采暖供热管道水力计算表

合集下载

热源热网计算书

热源热网计算书

目录第一章设计参数 (3)设计地点 (3)热源参数 (3)面积热指标参数 (3)气象参数 (3)第二章热负荷计算 (4)面积热指标确实定 (4)小区采暖热负荷确实定 (4)热水流量确实定 (4)第三章供热方案 (6)供热热源的选取 (6)供热系统确实定 (6)管材的选取 (6)供热管网的布置与敷设 (7)第四章水力计算 (8)水力计算步骤 (8)水力计算过程 (8)第五章热力设备的计算与选择 (12)换热器的选取 (12)循环水泵的选取 (13)补给水泵的选取 (14)除污器的选取 (14)第六章水压图的绘制 (15)水压图的意义 (15)水压图的绘制方法 (16)水压图的绘制过程 (16)第七章其它附属设备的选取 (17)保温材料 (17)水箱的选取 (18)阀门的选取 (18)参考文献 (18)第一章设计参数天津市热源为区域锅炉房,一次网供回水温度为130-80℃,二次网供回水温度为95-70℃。

我国《城市热力网设计标准》给出的推荐值,见下表:单位:W/m2天津市冬季室外温度为-9℃,冻土层厚度为0.69m。

第二章热负荷计算确实定根据第一章表中数据可知,天津市住宅采暖面积热指标取40~50 W/m2,幼儿园采暖面积热指标取50~70 W/m2,综合分析当地的气象因素及建筑物的档次,取住宅采暖面积热指标为40 W/m2,幼儿园采暖面积热指标为50 W/m2。

确实定以目前我国的集中供热状况,供暖热负荷是城市集中供热系统中最主要的热负荷。

在不包括工艺用热的情况下,它占全部热负荷的80%~90%。

供暖设计热负荷的概算,可采用体积热指标法和面积热指标法进行计算。

因体积热指标法计算比较繁琐,不易于快速估算,故选用面积热指标法进行计算。

按面积热指标法,热负荷计算公式为:Q n,=q f F×10−3,式中Q n,——供暖设计热负荷,kW;q f——建筑物供暖面积热指标,W/m2;F——建筑物建筑面积,m2。

集中供热管网保温管管径与供热面积对照表

集中供热管网保温管管径与供热面积对照表

29.06MW
12
DN600 2081.2m3/h 2.0m/s 53.20万m2
34.58MW
13
DN650 2564.6m3/h 2.1m/s 65.55万m2
42.61MW
14
DN700 2974.3m3/h 2.1m/s 76.03万m2
49.42MW
15
DN800 3884.8m3/h 2.1m/s 99.29万m2
4
DN200 208.1m3/h 1.8m/s 9.88万m2
6.91MW
5
DN250 343.2m3/h 1.9m/s 16.29万m2
11.40MW
6
DN300 494.3m3/h 1.9m/s 23.46万m2
16.42MW
7
DN350 672.7m3/h 1.9m/s 31.93万m2
22.35MW
(三)、一次高温供暖125/75℃(锅炉130/70℃)
管径
循环流量
供热面积
1
DN100 52.1m3/h 1.8m/s 4.44万m2
2
DN125 81.29m3/h 1.8m/s 6.93万m2
3
DN150 117.0m3/h 1.8m/s 9.97万m2
4
DN200 208.1m3/h 1.8m/s 17.73万m2
96.85MW
12
DN600 2185.2m3/h 2.1m/s 186.18万m2
121.0MW
13
DN650 2564.6m3/h 2.1m/s 218.5万m2
142.0MW
14
DN700 2974.3m3/h 2.1m/s 253.41万m2

采暖供热管道水力计算表

采暖供热管道水力计算表

注:
1.各立管删减散热器时,请从最后一组(每组三行)整
2.如增加散热器,整行(三行)拷贝,从干管行(灰色
3.从各立管回水温度计算值可验证操作是否正确。

4.增加环路时,由计算人复制并修改“环路阻力叠加”
采暖管径计算(适用于采用钢管
请从最后一组(每组三行)整行删除。

三行)拷贝,从干管行(灰色)前插入,需修改立管总负荷(D列)计算公式及干管“环路阻力叠加”栏公式。

值可验证操作是否正确。

复制并修改“环路阻力叠加”和“不平衡率计算”栏公式,计算总阻力时,可人为判断最不利环路。

用钢管的一般(竖向)单管系统)
环路阻力叠加”栏公式。

最不利环路。

采暖计算书

采暖计算书

1.工程概况1.1、工程概况1、 工程名称:淮南市某办公楼采暖工程2、 地理位置:北纬32.6,东经116.83、建筑面积1600m 2,总高度14.4m (相对地面),一层为办公,二三层为办公和经理室,顶层为设计室和会议室1.2、建筑条件1、该建筑结构类型为:砖混结构,层高3.6米,2、围护结构,200空心砖墙,楼板均为现浇混凝土板1.3、热源条件1、热源为市政蒸汽管网,经小区换热站(汽水换热)交换 1.2设计内容办公综合楼集中供暖系统2 设计依据2.1任务书《供热工程》课程设计任务书2.2基础数据一、气象参数:冬季采暖室外计算干球温度:-3.5。

C,冬季主导风向:西北,风速3.3m/s,室内设计温度:18。

C二、热工参数:外表面换热系数取αw =23W/m 2.。

C内表面换热系数取αw =8.7W/m 2.。

C 墙体导热热阻:λ=0.3w/m. .。

C 三、热源参数:95 .。

C 供水70.。

C 回水四、门窗类型窗:对拉双层木窗,K=2.68W/2m ·℃ 1.8×4门:实体木制双层木门 1.5×23 采暖热负荷计算3.1 负荷计算见负荷计算计算书对于本办公楼的热负荷计算只考虑围护结构传热的耗热量和冷风渗透引起的耗热量,人员、灯光等得热作为有利因素暂不考虑在热负荷计算当中。

围护结构基本耗热量按下式计算:at t KF Q w n )('1-=式[1]式中:K ――围护结构的传热系数,W/m 2·℃;F ――围护结构的面积,m 2;a ――围护结构的温差修正系数。

冷风渗透耗热量按下式计算:)(278.0'2w n p w t t c V Q -=ρ 式[2]式中:V ――经门、窗隙入室内的总空气量,m 3/h ;w ρ――供暖室外计算温度下的空气密度,kg/m 3;p c ――冷空气的定压比热,这里为1Kj/kg ·℃。

公式来自课本《供热工程》,公式中的参数来自课本附录1-4和表1-3等下面以一层房间101为例进行计算: (1)、对房间地带的划分及热负荷计算第三地带第二地带第一地带第一地带:F=7.5×2+6×2=27 m 2 地面传热系数 k=0.47 W/m 2·℃ 第二地带:F=5.5×2+2×2=15 m 2 地面传热系数 k=0.23 W/m 2·℃第三地带:F=3.5×2=7 m 2 地面传热系数 k=0.12 W/m 2·℃ 温度修正系数取为a =1q 0=0.47×27×(18+3.5)×1+0.23×15×(18+3.5)×1+0.12×7×(18+3.5)×17 =365.08 W(2)西外墙热负荷计算F=6×3.6=21.6 m 2 传热系数k=1.2 W/m 2·℃ q 1=1.2×21.6×21.5×1=565.19 W(3)南外墙热负荷计算F=7.5×3.6-1.8×2×2=19.8 m 2 传热系数k=1.2 W/m 2·℃q 2=1.2×19.8×21.5×1=510.84 W (4)南外窗热负荷计算F=1.8×2×2=7.2 m 2 传热系数k=2.68 W/m 2·℃ q 3=2.68×7.2×21.5×1=414.86 W (5)朝向修正西外墙X CN =-5% 南外墙X CN =-20% 南外窗X CN =-20% q 1 = 565.19×(1-5% )=536.93 W q 2 = 510.84×(1-20% )=408.67 W q 3 = 414.86×(1-20% )=331.89 W (6) 冷风渗透耗热量V=L l n=3.3×9.6×2=63.36m 3/hQ 2=0.278×63.36×0.4×1.4×21.6=212.2 W总耗热量 Q = 536.93+408.67+331.89+212.2=1854.6 W4 供暖系统设计4.1系统方案一、热媒设计参数采暖系统采用热水采暖系统,供水温度tg=95。

燃气用气量和计算流量、燃气管道水力计算及附录

燃气用气量和计算流量、燃气管道水力计算及附录

12.3燃气用气量和计算流量12.3.1燃气用气量民用建筑燃气用气量包括:居民生活用气量、商业用气量、采暖及通风空调用气量。

1用户的燃气用气量,应考虑燃气规划发展量,根据当地的用气量指标确定。

2居民生活和商业的用气量指标,应根据当地居民生活和商业用气量的统计数据分析确定。

当缺乏实际统计资料时,结合当地情况参考选用附录D中附表D.1-1、附表D.1-2、附表D.1-3、附表D.1-4数据。

3采暖用气量,可根据当地建筑物耗热量指标确定(方案和初步设计阶段也可按附录D中附表D.1-5中数据估算)。

4通风空调用气量,取冬季热负荷与夏季冷负荷中的大值确定(方案和初步设计阶段也可按附录D中附表D.1-6中数据估算)。

5居住小区集中供应热水用气量,参照《建筑给水排水设计规范》GB50015中的耗热量计算。

12.3.2燃气计算流量1燃气管道的计算流量,应为小时最大用气量。

2居民生活和商业用户1)已知各用气设备的额定流量和台数等资料时,小时计算流量按以下方法确定:①居民生活用燃气计算流量:Q h=∑kNQ n(12.3.2-1) 式中Q h——居民用户燃气计算流量(m3/h);k——用气设备同时工作系数,可参照附录E中附表E.1-1、附表E.1-2的数据;N——同种设备数目;Q n——单台用气设备的额定流量(m3/h)。

②商业用户(包括宾馆、饭店、餐馆、医院、食堂等)的燃气计算流量,一般按所有用气设备的额定流量并根据设备的实际使用情况确定。

2)当缺乏用气设备资料时,可按以下方法估算燃气小时计算流量(0℃,101325Pa,以下同):Q hl=(1/n)Q a (12.3.2-2)n=(365×24)/K m K d K h(12.3.2-3)式中Q hl——燃气小时计算流量(m3/h);Q a——年燃气用量(m3/a);n ——年燃气最大负荷利用小时数(h);K m——月高峰系数,计算月的日平均用气量和年的日平均用气量之比;K d——日高峰系数,计算月中的日最大用气量和该月日平均用气量之比;K h——小时高峰系数,计算月中最大用气量日的小时最大用气量和该日小时平均用气量之比。

蒸汽供热管和凝结水管路的水力计算

蒸汽供热管和凝结水管路的水力计算

供热蒸汽管路和凝结水管路水力计算(一)供热管网水力计算的基本原理蒸汽供热系统的管网由供汽管网和凝结水回收管网组成。

蒸汽供热系统管网水力计算的主要任务主要有以下三类:(1)按已知的热媒(蒸汽或凝结水)流量和压力损失,确定管道的直径。

(2)按已知热媒流量和管道直径,计算管道的压力损失,确定管路各进出口处的压力。

当供汽管路输送过热蒸汽时,还应计算用户入口处的蒸汽温度。

(3)按已知管道直径和允许压力损失,计算或校核管道中的流量。

根据水力计算的结果,不仅能分别确定蒸汽供热系统的管径、流量、压力以及温度,还可进一步确定汽源的压力和温度、凝结水回收系统的型式以及凝结水泵的扬程等。

本指导书主要阐述水力计算的基本原理、凝结水管网的水力工况、上述第一类计算的基本方法、基本步骤及典型计算示例。

至于上述第二类和第三类计算,由于与第一类计算原理相同、方法相似,因此未作详细说明。

1. 供热管网水力计算的基本公式在管路的水力计算中,通常把管路中流体流量和管径都没有改变的一段管子称为一个计算管段。

任何一个供热系统的管路都是由许多串联或并联的计算管段组成的。

当流体沿管道流动时,由于流体分子间及其与管壁间存在摩擦,因而造成能量损失,使压力降低,这种能量损失称为沿程损失,以符号“Δp y ”表示;而当流体流过管道的一些附件(如阀门、弯头、三通、散热器等)时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量使压力降低,这种能量损失称为局部损失,以符号“Δp j ”表示。

因此,管路中每一计算管段的压力损失,都可用下式表示:Δp = Δp y +Δp j = Rl + Δp j Pa (2—1)式中:Δp —— 计算管段的压力损失,Pa ;Δp y —— 计算管段的沿程损失,Pa ;Δp j —— 计算管段的局部损失,Pa ;R —— 每米管长的沿程损失,又称为比摩阻,Pa/m ;L —— 管段长度,m 。

比摩阻可用流体力学的达西·维斯巴赫公式进行计算:22v d R ρλ= Pa/m (2—2)式中:λ —— 管段的摩擦阻力系数;d —— 管子内径,m ;v —— 热媒在管道内的流速,m/s ;ρ—— 热媒的密度,kg/m 3。

供热管道的水力计算及热力站主要设备选择

供热管道的水力计算及热力站主要设备选择

供热管道的水力计算及热力站主要设备选择本文从设计角度讲述了供热管网水力计算的方法及热力站内主要设备选型和注意事项。

标签:供热系统;水力计算;设备选型集中供热系统热水管道的水力计算是管道设计中及其重要的部分,通过水力计算结果不仅可以确定热水网路各管段的管径,还可以确定网路循环水泵的流量和扬程。

在保证系统管网水力平衡的基础上,再进行合理的选用热力站内的设备,是提高供热质量,降低供热成本的前提。

以下将介绍水力计算和设备选型的方法及注意事项。

一、管网水力计算方法在热水网路中经常采用当量长度法,亦即将管段的局部损失折合成相当的沿程损失计算管网总损失。

在水力计算前首先要确定热力网的设计流量,应按下式计算:G=3.6Q/c(t1-t2)G—供热管网设计流量,t/hQ—设计热负荷,kwc—水的比熱容,kJ/(kg.℃)t1—供热管网供水温度,℃t2—供热管网回水温度,℃采用当量长度法进行水力计算时,热水网路中管段的总压降等于ΔP=R(l+ld)=RlzhPaR—每米管长的沿程损失(比摩阻),Pa/ml—管道的实际长度,mld—局部阻力的当量长度,mlzh—管段的折算长度,m其中局部阻力的当量长度ld可按管道实际长度l的百分数来计算,即ld=αjlm αj—局部阻力当量百分数,%,对于小于450mm无方形补偿器的管道αj=0.3。

供热管道的平均比摩阻R值,对于确定整个管网的管径起着决定性作用,如选用比摩阻R值越大,需要的管径越小,因而降低了管网的基建投资和热损失,但网路循环水泵的基建投资和运行电耗随之增大,这就需要确定一个经济比摩阻,使系统在规定年限内总费用最小。

对于采用间接连接的热水网路系统,根据运行经验,主线的平均比摩阻尽量小于100Pa/m,而支线的平均比摩阻可以在小于300Pa/m的范围内选择。

根据区域大小不同有所区别,例如对于建筑群内的供热二次管网,整体外网损失控制在5m左右,这样热力站内循环水泵扬程不会过高,供热管道的管径也较为适中,整个系统容易水力平衡,投入运行后易于调节,基建投资也较为合理。

燃气管道管径选取方法的探讨(1)

燃气管道管径选取方法的探讨(1)

燃气管道管径选取方法的探讨(1)上式中n 、q 根据实际情况选取,关键是同时工作系数K 值需要确定,其物理含义是:实际流量与各类型燃具额定流量之总和的比值,它是随同一类型燃具的数目的增大而减少,反映了多个燃气用具的集中使用程度。

1.2 采暖热指标法采暖热指标是城镇供热规划设计与建筑供热设计中一个重要的经济技术评价和控制指标,是确定集中供热系统热源规模的主要依据,一般多用面积热指标表示,即单位时间内对单位建筑面积的供热量。

在热力网初步设计阶段或建筑物设计热负荷资料不全时,民用建筑的采暖、通风、空调及生活热水热负荷,可按下列方法计算[4]:Qh=qh×A×10-3式中:Qh — 采暖热负荷,kW ;qh — 采暖热指标,住宅楼的采暖热指标qh取64 W/m 2;A — 采暖建筑物的建筑面积,m 2。

2 燃气管道水力计算2.1 低压燃气管道基本计算公式L∆P =6.9×10625.0Q d 2.192d ⎪⎪⎭⎫ ⎝⎛+∆v 52d Q ρ0T T式中: △P ——燃气管道摩擦阻力损失(Pa);l ——燃气管道的计算长度(m); Q ——燃气管道的计算流量(m 3/h);d——管道内径(mm);ρ——燃气的密度(kg/m3);T——设计中所采用的燃气温度(K);T0——273.15(K);v——燃气的运动粘度(m2/s);K——管壁内表面的当量绝对粗糙度,对钢管:输送天然气时取0.1mm。

2.2 燃气管道压力降的分配低压燃气管道允许总压力降的分配按《城镇燃气设计规范》(GB50028-2006)的推荐值,如下表:表1 低压燃气管道允许总压力降的分配一般的民用燃具正常工作可允许其压力在±50%范围内波动,但考虑到高峰期一部分燃具不宜处于过低的负荷,因此,取最小压力系数K2=0.75,最大压力系数K1=1.50。

这样,低压燃气管网(包括庭院和室内管)总的计算压力降可确定为:△Pd=0.75Pn,加上燃气表的压力损失150Pa,燃气低压管道从调压箱到最远燃具的管道允许阻力损失,可按下式计算:△Pd=0.75Pn+150。

供热管道网络设计中的水力计算方法

供热管道网络设计中的水力计算方法

供热管道网络设计中的水力计算方法供热管道网络设计中的水力计算方法是工程专家和国家专业建造师在设计供热系统时必须考虑的一个重要步骤。

水力计算是为了保证热水在管道中的顺畅流动和供热回路中的合理供热分配。

本文将从供热管道网络水力计算的意义、常用计算方法和实际案例三个方面展开论述。

首先,供热管道网络设计中的水力计算具有重要的意义。

合理的水力计算能够确保供热系统的正常运行、高效运行和安全运行。

在供热管道网络设计中,我们需要考虑到热水的流量、流速、压力损失、水头、泵的选择等因素。

通过水力计算,我们可以确定管道的直径、流量分配、泵的参数等关键参数,从而保证供热系统能够满足设计要求。

其次,供热管道网络设计中常用的水力计算方法有很多种。

其中,最常见的方法包括简化法、系数法和模型法。

简化法是指采用经验公式和经验系数来进行水力计算,它简便快捷,但精度相对较低。

系数法是指根据实际情况选择一些系数进行计算,能够提高计算精度。

模型法是指利用专业软件模拟整个供热系统,根据实际情况进行精确计算。

这些方法各有优缺点,在实际工程设计中需要根据具体情况选择最合适的方法。

最后,我们来看一个实际的案例。

某小区供热管道网络设计中,需要进行水力计算以确定管道的直径和泵的参数。

根据小区的总热负荷和供热回路的数量,我们利用系数法进行水力计算。

首先,我们需要根据小区的总热负荷和供热回路的数量计算出每个回路的热负荷。

然后,根据每个回路的热负荷和回路的长度,计算出回路的水力压力损失。

接下来,我们需要根据回路的水力压力损失和泵的特性曲线,选择合适的泵。

最后,根据泵的参数和管道的水力特性,确定供热管道的直径。

总结起来,供热管道网络设计中的水力计算是一个重要的环节,它直接关系到供热系统的运行效果和运行安全。

在设计过程中,我们可以根据具体情况选择简化法、系数法或模型法等不同的计算方法。

通过合理的水力计算,我们可以确定供热管道的直径和泵的参数,从而保证供热系统的正常运行和高效供热。

室内——供热热网的水力计算1

室内——供热热网的水力计算1

课题1 集中供热系统方案的确定
9.1.1.3生活热负荷 生活热负荷可以分为热水供应热负荷和其他生活用热热负 荷两类。 (1) 热水供应热负荷 热水供应热负荷是日常生活中用于洗脸、洗澡、洗衣服以 及洗刷器皿等所消耗的热量。热水供应热负荷取决于热水 用量。 热水供应系统的工作特点是热水用量具有昼夜的周期性。 每天的热水用量变化不大,但小时热水用量变化较大。
Qrmax KQrp
课题1 集中供热系统方案的确定
(2) 其他生活用热热负荷 其他生活用热热负荷是指在工厂、医院、学校等地方,除 热水供应外,还可能有开水供应、蒸汽蒸饭等用热。这些 用热热负荷的概算,可根据具体的指标(如:开水加热温 度、人均饮水标准、蒸饭锅的蒸汽消耗量等)来参照确定。 例如计算开水供应用热量,加热温度可取105℃,饮水标 准可取2~3L/天·人;蒸饭锅的蒸汽消耗量,当蒸煮量为 100kg时,约需耗蒸汽100~250kg(蒸煮量越大,单位耗汽 量越小)。一般开水和蒸锅要求的加热蒸汽表压力为 0.15~0.25MPa。
课题1 集中供热系统方案的确定
对于一般居住区,热水供应热负荷可按下式计算: 1)居住区采暖期生活热水平均热负荷
——居住区采暖期生活热水平均热负荷,kW; 式中 Qrp F ——居住区的总建筑面积,m2; qs ——居住区生活热水指标,W/m2,当无实际统 计资料时,可按表9-2取用。
课题1 集中供热系统方案的确定
2)生活热水最大热负荷
max 式中 Qr ——生活热水最大热负荷,kW; K ——小时变化系数,一般可取2~3。 在计算管网热负荷时,其中生活热水热负荷按下列规定取 用:热网干线的热水供应热负荷采用采暖期生活热水平均 热负荷;支线用户全部有储水箱时,采用采暖期生活热水 平均热负荷;当用户无储水箱时,采用采暖期生活热水最 大热负荷。

09《供热工程》第九课 热水网路水压图

09《供热工程》第九课 热水网路水压图

室内热水供暖的水压图
当系统未运行或系统循环水
泵停止工作时,由于系统中
各点的能量值相等,所以整
个系统的水压曲线呈一条水
平线。各点的测压管水头都 相等,其值为Hjo。但是系统 中各点的压力值不一定相等, 系统中A、B、C、D、E和O 点的压 头分别为 HjA、 HjB、 HjC 、 HjD 、 HjE 和 Hjo ( mH2O ) 。 当 系统 停 止 工 作时的水压曲线,称为静水 压曲线。
供热工程
第九 章 第三节
第三节 水压图的基本概念
供热工程
第九 章 第三节
伯努利方程:
P1 Z1 g

v12
2

P2
Z2g

v22
2
P12
P1
g
Z1

v12 2g

P2
g

Z2

v22 2g
H12
1.利用水压曲线可以确定管道中任何一点的压 力(压头)值。 2.可以表示处各管段的压力损失值。 3.根据水压曲线的坡度,可以确定管段的单位 管长的平均压降的大小。 4.只要已知或者固定管路上任意一点的压力则 管路中其他各点的压力也就已知或者固定了。
供热工程
第九 章 第四 节
一、热水网路压力状况的基本技术要求
(4)提供给用户足够的资用压力。在热水 网路的热力站或用户引入口处,供、回水 干管之间必须有足够的资用压差,满足热 力站或用户系统克服内部阻力所需的作用 压头,以保证用户系统流量。 (5)热水网路回水管内任何一点的压力, 都应比大气压力至少高出50kPa,以免吸 入空气。
供热工程
第九 章 第三节
室内热水供暖的水压图

供热热网的水压图及水力、热力调节15

供热热网的水压图及水力、热力调节15

二、水压图——绘制
静水压线的基本要求
(1).不超压 在直接连接的用户系统内,压力不应超过 用热设备及其管道构件的承压能力。如供暖用户系统一 般常用的柱形铸铁散热器,其承压能力为4bar ,因此 ,作用在该用户系统最底层散热器的表压力,无论在网 路运行或停止运行时都不得超过4bar 。 (2).不汽化 在高温水网路和用户系统内,水温超过 100℃的地方,热媒压力不低于该水温下的汽化压力。
动水压曲线的位置
由于假设定压点位置设在网路循环水泵 的吸入端,回水管动水压线全部高出静水压 线j-j,所以供水管内热水不会出现汽化现象。 网路供、回水管之间的资用压差,在网路末 端最小,因此,只要选定网路末端用户入口 或热力站处所要求的作用压头,就可确定网 路供水主干线末端的动水压线的水位高度。 根据供水干管的平均比压降或根据热网供水 干管的水力计算结果,可绘出供水主干管的 动水压曲线。 供热工程 第九 章 第四 节
静水压线高度保持的措施——定压,高位 膨胀水箱即是一种定压方式,其他方式还 有补水泵变频定压等
静水压线
G’’ Bo G’
Zo
A B
0
O
0
22
二、水压图——绘制
5.确定回水管动压线 原则:压力最低位置不吸气、不倒空;压力最高位置不超 压。 满足上述原则时取最低的。 具体的绘制方法:从定压点开始,按各回水管段计算阻力 损失绘制。 6.确定供水管动压线 原则:压力最低位置不汽化、保证循环资用压差; 具体的绘制方法:确定最远用户的资用压力后,按各供水 管段计算阻力损失绘制。
动水压曲线的位置
假设末端用户4资用压差为10H2O,供 水干管动水压曲线在末端C点的标高为 35+10=45m,供水干管总压力损失与回水干 管相等,即10mH2O,在热源出口处D点, 供水管动水压曲线的标高为45+12=57m。

热水供热系统水力计算

热水供热系统水力计算
⑶与热力网直接连接的用户系统内,不会出现倒空。
11:26:08
14
(1)试问在下述有关机械循环热水供暖系统的表述中,( )是错 误的。
A.供水干管应按水流方向有向上的坡度 B.集气罐设置在系统的最高点 C.使用膨胀水箱来容纳水受热后所膨胀的体积 D.循环水泵装设在锅炉入口前的回水干管上
解 析:在机械循环热水供暖系统中.由于供水干管 沿水流方向有向上的坡度,因此在供水干管的末端,也 就是供水干管的最高点设置集气罐,而非系统的最高点。 而系统的最高点应是膨胀水箱的位置
当采用分阶段改变流量的质调节时,宜选用流 量和扬程不等的泵组。
对只有采暖和热水供应的热水供热系统,可考 虑专设热水供应循环水泵。
多台水泵并联运行,选择水泵时,应绘制水泵 和热网水力特性曲线,确定其工作点。
11:26:08
18
二、补给水泵的选择 补给水泵定压时 流量
水力计算只能确定热水管道中各管段的压力损 失(压差)值,但不能确定热水管道上各点的 压力(压头)值。
水压图可以清晰地表示出热水管路中各点的压 力。
11:26:08
10
第五节 ①管道任何一点P ②各管段ΔP ③各管段R ④系统中是否汽化、超压、倒空 ⑤供、回水管压力差是否≥用户系统所需的作用压头 ⑥系统正常运行或循环水泵停运时,系统各点的压力
11:26:08
15
第六节 水泵的选择
一、热网循环水泵的选择 1.流量
G (1.1 ~ 1.2)G
2.扬程
H (1.1 ~ 1.2) H r H wb H wh H y
11:26:08
16
3.循环水泵的选择原则
水装泵有旁Gx通h≮管管时网,G应w计.z旁;通当 管流量。

水管选型及水力计算

水管选型及水力计算

245 0.7 R1 705 471 343 237 198 142 103 82 63 48 38 25 19 15 12
11
R2 948 622 446 304 253 179 129 102 78 58 46 30 23 18 15
1 = −2.0lg( ε + 2.51 )
λ
3.71d Re λ
式中 ε——管内表面的当量绝对粗糙度,[m];
推荐水管的ε值如下:对于开式系统,取 0.0005[m];对于闭式系统, 取 0.0002[m];
Re——雷诺数,Re= vd v
其中 v 是水的运动粘滞系数,与水温有关,在标准大气压时,水的运动粘滞
三、空调冷却/冷冻水管选型及水力计算
1、水管选型 根据表 1 可以确定空调冷却/冷冻水管的水管形式,包括钢管和铸铁管,常
见的为镀锌钢管和无缝钢管;水管选型常采用假设流速法,可以根据水流量和相 应管的流速范围来确定管径。
1
水系统水管选用及水力计算
水管径 D 由下式确定:
式中 D——管径,m;
D = 4L πv
1、水管选型 .....................................................1 2、水力计算 .....................................................3 四、PP-R 管选型及水力计算 ...........................................7 1、PP-R 管特点...................................................7 2、PP-R 管主要用途...............................................7 3、PP-R 管选型...................................................7 4、水力计算 ....................................................10 5、中国十大 PPR 管品牌 ..........................................17 五、冷凝水管选型................................................... 18 1、冷凝水管系统特点 ............................................18 2、冷凝水管流速 ................................................18 3、冷凝水管管径选型 ............................................18 六、常用水系统设备的水压降......................................... 19 1、常用风冷水系统机组水压降 ....................................19 2、常用水冷机组水压降 ..........................................19

蒸汽管道水力计算表说明正式版

蒸汽管道水力计算表说明正式版

蒸汽管道水力计算表说明正式版饱和水蒸汽管道水力计算表使用说明1.管道初始端饱和水蒸汽物性参数的确定根据初始饱和水蒸汽温度,在“饱和水蒸汽管道水力计算参数选取表”文件夹中“饱和水蒸汽物性参数表.xls”选取相应温度下饱和水蒸汽密度ρ与绝对压强P ab。

此算例中为170℃饱和水蒸汽,则查表知此温度下绝对压强为0.7926MPa,密度为4.113m3/kg,则比容V为0.2431kg/m3。

根据初始饱和水蒸汽温度与绝对压强,在在文件夹“饱和水蒸汽管道水力计算参数选取表”中“水和水蒸气的动力粘度表.xls”选取相应温度与压力下饱和水蒸汽的动力粘度η。

此算例中为170℃饱和水蒸汽,则查表取170℃时1MPa时水蒸汽动力粘度η为159×10-6Pa·s。

将170℃、0.7926MPa、0.2431kg/m3与159×10-6Pa·s代入“蒸汽管道水力计算表.xls”已知条件中。

2.初步确定管道管径根据管道饱和水蒸汽设计流量,经过试算,在“饱和水蒸汽管道水力计算参数选取表”文件夹中“水、蒸汽及压缩空气管道推荐流速.doc”选取相应管径范围内推荐流速。

此算例中流量为0.117t/h,经试算管道直径小于100mm,则推荐流速为15~30m/s,取下限值15m/s,由此初步确定管道内径为30mm,管道壁厚2.5mm,故管道外径为35mm。

3.计算管道内蒸汽流动雷诺数确定流动状态由上已知管道内流速与管道内径,此算例为20号钢管,则管道粗糙度为0.1mm,填入“蒸汽管道水力计算表.xls”。

根据下式计算表自动计算出雷诺数:(1)式中,Re——雷洛数,无量纲;w——饱和水蒸汽流速,此算例中为15m/s;d——管道内径,此算例中为0.03m;η——饱和水蒸汽的动力粘度,此算例中为159×10-6Pa·s;V——饱和水蒸汽的比容,此算例中为0.2431kg/m3。

此算例中,表中计算雷诺数为11600。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注:
1.各立管删减散热器时,请从最后一组(每组三行)整
2.如增加散热器,整行(三行)拷贝,从干管行(灰色
3.从各立管回水温度计算值可验证操作是否正确。

4.增加环路时,由计算人复制并修改“环路阻力叠加”
采暖管径计算(适用于采用钢管
请从最后一组(每组三行)整行删除。

三行)拷贝,从干管行(灰色)前插入,需修改立管总负荷(D列)计算公式及干管“环路阻力叠加”栏公式。

值可验证操作是否正确。

复制并修改“环路阻力叠加”和“不平衡率计算”栏公式,计算总阻力时,可人为判断最不利环路。

用钢管的一般(竖向)单管系统)
环路阻力叠加”栏公式。

最不利环路。

相关文档
最新文档