分式的乘法和除法

合集下载

分式的乘除(基础)知识讲解

分式的乘除(基础)知识讲解

分式的乘除(基础)责编:杜少波【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】【高清课堂402545 分式的乘除运算 知识要点】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a b g ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】解:(1)422449158a b x x a b g 422449315810a b x b x a b x==g g . (2)222441214a a a a a a -+--+-g 22(2)1(1)(2)(2)a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.举一反三:【变式】计算.(1)26283m x x m g ;(2)22122x x x x+-+g 【答案】解:(1)原式22621283242m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x+==-+-g ; 类型二、分式的除法【高清课堂402545 分式的乘除运算 例1(4)】2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c=-.(2) 2222242222x y x y x xy y x xy-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y+-+=++g 22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的.举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】解:原式=• =.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C .【解析】解:A 、,本选项错误; B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3;(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g . 【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3=﹣•• =﹣. (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g 2222232()1()[()]()a b ab b a a b b a -=+-g g 22222332()()1()()a b a b a b b a a b a b +-=+-g g211()a a b a ab==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭g .【答案】解: (1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a ba a ab a b⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭g g.(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭g22222()()()()m n m n m n m m nm n m n m n mn+---==-+g g.。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

说课讲稿分式的乘法和除法

说课讲稿分式的乘法和除法

二、探究新知
• 1、类比分数乘除法法则得到分式的乘 除法法则 • 分式的乘法法则:两个分式相乘,把分 子相乘的积作为积的分子,把分母相乘 的积作为积的分母 • 分式的除法法则:两个分式相除,把除 式的分子和分母颠倒位置后再与被除式 相乘。
• 2、用符号语言加以表示 • 分式的乘法:
b d bd a c ac
• 小提示:在运算过程中,应进行约分,如 果分子或分母是多项式,要注意因式分解, 并把结果化为最简分式 。
• 师生互动:安排两名学生板演,每生各做一 题,其余学生两题均做,教师巡视指导; 结合板演情况,先由学生点评修改,再由 老师点评并出示标准做法。教师点评时, 引导学生明白每一步的算理。
• 设计意图:帮助学生熟练乘法法则,并会 应用法则计算分式的乘法题目。学生刚刚 学习了分式的乘法法则,学生能根据法则 进行尝试计算,教师可大胆放手让学生自 己尝试,给学生创造一个自我展示和享受 成功的机会。
一、说教材
• (二)学情分析
• 通过前面的学习,同学们已经有了必要的 知识准备:分式的基本性质、分式的约分、 因式分解;经过前面分数与分式的几次类 比学习,同学们也掌握了必要的学习方 法—类比(分数)学习法。 • 现在所学的乘除法是分式基本性质的一个 应用,一个实践。本节课学生运用分式的 基本性质、分式的约分、因式分解以及类 比学习法,通过自主学习、讨论交流和老 师的点拨,能够掌握分式的乘除法的法则 和具体应用。
说课讲稿
3.3分式的乘法与除法
青岛版八年级数学上册
安庄镇教研中心 李庆林
• (一)教材所处的地位及作用 • “分式的乘除法”是青岛版八年级上册第 三章第三节的内容,本节课在学习了分式 基本性质和分式的约分的基础上进一步学 习分式的乘除法,是对分式基本性质、分 式的约分、分解因式的应用,也是为学习 分式的化简与求值等作准备,具有承上启 下的作用,在教材中处于重要的位置。

分式运算的八种技巧

分式运算的八种技巧

分式运算的八种技巧分式运算是数学中的一项基础知识,通过巧妙地运用一些技巧,可以简化分式的计算过程,提高计算的效率。

下面将介绍分式运算的八种技巧。

一、分式的通分当两个或多个分式进行加减运算时,需要先进行通分。

通分的目的是使分母相同,从而方便进行分式的加减运算。

二、分式的化简对于分子和分母同时包含因式的分式,可以通过因式分解进行化简。

化简后的分式通常更简洁、易于计算。

三、分式的约分对于分子和分母有公因式的分式,可以通过约分将其化简为最简形式。

约分可以简化计算过程,并且可以减小分子和分母的数字的大小,便于观察和把握。

四、分式的乘法和除法分式的乘法和除法相对简单,只需要将分子与分子相乘,分母与分母相乘即可。

当进行分数的除法运算时,可以将除法转化为乘法,将除法运算转化为分数的倒数,再进行乘法运算。

五、分式的加法和减法分式的加法和减法需要进行通分。

通分后,先对分子进行加减运算,再保持分母不变。

最后结果的分子分母可以进一步进行约分,化简为最简分数形式。

六、分式的分数化整数当分子大于分母时,可以进行分数化整数的运算。

将分子除以分母,得到一个整数,再将余数定为新的分子,保持分母不变,即可将分数化为带分数的形式。

七、小数转分数将小数转化为分数可以更方便地进行运算和比较。

通过将小数的小数位数与整数的数量级相匹配,将小数乘以适当的十的幂,然后化成最简分数即可。

八、分式的比较大小对两个分式进行比较大小的时候,可以化为相同分母的分数,然后比较分子的大小。

若分子相同,再比较分母的大小。

通过掌握这些分式运算的技巧,可以更加熟练地进行分式的计算,提高计算的准确性和效率。

同时,可以将复杂的分式化简为简单形式,便于理解和运算。

分式的认识与运算

分式的认识与运算

分式的认识与运算分式是数学中的一种表达形式,它由分子和分母组成,用分子除以分母表示。

在分式中,分子和分母可以是整数、小数、甚至是其他分式。

分式在数学中具有广泛的应用,特别是在代数、方程式求解以及实际问题中的运用。

一、分式的认识分式的基本形式是a/b,其中a称为分子,b称为分母。

分式可以用来表示实数的比值、比例或部分数额。

例如,10/5表示10和5的比值,即2;3/4表示3的四分之三。

分式也可以表示为小数,比如1/2等于0.5。

分式可以化简为最简形式。

即分子和分母的公因数要被约去,使得分子和分母没有公因数。

例如,4/8可以化简为1/2,16/20可以化简为4/5。

化简分式使其更加简洁明了,方便运算和理解。

二、分式的运算1. 分式的加减运算:两个分式相加减,要求分母相同,可以先找到它们的最小公倍数,然后对分子进行运算,并保持分母不变。

例如,1/3 + 2/3 = 3/3 = 1。

2. 分式的乘法运算:两个分式相乘,直接将它们的分子和分母相乘即可。

例如,1/4 × 3/2 = 3/8。

3. 分式的除法运算:两个分式相除,可以将除法转化为乘法,即将除数的分子和除数的倒数的分子相乘,同时分母作同样的操作。

例如,1/4 ÷ 3/2 = 1/4 × 2/3 = 2/12 = 1/6。

在进行分式的运算时,可以先将分式化简为最简形式,然后再进行运算,最后再将结果化简为最简形式,以保证结果的准确性。

三、应用实例1. 比例问题:分式可以用来表示比例关系,例如三个数a、b、c成比例,可以写为a/b = c/d。

通过解方程,可以求出未知数的值。

2. 面积和体积问题:对于一些复杂的几何图形,可以通过设立分式表示其面积或体积与已知量之间的关系。

通过解方程,可以求出未知量的值。

3. 财务问题:分式可以用来描述资金的分配比例、投资收益率等内容。

通过运算,可以帮助实际问题的解决。

总结:分式在数学中起着重要的作用,它可以用来表示比例、比值、部分数额等内容。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

分式的乘除运算讲解

分式的乘除运算讲解

分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。

分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。

分式的乘法运算是指将两个分式相乘,得到一个新的分式。

而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。

在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。

为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。

分式可以看作是分子和分母之间带有分数线的数学表达式。

在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。

分式的分子和分母都可以是整数、变量、或两者的组合。

在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。

而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。

通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。

分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。

掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。

综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。

通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。

1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。

2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。

分式解法及应用总结

分式解法及应用总结

分式解法及应用总结分式是一种特殊的代数表达式,包含分子和分母两部分,分子和分母都可以是代数式,其形式为a/b,其中a为分子,b为分母。

对于分式的加、减、乘、除运算,要根据运算法则进行处理,以得到最简形式的分式。

分式解法及应用在数学中具有重要意义,既可以用来解决实际问题,也可以用来推导和证明数学定理。

下面我将对分式解法及应用进行总结。

一、分式解法:1. 分式的加法与减法:对于分式a/b和c/d,可以采用通分的方式进行运算。

先找到a/b和c/d的最小公倍数lcm,然后将a/b和c/d分别乘以lcm/b和lcm/d,得到分母相同的两个分式。

最后,将分子相加或相减即可。

2. 分式的乘法:分式的乘法直接将分子相乘,分母相乘即可。

即(a/b) * (c/d) = (a*c)/(b*d)。

3. 分式的除法:分式的除法可以转化为乘法的倒数。

即(a/b) / (c/d) = (a/b) * (d/c) = (a*d)/(b*c)。

4. 分式的化简:对于分式a/b,可以将a和b的公因式约掉,得到最简形式的分式。

如果a和b都是多项式,可以进行因式分解后约掉公因式。

5. 分式方程的求解:将方程两边的分式化简后,将分子和分母交换位置,再将方程等式两边的分式乘以分母的最小公倍数,将方程化为整式方程,再根据整式方程的解法求解。

二、分式应用:1. 基本经济学原理:在经济学中,人们常常用比例和分式来表示经济关系。

例如,GDP(国内生产总值)可以表示为人均GDP的乘积,即GDP/人口数量。

又如价格的计算可以使用原价和折扣率的分式表达,价格=原价* (1-折扣率) / 100%。

2. 物理学中的速度计算:物理学中,速度是物体在单位时间内所经过的距离,通常使用分式来表示速度。

速度=位移/时间,分子位移代表物体所经过的距离,分母时间表示时间的长短。

3. 科学研究中的实验设计:在进行科学实验时,通常需要对研究对象进行分组,常用的分组方法之一是随机分组。

专题5.2 分式的乘除法(学生版)

专题5.2 分式的乘除法(学生版)

专题5.2 分式的乘除法1.掌握分式的乘除运算法则;2.能够进行分子、分母为多项式的分式乘除法运算。

知识点01 分式的乘法与除法【知识点】 1.分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅. 2.分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 用式子表示为:a c a d a d b d b c b c⋅÷=⋅=⋅. 3.分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.【知识拓展1】分式乘法例1.(2024秋·贵州铜仁·八年级校考期中)计算88x x yx y y-⋅-的结果是( ) A .yxB .x y -C .x yD .y x-【即学即练】1.(2022·江苏九年级专题练习)计算:2223849bc a a b c⋅=__.【知识拓展2】分式除法例2.(2022·西安益新中学八年级月考)2241a a a÷++的计算结果为( )A .2aB .2aC .21a + D .12a + 【即学即练】2.(2022·山东张店·九年级)化简22244242x x x xx x +++÷--的结果是( ) A .2x x + B .1x C .12x + D .12x -【知识拓展3】分式乘除混合运算例3.(2022·成都市八年级月考)下列各分式运算结果正确的是( )①3254342510252a b c c c a b b ⋅=;②23233b c a bc a b a⋅=;③22111(3)131x x x x ÷-⋅=+-+;④21111x x xy x xy -+⋅÷=- A .①③ B .②④ C .①② D .③④【即学即练】3.(2022·山东八年级课时练习)(1)()362243105206230c c ab c a b a b÷-÷ (2)()22222x xy y x y xy x xy x -+--÷⋅(3)422222222a a b a ab b a ab b b a-+÷⋅-+ (4)22262(3)443x x x x x x --÷+⋅-+-【知识拓展4】分式的乘方例4.(2023春·江苏·八年级专题练习)下列计算正确的是( )A .236222b b a a ⎛⎫= ⎪⎝⎭B .2223924b b a a --⎛⎫= ⎪⎝⎭ C .33328327y y x x ⎛⎫= ⎪--⎝⎭ D .222239x x x a x a ⎛⎫= ⎪--⎝⎭ 【即学即练】4.(2023春·江苏·八年级专题练习)计算3233b a --⎛⎫- ⎪⎝⎭的结果是( )A .699b aB .6927b a- C .9627a b - D .9627a b【知识拓展5】分式乘除的实际应用例5.(2022·浙江杭州·校考二模)你听说过著名的牛顿万有力定律吗?任何两个物体之间都有吸引力,如果设两个物体的质量分别为m 1,m 2,它们之间的距离是d ,那么它们之间的引力就是f =122gm m d (g 为常数),人在地面上所受的重力近似地等于地球对人的引力,此时d 就是地球的半径R .天文学家测得地球的半径约占木星半径的445,地球的质量约占木星质量的1318,则站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的( ) A .52倍B .25倍C .25倍D .4倍【即学即练】例5.(2024秋·山东泰安·八年级统考期末)公园普通景观灯a 天耗电m 千瓦.改用LED 节能景观灯后,同样m 千瓦的电量可多用5天.普通景观灯每天的耗电量是LED 节能景观灯每天耗电量的( )倍. A .maB .5ma + C .5a a + D .5a a+【知识拓展7】科学计数法例7.(2024·广东清远·统考一模)新型冠状病毒呈球形或椭圆形,有包膜,直径大约是100nm ,属于第七种冠状病毒,将100nm -9(1nm=10m)用科学记数法表示为( ) A .9110m -⨯ B .8110m -⨯C .7110m -⨯D .6110m -⨯【即学即练】7.(2024·河南洛阳·统考一模)用肥皂水吹泡泡,泡沫的厚度约为0.000326毫米,0.000326用科学记数法表示为( ) A .3.26×10﹣4 B .326×10﹣3C .0.326×10﹣3D .3.26×10﹣3【知识拓展8】遮挡问题与错题分析例8.(2022·河北初三其他)已知22439x x x -÷--,这是一道分式化简题,因为一不小心一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( ) A .3x - B .2x -C .3x +D .2x +【即学即练】8.(2022·成都市八年级期中)老师设计了接力游戏,用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示: 老师22211x x x x x-÷--→甲22211x x x x x --⋅-→乙22211x x x x x --⋅-→丙2(2)11x x x x x --⋅-→丁22x - 接力中,自己负责的一步出现错误的是( ) A .只有乙 B .甲和丁C .乙和丙D .乙和丁题组A 基础过关练1.(2023春·江苏·八年级专题练习)分式2249(3)2a a -⋅-的化简结果为( )A .4(3)26a a +-B .()22492(3)a a -- C .263a a +- D .22.(2022·山西太原·八年级校考期末)计算2125a -÷15a -的结果为( )A .15a- B .5﹣a C .15a+ D .5+a3.(2024·河南洛阳·统考一模)用肥皂水吹泡泡,泡沫的厚度约为0.000326毫米,0.000326用科学记数法表示为( ) A .3.26×10﹣4B .326×10﹣3C .0.326×10﹣3D .3.26×10﹣34.(2022·河北保定·统考三模)下列式子运算结果为1x +的是( ) A .211x x x x -⋅+ B .11x-C .2211x x x +++D .11x xx x +÷- 5.(2023秋·湖南岳阳·八年级校联考期末)计算21b a a a ⎛⎫÷⋅ ⎪⎝⎭的结果为( )A .21bB .24b aC .2aD .2b6.(2023春·江苏·八年级专题练习)化简211m m m m--÷的结果是( ) A .mB .1mC .1m -D .11m - 7.(2023秋·北京东城·八年级北京市第五中学分校校考期中)计算:32b a ⎛⎫-= ⎪⎝⎭________.8.(2023·全国·九年级专题练习)计算322334x y y x ⎛⎫⎛⎫⋅= ⎪⎪⎝⎭⎝⎭______. 9.(2024春·辽宁锦州·八年级统考期中)计算:21211x x x +÷--=________. 10.(2022·山东东营·八年级校考阶段练习)计算:22361025a a a -++÷6210a a -+·256a a a++=_______. 11.(2022·江苏九年级专题练习)计算:2223849bc a a b c⋅=__.12.(2023·全国·九年级专题练习)计算:2231x y y x xy ⎛⎫⎛⎫⎛⎫-⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13.(2023·全国·九年级专题练习)计算:23423b a a a b b ⎛⎫⎛⎫-⋅÷- ⎪ ⎪⎝⎭⎝⎭.14.(2024秋·云南昆明·八年级校考阶段练习)计算:(1)1201(3)(3.14)2π-⎛⎫-+-+- ⎪⎝⎭(2)()323222a b a b ---÷(3)2333224263ab b b c d a c ⎛⎫⎛⎫-⋅÷ ⎪ ⎪-⎝⎭⎝⎭(4)22819369269a a a a a a a --+÷⋅++++题组B 能力提升练1.(2023春·八年级课时练习)22a b a b a ba b a b a b +++⎛⎫⎛⎫÷⨯⎪ ⎪---⎝⎭⎝⎭的结果是( ) A .a b a b-+B .a b a b+-C .2a b a b +⎛⎫ ⎪-⎝⎭D .12.(2022·河北路南·)若x 为正整数,则计算211x xx x -⋅+的结果是( )A .正整数B .负整数C .非负整数D .非正整数3.(2024秋·湖南郴州·八年级校考阶段练习)计算222255a a ab b b⎛⎫-⎛⎫÷⋅ ⎪ ⎪⎝⎭⎝⎭的结果为( )A .31254ba B .54abC .31254ba D .54ab-4.(2023春·江苏·八年级专题练习)计算22819369269a a a a a a a --+÷⋅++++的结果为( )A .12B .1C .1-D .2-5.(2023春·江苏·八年级专题练习)计算323a b a b b a⎛⎫÷-⋅ ⎪⎝⎭的结果是( )A .3a -B .323a bC .323a b -D .43ab -6.(2024春·四川内江·八年级校考阶段练习)计算:()()2322221a b a b --÷--=___________.(结果中只含有正整数指数幂)7.(2024·江苏苏州·校考二模)“沉睡数千年,一醒惊天下”.三星堆遗址在5号坑提取出仅1.4 cm 的牙雕制品,最细微处间隔不足50 μm (1μm =10-6 m ),用科学记数法表示50 μm 是_____m . 8.(2022·全国八年级课时练习)计算:(1)222331015a b ab ab a b -⋅-;(2)()224242444416m m m m m m +-⋅-⋅-+-;(3)()23422312a b a b a ab ⎛⎫⎛⎫⎛⎫--⋅-⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.9.(2024秋·全国·八年级期末)化简并求值:322221111x x x x x x x -++⎛⎫⋅÷ ⎪--⎝⎭,其中3x =.10.(2024秋·全国·八年级期末)计算:2222222223256x xy y x y x yx xy y x xy y x y -+-+÷⋅++---11.(2024秋·重庆涪陵·八年级统考阶段练习)涪陵是举世闻名的“榨菜之乡”,今年榨菜更是喜获丰收.为了选育更好的榨菜品种,农民伯伯们开始自己建试验田,王大伯家试验田是边长为a 米()1a >的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,李大爷家试验田是边长为()1a -米的正方形,两块试验田的榨菜最后都分别收获了1000kg .(1)哪家的榨菜品种单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?12.(2024秋·山东泰安·八年级校联考期中)“果园飘香”水果超市运来凤梨和西瓜这两种水果,已知凤梨重2(2)m kg -,西瓜重()24m kg -,其中m>2,售完后,两种水果都卖了540元.(1)请用含m 的代数式分别表示这两种水果的单价. (2)凤梨的单价是西瓜单价的多少倍?题组C 培优拔尖练1.(2022·河南南阳·八年级统考期末)已知23ab a b =+,65bc b c =+,34ac a c =+,则111a b c ++的值等于( ) A .116B .113C .115D .6112.(2022·河南新野·八年级期中)若△÷2111a a a -=-,则“△”可能是( ) A .1a a - B .11a - C .1a a + D .1a a+3.(2024年广东八年级数学应用知识展示试题)今年以来,猪肉价格波动较大,王阿姨和李阿姨在生活上精打细算,为了减少开支,王阿姨和李阿姨制定了不同的购肉策略,王阿姨每次买一样重量的肉,李阿姨每次买一样钱数的肉,某个周六、周日两位阿姨同时在同一个摊位上买肉,但这两天这个摊位的肉价不一样,则从这两次买肉的均价来看( ). A .王阿姨更合适B .李阿姨更合适C .谁更合适与猪肉的变动价格有关D .谁更合适与买猪肉的量有关4.(2024秋·湖南长沙·八年级统考期末)计算21224x x y y y x -⎛⎫⎛⎫-÷⋅= ⎪ ⎪⎝⎭⎝⎭_______ .5.(2024秋·八年级课时练习)小明同学不小心弄污了练习本的一道题,这道题是:“化简211m m ÷-⊗”,其中“⊗”处被弄污了,但他知道这道题的化简结果是1mm -,则“⊗”处的式子为____________. 6.(2024春·四川内江·八年级校考阶段练习)已知三个数x ,y ,z 满足13xy x y =+,14yz y z =+,15zx z x =+,则xyzxy yz zx++的值为_____.7.(2023春·八年级课时练习)(1)根据图形(1)的面积写出一个公式:___________图二是两块试验田,“丰收1号”小麦的试验田是边长a 米、b 米两个正方形,“丰收2号”小麦的试验田是边长为a 米、2b 米的长方形,(ab )两块试验田的小麦都收获了500kg .(2)哪种小麦的单位面积产量高?(请说明理由) (3)高的单位面积产量是低的单位面积产量的多少倍?8.(2024春·江苏徐州·八年级统考阶段练习)在解决数学问题时,我们常常借助“转化”的思想化繁为简,化难为易.如在某些分式问题中,根据分式的结构特征,通过取倒数的方法可将复杂问题转化为简单问题,使问题迎刃而解. 例:已知2113a a =+,求221a a +的值.解:∵2113a a =+,∵213a a +=.∵213a a a+=,∵13a a +=,……(1)请继续完成上面的问题;(2)请仿照上述思想方法解决问题:已知2421x x x =-+,求2421x x x -+的值.9.(2024秋·八年级课时练习)【探究思考】 (1)探究一:观察分式1x x-的变形过程和结果,1111x x x x x x --=+=-. 填空:若x 为小于10的正整数,则当x =_______时,分式1x x-的值最大. (2)探究二:观察分式2221a a a +--的变形过程和结果,()()()2221431411221114311111a a a a a a a a a a a a a -+--+-++-===-++=++-----.模仿以上分式的变形过程和结果求出分式2211x x x +--的变形结果.【问题解决】(3)当21x -<≤时,求分式2212x x x ---的最小值.10.(2024秋·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)我们定义:如果一个代数式有最大值,就称之为“青一式”,对应的最大值称之为“青一值”.如:()222314x x x -++=--+是“青一式”,它的“青一值”为4.(1)以下代数式是“青一式”的有___________(请填序号)①25x + ②245x x -+- ③21x x +- ④()2122x -+ (2)如果实数21m n -=请判断代数式22241m n m -++-是否为“青一式”?如果是,请求出它的“青一值”,如果不是,请说明理由.(3)①已知225x y +=,求“青一式”xy 的“青一值”,并求出此时x 和y 满足何种条件? ②求代数式2632x x x -+-在36x ≤≤范围内的“青一值”.11/ 11。

教学难点分式乘除法运算的应用

教学难点分式乘除法运算的应用

教学难点分式乘除法运算的应用分式乘除法运算是数学中的一个重要内容,也是学生们在学习过程中常常遇到的难点之一。

本文将从概念讲解、具体运算方法以及应用举例等方面来介绍分式乘除法运算的应用。

一、概念讲解分式是由两个整数或者多项式以及整数与多项式构成的比。

在分式中,由于存在分子和分母的概念,因此需要注意分子与分母的运算规则。

分式的乘法与除法运算是分数运算中较为复杂且易出错的部分,也是教学中的难点之一。

二、具体运算方法1. 分式乘法运算分式的乘法运算遵循以下规则:若分数a/b与c/d相乘,那么它们的乘积等于ac/bd。

例如,计算1/2乘以2/3,可以将它们的分子相乘得到1乘以2=2,分母相乘得到2乘以3=6,所以1/2乘以2/3等于2/6,进一步可以约分得到1/3。

2. 分式除法运算分式的除法运算遵循以下规则:若分数a/b除以c/d,那么它们的商等于ad/bc。

例如,计算3/4除以1/2,可以将它们的分子相乘得到3乘以2=6,分母相乘得到4乘以1=4,所以3/4除以1/2等于6/4,进一步可以约分得到3/2。

三、应用举例分式乘除法运算在实际生活中有着广泛的应用,下面通过一些例子具体说明其应用场景。

1. 菜谱中的调配在烹饪过程中,经常需要按照比例来调配原料。

例如,一份蛋糕配方需要1杯面粉和1/2杯牛奶,如果需要将配方扩大2倍,那么需要计算出新的面粉和牛奶的配比。

根据分式乘法运算,可以计算出新的配比为2杯面粉和1杯牛奶。

2. 药物剂量计算在医学中,常常需要根据患者的体重来计算药物的剂量。

例如,某种药物的推荐剂量为每千克体重下0.1毫克,如果患者体重为60千克,可以通过分式乘法运算计算出该患者所需药物的剂量为60乘以0.1=6毫克。

3. 比例问题在生活中,经常会遇到一些比例问题,例如商品的折扣比例、化学反应的化学方程式等。

在计算这些比例时,常常需要运用到分式乘法运算。

通过合理运用分式乘法运算,可以快速计算出比例中的未知数值。

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。

分式可以进行加、减、乘、除以及乘方等混合运算。

本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。

一、分式的加法运算分式的加法运算是指将两个分式相加的操作。

要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。

例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。

同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。

例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。

要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。

要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。

例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。

要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。

在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。

分式的乘法和除法教案

分式的乘法和除法教案

分式的乘法和除法教案教案标题:分式的乘法和除法教案目标:1. 理解分式的乘法和除法的概念和运算规则。

2. 能够通过实际问题应用分式的乘法和除法进行计算。

3. 培养学生的逻辑思维和解决问题的能力。

教材和资源:1. 教材:根据教学大纲选择适合的教材,例如数学教科书。

2. 教具:黑板、白板、彩色粉笔/白板笔、教学PPT等。

3. 学生练习册和作业本。

教学步骤:引入(5分钟):1. 引导学生回顾分式的基本概念和运算规则。

2. 提出问题:如果我们需要计算两个分式的乘法和除法,应该如何进行操作呢?探究(15分钟):1. 分组讨论:将学生分成小组,让他们一起探讨如何进行分式的乘法和除法运算。

2. 每个小组从自己的角度出发,讨论并总结出一套操作规则。

3. 每个小组派代表分享自己的思路和规则,并与其他小组进行交流和比较。

讲解与示范(15分钟):1. 教师根据学生的讨论结果,对分式的乘法和除法进行讲解和示范。

2. 通过具体的例子,演示如何进行分式的乘法和除法运算,注重步骤和计算过程的解释。

练习与巩固(20分钟):1. 分发练习册和作业本,让学生进行相关的练习。

2. 教师巡视和指导学生的练习过程,及时纠正错误并解答疑惑。

3. 鼓励学生在小组内互相讨论和解决问题。

拓展与应用(10分钟):1. 提供一些拓展问题,让学生应用分式的乘法和除法进行解答。

2. 引导学生思考如何将分式的乘法和除法运用到实际生活问题中。

总结与反思(5分钟):1. 教师与学生一起总结本节课的重点内容和学习收获。

2. 鼓励学生提出问题和反思,以便进一步完善教学。

作业布置:1. 布置相关的作业,要求学生独立完成。

2. 强调作业的重要性,并提供必要的支持和指导。

教学评估:1. 教师观察学生在课堂上的表现和参与程度。

2. 检查学生的练习册和作业本,评价他们对分式的乘法和除法的掌握情况。

3. 根据学生的表现和作业情况,及时调整教学策略和进度。

教学反思:1. 教师根据学生的反馈和评估结果,总结教学的优点和不足。

分式的乘除法和加减法

分式的乘除法和加减法
2 2
2
6y ( 3 )3 xy x
2
2
a 1 a 1 (4) a 4a 4 a 4
2 2 2
二、分式加减法:
同分母分式加减法的法则: 同分母的分式相加减, 分母不变,分子相加减。 异分母分式加减法的法则: 异分母的分式相加减,
先通分,化为同分母的分式,再进行计算。
【通分】 利用分式的基本性质 , 把异分母的分式化为同 分分母的过程 。 【通分的原则】 异分母通分时, 通常取各分母的最简公分母作
一、分式乘除法运算法则:
两个分式相乘,把分子相乘的积作为积的分子,
把分母相乘的积作为积的分母;
b d bd a c ac
两个分式相除,把除式的分子和分母颠 倒位置
b d b c bc 后再与被除式相乘。 a c a d ad 计算: a2 1 6a 2 y ( 2 ) (1 ) a 2 a 2a 8 y 3a
为它们的共同分母。
3 a5 例题: (1 ) a 5a
ห้องสมุดไป่ตู้2 x 1 (2) x 1 1 x
1 1 (3) ; x3 x3 2a 1 (4) a 4 a2
2
分式的混合运算:
(1)
x+1 ÷ 2 x -2x+1 x- 1
x2 - 1
x- 1 x+1
x- 1 x+1
(2) 用两种方法计算:
1 x 1 1 1 x x
+ 1 a- b
1 1 2a
(3)
1 a 2- b 2
1 ÷ a+b

分式的乘法和除法

分式的乘法和除法

分式的乘法和除法。

答:分式的乘法和除法是分式运算中的重要内容,具体如下:分式的乘法法则:两个分式相乘,用分子的积做积的分子,分母的积做积的分母。

分式的除法法则:两个分式相除,将除式的分子、分母颠倒位置后,与被除式相乘。

分式的乘方法则:分式乘方是把分子、分母各自乘方。

分数的乘除法法则
1、两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
2、两个分数相除,把除数的分子分母颠倒位置后,再与被除式相乘。

即除以一个数等于乘以它的倒数!
知识点1分式的乘法:f/g×u/v=fu/gv
分式的除法:f/g÷v/u=f/g×u/v=fu/gv(u≠0,v≠0)
— 1—。

分式的运算

分式的运算

分式的运算
★一、分式的四则运算:
⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:
⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:
⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:
⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:
⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:
★二、约分与通分
1.确定最简公分母的方法:
①最简公分母的系数,取各分母系数的最小公倍数;
②最简公分母的字母因式取各分母所有字母的最高次幂.
2.确定最大公因式的方法:
①最大公因式的系数取分子、分母系数的最大公约数;
②取分子、分母相同的字母因式的最低次幂.
★三、整数指数幂
1.知道负整数指数幂=(a≠0,n是正整数).
2.回忆0指数幂的规定,即当a≠0时,.
3.科学计数法:
①你还记得1纳米=0.000000001米?②太阳离地球150********00千米?。

《分式的乘法与除法》教案

《分式的乘法与除法》教案

分式的乘法与除法一、教材分析分式的乘法与除法是初中数学教学重要内容之一。

本节内容是在学习了分式的基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘法与除法。

本节内容既是前面知识的深化与应用,又是今后学习分式加减法和分式方程等知识奠定了基础。

因此,本节课在初中数学中有着承上启下的过渡作用。

二、学情分析1.认知基础:通过前面的学习,学生已经掌握了分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,加快知识的学习。

2.心理特点:八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强。

3.不足之处:八年级学生计算和演绎推理能力不够强,面对较为复杂的问题,学生理解和计算起来还是比较困难的。

三、教学目标及重难点(一)教学目标根据以上教材的分析以及对学情的把握,我制定了如下三个目标:1.知识技能方面:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算能解决一些与分式乘除有关的实际问题。

2.过程与方法方面:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

3.情感与价值观方面:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验,增强学生的自信心。

(二)重难点重点:运用分式乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算四、教法学法(一)教法针对八年级学生在学习中的优缺点,我在本节课的教学过程中采用了启发式、引导式、讨论式以及讲练结合的教学方法,由浅入深的引导学生发现问题,解决问题,充分调动学生学习积极性。

(二)学法引导学生独立思考,观察分析,归纳总结,使学生真正成为知识的发现者、探究者。

另外,在教学过程中,我将采用多媒体辅助教学,以直观呈现教学素材,从而更好的激发学生学习兴趣,增大教学容量,提高教学提高教学质量。

五、教学过程围绕本节课的教学目标,我将教学过程分为以下六个环节,下面我将阐述具体的教学过程。

分式的概念和运算

分式的概念和运算

分式的概念和运算分式作为数学中的重要概念,在实际生活和学习中都有着广泛的应用。

它可以帮助我们更好地理解和处理各种比例关系和分配问题。

本文将从基本概念、分式的运算规则和应用几个方面,对分式进行详细的阐述。

一、基本概念1. 分式的定义分式是指以“分子/分母”的形式表示的数,其中分子与分母均为整数,分母不等于零。

分子表示被分割的数量,分母表示整体的数量。

2. 分子与分母的含义分子表示分割出的部分数量,分母表示整体的数量。

例如,若将一个馅饼平均分给3个人,则分子为1(表示每个人份的馅饼数量),分母为3(表示总共有3个人)。

3. 分数与分式的关系分数是分式的一种特殊形式,它是指分子比分母小的分式。

例如,1/2、2/3都是分数,也是分式。

可以说所有的分数都是分式,但不是所有的分式都是分数。

二、分式的运算规则1. 分式的乘法和除法分式的乘法:两个分式相乘时,将分子相乘得到新的分子,分母相乘得到新的分母。

例如:2/3 × 3/4 = (2 × 3) / (3 × 4) = 6/12分式的除法:两个分式相除时,将被除数的分子与除数的分母相乘得到新的分子,将被除数的分母与除数的分子相乘得到新的分母。

例如:2/3 ÷ 3/4 = (2 × 4) / (3 × 3) = 8/92. 分式的加法和减法分式的加法:两个分式相加时,首先找到两个分式的公共分母,然后将各自的分子相加得到新的分子,分母保持不变。

例如:1/2 + 1/3 = (1×3 + 1×2) / 2×3 = 5/6分式的减法:两个分式相减时,首先找到两个分式的公共分母,然后将各自的分子相减得到新的分子,分母保持不变。

例如:1/2 - 1/3 = (1×3 - 1×2) / 2×3 = 1/6三、分式的应用1. 比例关系分式可以用来表示比例关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.2 分式的乘法和除法(第二课时)
教学目标
1 探索分式乘方的运算法则.
2 熟练运用乘方法则进行计算. 重点、难点
重点:分式乘方的法则和运算.
难点:分式乘方法则的推导过程的理解及利用分式乘方法则进行运算. 教学过程
一创设情境,导入新课 1. 复习:分式乘除法则是什么? 2 .什么叫最简分式?
3 .取一条长度为1个单位的线段AB ,如图:
第一步:把线段AB 三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由_____条长度相等的线段组成的折线,每一段等于____,总长度等于____.
第二步:把上述折线中的每一条重复第一步的做法,得到___,继续下去.情况怎么样呢? 这节课我们来学习------分式的乘方.
二 合作交流,探究新知. 分式乘方的法则 (1)把结果填入下表: 总长度
3
13⎛⎫ ⎪⎝⎭
=
43⨯43⨯43
=
6427
N=2N=1N=0A
B
B
A
5
13⎛⎫ ⎪⎝⎭
=43⨯43⨯43⨯
43⨯43
=
1024
243
(2)进行到第n 步时得到的线段总长度是多少呢?
44444444 (33333333)
n
n n n ⨯⨯⋅⋅⋅⎛⎫
=⨯⨯=
= ⎪⨯⨯⋅⋅⋅⎝⎭144444444424444444443个
(3)把43
改为
f g ,...n
n n
n f f f f f f f f g g g g f f g g
⎛⎫⨯⨯⋅⋅⋅⨯=⨯⨯== ⎪⨯⨯⋅⋅⋅⨯⎝⎭144444444444424444444444443个
即:n
f g ⎛⎫
= ⎪⎝⎭
____.
用语言怎么表达呢
分式乘方等于分子、分母分别乘方. 三 应用迁移,巩固提高 1 分式乘方公式的应用
例1 计算:
()()3
4
2
241;23x x y y w ⎛⎫⎛⎫- ⎪
⎪⎝⎭⎝⎭
强调每一步运用了哪些公式. 2 除法形式改为分式形式进行计算. 例2 计算:
()()()()()()
2
3
344224222162;2534x y xy x y x y x y x y -÷--+÷-.
强调:除法形式改为分式,利用分式的运算性质进行计算给计算带来了方便. 3 分式乘方与分式乘法、除法的综合运用.
例3 计算:2
4
322x y z y x xy ⎛⎫
⎛⎫--⎛⎫⋅÷ ⎪
⎪ ⎪-⎝⎭⎝⎭
⎝⎭
4 整体思想
例4 已知:45b a =,求2009
2008
a b a a b a -⎛⎫
⎛⎫
⋅ ⎪ ⎪-⎝⎭
⎝⎭
的值.
四 课题练习,巩固提高 1.完成 P12练习 2.补充:
先化简,再求值.()2
222121442x x x x x x ++⎛⎫
÷⋅+ ⎪+++⎝⎭
,其中x=1.
五 反思小结,拓展提高 这几课你有什么收获?
(1) 分式乘法法则,(2)分式乘方法则与分式乘除运算法则综合运用时的顺序. 作业:P12 A 组第2题选做P13 B 组: 4,5,6 六.反思。

相关文档
最新文档