组中的具体数据;
②易于比较数据之间的差别.
(2)条形统计图的优缺点:
条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每
组数据占总体的百分比.
注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.
知识点四:频数、频率和频数分布表
1.一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量.
公式: .
由以上公式还可得出两个变形公式:
(1)频数=频率×数据总数.
(2) .
注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.
2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况.
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.
知识点五:频数分布直方图与频数折线图
1.在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.
2.条形图和直方图的异同:
直方图是特殊的条形图,条形图和直方图都易于比较各数据之间的差别,能够显示每组中的具体数据和频率分布情况.
直方图与条形图不同,条形图是用长方形的高(纵置时)表示各类别(或组别)频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少(等距分组时可以用长方形的高表示频数),长方形的宽表示各组的组距,各长方
边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数折线图.
4.频数分布直方图的画法:
(1)找到这一组数据的最大值和最小值;
(2)求出最大值与最小值的差;
(3)确定组距,分组;
(4)列出频数分布表;
(5)由频数分布表画出频数分布直方图.
5.画频数分布直方图的注意事项:
(1)分组时,不能出现数据中同一数据在两个组中的情况,为了避免,通常分组时,比题中要求数据单位多一位. 例如:题中数据要求到整数位,分组时要求数据到0.5即可.
(2)组距和组数的确定没有固定的标准,要凭借数据越多,分成的组数也就越多,当数据在100以内时,根据数据的多少通常分成5~12组.
四、规律方法指导
通过本章的学习,使我们能够根据统计结果做出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,进行交流;认识到统计在社会生活及科学领域中的作用,并能解决一些简单的实际问题. 本章内容属于数学学科中的统计学范畴,在初中数学中占有重要的基础地位,是进一步学习统计和概率学的基础. 学习中要积极参与知识的探索过程,并且带着自己的看法、想法与其他同学交流,从中可获得更多的方法和自信. 加强统计思想、转化思想和数形结合思想的具体应用,在收集数据、描述数据的过程中,要求我们能及时把数据转化成统计图,从而实现信息转化;在实际操作过程中,又能从统计图中扑捉有用的信息,充分发挥数形结合的作用.
经典例题透析
类型一:考查基本概念
1:为了了解2013年河南省中考数学考试情况,从所有考生中抽取600名考生的成绩进行考查,指出该考查中的总体和样本分别是什么?
思路点拨:从概念上来看,总体即全部考查对象,样本是一部分考查对象,还要注意考查的对象是数量指标.
解析:总体是2013年河南省参加中考考试的所有考生的数学成绩;样本是抽取的600名考生的数学成绩.
总结升华:统计中的研究对象是数据,而不是具体的人或物. 在叙述总体和样本时,要注意他们的范围和数量指标.
举一反三:
【变式】2013年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是().
A.4591名学生的外语成绩是总体;
B.此题是抽样调查;
C.样本是80名学生的外语成绩;
D.样本是被调查的80名学生.
类型二:调查方法的考查
2:下列调查中,适合用普查(全面调查)方法的是().
A.电视机厂要了解一批显像管的使用寿命;
B.要了解我市居民的环保意识;
C.要了解我市“阳山水蜜桃”的甜度和含水量;
D.要了解某校数学教师的年龄状况.
思路点拨:A、B、C工作量太大,太复杂,只能作抽样调查,而D可以作普查,即全面调查.
解析:D.
总结升华:在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.
举一反三:
【变式】下列抽样调查中抽取的样本合适吗?为什么?
(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;
(2)在上海市调查我国公民的受教育程度;
(3)在中学生中调查青少年对网络的态度;
(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重;