三角函数典型例题

合集下载

三角函数的图象和性质典型例题

三角函数的图象和性质典型例题

三角函数的图象和性质·典型例题于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分k∈Z}【说明】学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的部分;⑤写出角的范围的表达式,注意加周期.【例3】求下列函数的定义域:解:(1)为使函数有意义,需满足2sin2x+cosx-1≥0【说明】求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成.【说明】求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围.【例4】求下列函数的值域:∴此函数的值域为{y|0≤y<1}【说明】求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性.【例5】判断下列函数的奇偶性:【分析】先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性.∵f(1-x)=-sin(-2x)=sin2x=-f(x)【例8】求下列各函数的最大值、最小值,并且求使函数取得最大值、最小值的x的集合.∴使y取得最大值的x的集合为{x|x=(2kπ+1)π,k∈Z}∴使y取得最小值的x的集合为{x|x=2kπ,k∈Z}当cosx=1,即x=2kπ(k∈Z)时,y取得最大值3.【说明】求三角函数的最值的类型与方法:1.形如y=asinx+b或y=acosx+b,可根据sinx,cosx的有界性来求最值;2.形如y=asin2x+bsinx+c或y=acos2x+bcosx+c看成是关于sinx或cosx的二次函数,变为y=a(sinx+m)2+k或y=a(cosx+m)2+k,但要注意它与二次函数求最值的区别,此时|sinx|≤1,|cosx|≤1【例9】求下列函数的单调区间:【分析】复杂三角函数的单调区间是运用基本函数的单调性及单调区间得出的.【说明】象本例这种解析式中含字母系数的函数研究其性质,常常要运用分类讨论的思想,其中为什么要分类,怎么分类和讨论是两个基本问题.【例11】函数f(x)=Asin(ωx+ )的图象如图2-15,试依图指出(1)f(x)的最小正周期;(2)使f(x)=0的x的取值集合;(3)使f(x)<0的x的取值集合;(4)f(x)的单调递增区间和递减区间;(5)求使f(x)取最小值的x的集合;(6)图象的对称轴方程;(7)图象的对称中心.【分析】这是一道依图象读出相应函数性质的典型例题,本身就是数形结合思想的体现,它根据f(x)=Asin(ωx+ )的图象与函数y=sinx的图象的关系得出.注:得出函数f(x)的最小正周期之后,研究f(x)的其他性质,总是先在包含锐角在内的一个周期中研究,再延伸到整个定义域中.注:实际上f(x)图象的对称轴方程为x=x0,而其中x0使f(x0)=1或f(x0)=-1注:f(x)的图象的对称中心为(x0,0),其中x0使f(x0)=0【说明】这种依图读性的问题是提高数形结合能力的重要训练题,其中有两点要注意反思:①周期性在研究中的化简作用,②三角函数的“多对一”性.A.sinθ<cosθ<ctgθB.cosθ<sinθ<ctgθC.sinθ<ctgθ<cosθD.cosθ<ctgθ<sinθ【说明】 y=Asin(ωx+ϕ)(A>0,ω>0)x∈R的图象可由y=sinx的图象经下列各种顺序变换得到的.(1)先平移,后伸缩:①把y=sinx的图象向左(ϕ>0)或向右(ϕ<0)沿x轴方向平移|ϕ|个单位;(相位变换)(周期变换)③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍,横坐标不变(振幅变换)(2)先伸缩,后平移①把y=sinx图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原(相位变换)③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍横坐标不变(振幅变换)再把横坐标缩小到原来的一半,纵坐标扩大到原来的4倍,则所得的图象的解析式是 [ ]∴选A.【例18】设函数f(x)是定义在R上的周期为3的奇函数,且f(1)=2,则f(5)=____ 解:∵f(x)是奇函数,且f(1)=2,∴f(-1)=-2又∵f(x)是周期为3的函数.∴f(3+x)=f(x)∴f(-1+3)=f(-1)=-2 即f(2)=-2f(2+3)=f(2)=-2 即f(5)=-2。

三角函数总结经典例题

三角函数总结经典例题

第三章 三角函数3.1任意角三角函数一、知识导学1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值rl=α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制.3.弧度与角度的换算:rad π2360=;rad 1745.01801≈=π;130.57180≈⎪⎭⎫ ⎝⎛=πrad .用弧度为单位表示角的大小时,弧度(rad )可以省略不写.度()不可省略.4.弧长公式、扇形面积公式:,r l α=2||2121r lr S α==扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形.5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是)0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是yrx r y x x y r x r y ======ααααααc s c ,s e c ,c o t ,t a n ,c o s ,s i n .这六个函数统称为三角函数.7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值)可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析1.在直角坐标系内讨论角(1)角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就称这个角是第几象限角(或说这个角属于第几象限).它的前提是“角的顶点为原点,角的始边为x 轴的非负半轴.否则不能如此判断某角为第几象限.若角的终边落在坐标轴上,就说这个角不属于任何象限.(2)与α角终边相同的角的集合表示.{}Z k k ∈+⋅=,360αββ,其中α为任意角.终边相同的角不一定相等,相等的角终边一定相同,终边相同的角有无数多个,它们相差360整数倍. 2.值得注意的几种范围角的表示法“0 ~ 90间的角”指 900<≤θ;“第一象限角”可表示为{}Z k k k ∈+⋅<<⋅,90360360θθ;“小于90的角”可表示为{}90<θθ. 3.在弧度的定义中rl与所取圆的半径无关,仅与角的大小有关. 4.确定三角函数的定义域时,主要应抓住分母为零时比值无意义这一关键.当终边在坐标轴上时点P 坐标中必有一个为0.5.根据三角函数的定义可知:(1)一个角的三角函数值只与这个角的终边位置有关,即角α与)(360Z k k ∈⋅=β的同名三角函数值相等;(2)r y r x ≤≤,,故有1sin ,1cos ≤≤αα,这是三角函数中最基本的一组不等关系. 6.在计算或化简三角函数关系式时,常常需要对角的范围以及相应三角函数值的正负情况进行讨论.因此,在解答此类问题时要注意:(1)角的范围是什么?(2)对应角的三角函数值是正还是负?(3)与此相关的定义、性质或公式有哪些?三、经典例题导讲[例1] 若A 、B 、C 是ABC ∆的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的个数是( )①.C A sin sin < ②.C A cot cot < ③.C A tan tan < ④.C A cos cos <A .1 B.2 C.3 D.4错解:C A < ∴ C A sin sin <,C A tan tan <故选B错因:三角形中大角对大边定理不熟悉,对函数单调性理解不到位导致应用错误 正解:法1C A < 在ABC ∆中,在大角对大边,A C a c sin sin ,>∴>法2 考虑特殊情形,A 为锐角,C 为钝角,故排除B 、C 、D ,所以选A . [例2]已知βα,角的终边关于y 轴对称,则α与β的关系为 . 错解:∵βα,角的终边关于y 轴对称,∴22πβα=++πk 2,()z k ∈错因:把关于y 轴对称片认为关于y 轴的正半轴对称.正解:∵βα,角的终边关于y 轴对称 ∴)(,22Z k k ∈+=+ππβα即)(,2z k k ∈+=+ππβα说明:(1)若βα,角的终边关于x 轴对称,则α与β的关系为)(,2Z k k ∈=+πβα(2)若βα,角的终边关于原点轴对称,则α与β的关系为)(,)12(Z k k ∈++=πβα (3)若βα,角的终边在同一条直线上,则α与β的关系为)(,Z k k ∈+=παβ[例3] 已知542cos ,532sin-==θθ,试确定θ的象限. 错解:∵0542cos ,0532sin <-=>=θθ,∴2θ是第二象限角,即.,222z k k k ∈+<<ππθπ从而.,244z k k k ∈+<<ππθπ故θ是第三象限角或第四象限角或是终边在y 轴负半轴上的角.错因:导出2θ是第二象限角是正确的,由0542cos ,0532sin <-=>=θθ即可确定, 而题中542cos ,532sin -==θθ不仅给出了符号,而且给出了具体的函数值,通过其值可进一步确定2θ的大小,即可进一步缩小2θ所在区间.正解:∵0542cos ,0532sin <-=>=θθ,∴2θ是第二象限角,又由43sin 22532sinπθ=<=知z k k k ∈+<<+,22432ππθππ z k k k ∈+<<+,24234ππθππ,故θ是第四象限角. [例4]已知角α的终边经过)0)(3,4(≠-a a a P ,求ααααcot ,tan ,cos ,sin 的值. 错解:a y x r a y a x 5,3,422=+=∴=-=3434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===∴a a a a a a a a αααα错因:在求得r 的过程中误认为a >0正解:若0>a ,则a r 5=,且角α在第二象限3434cot ,4343tan ,5454cos ,5353sin -=-=-=-=-=-===∴a a a a a a a a αααα若0<a ,则a r 5-=,且角α在第四象限3434cot ,4343tan ,5454cos ,5353sin -=-=-=-==--=-=-=∴a a a a a a a a αααα 说明:(1)给出角的终边上一点的坐标,求角的某个三解函数值常用定义求解; (2)本题由于所给字母a 的符号不确定,故要对a 的正负进行讨论. [例5] (1)已知α为第三象限角,则2α是第 象限角,α2是第 象限角; (2)若4-=α,则α是第 象限角. 解:(1)α 是第三象限角,即Z k k k ∈+<<+,2322ππαππZ k k k ∈+<<+∴,4322ππαππ,Z k k k ∈+<<+,34224ππαππ当k 为偶数时,2α为第二象限角当k 为奇数时,2α为第四象限角而α2的终边落在第一、二象限或y 轴的非负半轴上. (2)因为ππ-<-<-423,所以α为第二象限角. 点评:α为第一、二象限角时,2α为第一、三象限角,α为第三、四象限角时,2α为第二、四象限角,但是它们在以象限角平分线为界的不同区域.[例6]一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少? 解:设扇形的半径为rcm ,则扇形的弧长cm r l )220(-=扇形的面积25)5()220(212+--=⋅-=r r r S 所以当cm r 5=时,即2,10===rl cm l α时2max 25cm S =.点评:涉及到最大(小)值问题时,通常先建立函数关系,再应用函数求最值的方法确定最值的条件及相应的最值. [例7]已知α是第三象限角,化简ααααsin 1sin 1sin 1sin 1+---+。

完整版简单三角恒等变换典型例题

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos()cos cossin sincoscossin sincos()(3) tan(tan tan去分母得tan tan i tan()(1 tantan )1 tan tantantantan()(1 tantan 、倍角公式的推导及其变形:(1) sin 2sin( ) sin coscos sin2 sin cossin1 .cos— sin 2221 sin 2(sincos(2) cos 2cos() cos cos sin sin cos 2 sin 2cos 2cos 2 sin 2 (cossin )(cossin )cos 22• 2 cos 厶 sin2 2COS (1 cos )把1移项得 1 cos22 cos 2或 -4- GQS -2-c2 cos 212【因为 是-的两倍,所以公式也可以写成2cos2 cos 2一 1 或 1 cos 2 cos 2或 - 1 cos —cos 22222因为4 是2的两倍,所以公式也可以写成cos 42 cos 221 或 1 2Once 厶或nee? O12cos 2 22 cossin(1 sin 2) sin 2把1移项得1cos 22s in 2或 -4-1 2sin 22【因为是—的两倍,所以公式也可以写成2cos1 2 sin 2—或1 cos2 sin 2或 4 ---- eos-sin 22222因为4 是2 的两倍,所以公式也可以写成21、和差公式及其变形: 2) )2sin 2、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如(),(4 (1)已知,都是锐角,sin -,cos(5) , (-4)_5 ,求sin的值13)(—)等等4 5(2)已知COS(—) 1,—,sin( )U,0 —,求sin( )的值4 5 4 4 4 13 4. 3(提不:(——)(—) ,只要求出sin( )即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,sin —,cos5,求角的弧度103、T()公式的应用(2) A ABC 中,角A、B 满足(1 tan A)(l tan B) 2 ,求A+B 的弧度4、弦化切,即已知tan ,求与sin, cos相关的式子的值:化为分式,分子分母同时除以cos 或cos? 等(1)已知tansin2 ,求SmQ 1Q in 9 rnQ 7,3sin 2cos2 的值3sin cos 1 sin 2 cos 25、切化弦,再通分,再弦合一(1)、化简:① sin 50° (13 t#TiO°)sin 35°sin 2x x(2)、证明: ________ (1 tan x tan _) tan x2 cos x 26、综合应用,注意公式的灵活应用与因式分解结合②(tan 10 01) cos-100...化简(2 sin2 2 cos4cos 20° sin 40° 的值等于()3cos cos2 的值等于( )——5 511A .C. 2D ・ 4424、已知0AiL cos A 3 那么卡in 2A 等于()2547-_ 12 24A.B .C ・D ・25252525215已知tan ()——,tan( ),则)的值等升( : )544413313 3A •B.—c.-一D.182222186、sinl65o= ()——1A •B.3C. 62 D. 62 22,4J广 47sinl4ocos 16o+sin76ocos74o 的值是 ()1、sin 20°cos40°A. 1B. 3c.1 D. 342r 244 72、若 tan3 , tan,则 tan()等于()31 1 A. 3B. 3-c.D.33A・3 B . 18、已知2x ( ,0),£,COS X24 一,则tan 2x (A . 7 2B —579、化简242s in (JI—x) —• sin (24n:+x), 其结果是4 4A. sin2x cos2x —10 、sin —3 cos 的值是( )12 12A . 0 £-211 、1 tan 2 75 的值为()ji V tan 753 1c. D.2 J 2)24 24C・ D .7 7( )C .—cos2x D. —sin2x5c. 2 D . 2 sin12A. 2 3。

第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集(解析版)

第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。

【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。

【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。

【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。

②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。

【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。

三角函数典型例题

三角函数典型例题

三角函数典型例题
1. 已知直角三角形中,一条直角边的长度为3,斜边的长度为5,求另一条直角边的长度。

解:设另一条直角边的长度为x,根据勾股定理可得:3^2 + x^2 = 5^2
化简得:x^2 = 25 - 9 = 16
因此,x = 4 ,所以另一条直角边的长度为4。

2. 在一个直角三角形中,已知一条直角边的长度为10,另一条直角边的长度为8,求斜边的长度。

解:设斜边的长度为x,根据勾股定理可得:10^2 + 8^2 = x^2 化简得:x^2 = 100 + 64 = 164
因此,x = √164 ≈ 12.81,所以斜边的长度约为12.81。

3. 已知一个直角三角形的斜边长度为7,其中一个锐角的正弦值为0.6,求另一个锐角的正弦值。

解:设另一个锐角的正弦值为x,根据正弦定理可得:x/0.6 = 7/7 化简得:x = 0.6
因此,另一个锐角的正弦值为0.6。

三角函数化简求值典型例题

三角函数化简求值典型例题

三角函数化简求值典型例题三角函数,哎呀,这可真是个既神秘又有趣的世界!我们在生活中,常常能看到三角函数的身影,像是在建筑、导航,甚至是音乐中,都有它的身影。

你有没有想过,三角函数其实就像一个调皮的小孩,时不时就会给你带来一些意想不到的挑战。

今天,我们就来聊聊这些三角函数的化简与求值,带你一起深挖这个“秘密花园”。

咱们得了解一下三角函数的基本概念。

最常见的,可能就是正弦、余弦和正切了。

别看它们名字听起来复杂,其实它们就是个“角”的游戏。

就像在游乐园里,正弦和余弦这对好朋友总是一起玩耍。

你想象一下,正弦就像是一个在过山车上尖叫的小孩,余弦则是那个在旁边冷静地观察的朋友。

他们的关系其实很微妙,正弦的最高点和余弦的最低点,总是能碰到一起,真是有趣得很!我们来说说这些三角函数的化简。

化简就像是把一个复杂的拼图变得简单明了。

比如说,咱们有一个表达式,像是sin²(x) + cos²(x),这看起来是不是有点复杂?但它有个神秘的特性,就是总能化简成1。

这就好比你在忙碌的一天中,突然发现原来生活中的小确幸其实一直都在。

每次看到这个化简,我都忍不住想笑,真是简单又快乐!再看看这个正切函数,tanj = sinj/cosj。

这个家伙有点特别,常常让人捉摸不透。

有时候它显得那么高深莫测,但只要你理解了正弦和余弦的关系,正切就乖乖听话了。

比如说,当你求一个角的正切值时,记得去找它的对边和邻边,这样你就能轻松地求出结果。

这种感觉,就像是揭开了一个谜底,瞬间明亮了许多。

不过,三角函数不仅仅是计算,它背后有个更深层次的故事。

比如,当我们在计算某个角的值时,其实是在寻找这个角在生活中的意义。

它就像一个指引,让我们能在复杂的世界中找到方向。

记得有一次,我在爬山的时候,忽然想到三角函数,心里有种说不出的亲切感。

仿佛每一步的攀登,都与这些函数息息相关。

山的高度、斜率,甚至每一个呼吸,都与三角函数有着千丝万缕的联系。

特殊角的三角函数值典型例题

特殊角的三角函数值典型例题

作业: 归纳结果 0° 30° 45° 60° 90° sinA cosA tanA cotA当锐角α越来越大时, α的正弦值越来___________,α的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值.(1)cos 260°+sin 260°. (2)cos 45sin 45︒︒-tan45°.2:(1)如图(1),在Rt △ABC 中,∠C=90,AB=6,BC=3,求∠A 的度数.(2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 的3倍,求a .一、应用新知:1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= .2.在△ABC 中,∠A=75°,2cosB=2,则tanC= . 3.求下列各式的值.(1)o 45cos 230sin 2-︒ (2)tan30°-sin60°·sin30°(3)cos45°+3tan30°+cos30°+2sin60°-2tan45°(4)︒+︒+︒+︒-︒45sin 30cos 30tan 130sin 145cos 2224.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α(3)222sin =α(4)33)16cos(6=- α(5)(6)6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长.7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 形状是________________.8. 在△ABC 中,∠C=90°,sinA= ,则cosB=_______,tanB=_______ 9.已知α为锐角,且sin α=53,则sin(90°-α)=_ 二、选择题.1.已知:Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ).A .3B .6C .9D .12 2.计算2sin30°-2cos60°+tan45°的结果是( ).|tanB-3|+(2sinA-3)2=002sin 2=-α01tan 3=-α3A .2B .3C .2D .13.已知∠A 为锐角,且cosA ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A<90°C .0°<∠A ≤30°D .30°≤∠A<90°4.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB= 32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定5.如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4,设∠BCD=a ,则tanA•的值为( ).A .34B .43C .35D .456.在△ABC 中,三边之比为a :b :c=1:3:2,则sinA+tanA 等于( ).A .32313331.3..6222B C D +++7.若( 3 tanA-3)2+│2cosB- 3 │=0,则△ABC ( ). A .是直角三角形 B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 三、填空题.1.已知,等腰△ABC•的腰长为4 3 ,•底为30•°,•则底边上的高为_____,•周长为___.2.在Rt △ABC 中,∠C=90°,已知tanB= 52 ,则cosA=________.3.已知:α是锐角,tan α=724,则sin α=_____,cos α=_______ 四、计算: (5)sin 45cos3032cos 60︒+︒-︒-sin60°(1-sin30°).(6)sin 45tan 30tan 60︒︒-︒+cos45°·cos30°(7)101(32)4cos30|12|3-⎛⎫-++-- ⎪⎝⎭° (8)2cos602sin 302︒︒-;◆拓展训练在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,•根据勾股定理有公式a 2+b 2=c 2,根据三角函数的概念有sinA=ac,cosA=b c ,sin2A+cos2A=2222222a b a bc c c++==1,sincosAA=ac÷bc=ab=tanA,•其中sin2A+cos2A=1,sin cos AA=tanA可作为公式来用.例如,△ABC中,∠C=90°,sinA=45,求cosA,tanA的值.。

三角函数y=Asin(ωx+φ)中的对称轴

三角函数y=Asin(ωx+φ)中的对称轴

三角函数y=Asin (ωx+φ)中的对称轴江苏 韩文美正弦函数y=sinx 的对称轴是x=k π+2π(k ∈Z ),它的对称轴总是经过它图象的最高点或者最低点。

由于三角函数y=)sin(ϕω+⋅x A 是由正弦函数y=sinx 复合而成的,所以令ϕω+x =k π+2π,就能得到y=)sin(ϕω+⋅x A 的对称轴方程x=ωϕππ-+2k (k ∈Z )。

通过类比可以得到三角函数y=)cos(ϕω+⋅x A 的对称轴方程x=ωϕππ-+k (k ∈Z )。

下面通过几道典型例题来谈一谈如何应用它们的对称轴解题。

1.解析式问题例1.设函数)(x f = )2sin(ϕ+x (0<<-ϕπ),)(x f 图像的一条对称轴是直线8π=x ,求ϕ的值。

分析:正弦函数y=sinx 的对称轴是x=k π+2π,令2x+ϕ=k π+2π,结合条件0<<-ϕπ求解。

解析:∵8π=x 是函数y=)(x f 的图像的对称轴,∴1)82sin(±=+⨯ϕπ,∴24ππππ+=+k ,k ∈Z ,而0<<-ϕπ,则43πϕ-=。

点评:由于对称轴都是通过函数图像的最高点或者最低点的直线,所以把对称轴的方程代入到函数解析式,函数此时可能取得最大值或最小值。

易错点就在于很多同学误认为由于正弦函数y=sinx 的周期是2k π,所以会错误的令ϕω+⋅x =2k π+2π。

2.参数问题例2.如果函数y =sin2x +acos2x 的图象关于直线x =-8π对称,则a 的值为( ) A .2 B .-2 C .1 D .-1 分析:由于本题是选择题,所以解法多种多样,可以带入验证;也可以根据对称轴的通式求解,还可以根据最值求解。

解法一:y =sin2x +acos2x=21a +sin (2x +ϕ),其中cos ϕ=211a+,sin ϕ=21aa +,由函数的图象关于x=-8π对称知,函数y =sin2x +acos2x 在x=-8π处取得最大值或最小值,∴sin (-4π)+acos (-4π)=±21a +, 即22(1-a )=±21a +,解得a =-1,所以应选择答案:D 。

高考数学三角函数典型例题

高考数学三角函数典型例题

三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C ,∴(2sin A -sin C )cos B =sin B cos C .即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21. ∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π) 设sin A =t ,那么t ∈]1,0(.那么m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值.依题意得,-2+4k +1=5,∴k =23. 3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++CB A . I.试判断△ABC 的形状;II.假设△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin2sinππ+=+=+-C C C C C2242πππ==+∴C C 即,所以此三角形为直角三角形. II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos =A, (1)求B C cos ,cos 的值; (2)假设227=⋅BC BA ,求边AC 的长。 【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C47sin ,43cos ;873sin ,81cos ====A A C C 得由得由()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BC BA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.5 .在ABC ∆中,A B >,且A tan 及B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值; (Ⅱ)假设AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==.∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯(Ⅱ)∵180=++C B A ,∴)(180B A C +-=.由(Ⅰ)知,1)tan(tan =+-=B A C ,∵C 为三角形的内角,∴sin C =∵tan 3A =,A 为三角形的内角,∴sin A =, 由正弦定理得:sin sin AB BCC A=∴2BC ==6 .在ABC ∆中,内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1)//m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,b=2,由余弦定理,得:4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴a c≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)假设b =2,求△ABC 面积的最大值.【解析】:(1) 由余弦定理:cosB=142sin 2A C ++cos2B= 41-(2)由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号)故S △ABC 的最大值为3158 .)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】aa -12;9 .()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(I)化简()fα(II)假设α是第三象限角,且31cos 25πα⎛⎫-=⎪⎝⎭,求()f α的值。 【解析】10.函数f(x)=sin 2x+3sinxcosx+2cos 2x,x ∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x ∈R)的图象经过怎样的变换得到?【解析】:(1)1cos 23()2(1cos 2)2x f x x x -=+++132cos 22223sin(2).62x x x π=++=++()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈ 即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)先把sin 2y x =图象上所有点向左平移12π个单位长度, 得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度, 就得到3sin(2)62y x π=++的图象。11.⎪⎪⎭⎫ ⎝⎛-=23,23a,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)假设函数)(x g y =及)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。【解析】:(1))34sin(34cos 234sin 23)(ππππ-=-=x x x x f ∴当]223,22[34ππππππk k x ++∈-时,)(x f 单调递减 解得:]8322,8310[k k x ++∈时,)(x f 单调递减。(2)∵函数)(x g y =及)(x f y =关于直线1=x 对称 ∴⎥⎦⎤⎢⎣⎡--=-=34)2(sin 3)2()(ππx x f x g⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡--=34cos 3342sin 3πππππx x∵]34,0[∈x ∴⎥⎦⎤⎢⎣⎡∈+32,334ππππx∴]21,21[34cos -∈⎪⎭⎫⎝⎛+ππx ∴0=x 时,23)(max =x g12.cos 2sin αα=-,求以下各式的值; (1)2sin cos sin 3cos αααα-+; (2)2sin2sin cos ααα+【解析】:1cos 2sin ,tan 2ααα=-∴=-(1)1212sin cos 2tan 1421sin 3cos tan 3532αααααα⎛⎫⨯-- ⎪--⎝⎭===-++-+(2)2222sin 2sin cos sin 2sin cos sin cos αααααααα++=+ 2222112tan 2tan 322tan 15112ααα⎛⎫⎛⎫-+⨯- ⎪ ⎪+⎝⎭⎝⎭===-+⎛⎫-+ ⎪⎝⎭13.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值及最小正周期; (II)求使不等式3()2f x ≥成立的x 的取值集合。 【解析】14.向量)1,32(cos --=αm ,)1,(sin α=n ,m 及n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值;(Ⅱ)求αααcos sin 2sin -的值.。【解析】:(Ⅰ) m 及n 为共线向量, 0sin )1(1)32(cos =⨯--⨯-∴αα, 即32cos sin =+αα (Ⅱ) 92)cos (sin 2sin 12=+=+ααα ,972sin -=∴α 2)cos (sin )cos (sin 22=-++αααα ,916)32(2)cos (sin 22=-=-∴αα 又]0,2[πα-∈ ,0cos sin <-∴αα,34cos sin -=-αα 因此, 127cos sin 2sin =-ααα15.如图,A,B,C,D 都在同一个及水平面垂直的平面内,B,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=。试探究图中B,D 间距离及另外哪两点距离相等,然后求B,D 的距离(计算结果准确到,2≈1.414,6≈2.449)【解析】:在ACD ∆中,DAC ∠=30°,ADC ∠=60°-DAC ∠=30°,又BCD ∠=180°-60°-60°=60°,故CB 是CAD ∆底边AD 的中垂线,所以BD=BA 在ABC ∆中,ABCACBCA AB ∠=∠sin sin , 即AB=2062351sin 60sin +=︒︒AC因此,km 33.020623≈+=BD故 B .D 的距离约为。16.函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象及x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域.【解析】: (1)由最低点为2(,2)3M π-得A=2.由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ===由点2(,2)3M π-在图像上的242sin(2)2,)133ππϕϕ⨯+=-+=-即sin(故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]17.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进展测量,50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值。【解析】:作//DMAC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=, 2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯18.51cos sin =+θθ,),2(ππθ∈,求〔1〕sin cos θθ-〔2〕33sincos θθ-〔3〕44sin cos θθ+【解析】:〔1〕3344791337sin cos (2)sin cos (3)sin cos 5125625θθθθθθ-=-=+=19.函数)sin(ϕω+=x A y 〔0>A , 0ω>,πϕ<||〕的一段图象如下图,〔1〕求函数的解析式;〔2〕求这个函数的单调递增区间。

三角函数典型例题分析

三角函数典型例题分析

目录1、0°~360°间的三角函数.典型例题分析 (2)2、弧度制.典型例题分析 (2)3、任意角的三角函数.典型例题分析一 (3)4、任意角的三角函数.典型例题精析二 (5)5、同角三角函数的基本关系式.典型例题分析 (12)6、诱导公式.典型例题分析 (17)7、用单位圆中的线段表示三角函数值.典型例题分析 (18)8、三角公式总表 (19)9、正弦函数、余弦函数的图象和性质.典型例题分析 (22)10、函数y=Asin(wx+j)的图象.典型例题分析 (27)11、正切函数、余切函数的图象和性质.典型例题分析 (29)12、已知三角函数值求角.典型例题分析 (30)全章小结 (31)高考真题选讲 (31)1、0°~360°间的三角函数·典型例题分析例1已知角α的终边经过点P(3a,-4a)(a<0,0°≤α≤360°),求解α的四个三角函数.解如图2-2:∵x=3a,y=-4a,a<0例2求315°的四个三角函数.解如图2-3,在315°角的终边上取一点P(x,y)设OP=r,作PM垂直于x轴,垂足是M,可见∠POM=45°注:对于确定的角α,三角函数值的大小与P点在角α的终边上的位置无关,如在315°的角的终边上取点Q(1,-1),计算出的结果是一样的.2、弧度制·典型例题分析角度与弧度的换算要熟练掌握,见下表.例2将下列各角化成2kπ+α(k∈Z,0≤α<2π)的形式,并确定其所在的象限。

∴它是第二象限的角.注意:用弧度制表示终边相同角2kπ+α(k∈Z)时,是π的偶数倍,而不是π的整数倍.A.第一象限 B.第二象限C.第三象限 D.第四象限∴sinα>0,tgα<0 因此点P(sinα,tgα)在第四象限,故选D.解∵M集合是表示终边在第一、二、三、四象限的角平分线上的角的集合.N集合是表示终边在坐标轴(四个位置)上和在第一、二、三、四象限的角平分线上的角的集合.3、任意角的三角函数·典型例题分析一例1已知角α的终边上一点P(-15α,8α)(α∈R,且α≠0),求α的各三角函数值.分析根据三角函数定义来解A.1 B.0C.2 D.-2例3若sin2α>0,且cosα<0,试确定α所在的象限.分析用不等式表示出α,进而求解.解∵sin2α>0,∴2α在第一或第二象限,即2kπ<2α<2kπ+π,k∈Z)当k为偶数时,设k=2m(m∈Z),有当k为奇数时,设k=2m+1(m∈Z)有∴α为第一或第三象限的角,又由cosα<0可知α在第二或第四象限.综上所述,α在第三象限.义域为{x|x∈R且x≠kπ,k∈Z},∴函数y=tgx+ctgx的定义域是说明本例进一步巩固终边落在坐标轴上角的集合及各三角函数值在每一象限的符号,三角函数的定义域.例5计算(1)a2sin(-1350°)+b2tg405°-(a-b)2ctg765°-2abcos(-1080°)分析利用公式1,将任意角的三角函数化为0~2π间(或0°~360°间)的三角函数,进而求值.解(1)原式=a2sin(-4×360°+90°)+b2tg(360°+45°)-(a-b)2ctg(2×360°+45°)-2abcos(-3×360°)=a2sin90°+b2tg45°-(a-b)2ctg45°-2abcos0°=a2+b2-(a-b)2-2ab=04、任意角的三角函数·典型例题精析二例1下列说法中,正确的是 [ ]A.第一象限的角是锐角B.锐角是第一象限的角C.小于90°的角是锐角D.0°到90°的角是第一象限的角【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键.【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B).(90°-α)分别是第几象限角?【分析】由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的【解】(1)由题设可知α是第二象限的角,即90°+k·360°<α<180°+k·360°(k∈Z),的角.(2)因为180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角.(3)解法一:因为90°+k·360°<α<180°+k·360°(k∈Z),所以-180°-k·360°<-α<-90°-k·360°(k∈Z).故-90°-k·360°<90°-α<-k·360°(k∈Z).因此90°-α是第四象限的角.解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内.【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的.例3已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间[ ]【分析】解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易.【解法一】由正、余弦函数的性质,【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当应选(A).可排除(C),(D),得(A).【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,可自己练习.例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;【分析】利用三角函数的定义进行三角式的求值、化简和证明,是三两个象限,因此必须分两种情况讨论.【解】(1)因为x=3k,y=-4k,例5一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.【分析】解答本题,需灵活运用弧度制下的求弧长和求面积公式.本题是求扇形面积的最大值,因此应想法写出面积S以半径r为自变量的函数表达式,再用配方法求出半径r和已知周长l的关系.【解】设扇形面积为S,半径为r,圆心角为α,则扇形弧长为l-2r.所以【说明】在学习弧度制以后,用弧度制表示的求弧长与扇形面积公形的问题中,中心角用弧度表示较方便.本例实际上推导出一个重要公式,即当扇形周长为定值时,怎样选取中心角可使面积得到最大值.本题也可将面积表示为α的函数式,用判别式来解.【分析】第(1)小题因α在第二象限,因此只有一组解;第(2)小题给了正弦函数值,但没有确定角α的象限,因此有两组解;第(3)小题角α可能在四个象限或是轴线角,因此需分两种情况讨论.【解】(3)因为sinα=m(|m|<1),所以α可能在四个象限或α的终边在x轴上.例7(1)已知tanα=m,求sinα的值;【分析】(1)已知tanα的值求sinα或cosα,一般可将tanα母都是sinα和cosα的同次式,再转化为关于tanα的式子求值,转化的方法是将分子、分母同除以cosα(或cos2α,这里cosα≠0),即可根据已知条件求值.【说明】由tanα的值求sinα和cosα的值,有一些书上利用公很容易推出,所以不用专门推导和记忆这些公式,这类问题由现有的关系式和方法均可解决.函数的定义来证明.由左边=右边,所以原式成立.【证法三】(根据三角函数定义)设P(x,y)是角α终边上的任意一点,则左边=左边,故等式成立.例9化简或求值:【分析】解本题的关键是熟练地应用正、余弦的诱导公式和记住特殊角的三角函数值.=-sinα-cosα(因为α为第三象限角).例10 (1)若 f(cos x)=cos9x,求f(sin x)的表达式;【分析】在(1)中理解函数符号的含义,并将f(sin x)化成f(cos(90°-x))是充分利用已知条件和诱导公式的关键.在(2)中必须正确掌握分段函数求值的方法.【解】(1)f(sin x)=f(cos(90°-x))=cos9(90°-x)=cos(2×360°+90°-9x)=cos(90°-9x)=sin9x;=1.5、同角三角函数的基本关系式·典型例题分析1)已知某角的一个三角函数值,求该角的其他三角函数值.解∵sinα<0∴角α在第三或第四象限(不可能在y轴的负半轴上)(2)若α在第四象限,则说明在解决此类问题时,要注意:(1)尽可能地确定α所在的象限,以便确定三角函数值的符号.(2)尽可能地避免使用平方关系(在一般情况下只要使用一次).(3)必要时进行讨论.例2 已知sinα=m(|m|≤1),求tgα的值.(2)当m=±1时,α的终边在y轴上,tgα无意义.(3)当α在Ⅰ、Ⅳ象限时,∵cosα>0.当α在第Ⅱ、Ⅲ象限时,∵cosα<0,说明 (1)在对角的范围进行讨论时,不可遗漏终边在坐标轴上的情况.(2)本题在进行讨论时,为什么以cosα的符号作为分类的标准,而不按sinα的符号(即m的符号)来分类讨论呢?你能找到这里的原因并概括出所用的技巧吗?2)三角函数式的化简三角函数式的化简的结果应满足下述要求:(1)函数种类尽可能地少.(2)次数尽可能地低.(3)项数尽可能地少.(4)尽可能地不含分母.(5)尽可能地将根号中的因式移到根号外面来.化简的总思路是:尽可能地化为同类函数再化简.例3 化简sin2α·tgα+cos2α·ctgα+2sinαcosα=secα·cscα解2 原式=(sin2α·tgα+sinα·cosα)+(cos2α·ctgα+sinαcosα)=tgα·(sin2α+cos2α)+ctgα(sin2α+cos2α)=tgα+ctgα=secα·cscα说明 (1)在解1中,将正切、余切化为正弦、余弦再化简,仍然是循着减少函数种类的思路进行的.(2)解2中的逆用公式将sinα·cosα用tgα表示,较为灵活,解1与解2相比,思路更自然,因而更实用.例4 化简:分析将被开方式配成完全平方式,脱去根号,进行化简.3)三角恒等式的证明证明三角恒等式的过程,实际上是化异为同的过程,即化去形式上的异,而呈现实质上的同,这个过程,往往是从化简开始的——这就是说,在证明三角恒等式时,我们可以从最复杂处开始.例5 求证 cosα(2secα+tgα)(secα-2tgα)=2cosα-3tgα.分析从复杂的左边开始证得右边.=2cosα-3tgα=右边例6 证明恒等式(1)1+3sin2αsec4α+tg6α=sec6α(2)(sinA+ secA)3+(cosA+cscA)2=(1+secAcscA)2分析 (1)的左、右两边均较复杂,所以可以从左、右两边同时化简证明 (1)右边-左边=sec6α-tg6α-3sin2αsec4α-1=(sec2α-tg2α)(sec4α+sec2α·tg2α+tg2α)-3sin2αsec4α-1=(sec4α-2sec2αtg2α+tg2α)-1=(sec2α-tg2α)2-1=0∴等式成立.=sin2A+cos2A=1故原式成立在解题时,要全面地理解“繁”与“简”的关系.实际上,将不同的角化为同角,以减少角的数目,将不同的函数名称,化为同名函数,以减少函数的种类,都是化繁为简,以上两点在三角变换中有着广泛的应用.分析1 从右端向左端变形,将“切”化为“弦”,以减少函数的种类.分析2 由1+2sinxcosx立即想到(sinx+cosx)2,进而可以约分,达到化简的目的.说明 (1)当题目中涉及多种名称的函数时,常常将切、割化为弦(如解法1),或将弦化为切(如解法2)以减少函数的种类.(2)要熟悉公式的各种变形,以便迅速地找到解题的突破口,请看下列.=secα+tgα∴等式成立说明以上证明中采用了“1的代换”的技巧,即将1用sec2α-tg2α代换,可是解题者怎么会想到这种代换的呢?很可能,解题者在采用这种代换时,已经预见到代换后,分子可以因式分解,可以约分,而所有这一切都是建立在熟悉公式的各种变形的基础上的,当然,对不熟练的解题者而言,还有如下的“一般证法”——即证明“左边-右边=0”∴左边=右边6、诱导公式·典型例题分析例1 求下列三角函数值:解 (1)sin(-1200°)=-sin1200°=-sin(3×360°+120°)=-sin120°=-sin(180°-60°)(2)tg945°=tg(2×360°+225°)=tg225°=tg(108°+45°)=tg45°=1例4 求证(1)sin(nπ+α)=(-1)n sinα;(n∈Z)(2)cos(nπ+α)=(-1)n cosα.证明:1°当n为奇数时,设n=2k-1(k∈Z)则(1)sin(nπ+α)=sin[(2k-1)π+α]=sin(-π+α)=-sinα=(-1)n sinα (∵(-1)n=-1)(2)cos(nπ+α)=cos[(2k-1)π+α]=cos(-π+α)=-cosα=(-1)n cosα2°当n为偶数时,设n=2k(k∈Z),则(1)sin(nπ+α)=sin(2kπ+α)=sinα=(-1)n sinα(∵(-1)n=1)(2)cos(nπ+α)=cos(2kπ+α)=cosα=(-1)n cosα由1°,2°,本题得证.例5 设A、B、C是一个三角形的三个内角,则在①sin(A+B)-sinC ② cos(A+B)+cosC③tg(A+B)+tgC ④ctg(A+B)-ctgCA.1个 B.2个C.3个 D.4个解由已知,A+B+C=π,∴A+B=π-C,故有①sin(A+B)-sinC=sin(π-C)-sinC=sinC-sinC=0为常数.②cos(A+B)+cosC=cos(π-C)+cosC=-cosC+cosC=0为常数.③ tg(A+B)+tgC=tg(π-C)+tgC=-tgC+tgC=0为常数.④ctg(A+B)-ctgC=ctg(π-C)-ctgC=-ctgC-ctgC=-2ctgC不是常数.从而选(C).7、用单位圆中的线段表示三角函数值·典型例题分析例1 利用三角函数线,求满足下列条件的角或角的范围.P′,则(2)如图2-11,过点(1,-1)和原点作直线交单位圆于点p和p′,则∴满足条件的所有角是8、三角公式总表1、L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π 2、正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 3、余弦定理:a 2=b2+c2-2bc A cos b2=a2+c2-2ac B cos c2=a2+b2-2ab C cosbca cb A 2cos 222-+=4、S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径) 5、同角关系: ⑴ 商的关系:①θtg =x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵ 倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶ 平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且abtg =ϕ)6、函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T=ωπ2, 频率f=T1,相位ϕω+⋅x ,初相ϕ7、五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限 9、和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =±③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg 10、二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=11、三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg 12、半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±=④2cos 12cos2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=± ⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg13、积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin14、和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- ⒗最简单的三角方程方程方程的解集a x =sin1=a {}Z k a k x x ∈+=,arcsin 2|π1<a (){}Z k a k x x k ∈-+=,arcsin 1|π a x =cos1=a {}Z k a k x x ∈+=,arccos 2|π1<a{}Z k a k x x ∈±=,arccos 2|π a tgx ={}Z k arctga k x x ∈+=,|π a ctgx ={}Z k arcctga k x x ∈+=,|π、正弦函数、余弦函数的图象和性质·典型例题分析例1 用五点法作下列函数的图象 (1)y=2-sinx ,x ∈[0,2π]解 (1)(图2-14)名称 函数式 定义域 值域性质反正弦函数 x y arcsin = []1,1-增 ⎥⎦⎤⎢⎣⎡-2,2ππ -arcsinx arcsin(-x)= 奇 反余弦函数 x y arccos = []1,1-减[]π,0x x arccos )arccos(-=-π 反正切函数 arctgx y = R 增 ⎪⎭⎫ ⎝⎛-2,2ππ arctgx - arctg(-x)= 奇反余切函数arcctgx y = R 减()π,0arcctgx x arcctg -=-π)((2)(图2-15)描点法作图:例2 求下列函数的定义域和值域.解 (1)要使lgsinx有意义,必须且只须sinx>0,解之,得 2kπ<x<(2k+1)π,k∈Z.又∵0<sinx≤1,∴-∞<lgsinx≤0.∴定义域为(2kπ,(2k+1)π)(k∈Z),值域为(-∞,0].的取值范围,进而再利用三角函数线或函数图象,求出x的取值范围。

初中三角函数的应用例题

初中三角函数的应用例题

初中三角函数的应用例题1.一座山峰高度为1800米,从山脚测得与山顶的夹角为30°,求山脚到山顶的实际水平距离。

解:设山脚到山顶的水平距离为x,则根据三角函数的定义,有tan30°=1800/x。

将30°转化为弧度制,即tan(π/6)=1800/x,解得x=1800/(tan(π/6)) ≈ 3600米。

所以山脚到山顶的实际水平距离约为3600米。

2.一条船从港口出发,先顺时针航行90°,然后逆时针航行120°,最后顺时针航行150°,求船的最终航向与出发港口到最终位置的直线之间的夹角。

解:根据题意,船的最终航向与出发港口到最终位置的直线之间的夹角等于船的顺时针航行角度减去船的逆时针航行角度,即90°-120°+150°=120°。

所以船的最终航向与出发港口到最终位置的直线之间的夹角为120°。

3.一个轮半径为40厘米的车轮以每秒10米的速度匀速滚动,求车轮的角速度。

解:车轮每滚动一周,车轮上的任意一点都绕轮心旋转360°,所以车轮的角速度是360°/一周所需要的时间。

滚动一周的时间可以通过速度和距离的关系求得,即一周所需时间为2πr/v,其中r为半径,v为速度。

所以车轮的角速度为360°/(2πr/v)=(360°v)/(2πr)。

代入半径r=40厘米和速度v=10米/秒,计算可得车轮的角速度约为(360°×10米/秒)/(2π×40厘米)≈0.90弧度/秒。

4.一架飞机从A地飞往B地,两地相距1200公里。

飞机的地速为400千米/小时,假设直飞过程中风速与飞机速度方向相反,风速为120公里/小时,求飞机的实际航速和方向。

解:设飞机的实际航速为v,飞机速度与风速的夹角为θ。

根据三角函数的定义,有cosθ=(400-120)/v。

初三锐角三角函数知识点与典型例题

初三锐角三角函数知识点与典型例题

锐角三角函数:例1.如图所示,在Rt △ABC 中,∠C =90°.第1题图①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.例2. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,$sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .典型例题:类型一:直角三角形求值 。

1.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC(1)求⊙O 的半径OA 的长及弦心距OC ;(2)求cos ∠AOC 及tan ∠AOC .4. 已知A ∠是锐角,178sin =A ,求A cos ,A tan 的值对应训练:3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为,A .5 B .25 C .12D .2 5.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ).A .35B . 45C . 34D . 43类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( )A.12B.32C.35D.453.如图,角α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(3,4),则sinα=.4.如图,菱形ABCD的边长为10cm,DE⊥AB,3sin5A=,则这个菱形的面积= cm2.>5.如图,O⊙是ABC△的外接圆,AD是O⊙的直径,若O⊙的半径为32,2AC=,则sin B的值是()A.23B.32C.34D.436. 如图4,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处.已知8AB=,10BC=,AB=8,则tan EFC∠的值为( )A.34B.43C.35D.45A DECBF7. 如图6,在等腰直角三角形ABC∆中,90C∠=︒,6AC=,D为AC上一点,若DCBAOyx第8题图1tan5DBA∠=,则AD的长为()A.2B.2C.1D.228. 如图6,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=3316求∠B的度数及边BC、AB的长.^DABC图6类型三. 化斜三角形为直角三角形例1 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.例2.已知:如图,△ABC中,AC=12cm,AB=16cm,⋅=31sin A【(1)求AB边上的高CD;(2)求△ABC的面积S;(3)求tan B.例3.已知:如图,在△ABC中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC的值.对应训练1.如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号).2.已知:如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sin B.3. ABC中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC的面积是3cm23cm23cm2cm2类型四:利用网格构造直角三角形例1 如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255@对应练习:1.如图,△ABC的顶点都在方格纸的格点上,则sin A =_______.2.如图,A、B、C三点在正方形网络线的交点处,若将ABC∆绕着点A逆时针旋转得到''BAC∆,则'tan B的值为CBAA.41 B. 31 C.21D. 1$3.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A . 5 5 B. 2 5 5 C.12 D. 2~特殊角的三角函数值.当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.(1).计算:︒-︒+︒60tan 45sin 230cos 2.2)计算:︒-︒+︒30cos 245sin 60tan 2.计算:3-1+(2π-1)0-33tan30°-tan45°锐角 sin cos tanABO4.计算:30tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+.5.计算:tan 45sin 301cos 60︒+︒-︒;例2.求适合下列条件的锐角.(1)21cos =α(2)33tan =α !(3)222sin =α(4)33)16cos(6=- α(5)已知为锐角,且3)30tan(0=+α,求αtan 的值*(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .,3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .4. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.·5.如图,△ABC 中,∠A=30°,3tan B =,43AC =.求AB 的长.DCBAACB解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系:________________________________. {②两锐角之间的关系:__________________________________.③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如图所示).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一 @例1.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;(3)已知:32sin =A ,6=c ,求a 、b ; [(4)已知:,9,23tan ==b B 求a 、c ;(5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .…例2.已知:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长.例4.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长.*类型二:解直角三角形的实际应用 仰角与俯角: 例1.(2012•福州)如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A . 200米B . 200米C . )220米D . 100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23=DE ,求点B 到地面的垂直距离BC .例3如图,一风力发电装置竖立在小山顶上,小山的高BD =30m . 从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA =60°, 测得山顶B 的仰角∠DCB =30°,求风力发电装置的高AB 的长.!例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为米,求这棵树的高度.例5.已知:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC的长(答案可带根号).…例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为( )A . 10米B . 10米C . 20米D . ~A BCD E米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度(计算时距离精确到1米,参考数据:sin75°≈,cos75°≈,tan75°≈,3≈,60千米/小时≈米/秒)…类型四. 坡度与坡角例.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m类型五. 方位角1.已知:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少(精确到海里,732.13 )2.新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)《解决问题如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.}综合题:三角函数与四边形:1.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2, tan ∠BDC= 63. (1) 求BD 的长; (2) 求AD 的长.…2.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD 于点F . (1)求证:∠BAE =∠DAF ; (2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.三角函数与圆:1. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A .12 B 3 C .35D .45;19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D, (1) 求证:∠AOD=2∠C (2) 若AD=8,tanC=34,求⊙O 的半径。

微专题 三角函数的范围与最值(解析版)(1)

微专题 三角函数的范围与最值(解析版)(1)

微专题三角函数的范围与最值【秒杀总结】一、三角函数f(x)=A sin(ωx+φ)中ω的大小及取值范围1.任意两条对称轴之间的距离为半周期的整数倍,即k T2(k∈Z);2.任意两个对称中心之间的距离为半周期的整数倍,即k T2(k∈Z);3.任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即T4+k T2(k∈Z);4.f(x)=A sin(ωx+φ)在区间(a,b)内单调⇒b-a≤T2且kπ-π2≤aω+φ≤bω+φ≤kπ+π2(k∈Z)5.f(x)=A sin(ωx+φ)在区间(a,b)内不单调⇒(a,b)内至少有一条对称轴,aω+φ≤kπ+π2≤bω+φ(k∈Z)6.f(x)=A sin(ωx+φ)在区间(a,b)内没有零点⇒b-a≤T2且kπ≤aω+φ≤bω+φ≤(k+1)π(k∈Z)7.f(x)=A sin(ωx+φ)在区间(a,b)内有n个零点⇒(k-1)π≤aω+φ<kπ(k+n-1)π<bω+φ≤(k+n)π(k∈Z) .二、三角形范围与最值问题1.坐标法:把动点转为为轨迹方程2.几何法3.引入角度,将边转化为角的关系4.最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023·全国·高三专题练习)在△ABC中,cos A=725,△ABC的内切圆的面积为16π,则边BC长度的最小值为( )A.16B.24C.25D.36【答案】A【解析】因为△ABC的内切圆的面积为16π,所以△ABC的内切圆半径为4.设△ABC内角A,B,C所对的边分别为a,b,c.因为cos A=725,所以sin A=2425,所以tan A=247.因为S△ABC=12bc sin A=12(a+b+c)×4,所以bc=256(a+b+c).设内切圆与边AC切于点D,由tan A=247可求得tan A 2=34=4AD,则AD =163.又因为AD =b +c -a 2,所以b +c =323+a .所以bc =256323+2a =253163+a .又因为b +c ≥2bc ,所以323+a ≥2253163+a ,即323+a 2≥1003163+a ,整理得a 2-12a -64≥0.因为a >0,所以a ≥16,当且仅当b =c =403时,a 取得最小值.故选:A .例2.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点:且f (x )≤f π4 恒成立,f (x )在-π12,π24区间上有最小值无最大值,则ω的最大值是( )A.11 B.13C.15D.17【答案】C【解析】由题意,x =π4是f (x )的一条对称轴,所以f π4 =±1,即π4ω+φ=k 1π+π2,k 1∈Z ①又f -π4 =0,所以-π4ω+φ=k 2π,k 2∈Z ②由①②,得ω=2k 1-k 2 +1,k 1,k 2∈Z 又f (x )在-π12,π24 区间上有最小值无最大值,所以T ≥π24--π12 =π8即2πω≥π8,解得ω≤16,要求ω最大,结合选项,先检验ω=15当ω=15时,由①得π4×15+φ=k 1π+π2,k 1∈Z ,即φ=k 1π-13π4,k 1∈Z ,又|φ|≤π2所以φ=-π4,此时f (x )=sin 15x -π4 ,当x ∈-π12,π24 时,15x -π4∈-3π2,3π8 ,当15x -π4=-π2即x =-π60时,f (x )取最小值,无最大值,满足题意.故选:C例3.(2023·高一课时练习)如图,直角ΔABC 的斜边BC 长为2,∠C =30°,且点B ,C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA =xOB +yOC ,(x ,y ∈R ),记M =OA ⋅OC,N =x +y ,分别考查M ,N 的所有运算结果,则A.M 有最小值,N 有最大值B.M 有最大值,N 有最小值C.M 有最大值,N 有最大值D.M 有最小值,N 有最小值【答案】B【解析】依题意∠BCA =30∘,BC =2,∠A =90∘,所以AC =3,AB =1.设∠OCB =α,则∠ABx =α+30∘,0∘<α<90∘,所以A 3sin α+30∘ ,sin α+30∘,B 2sin α,0 ,C 0,2cos α ,所以M =OA ⋅OC =2cos αsin α+30∘ =sin 2α+30∘ +12,当2α+30∘=90∘,α=30∘时,M 取得最大值为1+12=32.OA =xOB +yOC ,所以x =3sin α+30∘ 2sin α,y =sin α+30∘2cos α,所以N =x +y =3sin α+30∘2sin α+sin α+30∘ 2cos α=1+32sin2α,当2α=90∘,α=45∘时,N 有最小值为1+32.故选B .例4.(2023·全国·高三专题练习)已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23 B.22C.3D.2【答案】D【解析】由a 2+b 2=1,令a =sin θ,b =cos θ,由f x =a sin x +b cos x +cx ,得f x =a cos x -b sin x +c =sin θcos x -cos θsin x +c =sin θ-x +c ,所以c -1≤f x ≤c +1由题意可知,存在x 1,x 2,使得f (x 1)f (x 2)=-1,只需要c -1 c +1 =c 2-1 ≥1,即c 2-1≤-1,所以c 2≤0,c =0,a +b +c =a +b =sin θ+cos θ=2sin θ+π4≤2所以a +b +c 的最大值为2.故选:D .例5.(2023·全国·高三专题练习)已知m >0,函数f (x )=(x -2)ln (x +1),-1<x ≤m ,cos 3x +π4,m <x ≤π,恰有3个零点,则m 的取值范围是( )A.π12,5π12 ∪2,3π4B.π12,5π12 ∪2,3π4C.0,5π12 ∪2,3π4D.0,5π12 ∪2,3π4【答案】A【解析】设g x =(x -2)ln (x +1),h x =cos 3x +π4,求导g x =ln (x +1)+x -2x +1=ln (x +1)+1-3x +1由反比例函数及对数函数性质知g x 在-1,m ,m >0上单调递增,且g 12<0,g 1 >0,故gx 在12,1 内必有唯一零点x 0,当x ∈-1,x 0 时,g (x )<0,g x 单调递减;当x ∈x 0,m 时,g (x )>0,g x 单调递增;令g x =0,解得x =0或2,可作出函数g x 的图像,令h x =0,即3x +π4=π2+k π,k ∈Z ,在0,π 之间解得x =π12或5π12或3π4,作出图像如下图数形结合可得:π12,5π12∪2,3π4,故选:A例6.(2023·全国·高三专题练习)已知函数f x =cos ωx -π3(ω>0)在π6,π4 上单调递增,且当x ∈π4,π3 时,f x ≥0恒成立,则ω的取值范围为( )A.0,52 ∪223,172B.0,43 ∪8,172C.0,43 ∪8,283D.0,52 ∪223,8【答案】B【解析】由已知,函数fx =cos ωx -π3(ω>0)在π6,π4 上单调递增,所以2k 1π-π≤ωx -π3≤2k 1πk 1∈Z ,解得:2k 1πω-2π3ω≤x ≤2k 1πω+π3ωk 1∈Z ,由于π6,π4 ⊆2k 1πω-2π3ω,2k 1πω+π3ω k 1∈Z ,所以π6≥2k 1πω-2π3ωπ4≤2k 1πω+π3ω,解得:12k 1-4≤ω≤8k 1+43k 1∈Z ①又因为函数f x =cos ωx -π3(ω>0)在x ∈π4,π3上f x ≥0恒成立,所以2k 2π-π2≤ωx -π3≤2k 2π+π2k 2∈Z ,解得:2k 2πω-π6ω≤x ≤2k 2πω+5π6ωk 2∈Z ,由于π4,π3 ⊆2k 2πω-π6ω,2k 2πω+5π6ω k 2∈Z ,所以π4≥2k 2πω-π6ωπ3≤2k 2πω+5π6ω,解得:8k 2-23≤ω≤6k 2+52k 2∈Z ②又因为ω>0,当k 1=k 2=0时,由①②可知:ω>0-4≤ω≤43-23≤ω≤52,解得ω∈0,43;当k 1=k 2=1时,由①②可知:ω>08≤ω≤283223≤ω≤172,解得ω∈8,172.所以ω的取值范围为0,43 ∪8,172.故选:B .例7.(2023·全国·高三专题练习)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若sin (A +C )=2S b 2-a2,则tan A +13tan (B -A )的取值范围为( )A.233,+∞ B.233,43C.233,43D.233,43【答案】C【解析】在△ABC 中,sin (A +C )=sin B ,S =12ac sin B ,故题干条件可化为b 2-a 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B ,故c =2a cos B +a ,又由正弦定理化简得:sin C =2sin A cos B +sin A =sin A cos B +cos A sin B ,整理得sin (B -A )=sin A ,故B -A =A 或B -A =π-A (舍去),得B =2A △ABC 为锐角三角形,故0<A <π20<2A <π20<π-3A <π2 ,解得π6<A <π4,故33<tan A <1tan A +13tan (B -A )=tan A +13tan A ∈233,43故选:C例8.(2023·上海·高三专题练习)在钝角△ABC 中,a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,点G 是△ABC 的重心,若AG ⊥BG ,则cos C 的取值范围是( )A.0,63B.45,63C.63,1D.45,1【答案】C【解析】延长CG 交AB 于D ,如下图所示:∵G 为△ABC 的重心,∴D 为AB 中点且CD =3DG ,∵AG ⊥BG ,∴DG =12AB ,∴CD =32AB =32c ;在△ADC 中,cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD=52c 2-b 232c 2=5c 2-2b 23c 2;在△BDC 中,cos ∠BDC =BD 2+CD 2-BC 22BD ⋅CD =52c 2-a 232c 2=5c 2-2a 23c 2;∵∠BDC +∠ADC =π,∴cos ∠BDC =-cos ∠ADC ,即5c 2-2a 23c 2=-5c 2-2b 23c 2,整理可得:a 2+b 2=5c 2>c 2,∴C 为锐角;设A 为钝角,则b 2+c 2<a 2,a 2+c 2>b 2,a >b ,∴a 2>b 2+a 2+b 25b 2<a 2+a 2+b 25,∴b a 2+15+15b a 2<1b a 2<1+15+15b a2,解得:b a 2<23,∵a >b >0,∴0<b a <63,由余弦定理得:cos C =a 2+b 2-c 22ab =25⋅a 2+b 2ab =25a b +b a >25×63+36 =63,又C 为锐角,∴63<cos C <1,即cos C 的取值范围为63,1.故选:C .例9.(2023·全国·高三专题练习)设锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若A =π3,a =3,则b 2+c 2+bc 的取值范围为( )A.(1,9] B.(3,9]C.(5,9]D.(7,9]【答案】D 【解析】因为A =π3,a =3,由正弦定理可得asin A=332=2=b sin B =csin 2π3-B ,则有b =2sin B ,c =2sin 2π3-B ,由△ABC 的内角A ,B ,C 为锐角,可得0<B <π2,0<2π3-B <π2,,∴π6<B <π2⇒π6<2B -π6<5π6⇒12<sin 2B -π6 ≤1⇒2<4sin 2B -π6≤4, 由余弦定理可得a 2=b 2+c 2-2bc cos A ⇒3=b 2+c 2-bc ,因此有b 2+c 2+bc =2bc +3=8sin B sin 2π3-B+3=43sin B cos B +4sin 2B +3=23sin2B -2cos2B +5=5+4sin 2B -π6∈7,9 故选:D .例10.(2023·上海·高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形MN ,NP ,PQ ,QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为MN ,PQ 的中点,OA =OD =50米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域MQ ,NP 边界上(不含端点),且设计成∠BAC =π2,另一段玻璃桥F -D -E 满足FD ⎳AC ,FD =AC ,ED ⎳AB ,ED =AB .(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:2≈1.414,3≈1.732)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB +AC +DE +DF ,宽度、连接处忽略不计).【解析】(1)由题意,OA =50,OM =100,则MQ =100,AM =503,∠BAC =π2,设∠MAB =θ,∠NAC =α=π2-θ.若C ,P 重合,tan α=100503=23,tan θ=1tan α=32=MB503,得MB =75,∴75<MB <100,32<tan θ<23,MB =AM ⋅tan θ=503tan θ,NC =AN ⋅tan α=503tan θ,而MF =CP =100-NC =100-503tan θ,∴BF =MB -MF =503tan θ+1tan θ -100≥100(3-1),当tan θ=1(符合题意)时取等号,又100(3-1)>70,∴可以修建70米长廊.(2)AB =AM cos θ=503cos θ,AC =AN cos α=503sin θ,则AB +AC =503cos θ+503sin θ=503(sin θ+cos θ)sin θcos θ.设t =sin θ+cos θ=2sin θ+π4 ,则t 2=1+2sin θcos θ,即sin θcos θ=t 2-12.AB +AC =1003t t 2-1=1003t -1t,由(1)知32<tan θ<23,而33<32<1<23<3,∴∃θ使θ+π4=π2且π4<θ+π4<3π4,即1<t ≤2,0<t -1t ≤22,∴AB +AC =1003t -1t≥1006,当且仅当t =2,θ=π4时取等号.由题意,AB +AC =DE +DF ,则玻璃桥总长的最小值为2006米,∴铺设好亲水玻璃桥,最少需2006×0.3=606万元.例11.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足b sin A =a sin B +π3(1)设a =3,c =2,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE ⋅EA的值;(2)若△ABC 为锐角三角形,c =2,求△ABC 面积的取值范围.【解析】(1)b sin A =a sin B +π3,由正弦定理得:sin B sin A =sin A sin B +π3 =12sin A sin B +32sin A cos B ,所以12sin A sin B -32sin A cos B =0,因为A ∈0,π ,所以sin A ≠0,所以12sin B -32cos B =0,即tan B =3,因为B ∈0,π ,所以B =π3,因为a =3,c =2,由余弦定理得:b 2=a 2+c 2-2ac cos B =9+4-6=7,因为b >0,所以b =7,其中S △ABC =12ac sin B =12×3×2×32=332,所以BD =2S △ABC AC =337=3217,因为点E 为线段BD 的中点,所以BE =32114,由题意得:EA =ED +DA =BE +DA,所以BE ⋅EA =BE ⋅BE +DA =BE 2+0=2728.(2)由(1)知:B =π3,又c =2,由正弦定理得:a sin A =c sin C =2sin A +π3,所以a =2sin A sin A +π3 =2sin A 12sin A +32cos A =41+3tan A,因为△ABC 为锐角三角形,所以A ∈0,π2C =2π3-A ∈0,π2,解得:A ∈π6,π2 ,则tan A ∈33,+∞,3tan A ∈0,3 ,1+3tan A∈1,4 ,故a =41+3tan A∈1,4 ,△ABC 面积为S =12ac sin B =32a ∈32,23 故△ABC 面积的取值范围是32,23.【过关测试】一、单选题1.(2023·全国·高三专题练习)已知a ,b ∈R ,设函数f 1(x )=cos2x ,f 2(x )=a -b cos x ,若当f 1(x )≤f 2(x )对x ∈[m ,n ](m <n )恒成立时,n -m 的最大值为3π2,则( )A.a ≥2-1 B.a ≤2-1C.b ≥2-2D.b ≤2-2【答案】A【解析】设t =cos x ,x ∈[m ,n ],因为n -m 的最大值为3π2>π=T2,所以x ∈[m ,n ]时,t =cos x 必取到最值,当n -m =3π2时,根据余弦函数对称性得cos m +n 2=1⇒m +n2=2k π,k ∈Z ,此时cos m =cos m +n 2-n -m 2=cos 2k π-3π4 =cos 3π4=-22cos n =cos m +n 2+n -m 2 =cos 2k π+3π4 =cos 3π4=-22或者cos m +n 2=-1⇒m +n 2=π+2k π,k ∈Z ,此时cos m =cos m +n 2-n -m2 =cos 2k π+π-3π4 =-cos 3π4=22cos n =cos m +n 2+n -m 2=cos 2k π+π+3π4 =-cos 3π4=22由f 1(x )≤f 2(x )⇒2cos 2x -1≤a -b cos x ⇒2cos 2x +b cos x -1+a ≤0,设t =cos x ,x ∈[m ,n ]时 2t 2+bt -1+a ≤0对应解为t 1≤t ≤t 2,由上分析可知当t 1=-22,t 2≥1或t 1≤-1,t 2=22时,满足n -m 的最大值为3π2,所以t 1t 2≤-22,即-1+a 2≤-22,所以a ≥2-1.-b 2=t 1+t 2≥1-22或-b 2=t 1+t 2≤-1+22,即b ≤2-2或b ≥2-2,故选:A .2.(2023·全国·高三专题练习)△ABC 中,AB =2,∠ACB =π4,O 是△ABC 外接圆圆心,是OC ⋅AB+CA ⋅CB的最大值为( )A.0 B.1C.3D.5【答案】C【解析】过点O 作OD ⊥AC ,OE ⊥BC ,垂足分别为D ,E ,如图,因O 是△ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在△ABC 中,AB =CB -CA ,则|AB |2=|CA |2+|CB|2-2CA ⋅CB ,即CA ⋅CB =|CA |2+|CB|2-22,CO ⋅CA =CO CA cos ∠OCA = CD ⋅ CA =12CA 2,同理CO ⋅CB =12|CB |2,因此,OC ⋅AB +CA ⋅CB =OC ⋅CB -CA+CA ⋅CB =CO ⋅CA -CO ⋅CB +CA ⋅CB=12|CA |2-12|CB |2+|CA |2+|CB |2-22=|CA |2-1,由正弦定理得:|CA |=|AB|sin B sin ∠ACB =2sin B sin π4=2sin B ≤2,当且仅当B =π2时取“=”,所以OC ⋅AB +CA ⋅CB的最大值为3.故选:C3.(2023·全国·高三专题练习)在锐角△ABC 中,若3sin A cos A a +cos Cc=sin B sin C ,且3sin C +cos C =2,则a +b 的取值范围是( )A.23,4 B.2,23C.0,4D.2,4【答案】A【解析】由3sin C +cos C =2sin C +π6 =2,得C +π6=π2+2k π,k ∈Z ,∵C ∈0,π2 ,∴C =π3.由题cos A a +cos C c =sin B sin C 3sin A,由正弦定理有cos A a +cos Cc =b ⋅323a=b 2a ,故cos A sin A +cos C sin C =b 2sin A,即cos A ⋅sin C +sin A ⋅cos C =b sin C 2=3b 4,故sin A +C =sin B =3b 4,即b sin B =433,由正弦定理有a sin A=b sin B =c sin C =433,故a =433sin A ,b =433sin B ,又锐角△ABC ,且C =π3,∴A ∈0,π2 ,B =2π3-A ∈0,π2 ,解得A ∈π6,π2 ,∴a +b =433(sin A +sin B )=433sin A +sin 2π3-A =433sin A +32cos A +12sin A =4sin A +π6,∵A ∈π6,π2,∴A +π6∈π3,2π3 ,sin A +π6 ∈32,1 ,∴a +b 的取值范围为23,4 .故选:A .4.(2023·全国·高三专题练习)设ω∈R ,函数f x =2sin ωx +π6 ,x ≥0,32x 2+4ωx +12,x <0,g x =ωx .若f (x )在-13,π2 上单调递增,且函数f x 与g (x )的图象有三个交点,则ω的取值范围是( )A.14,23B.33,23C.14,33D.-43,0 ∪14,23【答案】B 【解析】当x ∈0,π2 时,ωx +π6∈π6,πω2+π6 ,因为f (x )在-13,π2 上单调递增,所以πω2+π6≤π2-4ω3≤-132sin π6≥12 ,解得14≤ω≤23,又因函数f x 与g (x )的图象有三个交点,所以在x ∈-∞,0 上函数f x 与g (x )的图象有两个交点,即方程32x 2+4ωx +12=ωx 在x ∈-∞,0 上有两个不同的实数根,即方程3x 2+6ωx +1=0在x ∈-∞,0 上有两个不同的实数根,所以Δ=36ω2-12>0-ω<032×02+6ω×0+1>0 ,解得ω>33,当ω∈33,23时,当x ≥0时,令f x -g x =2sin ωx +π6-ωx ,由f x -g x =1>0,当ωx +π6=5π2时,ωx =7π3,此时,f x -g x =2-7π3<0,结合图象,所以x ≥0时,函数f x 与g (x )的图象只有一个交点,综上所述,ω∈33,23.故选:B .5.(2023秋·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin ωx +π3 (ω>0)在π3,π上恰有3个零点,则ω的取值范围是( )A.83,113 ∪4,143 B.113,4 ∪143,173C.113,143 ∪5,173D.143,5 ∪173,203【答案】C 【解析】x ∈π3,π,ωx +π3∈π3ω+π3,πω+π3 ,其中2πω≤π-π3<4πω,解得:3≤ω<6,则π3ω+π3≥4π3,要想保证函数在π3,π 恰有三个零点,满足①π+2k 1π≤π3ω+π3<2π+2k 1π4π+2k 1π<πω+π3≤5π+2k 1π,k 1∈Z ,令k 1=0,解得:ω∈113,143 ;或要满足②2k 2π≤π3ω+π3<π+2k 2π2k 2π+3π<πω+π3≤2k 2π+4π,k 2∈Z ,令k 2=1,解得:ω∈5,173;经检验,满足题意,其他情况均不满足3≤ω<6条件,综上:ω的取值范围是113,143 ∪5,173.故选:C6.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π4(ω>0)在区间[0,π]上有且仅有4条对称轴,给出下列四个结论:①f (x )在区间(0,π)上有且仅有3个不同的零点;②f (x )的最小正周期可能是π2;③ω的取值范围是134,174;④f (x )在区间0,π15上单调递增.其中所有正确结论的序号是( )A.①④ B.②③C.②④D.②③④【答案】B【解析】由函数f (x )=sin ωx +π4 (ω>0), 令ωx +π4=π2+k π,k ∈Z ,则x =1+4k π4ω,k ∈Z 函数f (x )在区间[0,π]上有且仅有4条对称轴,即0≤1+4k π4ω≤π有4个整数k 符合,由0≤1+4k π4ω≤π,得0≤1+4k4ω≤1⇒0≤1+4k ≤4ω,则k =0,1,2,3,即1+4×3≤4ω<1+4×4,∴134≤ω<174,故③正确;对于①,∵x ∈(0,π),∴ωx +π4∈π4,ωπ+π4,∴ωπ+π4∈7π2,9π2当ωx +π4∈π4,7π2时,f (x )在区间(0,π)上有且仅有3个不同的零点;当ωx +π4∈π4,9π2时,f (x )在区间(0,π)上有且仅有4个不同的零点;故①错误;对于②,周期T =2πω,由134≤ω<174,则417<1ω≤413,∴8π17<T ≤8π13,又π2∈8π17,8π13,所以f (x )的最小正周期可能是π2,故②正确;对于④,∵x ∈0,π15 ,∴ωx +π4∈π4,ωπ15+π4 ,又ω∈134,174 ,∴ωπ15+π4∈7π15,8π15 又8π15>π2,所以f (x )在区间0,π15 上不一定单调递增,故④错误.故正确结论的序号是:②③故选:B7.(2023·全国·高三专题练习)函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,则下列说法正确的是( )A.在0,π 不存在x 1,x 2使得f x 1 -f x 2 =2B.函数f x 在0,π 仅有1个最大值点C.函数f x 在0,π2上单调进增D.实数ω的取值范围是136,196 【答案】D【解析】对于A ,f (x )在0,π 上有且仅有3个零点,则函数的最小正周期T <π ,所以在0,π 上存在x 1,x 2 ,且f (x 1)=1,f (x 2)=-1 ,使得f x 1 -f x 2 =2,故A 错误;由图象可知,函数在0,π 可能有两个最大值,故B 错误;对于选项D ,令ωx -π6=k π,k ∈Z ,则函数的零点为x =1ωk π+π6 ,k ∈Z ,所以函数在y 轴右侧的四个零点分别是:π6ω,7π6ω,13π6ω,19π6ω,函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,所以13π6ω≤π19π6ω>π,解得ω∈136,196 ,故D 正确;由对选项D 的分析可知,ω的最小值为136,当0<x <π2 时,ωx -π6∈-π6,11π12 ,但-π6,11π12 不是0,π2的子集,所以函数f x 在0,π2上不是单调进增的,故C 错,故选:D .8.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin (A +C )cos B b +cos C c =sin A sin C ,B =π3,则a +c 的取值范围是( )A.32,3B.32,3C.32,3 D.32,3【答案】A【解析】由题知sin (A +C )cos B b+cos C c=sin A sin C ,B =π3∴sin B cos B b +cos C c =sin Asin C 即cos B b +cos C c =23sin A3sin C由正弦定理化简得∴c ⋅cos B +b ⋅cos C =23bc sin A 3sin C=23ab3∴sin C cos B +cos C sin B =23b sin A3∴sin (B +C )=sin A =23b sin A3∴b =32∵B =π3∴a sin A =b sin B =c sin C =1∴a +c =sin A +sin C =sin A +sin 2π3-A =32sin A +32cos A =3sin A +π6∵0<A <2π3∴π6<A +π6<5π6∴32<3sin A +π6≤3即32<a +c ≤3故选:A .二、多选题9.(2023秋·山东济南·高三统考期中)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +B 1-tan A tan B =3ca cos B,则下列结论正确的是( )A.A =π6B.若b -c =33a ,则△ABC 为直角三角形C.若△ABC 面积为1,则三条高乘积平方的最大值为33D.若D 为边BC 上一点,且AD =1,BD :DC =2c :b ,则2b +c 的最小值为977【答案】BCD【解析】对于A ,因为tan A +B 1-tan A tan B =3c a cos B ,所以tan A +tan B =3ca cos B,则由正弦定理得3sin C =sin A cos B tan A +tan B =sin A cos B ⋅sin A cos B +cos A sin Bcos A cos B =sin A ⋅sin A +B cos A =sin A ⋅sin Ccos A ,则3sin C cos A =sin A sin C ,因为0<C <π,所以sin C >0,故tan A =3,又0<A <π,所以A =π3,故A 错误;对于B ,由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ,因为b -c =33a ,即b =33a +c ,代入上式得a 2=33a +c 2+c 2-33a +c c ,整理得3c 2+3ac -2a 2=0,解得a =3c 或a =-32c (舍去),则b =2c ,所以b 2=a 2+c 2,故B 正确;对于C ,设AB ,AC ,BC 边上的高分别是CE ,BF ,AD ,则由三角形面积公式易得AD =2a ,BF =2b ,CE =2c ,则AD ×BF ×CE 2=8abc2,因为1a +1b +1c ≥331abc ,当且仅当1a =1b=1c ,即a =b =c 时,等号成立,此时S =12bc sin A =34b 2=1,得b 2=433,所以AD ×BF ×CE 2=8abc2≤33,故C 正确;对于D ,因为BD :DC =2c :b ,所以AD =AB +BD =AB+2c b +2c BC =AB +2cb +2c AC -AB=b b +2c AB +2c b +2cAC,可得1=b 2(b +2c )2c 2+4c 2(b +2c )2b 2+22bc (b +2c )2cb cos60°,整理得b +2c 2=7b 2c 2,故1c +2b=7,所以2b +c =2b +c ×171c +2b =172b c +2c b +5 ≥1722b c ⋅2c b+5=977,当且仅当2b c =2c b 且1c +2b=7,即b =c =377时,等号成立,所以2b +c ≥977,即2b +c 的最小值为977,故D 正确.故选:BCD .10.(2023秋·江苏苏州·高三苏州中学校考阶段练习)已知函数f x =sin2x1+2cos 2x,则下列说法中正确的是( )A.f x +π =f xB.f x 的最大值是33C.f x 在-π2,π2上单调递增D.若函数f x 在区间0,a 上恰有2022个极大值点,则a 的取值范围为60643π,60673π【答案】ABD 【解析】f x =sin2x 1+2cos 2x =sin2x 1+21+cos2x 2=sin2x2+cos2x ,A 选项:f x +π =sin 2x +2π 2+cos 2x +2π=sin2x 2+cos2x =f x ,A 选项正确;B 选项:设f x =sin2x2+cos2x=t ,则sin2x -t cos2x =2t =1+t 2sin 2x +φ ≤1+t 2,解得t 2≤13,-33≤t ≤33,即t max =33,即f x 的最大值为33,B 选项正确;C 选项:因为f -π2 =f π2 =0,所以f x 在-π2,π2 上不单调,C 选项错误;D 选项:f x =2cos2x 2+cos2x -sin2x -2sin2x 2+cos2x 2=4cos2x +22+cos2x2,令f x =0,解得cos2x =-12,即x =π3+k π或x =2π3+k π,k ∈Z ,当x ∈π3+k π,2π3+k π ,k ∈Z 时,f x <0,函数单调递减,当当x ∈2π3+k π,4π3+k π ,k ∈Z 时,f x >0,函数单调递增,所以函数f x 的极大值点为π3,4π3,⋯,π3+n-1π,又函数f x 在区间0,a上恰有2022个极大值点,则a∈π3+2021π,π3+2022π,即a∈6064π3,6067π3,D选项正确;故选:ABD.11.(2023·全国·高三专题练习)在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,有以下四个命题中正确的是( )A.Sa2+2bc的最大值为3 12B.当a=2,sin B=2sin C时,△ABC不可能是直角三角形C.当a=2,sin B=2sin C,A=2C时,△ABC的周长为2+23D.当a=2,sin B=2sin C,A=2C时,若O为△ABC的内心,则△AOB的面积为3-13【答案】ACD【解析】对于选项A:Sa2+2bc =12bc sin Ab2+c2-2bc cos A+2bc=12×sin Abc+cb+2-2cos A≤-14×sin Acos A-2(当且仅当b=c时取等号).令sin A=y,cos A=x,故Sa2+2bc≤-14×yx-2,因为x2+y2=1,且y>0,故可得点x,y表示的平面区域是半圆弧上的点,如下图所示:目标函数z=yx-2上,表示圆弧上一点到点A2,0点的斜率,数形结合可知,当且仅当目标函数过点H12,32,即A=60∘时,取得最小值-3 3,故可得z=yx-2∈-33,0,又Sx2+2bc≤-14×yx-2,故可得Sa2+2bc≤-14×-33=312,当且仅当A=60∘,b=c,即三角形为等边三角形时,取得最大值,故选项A正确;对于选项B:因为sin B=2sin C,所以由正弦定理得b=2c,若b是直角三角形的斜边,则有a2+c2= b2,即4+c2=4c2,得c=233,故选项B错误;对于选项C,由A=2C,可得B=π-3C,由sin B=2sin C得b=2c,由正弦定理得,bsin B=csin C,即2csinπ-3C=csin C,所以sin3C=2sin C,化简得sin C cos2C+2cos2C sin C=2sin C,因为sin C≠0,所以化简得cos2C=3 4,因为b=2c,所以B>C,所以cos C=32,则sin C=12,所以sin B=2sin C=1,所以B=π2,C=π6,A=π3,因为a=2,所以c=233,b=433,所以△ABC的周长为2+23,故选项C正确;对于选项D,由C可知,△ABC为直角三角形,且B=π2,C=π6,A=π3,c=233,b=433,所以△ABC的内切圆半径为r=122+233-433=1-33,所以△ABC的面积为12cr=12×233×1-33=3-13所以选项D正确,故选:ACD12.(2023·全国·高三专题练习)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且c-b=2b cos A,则下列结论正确的有( )A.A=2BB.B的取值范围为0,π4C.a b的取值范围为2,2D.1tan B-1tan A+2sin A的取值范围为533,3【答案】AD【解析】在△ABC中,由正弦定理可将式子c-b=2b cos A化为sin C-sin B=2sin B cos A,把sin C=sin A+B=sin A cos B+cos A sin B代入整理得,sin A-B=sin B,解得A-B=B或A-B+B=π,即A=2B或A=π(舍去).所以A=2B.选项A正确.选项B:因为△ABC为锐角三角形,A=2B,所以C=π-3B.由0<B<π2,0<2B<π2,0<π-3B<π2解得B∈π6,π4,故选项B错误.选项C :a b =sin A sin B =sin2Bsin B =2cos B ,因为B ∈π6,π4 ,所以cos B ∈22,32,2cos B ∈2,3 ,即ab的取值范围2,3 .故选项C 错误.选项D :1tan B -1tan A +2sin A =sin A -B sin A sin B +2sin A =1sin A +2sin A .因为B ∈π6,π4,所以A =2B ∈π3,π2 ,sin A ∈32,1.令t =sin A ,t ∈32,1,则f t =2t +1t.由对勾函数的性质知,函数f t =2t +1t 在32,1上单调递增.又f 32 =533,f 1 =3,所以f t ∈533,3 .即1tan B -1tan A+2sin A 的取值范围为533,3 .故选项D 正确.故选:AD .三、填空题13.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π6,ω>0,若f π4 =f 5π12 且f (x )在区间π4,5π12 上有最小值无最大值,则ω=_______.【答案】4或10【解析】∵f (x )满足f π4 =f 5π12 ,∴x =π4+5π122=π3是f (x )的一条对称轴,∴π3⋅ω+π6=π2+k π,∴ω=1+3k ,k ∈Z ,∵ω>0,∴ω=1,4,7,10,13,⋯.当x ∈π4,5π12时,ωx +π6∈π4ω+π6,5π12ω+π6 ,y =sin x 图像如图:要使f (x )在区间π4,5π12上有最小值无最大值,则:π2≤π4ω+π6<3π23π2<5π12ω+π6≤5π2⇒4≤ω<163 或5π2≤π4ω+π6<7π27π2<5π12ω+π6≤9π2⇒283≤ω<525 ,此时ω=4或10满足条件;区间π4,5π12 的长度为:5π12-π4=5π12-3π12=π6,当ω≥13时,f (x )最小正周期T =2πω≤2π13<π6,则f (x )在π4,5π12 既有最大值也有最小值,故ω≥13不满足条件.综上,ω=4或10.故答案为:4或10.14.(2023·全国·高三专题练习)函数f x =3sin ωx +φ ω>0,φ <π2,已知f π3 =3且对于任意的x ∈R 都有f -π6+x +f -π6-x =0,若f x 在5π36,2π9上单调,则ω的最大值为______.【答案】5【解析】因为函数f x =3sin ωx +φ ω>0,φ <π2 ,f π3=3,所以f π3=33sin ω·π3+φ =3,所以πω3+φ=π2+k π(k ∈Z ),φ=π2-k π3+k 1π(k 1∈Z ),因为于任意的x ∈R 都有f -π6+x +f -π6-x =0,所以f -π6+x =-f -π6-x ,所以sin x -π6 ⋅ω+φ =-sin -ω⋅x +π6 +φ ,所以sin ωx -ωπ6+φ =sin ωx +ωπ6-φ ,所以ωx -ωπ6+φ=ωx +ωπ6-φ+2k 2π(k 2∈Z )或ωx -ωπ6+φ+ωx +ωπ6-φ=k 3π(k 3∈Z ),所以φ=ωπ6+k 2π(k 2∈Z )或2ωx =k 3π(k 3∈Z ),即x =k 3π2ω(k 3∈Z )(舍去),所以φ=ωπ6+k 2π(k 2∈Z ),因为φ=π2-k π3+k 1π(k 1∈Z ),所以π2-k π3+k 1π=ωπ6+k 2π(k 1∈Z ),即ω=1+2(k 1-k 2),令t =k 1-k 2,所以ω=1+2t (t ∈Z ),f x 在5π36,2π9上单调,所以π12≤T 2=πω,所以ω≤12,而ω=1+2t (t ∈Z ),当ω=11,φ=-π6,所以f x =3sin 11x -π6 ,函数在5π36,2π9不单调,舍去;当ω=9,φ=3π2+k π(k ∈Z ),舍去;当ω=7,φ=π6,所以f x =3sin 7x +π6 ,函数在5π36,2π9 不单调,舍去;当ω=5,φ=-π6,所以f x =3sin 5x -π6 ,函数在5π36,2π9 单调,所以ω的最大值为5.故答案为:5.15.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点,且f (x )≤f π4恒成立,f (x )在区间-π12,π24 上有最小值无最大值,则ω的最大值是_______【答案】15【解析】由题意知函数f x =sin ωx +φ ω>0,φ ≤π2 ,x =π4为y =f (x )图象的对称轴,x =-π4为f (x )的零点,∴2n +14•2πω=π2,n ∈Z ,∴ω=2n +1.∵f (x )在区间-π12,π24 上有最小值无最大值,∴周期T ≥π24+π12 =π8,即2πω≥π8,∴ω≤16.∴要求ω的最大值,结合选项,先检验ω=15,当ω=15时,由题意可得-π4×15+φ=k π,φ=-π4,函数为y =f (x )=sin 15x -π4,在区间-π12,π24 上,15x -π4∈-3π2,3π8 ,此时f (x )在x =-π12时取得最小值,∴ω=15满足题意.则ω的最大值为15.故答案为:15.16.(2023·全国·高三对口高考)在△ABC 中,AB =3cos x ,cos x ,AC =cos x ,sin x ,则△ABC 面积的最大值是____________【答案】34【解析】S △ABC =12AB⋅AC sin AB ,AC =12AB 2⋅AC 21-cos 2AB ,AC =12AB 2⋅AC 2-AB ⋅AC 2=124cos 2x -3cos 2x +sin x cos x 2=123cos x sin x -cos 2x =12sin 2x -π6 -12 ≤34,当sin 2x -π6 =-1时等号成立.此时2x -π6=-π2,即x =-π6时,满足题意.故答案为:34.17.(2023·高一课时练习)用M I 表示函数y =sin x 在闭区间I 上的最大值.若正数a 满足M [0,a ]≥2M [a ,2a ],则a 的最大值为________.【答案】1312π【解析】①当a ∈0,π2时,2a ∈[0,π),M [0,a ]=sin a ,M [a ,2a ]=1,若M [0,a ]≥2M [a ,2a ],则sin a ≥2,此时不成立;②当a ∈π2,π时,2a ∈[π,2π),M [0,a ]=1,M [a ,2a ]=sin a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin a ⇒sin a ≤12,又a ∈π2,π ,解得a ∈5π6,π ;③当a ∈π,3π2时,2a ∈[2π,3π),M [0,a ]=1,M [a ,2a ]=sin2a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin2a ⇒sin2a ≤12,又a ∈π,3π2 ,解得a ∈π,13π12;④当a ∈3π2,+∞时,2a ∈[3π,+∞),M [0,a ]=1,M [a ,2a ]=1,不符合题意.综上所述,a ∈5π6,13π12 ,即a 的最大值为1312π.故答案为:1312π18.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b cos C -c cos B =4,π4≤C ≤π3,则tan A 的最大值为_______.【答案】12【解析】在△ABC 中,因为a =2,b cos C -c cos B =4,所以b cos C -c cos B =4=2a ,所以sin B cos C -sin C cos B =2sin A 所以sin B cos C -sin C cos B =2sin (B +C ),所以sin B cos C -sin C cos B =2sin B cos C +2cos B sin C ,所以sin B cos C +3cos B sin C =0,所以sin B cos C +cos B sin C +2cos B sin C =0,所以sin (B +C )+2cos B sin C =0,所以sin A +2cos B sin C =0,所以由正弦定理得a +2c cos B =0,所以cos B =-1c<0,所以角B 为钝角,角A 为锐角,所以要tan A 取最大值,则A 取最大值,B ,C 取最小值,从而b ,c 取最小值.又b cos C =c cos B +4=c ×-1c +4=3,∴cos C =3b,由π4≤C ≤π3,得12≤cos C ≤22,∴12≤3b≤22,∴32≤b ≤6,由cos B =a 2+c 2-b 22ac =-1c,∴b 2-c 2=8,∴10≤c ≤27,∴tan A 取最大值时,b =32,c =10,此时由余弦定理可得cos A =b 2+c 2-a 22bc =18+10-42×32×10=255,从而求得tan A =1cos 2A-1=12,即tan A 最大值为12.故答案为:1219.(2023·全国·高三专题练习)在△ABC 中,若∠BAC =120°,点D 为边BC 的中点,AD =1,则AB⋅AC的最小值为______.【答案】-2【解析】AB ⋅AC =AD +DB ⋅AD +DC=AD 2+AD ⋅DC +DB +DB ⋅DC,因为D 为边BC 的中点,AD =1,故AB ⋅AC =1-DB 2,故求DB 的最大值.设DB =DC =x ,AC =a ,AB =c ,则由余弦定理,cos ∠BDA =x 2+12-c 22x ,cos ∠CDA =x 2+12-b 22x,因为∠BDA +∠CDA=180∘,故x 2+12-c 22x +x 2+12-b 22x=0,即2x 2+2=b 2+c 2,又2x 2=b 2+c 2+bc ≥3bc ,故2x 2+2=4x 2-bc ,即2x 2=2+bc ≤2+43x 2,此时x 2≤3,故AB ⋅AC =1-x 2≥-2,当且仅当b =c 时取等号.即AB ⋅AC的最小值为-2故答案为:-220.(2023·全国·高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________.【答案】3【解析】因为△ABC 的面积为1,所12bc sin A =12b ×2b sin A =b 2sin A =1,可得b 2=1sin A,由BC =AC -AB ,可得|BC |2=|AC |2+|AB |2-2AC ⋅AB =b 2+c 2-2bc cos A =b 2+2b2-2b ×2b cos A =5b 2-4b 2cos A =5sin A -4cos A sin A =5-4cos Asin A,设m =sin A -4cos A +5=-14×sin A cos A -54,其中A ∈(0,π),因为sin A cos A -54=sin A -0cos A -54表示点P 54,0 与点(cos A,sinA )连线的斜率,如图所示,当过点P 的直线与半圆相切时,此时斜率最小,在直角△OAP 中,OA =1,OP =54,可得PA =34,所以斜率的最小值为k PA =-tan ∠APO =-43,所以m 的最大值为-14×-43 =13,所以|BC |2≥3,所以|BC |≥3,即BC 的最小值为3,故答案为:3.21.(2023·全国·高三专题练习)已知θ>0,对任意n ∈N *,总存在实数φ,使得cos (nθ+φ)<32,则θ的最小值是___【答案】2π5【解析】在单位圆中分析,由题意,nθ+φ的终边要落在图中阴影部分区域(其中∠AOx =∠BOx =π6),必存在某个正整数n ,使得nθ+φ终边在OB 的下面,而再加上θ,即跨越空白区域到达下一个周期内的阴影区域内,∴θ>∠AOB =π3,∵对任意n ∈N *要成立,所以必存在某个正整数n ,使得以后的各个角的终边与前面的重复(否则终边有无穷多,必有两个角的终边相差任意给定的角度比如1°,进而对于更大的n ,次差的累积可以达到任意的整度数,便不可能在空白区域中不存在了),故存在正整数m ,使得2m πθ∈N *,即θ=2m πk ,k ∈N *,同时θ>π3,∴θ的最小值为2π5,故答案为:2π5.22.(2023·上海·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,0<φ<π,f (x )≤f π4恒成立,且y =f (x )在区间0,3π8上恰有3个零点,则ω的取值范围是______________.【答案】6,10【解析】由已知得:f (x )≤f π4恒成立,则f (x )max =f π4 ,π4ω+φ=π2+2k π,k ∈Z ⇒φ=π2-πω4+2k π,k ∈Z ,由x ∈0,3π8 得ωx +φ∈φ,3π8ω+φ ,由于y =f (x )在区间0,3π8上恰有3个零点,故0<φ<π3π<3π8ω+φ≤4π,则0<π2-πω4+2k π<π3π<3πω8+π2-πω4+2k π≤4π,k ∈Z ,则8k -2<ω<8k +220-16k <ω≤28-16k,k ∈Z ,只有当k =1时,不等式组有解,此时6<ω<104<ω≤12 ,故6<ω<10,故答案为:6,1023.(2023·全国·高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A >B ,若sin C =2cos A sin B +725,则tan B 的取值范围为_______.【答案】34,247【解析】∵sin C =2cos A sin B +725,∴sin A +B =sin A cos B +cos A sin B =2cos A sin B +725,即sin A -B =725,∵又A >B ,且A ,B 都为锐角,故cos A -B =2425,tan A -B =724,因为锐角三角形ABC ,所以tan A >0,tan B >0,tan C >0,所以tan A =tan A -B +B =tan A -B +tan B 1-tan A -B ⋅tan B =724+tan B1-724⋅tan B >0所以1-724⋅tan B>0,所以tan B<247,又因为tan C=-tan A+B=tan A+tan Btan A⋅tan B-1>0所以tan A⋅tan B-1=724+tan B1-724⋅tan B⋅tan B-1>0所以12tan2B+7tan B-12>0,解得tan B>34或tan B<-43(舍去)故34<tan B<247.故答案为:3 4,247.24.(2023·全国·高三专题练习)若函数f x =43x-13sin2x+a cos x在-∞,+∞内单调递增,则实数a的取值范围是___________.【答案】-423,423【解析】因函数f(x)在-∞,+∞内单调递增,则∀x∈R,f (x)=43-23cos2x-a sin x≥0,即a sin x≤43-23cos2x,整理得a sin x≤43sin2x+23,当sin x=0时,则0≤23成立,a∈R,当sin x>0时,a≤43sin x+23sin x,而43sin x+23sin x=232sin x+1sin x≥432,当且仅当2sin x=1sin x,即sin x=22时取“=”,则有a≤423,当sin x<0时,a≥43sin x+23sin x,而43sin x+23sin x=-23(-2sin x)+1-sin x≤-432,当且仅当-2sin x=1-sin x,即sin x=-22时取“=”,则有a≥-423,综上得,-423≤a≤423所以实数a的取值范围是-423,423.故答案为:-423,42325.(2023秋·湖南衡阳·高一衡阳市八中校考期末)设函数f x =2sinωx+φ-1(ω>0),若对于任意实数φ,f x 在区间π4,3π4上至少有2个零点,至多有3个零点,则ω的取值范围是________.【答案】4,16 3【解析】令f x =0,则sinωx+φ=12,令t=ωx+φ,则sin t12,。

三角函数分部积分

三角函数分部积分

三角函数分部积分三角函数分部积分是微积分中的一种重要的积分技巧,用于求解一些含有三角函数的积分式。

在进行三角函数分部积分时,需要借助于分部积分法则,将三角函数进行巧妙地组合,从而使原积分式简化为容易求解的形式。

本文将详细介绍三角函数分部积分的方法和步骤,并通过一些典型的例题加以说明和证明。

首先,回顾分部积分法则:设u和v是两个可导函数,则有积分等式:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx上述等式称为分部积分的公式。

接下来,我们将通过几个例子来介绍三角函数分部积分的具体步骤。

例题1:求解∫sin²(x)dx。

解:根据分部积分法则,我们需要选取u和v',然后利用公式求解。

令u = sin(x),则u' = cos(x)令v' = sin(x),则v = -cos(x)根据分部积分公式:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx代入上述值,我们可以得到:∫sin²(x)dx = -sin(x)cos(x) - ∫[-cos(x)]cos(x)dx= -sin(x)cos(x) + ∫cos²(x)dx接下来,我们需要继续对上述积分式进行分部积分。

令u = cos(x),则u' = -sin(x)令v' = cos(x),则v = sin(x)根据分部积分公式,我们可以得到:∫cos²(x)dx = sin(x)cos(x) - ∫[-sin(x)]sin(x)dx= sin(x)cos(x) - ∫sin²(x)dx将∫sin²(x)dx带入上述等式中,可以得到:∫sin²(x)dx = -sin(x)cos(x) + sin(x)cos(x) - ∫sin²(x)dx移项得到:2∫sin²(x)dx = -sin(x)cos(x) + sin(x)cos(x)化简得到:∫sin²(x)dx = -0.5sin(x)cos(x) + C其中,C为常数。

三角函数公式典型例题大全

三角函数公式典型例题大全

高中三角函数公式大全以及典型例题20XX 年07月12日 星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinα cos (2kπ+α)= cosαtan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinα cos (π+α)= -cosαtan (π+α)= tanα cot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosαtan (-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinα cos (π-α)= -cosαtan (π-α)= -tanα cot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinα cos (2π-α)= cosαtan (2π-α)= -tanα cot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b 2=a 2+c 2-2accosB 注:角B 是边a 和边c 的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}三角函数 积化和差 和差化积公式记不住就自己推,用两角和差的正余弦:3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanA·tanB·tanC(2)sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin (a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin AC A A π⎛⎫+=+π-- ⎪6⎝⎭ cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭. 2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C .即2sin A cos B =sin B cos C +sin C cos B=sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA .∵0<A <π,∴sin A ≠0.∴cos B =21. ∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A .=-2sin 2A +4k sin A +1,A ∈(0,32π) 设sin A =t ,则t ∈]1,0(.则m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(.∵k >1,∴t =1时,m n ⋅取最大值.依题意得,-2+4k +1=5,∴k =23. 3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin =++C B A . I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin 2sin ππ+=+=+-C C C C C 2242πππ==+∴C C 即,所以此三角形为直角三角形. II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号, 此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos =A , (1)求B C cos ,cos 的值;(2)若227=⋅BC BA ,求边AC 的长。 【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C 47sin ,43cos ;873sin ,81cos ====A A C C 得由得由 ()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B(2)24,227cos ,227=∴=∴=⋅ac B ac BC BA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5. 5 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值;(Ⅱ)若AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==. ∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯ (Ⅱ)∵ 180=++C B A ,∴)(180B A C +-= .由(Ⅰ)知,1)tan(tan =+-=B A C ,∵C 为三角形的内角,∴sin 2C = ∵tan 3A =,A 为三角形的内角,∴sin A = 由正弦定理得:sin sin AB BC C A=∴BC ==6 .在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量(2s i n 3m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。 (I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1) //m n ⇒ 2sinB(2cos 2B 2-1)=-3cos2B ⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得: 4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3 ∴△ABC 的面积最大值为 3②当B=5π6时,已知b=2,由余弦定理,得: 4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴ac≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3 ∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B C A 2cos 2sin 2++的值; (2)若b =2,求△ABC 面积的最大值. 【解析】:(1) 由余弦定理:cosB=142sin 2A C ++cos2B= 41- (2)由.415sin ,41cos ==B B 得 ∵b =2, a 2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号) 故S △ABC 的最大值为315 8 .已知)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】a a -12;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9课时 三角函数的最值
典型例题
例1. 求下列函数的最值. ⑴ y =
x x x cos 1sin 2sin -⋅;⑵ y =2 cos(3π
+x)+2cosx ;⑶ x
x y cos 3sin 1++=.
解:(1) y =x x x
x x x cos 2cos 2cos 1sin cos sin 22+=-⋅⋅=2
1)2
1(cos 22-+x ∴ 当cosx =2
1-时,y min =2
1-∵ cosx ≠1∴ 函数y 没有最大值。

(2) y =2cos(x +3
π
)+2cosx=2cos
x x x cos 2sin 3
sin
2cos 3
+-π
π
=3cosx -3sinx=23cos(6
π
+
x )
∴当cos(6
π+x )=-1时,y min =-3
2
当cos(6
π+
x )=1时,y max =32
(3) 由x
x
y cos 3sin 1++=
得sinx -ycosx =3y -1∴)sin(12ϕ++x y =3y -1 (tan ϕ=-y)
∵|sin(x +ϕ)|≤1 ∴|3y -1|≤12+y 解得0≤y≤43 故x x y cos 3sin 1++=的值域为[0,4
3
]
注:此题也可用其几何意义在求值域. 变式训练1:求下列函数的值域: (1)y=
x x x cos 1sin 2sin -;(2)y=sinx+cosx+sinxcosx;(3)y=2cos )3
(x +π
+2cosx.
解 (1)y=x x x x cos 1sin cos sin 2-=x
x x cos 1)cos 1(cos 22--=2cos 2x+2cosx=22)21
(cos +x -21.
于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-21
,当且仅当cosx=-2
1时取得.
故函数值域为⎪⎭
⎫⎢⎣⎡-4,21.(2)令t=sinx+cosx,则有t 2=1+2sinxcosx,即sinxcosx=212-t .
有y=f(t)=t+2
12-t =1)1(21
2-+t .又t=sinx+cosx=2sin )4(π+x ,∴-2≤t≤2.
故y=f(t)=
1)1(212-+t (-2≤t≤2),从而知:f(-1)≤y≤f(2),即-1≤y≤2+21.即函数的值域为⎥⎦⎤⎢⎣

+-212,1.
(3)y=2cos )3
(x +π
+2cosx=2cos
3πcosx-2sin 3π
sinx+2cosx=3cosx-3sinx=23⎪⎪⎭
⎫ ⎝⎛-x x sin 21cos 23=23cos )6(π+x . ∵)6
cos(π
+x ≤1∴该函数值域为[-23,23].
例2. 试求函数y =sinx +cosx +2sinxcosx +2的最大值与最小值,又若]2
,0[π
∈x 呢?
解: 令t =sinx +cosx 则t ∈[-2,2]又2sinx +cosx =(sinx +cosx)2-1=t 2-1 ∴y =t 2+t +1=(t +2
1)2+4
3,显然y max =3+2若x ∈[0,2
π
] 则t ∈[1,2] y =(t +2
1
)+4
3在[1,2]单调递增.当t =1即x =0或x =2π时,y 取最小值3.当t =2即x =4
π
时,y 取最大值3+2.
变式训练2:求函数3()cos (sin cos )
,44f x x x x x x ππ⎡⎤
=-+∈-⎢⎥⎣⎦
的最大值和最小值.
点拔:三角函数求最值一般利用三角变形求解,此题用常规方法非常困难,而用导数求最值既方便又简单. 解:f(x)=x -2
1(sin2x +cos2x)-2
1∴f´(x)=1+2sin(2x -4π)∵x ∈[-4π,43π] ∴2x -4π∈[-43π,π4
5] 令f´(x)=0 得sin(2x -
4π)=-2
2
∴x =0,-4π,π43∵f(0)=-1,而f(-4π)=-4π f(π43)=43π ∴当x =π4
3
时,[f(x)]max =
4

当x =0时,[f(x)]min =-1 例3. 已知sinx +siny =31
,求siny -cos 2x 的最大值.
解:∵sinx +siny =3
1 ∴siny =x sin 3
1-∴siny -cos 2x =x sin 31--(1-sin 2x)=x x 2sin sin 3
2+--
=12
11
)21(sin 2-
-x 又∵-1≤sin y ≤1 ∴1sin 311≤-≤-x 而-1≤sin x ≤1
∴3
2-≤sin x ≤1∴当sinx =3
2-时,siny -cos 2x 取得最大值9
4。

变式训练3:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若b 2=ac ,求y =B
B B
cos sin 2sin 1++的取值范围.
解:y =
)4
sin(2cos sin cos sin )cos (sin 2π
+=+=++B B B B B B B 又
cosB =ac
ac
c a ac b c a
2222222
-+=
-+≥2
1
∴ 0<B≤
3
π
∴4π<B +4π≤127π∴ 1<2sin(B +4π)≤2即1<y ≤2
例4.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、
最小值时的x 值.
解:原函数变形为y =-4
1)2
(sin 2
2
a b a x ++++∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时
y max =1+b +
4
2a =0 ①当sinx =1时,y min =-4
1)21(2
2a b a ++++=-a +b =-4 ②
联立①②式解得a =2,b =-2y 取得最大、小值时的x 值分别为:x =2kπ-2
π(k ∈Z),x =2kπ+2
π(k ∈Z)若a
>2时,2
a ∈(1,+∞)∴y max =-
b a a b a
+=+
++-4
1)2
1(2
2=0 ③y min =-441)21(2
2-=+-=+
+++b a a b a ④ 由③④得a =2时,而2
a =1 (1,+∞)舍去. 故只有一组解a =2,
b =-2.
变式训练4:设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π.(1)求ω的值;(2)如果)(x f 在区间]6
5,3[x
π-的最小值为3,求a 的值. 解:(1) f(x)=
23cos ωx +21sin2ωx +23+a =sin(2ωx +3π)+2
3+a 依题意得2ω·6π+3π=2π解得ω=21
(2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦

⎢⎣⎡67,0π故-21≤sin(x +3π)≤1 从而f(x)在⎥⎦

⎢⎣⎡-65,
3
ππ上取得最小值-2
1

23+a 因此,由题设知-21+23+a =3故a =2
1
3+
1.求三角函数最值的方法有:① 配方法;②化为一个角的三角函数;③ 数形结合;④ 换元法;⑤ 基本不
等式法.2.三角函数的最值都是在给定区间上取得的.因而特别要注意题设所给出的区间.
3.求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有意义的条件和弦函数的有界性.4.含参数函数的最值,解题要注意参数的作用.。

相关文档
最新文档