分解因式--二次三项式的因式分解(用公式法)
二次三项式的因式分解(用公式法)及一元二次方程的应用 人教版
二次三项式的因式分解(用公式法)及一元二次方程的应用一. 本周教学内容:二次三项式的因式分解(用公式法)及一元二次方程的应用[学习目标]1. 熟练掌握二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系;运用一元二次方程的求根公式在实数范围内将二次三项式分解因式。
2. 学会用列一元二次方程的方法解实际应用题。
3. 通过二次三项式的因式分解的学习,提高分析问题,解决问题的能力;进一步了解认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般。
4. 通过一元二次方程的应用的学习,提高化实际问题为数学问题的能力和分析问题,解决问题的能力,培养用数学的意识;深刻体会转化,方程,数形结合等初等数学的思想方法。
二. 重点、难点:1. 教学重点:①应用公式法将二次三项式因式分解;会用列一元二次方程的方法解决实际应用的问题。
②在列一元二次方程的方法解应用题时,分析题意找出表示全部含义的相等关系,是能否列出方程的前提和保证。
2. 教学难点:①一元二次方程的根与二次三项式因式分解的关系;一个二次三项式在实数范围内因式分解的条件。
②在列一元二次方程的方法解应用题时,分析题意找等量关系是难点;注意求解后,检验根是否符合实际意义。
【典型例题】例1. 分解因式①x x 264-+②32312x x -+ ③24322x xy y +-④-+-x x 2525 ⑤()x x 221+- 分析:前四个均为二次三项式ax bx c a 20++()≠或二元二次三项式Ax Bxy Cy 22++的因式分解,直接用公式进行分解。
ax bx c a x x x x 212++=--()()其中x x 12,为方程ax bx c a 200++=()≠的两根。
Ax Bxy Cy A x x x x 2212++=--()(),其中x x 12,为关于x 的方程Ax Bxy Cy A 2200++=()≠的两根。
第五个用平方差公式,再用公式法分解二次三项式。
利用求根公式对二次三项式的因式分解
利用求根公式对二次三项式的因式分解要对一个二次三项式进行因式分解,我们可以将其表示为(ax^2+bx+c)的形式,其中a、b、c为实数且a不为零。
二次三项式的因式分解的关键在于找到其根(即方程ax^2+bx+c=0的解),然后再利用求根公式进行因式分解。
求根公式是指二次根式的表达式,可以帮助我们找到二次方程的根。
对于一般形式的二次方程ax^2+bx+c=0,其根可以用下面的求根公式表示:x = (-b±√(b^2-4ac))/(2a)根据这个公式,我们可以得到二次方程的两个根,即x1和x2、一旦我们找到了这些根,我们可以将二次三项式因式分解为一个一次项和一个一次二次项。
下面我们用一个例子来说明如何利用求根公式对二次三项式进行因式分解:假设我们有一个二次三项式x^2+3x+2,我们要将其因式分解。
首先,我们要找到方程x^2+3x+2=0的根。
根据求根公式,我们有:x=(-3±√(3^2-4*1*2))/(2*1)现在,我们将这个方程求解。
计算√(3^2-4*1*2)的值为√(9-8)=√1=1、因此,求根公式可以简化为:x=(-3±1)/(2*1)进行计算,我们得到两个根:x1=(-3+1)/2=-2/2=-1x2=(-3-1)/2=-4/2=-2现在,我们将这些根用来进行因式分解。
我们将二次三项式x^2+3x+2写成(x+1)(x+2)的形式。
因此,二次三项式x^2+3x+2可以因式分解为(x+1)(x+2)。
当然,我们还可以应用这个方法对其他形式的二次三项式进行因式分解。
关键在于找到方程的根,然后将这些根用来进行因式分解。
总结起来,利用求根公式对二次三项式进行因式分解的步骤如下:1. 将二次三项式表示为(ax^2+bx+c)的形式;2. 解方程ax^2+bx+c=0,找到方程的根;3.将这些根用来进行因式分解,将二次三项式写成一次项的乘积形式。
通过应用求根公式,我们可以将一个二次三项式因式分解为一次项的乘积,使得对于给定的二次三项式,我们可以找到其具体的因式分解。
因式分解公式及方法大全
公式及方法大全待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.常用的因式分解公式:例1 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,为:所以,原式有因式9x2-3x-2.解9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明(4)中有三个字母,解法仍与前面的类似.笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可例求316.4841的平方根.第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成3,16.48,41.第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3,而(1+1)2=4>3.第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.第四步,找出试商,使(20×初商+试商)×试商不超过第一余数,而【20×初商+(试商+1)】×(试商+1)则大于第一余数.第五步,把第一余数减去(20×初商+试商)×试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:根式的概念【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于 a.a的n次方根记为(n为大于1的自然数).作为代数式,称为根式.n称为根指数,a称为根底数.在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.【算术根】正数的正方根称为算术根.零的算术根规定为零. 【基本性质】由方根的定义,有根式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即≥0,b≥0)【分式的方根】分式的方根等于分子、分母同次方根相除,即≥0,b>0)【根式的乘方】≥0)【根式化简】≥0)≥0,d≥0)≥0,d≥0)【同类根式及其加减运算】根指数和根底数都相同的根式称为同类根式,只有同类根式才可用加减运算加以合并.进位制的基与数字任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如一般地,任一正数a可表为这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示(1)式中数字ai在{0,1,2,...,q-1}中取值,a n a n-1...a1a0称为q进数a(q)的整数部分,记作[a(q)];a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下 2进制0, 18进制0, 1, 2, 3, 4, 5, 6, 716进制0, 1, 2, 3, 4, 5, 6, 7, 8, 9各种进位制的相互转换1 q→10转换适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如2 10→q转换转换时必须分为整数部分和分数部分进行.对于整数部分其步骤是:(1) 用q去除[a(10)],得到商和余数.(2) 记下余数作为q进数的最后一个数字.(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.对于分数部分其步骤是:(1)用q去乘{a(10)}.(2)记下乘积的整数部分作为q进数的分数部分第一个数字.(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:103.118(10)=147.074324 (8)整数部分的草式分数部分的草式3 p→q转换通常情况下其步骤是:a(p)→a(10)→a(q).如果p,q是同一数s的不同次幂,其步骤是:a(p)→a(s)→a(q).例如,8进数127.653(8)转换为16进数时,由于8=23,16=24,所以s=2,其步骤是:首先把8进数的每个数字根据8-2转换表转换为2进数(三位一组)127.653(8)=001 010 111.110 101 011(2)然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即正多边形各量换算公式n为边数 R为外接圆半径a为边长爎为内切圆半径为圆心角S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角形n为边数 R为外接圆半径a为边长爎为内切圆半径为圆心角S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角形正方形正五边形正六边形正n边形图形Sa RR ar或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能.很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出.几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积.三等分角问题,即三等分一已知角.化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积.后来已严格证明了这三个问题不能用尺规作图.代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即(x-2)2+|3x-y|=0.所以y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即(mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。
二次三项式的因式分解
二次三项式的因式分解一、一般步骤1. 确定二次三项式的形式为ax²+bx+c。
2.查找常见的二次三项式因式分解公式,如平方差公式、完全平方公式、积和差分解等。
3.根据公式进行因式分解,将二次三项式化简成两个或多个因式相乘的形式。
4.检验分解是否正确,可以通过将因式相乘来验证。
下面我们将介绍几种常见的二次三项式因式分解公式及其应用。
二、平方差公式平方差公式用于分解形如a²-b²的二次三项式。
其公式为:a²-b²=(a+b)(a-b)其中,a和b可以是任意实数。
根据平方差公式,可得以下例子:1.分解x²-4:x²-4=(x+2)(x-2)2.分解16x²-9:16x²-9=(4x+3)(4x-3)3.分解a⁴-b⁴:a⁴-b⁴=(a²+b²)(a²-b²)三、完全平方公式完全平方公式用于分解形如a²+2ab+b²的二次三项式。
其公式为:a² + 2ab + b² = (a+b)²根据完全平方公式,可得以下例子:1.分解x²+6x+9:x²+6x+9=(x+3)²2.分解4y²+12y+9:4y²+12y+9=(2y+3)²3.分解9z⁴+12z²+4:9z⁴+12z²+4=(3z²+2)²四、积和差分解积和差分解是一种应用于分解二次三项式的技巧。
其基本思想是将二次项的系数进行合理分配,使得二次项可以分解成两个一次项相乘的形式,并带有不同的符号。
具体方法如下:1.将二次项的系数拆分成两个数的和与积。
2.利用这两个数的和与积的关系,将二次项进行分解。
3.整理其他项,进行因式分解。
根据积和差分解,可得以下例子:1.分解2x²+7x+3:2x²+7x+3=(2x+1)(x+3)2.分解12x²-19x-5:12x²-19x-5=(4x+1)(3x-5)結语:二次三项式的因式分解是数学中的基本概念和技巧之一,掌握了这些公式和技巧,可以帮助我们更好地理解和解决二次三项式相关的问题。
二次三项式的因式分解(用公式法)
1、如果x1、x2是一元二次方程ax2+bx+c=0的两个根,那么分解因式ax2+bx+c= 。
2、当k 时,二次三项式x2-5x+k的实数范围内可以分解因式。
3、如果二次三项式x2+kx+5(k-5)是关于x的完全平方式,那么k= 。
4、4x2+2x-35、x4-x2-66、6x4-7x2-37、x+4y+4xy(x>0,y>0)8、x2-3xy+y29、证明:m为任何实数时,多项式x2+2mx+m-4都可以在实数范围内分解因式。
10、分解因式4x2-4xy-3y2-4x+10y-3。
11、已知:6x2-xy-6y2=0,求:y3x62y6x4--的值。
12、6x2-7x-3;13、2x2-1分解因式的结果是。
14、已知-1和2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么,ax2+bx+c可以分解因式为。
15、3x2-2x-8;16、2x2-3x-2;17、2x2+3x+4;18、4x2-2x;19、3x2-1。
20、3x2-3x-1;21、22x2-3x-2。
22、方程5x2-3x-1=0与10x2-6x-2=0的根相同吗?为什么?二次三项式2x2-3x-4与4x2-6x-8 分解因式的结果相同吗?把两个二次三项式分别分解因式,验证你的结论。
23、二次三项式2x2-2x-5分解因式的结果是( )A.⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+-21112111xxB.⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+-211121112xxC.⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛++21112111xxD.⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛++211121112xx24、二次三项式4x2-12x+9分解因式的结果是( )A.⎪⎭⎫⎝⎛-234xB.⎪⎭⎫⎝⎛-23xC.223⎪⎭⎫⎝⎛-xD.2234⎪⎭⎫⎝⎛-x25、2x2-7x+5;26、4y2-2y-1。
27、5x2-7xy-6y2;28、2x2y2+3xy-3。
二次三项式因式分解用公式法
二次三项式因式分解用公式法二次三项式因式分解是指将一个二次三项式表达式分解为两个一次因式的乘积。
对于给定的二次三项式 $ax^2 + bx + c$,其中$a \neq 0$,我们可以使用公式法来进行因式分解。
公式法主要分为两个步骤,先求解二次方程 $ax^2 + bx + c = 0$ 的根,然后根据根的性质进一步分解。
首先,根据求根公式,二次方程 $ax^2 + bx + c = 0$ 的根可以分为两种情况:实根和共轭复根。
1. 实根的情况:如果二次方程的判别式 $b^2 - 4ac \geq 0$,则方程有两个实根。
此时,我们可以使用根与系数的关系来进行因式分解。
设方程的两个实根分别为 $x_1$ 和 $x_2$,则可以得到以下关系:\[x_1 + x_2 = -\frac{b}{a}\]\[x_1 \cdot x_2 = \frac{c}{a}\]根据上述关系,我们可以将二次三项式因式分解为:\[ax^2 + bx + c = a(x - x_1)(x - x_2)\]2. 共轭复根的情况:如果二次方程的判别式 $b^2 - 4ac < 0$,则方程有两个共轭复根。
此时,我们需要使用复数的知识来进行因式分解。
设方程的两个共轭复根分别为 $x_1$ 和 $x_2$,则可以得到以下关系:\[x_1 + x_2 = -\frac{b}{a}\]\[x_1 \cdot x_2 = \frac{c}{a}\]根据上述关系,我们可以将二次三项式因式分解为:\[ax^2 + bx + c = (x - x_1)(x - x_2)\]其中,$x_1$ 和 $x_2$是共轭复数,可以表示为 $x_1 = p + qi$ 和$x_2 = p - qi$。
总结一下,二次三项式因式分解的公式法主要分为以下几个步骤:1. 求解二次方程 $ax^2 + bx + c = 0$ 的根。
2.根据根的性质将二次三项式因式分解为两个一次因式的乘积。
分解因式的几种常用方法
分解因式的几种常用方法因式分解的主要方法有: 1. 十字相乘法 2. 提取公因式法 3. 公式法 4. 分组分解法 5. 求根法 6. 待定系数法高中必备知识点1:十字相乘法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++.要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号; (2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即21a a a =,常数项c 可以分解成两个因数之积,即21c c c =,把2121c c a a ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号 里面的二次三项式,最后结果不要忘记把提出的负号添上.典型考题【典型例题】阅读与思考:将式子分解因式.法一:整式乘法与因式分解是方向相反的变形. 由,; 分析:这个式子的常数项,一次项系数,所以.解:.法二:配方的思想..请仿照上面的方法,解答下列问题: (1)用两种方法分解因式:;(2)任选一种方法分解因式:.【答案】(1);(2)【解析】(1)法一:,法二:,(2).或.【变式训练】阅读材料题:在因式分解中,有一类形如x2+(m+n)x+mn的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).运用上述方法分解因式:(1)x2+6x+8;(2)x2﹣x﹣6;(3)x 2﹣5xy+6y 2;(4)请你结合上述的方法,对多项式x 3﹣2x 2﹣3x 进行分解因式. 【答案】(1)(2);(3)(4).【解析】 解:; ;; .故答案为:(1)(2);(3)(4).【能力提升】由多项式的乘法:(x +a)(x +b)=x 2+(a +b)x +ab ,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x 2+(a +b)x +ab =(x +a)(x +b).实例 分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试 分解因式:x 2+6x +8;(2)应用 请用上述方法解方程:x 2-3x -4=0. 【答案】(1) (x+2)(x +4);(2) x =4或x =-1. 【解析】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.高中必备知识点2:提取公因式法与分组分解法1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。
初中数学 如何因式分解二次三项式
初中数学如何因式分解二次三项式在初中数学中,我们经常会遇到需要因式分解二次三项式的问题。
因式分解是将一个多项式表示为两个或多个因式的乘积的过程。
对于二次三项式,我们可以使用以下几种方法进行因式分解:公式法、配方法和完全平方式。
下面我将为您详细介绍这些方法的步骤和示例。
一、公式法因式分解二次三项式的步骤公式法是一种快速因式分解二次三项式的方法,适用于特定的形式。
对于形如ax^2 + bx + c 的二次三项式,我们使用以下步骤进行因式分解:1. 计算二次项系数a,一次项系数b和常数项c的值。
2. 使用二次三项式的因式分解公式:ax^2 + bx + c = (mx + p)(nx + q),其中m、n、p和q是待确定的数。
3. 根据公式,展开右边的乘积:(mx + p)(nx + q) = mnx^2 + (mq + np)x + pq。
4. 将展开得到的多项式与原二次三项式进行比较,确定m、n、p和q的值。
5. 将得到的因式分解形式写出来。
二、配方法因式分解二次三项式的步骤配方法是一种常用的因式分解二次三项式的方法,适用于一些特殊的情况。
对于形如ax^2 + bx + c的二次三项式,我们使用以下步骤进行因式分解:1. 将二次项系数a、一次项系数b和常数项c的值确定下来。
2. 将二次项系数a乘以常数项c,得到ac。
3. 找到两个数的乘积等于ac,同时它们的和等于一次项系数b。
这两个数可以用于分解一次项。
4. 将一次项拆分为这两个数的和的形式。
5. 将二次三项式进行拆分和合并,得到因式分解的形式。
三、完全平方式因式分解二次三项式的步骤完全平方式是一种适用于特定情况下的因式分解二次三项式的方法。
对于形如ax^2 + bx + c 的二次三项式,我们使用以下步骤进行因式分解:1. 将二次项系数a、一次项系数b和常数项c的值确定下来。
2. 将一次项系数b的绝对值拆分为两个数的乘积,这两个数的乘积等于二次项系数a和常数项c的乘积。
因式分解的7种方法
一、提公因式法.:)(c b a m mc mb ma ++=++二、运用公式法.由乘法公式,将其反向使用,即为因式分解中常用的公式,(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).补充公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是:A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
因式分解的七种常见方法
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
初三数学 二次三项式的因式分解(用公式法) 知识全析 人教义务版
数学 二次三项式的因式分解(用公式法)【学习目标】1.了解二次三项式的因式分解与解方程的关系.2.会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.【主体知识归纳】分解二次三项式ax 2+bx +c 时,先用公式法求出方程ax 2+bx +c =0(a ≠0)的两个实数根x 1、x 2,然后写成ax 2+bx +c =a (x -x 1)(x -x 2).【基础知识讲解】1.在利用一元二次方程的求根公式将一般的二次三项式分解因式时,有两点要特别注意:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程3x 2-6x -12=0,可变形为x 2-2x -4=0,但在分解因式时,就绝不能写为3x 2-6x -12=x 2-2x -4.(2)当二次项系数不等于1时,不要漏写系数,例如分解因式2x 2-6x +4,先求出方程2x 2-6x +4=0的两根x 1=1,x 2=2,所以2x 2-6x +4=2(x -1)(x -2),若漏写系数写为2x 2-6x +4=(x -1)(x -2)就错了.2.二次三项式的因式分解均可采用公式法,但比较麻烦.因此,在进行二次三项式的因式分解时,应尽量采用“十字相乘法”,若行不通再用公式法.另外,还应注意因式分解的范围.如5x 2-5x +1在有理数范围内不可分解,而在实数范围内能分解.3.二次三项式ax 2+bx +c (a ≠0),当Δ=b 2-4ac ≥0时,在实数范围内能分解因式;当Δ<0时,在实数范围内不能分解因式.特别地,当a >0,Δ=0时,ax 2+bx +c 是一个完全平方式.【例题精讲】例1:把6x 2-11x -7分解因式.解法一:∵方程6x 2-11x -7=0的根是x =121711122891162)7(64)11()11(2±=±=⨯-⨯⨯-±-- 即x 1=37,x 2=-21. ∴6x 2-11x -7=6(x -37(x +21)=(3x -7)(2x +1). 解法二:6x 2-11x -7=(3x -7)(2x +1).例2:把6x 2+12xy +5y 2分解因式.剖析:本题可看作是关于x (或y )的二次三项式.先求出关于x (或y )的方程6x 2+12xy +5y 2=0的根,再借助于二次三项式的分解法进行分解.解:∵关于x 的方程6x 2+12xy +5y 2=0的根是x =y y y y y y 66612621262564)12(122±-=±-=⨯⨯⨯-±-2, ∴6x 2+12xy +5y 2=6(x -666+-y )(x -666--y )=6(x +666-y )(x +666+y ) 例3:在实数范围内分解因式(2x 2+3x )2-3(2x 2+3x )+2.剖析:此多项式若去括号化成一般形式,一是运算量大,二是增加了分解因式的难度(因为出现了四次式),通过观察分析,所给的多项式可看作是关于(2x 2+3x )的二次三项式,故考查用公式法或十字相乘法分解.解:(2x 2+3x )2-3(2x 2+3x )+2=(2x 2+3x -2)(2x 2+3x -1)=(2x -1)(x +2)·2(x -4173+-)(x -4173--) =2(2x -1)(x +2)(x +4173-)(x +4173+) 说明:在进行二次三项式分解因式时,要注意两种方法的灵活选择,一般来说,十字相乘法比较快捷,但适用的范围较窄,而公式法适用于一般的二次三项式,是通法.例4:关于x 的二次三项式3x 2-5x +2m -1, 问m 取何值时:(1)在实数范围内能分解因式;(2)在实数范围内不能分解因式.剖析:用公式法给出了一种分解二次三项式的一般方法,即通过解所对应的一元二次方程,得出根后才能分解.但方程有没有实数根需经过根的判别式判定.解:令3x 2-5x +2m -1=0,∴Δ=(-5)2-4×3×(2m -1)=37-24m . (1)当37-24m ≥0时,即m ≤2437时,二次三项式3x 2-5x +2m -1能在实数范围内分解因式. (2)当37-24m <0时,即m >2437时,二次三项式3x 2-5x +2m -1不能在实数范围内分解因式. 说明:一个二次三项式在实数范围内能不能因式分解,关键是其所对应的一元二次方程有没有实数解.【思路拓展题】及时复习 深化巩固孔子说过:“温故而知新”,讲述的就是要及时复习这样一个道理。
二次三项式的因式分解用公式法
二次三项式的因式分解用公式法二次三项式的因式分解是一个常见的数学问题。
在解答这类问题时,有时可以使用“公式法”来分解二次三项式。
这个方法利用了二次三项式的特定公式,即二次三项式的通项公式和二次三项式的因式分解公式。
本文将详细讨论二次三项式的因式分解,并说明如何使用公式法来进行因式分解。
首先,让我们回顾一下二次三项式的通项公式。
二次三项式的通项公式为:$y=ax^2+bx+c$,其中$a, b, c$为实数,且$a\neq 0$。
要注意的是,这个公式只适用于二次三项式,不适用于其他类型的多项式。
接下来,我们来说明二次三项式的因式分解公式。
对于任意二次三项式$y=ax^2+bx+c$,其中$a, b, c$为实数,且$a\neq 0$,它的因式分解形式为:$y=a(x-r_1)(x-r_2)$,其中$r_1$和$r_2$是二次三项式的两个实根。
根据这个因式分解公式,我们可以使用公式法来分解二次三项式。
下面,我们将具体介绍如何进行这个过程。
步骤一:将二次三项式的系数代入通项公式中,得到二次三项式的一般形式$y=ax^2+bx+c$。
步骤二:计算二次三项式的判别式$\Delta=b^2-4ac$。
根据判别式的值,我们可以判断二次三项式的根的情况。
- 如果判别式$\Delta>0$,则二次三项式有两个不同的实根。
这意味着二次三项式可以进行因式分解。
- 如果判别式$\Delta=0$,则二次三项式有两个相同的实根。
这意味着二次三项式可以进行因式分解,且其中一个因式是二次三项式的平方。
- 如果判别式$\Delta<0$,则二次三项式没有实根。
这意味着二次三项式不能进行因式分解。
步骤三:根据判别式的值,进行不同的因式分解。
- 如果判别式$\Delta>0$,则根据二次三项式根的公式,可以计算出两个实根$r_1$和$r_2$。
- 如果判别式$\Delta=0$,则根据二次三项式根的公式,可以计算出一个实根$r$。
因式分解的所有方法
因式分解的所有方法因式分解的多种方法编者按:很多同学在做因式分解的题目时,会觉得无从入手。
而面临竞赛题目时,更加摸不着头脑。
在此介绍几种因式分解的方法。
其实,因式分解没有想象中的那么难。
1】提取公因式这种方法比较常规、简单,必须掌握。
常用的公式有:完全平方公式、平方差公式等例一:22x -3x = 0解:x ( 2x - 3 ) = 01x =0 , 2x = 23 这是一类利用因式分解的方程。
总结:要发现一个规律就是:当一个方程有一个解x=a 时,该式分解后必有一个(x-a )因式。
这对我们后面的学习有帮助。
2】公式法将式子利用公式来分解,也是比较简单的方法。
常用的公式有:完全平方公式、平方差公式等注意:使用公式法前,建议先提取公因式。
例二:2x - 4 分解因式分析:此题较为简单,可以看出4=2 2,适用平方差公式))((22b a b a b a +-=- 2 解:原式= (x+2)(x-2)3】分组分解法也是比较常规的方法。
一般是把式子里的各个部分分开分解,再合起来需要可持续性!例三:2x + 4x + 4 -2y可以看出,前面三项可以组成平方,结合后面的负平方,可以用平方差公式解:原式=22)2(y x -+=(x+2+y)(x+2-y)总结:分组分解法需要前面的方法作基础,可见前面方法的重要性4】十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。
注意:它不难。
这种方法的关键是把二次项系数a 分解成两个因数1a ,2a 的积1a ×2a ,把常数项c 分解成两个因数1c ,2c 的积1c ×2c ,并使1a 2c +2a 1c 正好是一次项b ,那么可以直接写成结果例四: 把22x -7x + 3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1╳2 31×3 + 2×1=51 3╳2 11×1 + 2×3=71 -1╳2 -31×(-3) + 2×(-1)=-5 1 -3╳2 -11×(-1)+2×(-3)=-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 原式=(x-3)(2x-1).总结:对于二次三项式a 2x +bx+c(a ≠0),如果二次项系数a 可以分解成两个因数之积,即a =1a 2a ,常数项c 可以分解成两个因数之积,即c=1c 2c ,把1a ,2a ,1c ,2c ,排列如下:1a 1c╳2a 2c1a 2c +2a 1c按斜线交叉相乘,再相加,得到1a 2c +2a 1c ,若它正好等于二次三项式 a 2x +bx+c 的一次项系数b ,即1a 2c +2a 1c =b ,那么二次三项式就可以分解为两个因式1a x+1c 与2a x+2c 之积,即a 2x +bx+c=(1a x+1c )(2a x+2c ).这种方法要多实验,多做,多练。
二次三项式的因式分解(用公式法)
二次三项式的因式分解(用公式法)引言在代数学中,因式分解是一个重要的概念和技巧。
它可以将一个多项式表达式分解为较简单的乘积形式。
在本文中,我们将重点讨论二次三项式的因式分解,并介绍一种常用的方法——公式法。
二次三项式的定义二次三项式是指具有以下形式的多项式表达式:f(x) = ax^2 + bx + c其中,a、b和c是实数且a ≠ 0。
公式法的基本原理公式法是一种通过使用特定的公式来分解二次三项式的方法。
具体来说,我们可以使用下面的公式来完成因式分解:f(x) = a(x - x1)(x - x2)其中,x1和x2为f(x)的根(也就是函数图像与x轴的交点)。
公式法的步骤下面是使用公式法进行二次三项式因式分解的一般步骤:1.计算二次三项式的判别式Δ。
判别式Δ的计算公式为Δ = b^2 - 4ac。
根据Δ的值可以判断二次三项式的根的情况。
–当Δ > 0时,二次三项式有两个不相等的实根。
–当Δ = 0时,二次三项式有两个相等的实根。
–当Δ < 0时,二次三项式没有实根,但可以分解为两个共轭复根。
2.根据根的情况计算x1和x2。
–当Δ > 0时,根据求根公式:x1 = (-b + √Δ) / 2ax2 = (-b - √Δ) / 2a–当Δ = 0时,二次三项式只有一个实根,即 x = -b / 2a。
–当Δ < 0时,二次三项式的根可以表示为复数形式:x1 = (-b + i√(-Δ)) / 2a和 x2 = (-b - i√(-Δ)) / 2a。
3.代入公式进行因式分解。
将计算得到的x1和x2代入公式f(x) = a(x -x1)(x - x2),即可得到该二次三项式的因式分解形式。
示例为了更好地理解公式法的使用,我们来看一个例子:假设我们有一个二次三项式:f(x) = x^2 + 5x + 6。
首先,计算判别式Δ:Δ = b^2 - 4ac = 5^2 - 4 * 1 * 6 = 25 - 24 = 1由于Δ > 0,说明该二次三项式有两个不相等的实根。
22、二次三项式因式分解
例1、下列二次三项 、 式在实数范围内能否分解 因式?若能 将其分解因式. 若能,将其分解因式 因式 若能 将其分解因式
2+x+1 1、x 、 2+x-1 2、x 、
2+x+1 1、x 、 2-4×1×1=-3<0 1=解:Δ=1 2+x+1在实数范围 所以x 所以 在实数范围
内不能分解因式。 内不能分解因式。
2+x-1 2、x 、
−1± 5 2+x-1=0的根是 x= 方程x 方程 的根是 2
2+4×1×1=5 解:Δ=1 +4× ×
所以: 所以:
−1+ 5 −1- 5 原 = x+ 式 ( ) (x) 2 2
让我们再解 决一个更难的
例2、在实数范围内 、 分解因式: 分解因式:
2-2x+3 1、-4x 、 2-8xy-y2 2、4x 、
二次三项式 的因式分解
你知道吗?
怎样用公式法 分解二次三项式
对用乘法公式和十字 相乘法很难分解的二次三 项式,常用公式法分解 常用公式法分解. 项式 常用公式法分解
2+bx+c=0 在用公式法分解ax 在用公式法分解
应先考察Δ ≥0,则可 时,应先考察Δ,若Δ≥0,则可 应先考察 以分解, <0,则在实数范围 以分解,若Δ<0,则在实数范围 内不能分解. 内不能分解.其次用公式法求 出两根x1,x2,写成 出两根x 2+bx+c=a(x-x )(x-x ) ax +bx+c=a(x- 1)(x- 2
2-2x+3 1、-4x 、 2-2x+3=0的根是 方程-4x 方程 的根是
数学教案-二次三项式的因式分解(用公式法)
数学教案-二次三项式的因式分解(用公式法)一、教学目标1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;二、重点·难点·疑点及解决办法1.教学重点:用公式法将二次三项式因式分解。
2.教学难点:一元二次方程的根与二次三项式因式分解的关系。
3.教学疑点:一个二次三项式在实数范围内因式分解的条件。
4.解决办法:二次三项式能分解因式二次三项式不能分解二次三项式分解成完全平方式三、教学步骤1.复习提问(1)写出关于某的二次三项式?(2)将下列二次三项式在实数范围因式分解。
①;②;③。
由③感觉比较困难,引出本节课所要解决的问题。
2.新知讲解(1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。
①;解:原式变形为。
∴,②;解原方程可变为观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。
(2)推导出公式设方程的两个根为,那么,∴这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。
(3)公式的应用例1 把分解因式解:∵方程的根是教师板书,学生回答。
由①到②是把4分解成2某2分别与两个因式相乘所得到的,目的是化简①。
练习:将下列各式在实数范围因式分解。
(1);(2)学生板书、笔答,评价。
例2 用两种方程把分解因式。
方法一,解:方法二,解:,方法一比方法二简单,要求学生灵活选择,择其简单的方法。
二次三项式分解因式!!(有答案详解!!)
十字相乘法分解二次三项式因式总结知识归纳对于首项系数是1的二次三项式的十字相乘法,重点是运用公式()()xa b x ab x a x b 2+++=++()进行因式分解。
掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一次项系数。
对于二次三项ax bx c 2++(a 、b 、c 都是整数,且a ≠0)来说,如果存在四个整数a c a c 1122,,,满足a a a c c c 1212==,,并且a c a c b 1221+=,那么二次三项式ax bx c 2++即()a a xa c a c x c c 122122112+++可以分解为()()a x c a x c 1122++。
这里要确定四个常数a c a c 1122,,,,分析和尝试都要比首项系数是1的类型复杂,因此一般要借助画十字交叉线的办法来确定。
下面我们一起来学习用十字相乘法因式分解。
1. 在方程、不等式中的应用例1. 已知:x x 211240-+>,求x 的取值范围。
分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解。
解: x x 211240-+>()()∴-->∴->->⎧⎨⎩-<-<⎧⎨⎩∴><x x x x x x x x 3803080308083或或 例 2. 如果x x mx mx 43222-+--能分解成两个整数系数的二次因式的积,试求m 的值,并把这个多项式分解因式。
分析:应当把x 4分成x x 22⋅,而对于常数项-2,可能分解成()-⨯12,或者分解成()-⨯21,由此分为两种情况进行讨论。
解:(1)设原式分解为()()x ax x bx 2212+-++,其中a 、b 为整数,去括号,得:()()x a b x x a b x 43222++++--将它与原式的各项系数进行对比,得: a b m a b m +=-=-=-1122,, 解得:a b m =-==101,, 此时,原式()()=+--x x x 2221(2)设原式分解为()()x cx x dx 2221+-++,其中c 、d 为整数,去括号,得:()()x c d x x c d x 43222++-+--将它与原式的各项系数进行对比,得: c d m c d m +=-=--=-1122,, 解得:c d m ==-=-011,, 此时,原式()()=--+x x x 2221 2. 在几何学中的应用例. 已知:长方形的长、宽为x 、y ,周长为16cm ,且满足x y x xy y --+-+=22220,求长方形的面积。
二次三项式的因式分解(公式法)
九年级数学一二次三项式的因式分解(公式法)教学设计教学目标:1.使学生理解二次三项式的意义及解方程和因式分解的关系.2.使学生掌握用求根法在实数范围内将二次三项式分解因式.教学重点:用求根法分解二次三项式.教学难点:1.方程的同解变形与多项式的恒等变形的区别.2.二元二次三项式的因式分解.教学方法:引导启发、讲练结合教学过程:一、复习提问解方程:1.x2-x-6=0; 2.3x2-11x+10=0; 3.4x2+8x-1=0.二、引入新课在解上述方程时,第1,2题均可用十字相乘法分解因式,迅速求解.而第3题则只有采用其他方法.此题给我们启示,用十字相乘法分解二次三项式,有时是无法做到的.是否存在新的方法能分解二次三项式呢?第3个方程的求解给我们以启发.新课:二次三项式ax2+bx+c(a≠0),我们已经可以用十字相乘法分解一些简单形式.下面我们介绍利用一元二次方程的求根公式将之分解的方法.易知,解一元二次方程2x2-6x+4=0时,可将左边分解因式,即2(x-1)(x-2)=0,求得其两根x1=1,x2=2.反之,我们也可利用一元二次方程的两个根来分解二次三项式.即,令二次三项式为0,解此一元二次方程,求出其根,从而分解二次三项式.具体方法如下:如果一元二次方程ax2+bx+c=0(a≠0)的两个根是=a[x2-(x1+x2)x+x1x2] =a(x-x1)(x-x2).从而得出如下结论.在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).例如,方程2x2-6x+4=0的两根是x1=1,x2=2.则可将二次三项式分解因式,得2x2-6x+4=2(x-1)(x-2).例1 把4x2-5分解因式.三、归纳总结用公式法解决二次三项式的因式分解问题时,其步骤为:1.令二次三项式ax2+bx+c=0;2.解方程(用求根公式等方法),得方程两根x1,x2;3.代入a(x-x1)(x-x2).二次三项式ax2+bx+c(a≠0)分解因式的方法有三种,即1.利用完全平方公式;2.十字相乘法:即x2+(a+b)x+ab=(x+a)(x+b);acx2+(ad+bc)x+bd=(ax+b)(cx+d).3.求根法:ax2+bx+c=a(x-x1)(x-x2),(1)当b2-4ac≥0时,可在实数范围内分解;(2)当b2-4ac<0时,在实数范围内不能分解.四、布置作业:对下列式子进行因式分解①2x2+6x+4. ②.4x2-4x+1 ③.-2x2-4x+3.④.2x2-8xy+5y2五、课后反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三代数教案
第十二章:一元二次方程
第12课时:二次三项式的因式分解(用公式法)(一)
教学目标:
1、使学生理解二次三项式的意义;
2、了解二次三项式的因式分解与解一元二次方程的关系;
3、使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;
4、通过本节课的教学,提高学生研究问题的能力。
教学重点:
用公式法将二次三项式因式分解.
教学难点:
一元二次方程的根与二次三项式因式分解的关系.
教学过程:
二次三项式的因式分解常用的方法是公式法、十字相乘法等.但对有些二次三项式,用这两种方法比较困难,如将二次三项式4x2+8x-1因式分解.在学习了一元二次方程的解法后,我们知道,任何一个有实根的一元二次方程,用求根公式都可以求出.那么一元二次方程ax2+bx+c=0(a≠0)的两个根与二次三项式ax2+bx+c的因式分解有无关系呢?这就是我们本节课研究的问题,也就是研究和探索二次三项式因式分解的又一种方法——用公式法.
一元二次方程的一般形式是ax2+bx+c=0(a≠0),观察方程的特点:左边是一个二次三项式,曾经借助于将左边二次三项式因式分解来解一元二次方程.反之,我们还可以利用方程的根,来将二次三项式因式分解.即在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).通过知识之间的相互联系、相互作用和相互促进,对学生进行辩证唯物主义思想教育.公式ax2+bx+c=a(x-x1)(x-x2)的得出的依据是根与系数的关系.一元二次方程根与系数的关系为公式ax2+bx+c=a(x-x1)(x-x2)的得出奠定了基础.通过因式分解新方法的导出,不仅使学生学习了一个新方法,还能进一步启发学生学习的兴趣,提高他们研究问题的能力.
一、新课引入:
(1)写出关于x的二次三项式?
(2)将下列二次三项式在实数范围因式分解.
①x2-2x+1;②x2-5x+6;③6x2+x-2;④4x2+8x-1.
由④感觉比较困难,引出本节课所要解决的问题.
二、新课讲解:
.①由新课引入观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系.
①x2-2x+1=0;
解:原式变形为(x-1)(x-1)=0.
∴ x1=x2=1,
②x2-5x+6=0;
解原方程可变为
(x-2)(x-3)=0
∴ x1=2,x2=3.
③6x2+x-2=0
解:原方程可变为
(2x-1)(3x+2)=0.
(x-2),……
观察以上各例,可以看出,1,2是方程x2-3x+2=0的两个根,而x2-3x+2=(x-1)
所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式.
②推导出公式
=a(x-x1)(x-x2).
这就是说,在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成
ax2+bx+c=a(x-x1)(x-x2).
教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊.
③公式的应用
例1 把4x2+8x-1分解因式
解:∵方程4x2+8x-1=0的根是
教师板书,学生回答.
由①到②是把4分解成2×2分别与两个因式相乘所得到的.目的是化简①.
练习:将下列各式在实数范围因式分解.
(1)x2+20x+96;(2)x2-5x+3
学生板书、笔答,评价.
解2 用两种方程把4x2-5分解因式.
方法二,解:∵ 4x2-5=0,
方法一比方法二简单,要求学生灵活选择,择其简单的方法.
练习:将下列各式因式分解.
(1)4x2-8x+1;(2)27x2-4x-8;(3)25x2+20x+1;
(4)2x2-6x+4;(5)2x2-5x-3.
学生练习,板书,选择恰当的方法,教师引导,注意以下两点:
(1)要注意一元二次方程与二次三项式的区别与联系,例如方程2x2-6x-4=0,可变形为x2-3x-2=0;但将二次三项式分解因式时,就不能将3x2-6x-12变形为x2-2x-4.
(2)还要注意符号方面的错误,比如上面的例子如果写成2x2-5x-
(3)一元二次方程ax2+bx+c=0(a≠0)当△≥0时,方程有两个实根.当△<0时,方程无实根.这就决定了:当b2-4ac≥0时,二次三项式ax1+bx+c在实数范围内可以分解;当b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.
三、课堂小结:
(1)用公式法将二次三项式ax2+bx+c因式分解的步骤是先求出方程ax2+bx+c=0(a≠0)的两个根,再将ax2+bx+c写成a(x-x1)(x-x2)形式.
(2)二次三项式ax2+bx+c因式分解的条件是:当b2-4ac≥0,二次三项式ax2+bx+c在实数范围内可以分解;b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(3)通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律.
四、作业
教材 P.39中 A1.2(1)——(7).
参考题目:
一、选择题(15分)
将下题中唯一正确答案的序号填在题后的括号内。
在实数范围内把-4y2+8y-1分解因式的结果是( )
A、 B、
C、D、
二、填空题(第1题10分,第2题15分,共25分)
1、在实数范围内把x2-6x+4分解因式的结果是__________
2、在实数范围内把6y2-2y-3分解因式的结果是________
三、把下列各式在实数范围内分解因式(每题15分,共60分)
1、-3x2+5x+1
2、2x2-4x+1
3、4x2+8x-3
4、3x2-2x-2。