吉林大学大学物理(工科)期末试卷

合集下载

吉林大学大学物理练习册稳恒电流的磁场作业

吉林大学大学物理练习册稳恒电流的磁场作业

取半径为 r ~ r+dr 的细圆环
dq 2rdr
dI
2
2rdr rdr
O Rr
B1 B2 r 1 R
dI
2
dB dr
B1 B2
2r dB
2dI
r
dr
R r
2
I
dr
2r
2
0
(
2 R
r
)
2
5. 两条无穷长的平行直导线距2a,分别载有大小相等方 向相反的电流I。空间任一点P到两导线的垂直距离分别为 x1和x2,求P点的磁感应强度B。
(2)当φ= / 2 时,线圈所受的力矩最大。
5.半径为R细圆环均匀带电,电荷线密度为λ。
若圆环以角速度ω绕过环心且垂直于 环面转轴作
匀速转动,则环心处的磁感应强度B 的大小

0 / 2
。 I nq 2R
2
B
0 I
2R
0 /
2
6. 一均匀带电圆环,带电量为+q,其半径为R,
置于均匀磁场 中B, 的B方向与圆环所在平面成
和洛仑兹力
B.只有库仑力和洛仑兹力
C.只有三种中某一种
5.载流为I、磁矩为Pm的线圈,置于磁感应强度 为B的均匀磁场中。若Pm与B方向相同,则通过线 圈的磁通量Ф与线圈所受的磁力矩M的大小为
A. IBPm , M 0
B. BPm , M 0
I
C. IBPm , M BPm
D.
BPm I
b 2 x 2
b
F3
0I1I2 dl L 2 x
ba
0 I1I 2
dx
0 I1I 2
ba ln
b 2 cos45 x 2 cos45 b

吉林大学大学物理作业第18章波粒二象性习题答案

吉林大学大学物理作业第18章波粒二象性习题答案

3180 (1- 1)190 304000
3.用于康普顿散射实验中的X射线波长0 0.2 1010 m。当
散射角为90°时,求:(1)X射线波长的改变量;(2) 碰撞电子所获得的动能;(3)电子所获得的动量。
解:(1)根据康普顿散射公式
(2) 碰 撞电子0 所获m 得h 0c的(1动c 能 o)s0.02A 4
速粒子的物质波公式是___ _h_m 0 ,初
速为零的电子在电势差为U的电场中加速
后,其物质波的公式是____h_2 _m _。 eU
11.电子显微镜中的电子从静止开始通过电势 差为U的静电场加速后,其德布罗电波长是 0.04nm,则U约为 940V 。
三、 计算题
1. 假设太阳和地球可看作黑体,各有其固定的表 面温度,地球的热辐射能源全部来自太阳,现取 地球表面温度TE=300K, 地球半径RE=6400km,太 阳半径Rs=6.95×105km,太阳与地球的距离 d=1.496×108km,求太阳表面温度TS。
7.康普顿效应的发现和理论解释进一步揭 示了光的 粒子 性,并且也证实了在微 观粒子相互作用过程中, 能量 守恒定 律和 动量 守恒定律依然成立。
8.在氢原子光谱中,由高能级向低能级跃 迁时发出的赖曼系谱线中,最长的波长 是_1_21_.52_nm。 ν=(E2-E1)/h λ=hc/(E2-E1)
解:太阳辐射能量分布在半径为d的球面上,其中
被地球吸收的能量为地球横截面积上的辐射能,
即 E吸4RS2TS44RdE22
E辐4RE 2TE4
E吸 E辐
TS 6.22103K
2. 利用单色光和金属钠作光电效应实验,测得当
300 n m 时,光电子的最大初动能1.85eV,当 400 n m 时,光电子的最大初动能0.82eV,由此估

大学物理吉林大学第5章气体动理论练习及答案

大学物理吉林大学第5章气体动理论练习及答案
(2) 求气体分子的方均根速率; (3) 容器单位体积 内分子的总平动动能。
解 (1) pV m RT M mRT RT 28.0 103kg
M
pV p
(2) 2 3RT 493m / s
M
(3)
E平
n 3 kT 2
3 2
p
1.5 103 J
3 设某系统由N个粒子组成,粒子的速率分布如图所示。 求
5.三个容器A、B、C 中装有同种理想气体,其
分子数密度相同,而方均根速率之比为1:2:4, 则其压强之比pA : pB : pC为: A.1 ∶ 2 ∶ 4 B.4∶ 2 ∶ 1 C.1 ∶ 4 ∶ 16 D.1∶ 4 ∶ 8
2 T
p nkT
6.在一封闭容器内,理想气体分子的平均速率
提高为原来的2倍,则
第五章 气体动理论
一、选择题
k
3 2
kT
p nkT
1.两瓶不同种类的气体,其分子的平均平动动能相等,
但分子密度不同,则
A.温度相同,压强相同; B.温度不同,压强相同
C.温度相同,压强不同 ; D.温度不同,压强不同
2.在一密闭容器中,储有A、B、C三种理想气体,
处于平衡状态.A种气体的分子数密度为n1,它产生 的压强为p1,B种气体的分子数密度为2n1,C种气体 的分子数密度为3 n1,则混合气体的压强p为( )
3R
4R
5R
2R
10.设 代表气体分子运动的平均速率。 P代表
气体分子运动的最可几速率, 2代表气体分子运动
的方均根速率。处于平衡状态下的理想气体,三
种速率的关系为
A. 2 P
B. P 2
C.P 2
D. P 2

《大学物理(一)》2017-2018学年第二学期期末考试卷

《大学物理(一)》2017-2018学年第二学期期末考试卷

吉林大学《大学物理(一)》2017-2018学年第二学期期末考试卷考试形式闭卷年月院系年级专业学号姓名成绩一、填空题:(每空2分,共40分。

在每题空白处写出必要的算式)1、一飞轮的角速度在5s 内由190-⋅s rad 均匀地减到180-⋅s rad ,那么飞轮的角加速度β=,在此5s 内的角位移θ∆=。

2、两个相互作用的物体A 和B 无摩擦地在一条水平直线上运动,A 的动量为bt p p A -=0,式中0p 和b 都是常数,t 是时间。

如果t=0时B 静止,那末B 的动量为;如果t=0时B 的初始动量是-0p ,那末B 的动量为。

3、光滑的水平桌面上有一长2l ,质量为m 的均质细杆,可绕通过其中点,垂直于杆的竖直轴自由转动,开始杆静止在桌面上,有一质量为m 的小球沿桌面以速度v 垂直射向杆一端,与杆发生完全非弹性碰撞后,粘在杆端与杆一起转动,那末碰撞后系统的角速度ω=。

4、振幅为0.1m ,波长为2m 的一简谐余弦横波,以1m/s 的速率,沿一拉紧的弦从左向右传播,坐标原点在弦的左端,t=0时,弦的左端经平衡位置向正方向运动,那末弦左端质点的振动方程为,弦上的波动方程为。

5、在边长为a 的等边三角形的三个顶点上分别放置一个电量为-q 和两个电量为+q 的点电荷,则该三角形中心点处的电势为。

6、如图,若V U F C F C F C 100,4,5,10321====μμμ,则电容器组的等效是容C=,电容器3C 上的电压3U =。

7、两个点电荷+q 和+4q 相距为l ,现在它们的连线上放上第三个点电荷-Q ,使整个系统受力平衡,则第三个点电荷离点电荷+q 的距离为;其电量大小为。

8、若一球形高斯面内的净电量为零,能否说该高斯面上的场强处处为零?(填“能”或“不能”)9、真空中均匀带电的球面和球体,如果两者的半径和总电量都相等,设带电球面的电场能量为1W ,带电球体的电场能量为2W ,则1W W (填<、=、>)10、如图所示,两个半径为R 的相同的金属环在a 连线为环直径),并相互垂直放置,电流I 由a 则环中心O 点的磁感强度的大小为。

吉林大学大学物理气体作业答案

吉林大学大学物理气体作业答案

υ0
0
f (υ)dυ + ∫
2υ0
υ0
2N f (υ)dυ = 1 ⇒ a = 3υ0
(3)速率在 ~υ 0 之间粒子数 速率在0
1 N ∆N 1 = υ 0 a = 2 3
∆N1 = ∫ Nf (υ)dυ = ∫
0
υ0
υ0
0
速率在1.5 速率在 υ0 ~ 2 υ0 之间的粒子数
a 1 1 N υdυ = υ0a = N Nυ0 2 3
m 解 (1) PV = RT M
→M =
ρRT
P
= 2.8×10 kg ⋅ mol
3P
−2
−1
(2) (3)
υ =
2
3RT = M
ρ
= 493m / s
3 3 3 ε总平 = n kT = P = 1.5×10 (J ) 2 2
3.在封闭容器中,一定量N2理想气体温度升高到原来5倍 .在封闭容器中,一定量N 理想气体温度升高到原来 温度升高到原来5 气体系统分解为N原子理想气体, 时,气体系统分解为N原子理想气体,此时系统的内能为 原来的多少倍?(不考虑振动) ?(不考虑振动 原来的多少倍?(不考虑振动)
2.一定量的理想气体,当温度不变、体积增大 .一定量的理想气体,当温度不变、 时,分子的平均碰撞次数 Z 和平均自由程 λ 的变化情况为 A. Z 减小,λ 不变 B. Z 减小,λ 增加 . 减小, 不变; . 减小, 增加; C. Z 增加,λ 减小 . 增加, 减小; D. Z 增加,λ 增加 . 增加, 增加;
P υ = 1.6 = 1.6 m0 nm0
6.三个容器A、B、C 装有同种理想气体,其 三个容器A 装有同种理想气体, 分子数密度之比为n 分子数密度之比为nA:nB:nC=4:2:1,方均根速率 比为=1:2:4,则其压强之比P 比为=1:2:4,则其压强之比PA:PB:PC为 A. 1:2:4 B. 4:2:1 C. 1:1:1 D. 4:1:1/4

吉林大学大学物理作业答案综合练习题(下)(二)

吉林大学大学物理作业答案综合练习题(下)(二)
综合练习题(二)
(一) 选择题
1. 如图所示,沉积在玻璃衬底上的氧化钽薄层从A到B厚度递减,从而形成 一劈尖,为测定氧化钽薄层的厚度e,用波长为632.8nm的He-Ne激光垂直 照在薄层上,观察到楔形部分共出现11条暗条纹,且A处恰好为暗纹位置。 已知氧化钽的折射率为2.21,玻璃的折射率为1.5,则氧化钽薄层的厚度e为

2 a b 10 2 4 0 0 n m s i n 3 0
1
4.一平面透射光栅,当用白光垂直照射时,能在30°衍射方向上观察到600nm的第 二级干涉主极大,并能在该处分辨△λ=0.05nm的两条光谱线,但在此30°方向上却 测不到400nm的第三级主极大,计算此光栅的缝宽a和缝距b以及总缝数N 。
6.氢原子中核外电子所处状态的角量子数是l=2,其绕核运动的角动量的 大小 ;该角动量的空间取向可能有 5 种。 一级明
6
a sin 3 ;
a sin k; 2
k1 .5
9.一电磁波在空气中通过某点时,该点某一时刻的电场强度 为E,则同时刻的磁场强度H= ,能流密度S= 。
光栅对第k级主极大的分辨本领为
对于 =600nm的第二级主极大有
0 . 0 5 n m
所以,光栅总缝数

R kN
6 0 0 N 6 0 0 0 k 2 0 . 0 5
5. 在惯性系K中观测到相距 的两地点相隔 8 发生两事 x 9 1 0m 件,而在相对于K系沿x轴正向以匀速度运动的 系中发现此两事件 恰好发生在同一地点,试求在 系中此两事件的时间间隔。 t 5s
m向下拉x时,
kx a J m 2 R k 2 J m 2 R
T2 k ( x x 0 ) mg T 1 ma T R T R J 2 1 a R

吉林大学大学物理期末试卷及答案

吉林大学大学物理期末试卷及答案

吉林大学物理试题(2007~2008学年第二学期)(上册)注意:第一大题和第二大题的答案填写在题后的表格内,否则按零分处理。

玻尔兹曼常数: 1231038.1--⋅⨯=K J k 普适气体常数:1131.8--⋅⋅=K mol J R 一、 单选题1、汽车用不变力制动时,决定其停止下来所通过路程的量是(A ) 速度 (B )质量 (C) 动量 (D) 动能2、一均质细棒绕过其一端和绕过其中心并与棒垂直的轴转动时,角加速度β相等, 则二种情况下棒所受的外力矩之比21:M M 是(A )1:1 (B )2:1 (C )4:1 (D )1:43、在由两个质点组成的系统中,若此系统所受的外力的矢量和为零,则此系统(A )动量、机械能守恒,但角动量是否守恒不能确定(B )动量守恒,但机械能和角动量是否守恒不能确定 (C ) 动量和角动量守恒,但机械能是否守恒不能确定 (D) 动量、机械能守恒、角动量均守恒4、已知一定量的某种理想气体,在温度为T 1与T 2时,分子最可几速率分别为1p υ和 2p υ,分子速率分布函数的最大值分别为)(1p f υ和)(2p f υ。

若21T T >,则(A )21p p υυ>,)()(21p p f f υυ> (B) 21p p υυ>,)()(21p p f f υυ< (C )21p p υυ<,)()(21p p f f υυ> (C )21p p υυ<,)()(21p p f f υυ< 5、两容器内分别盛有氢气和氦气,若它们的温度和摩尔数分别相同,则(A )两种气体分子的平均平动动能相同 ( B) 两种气体分子的平均动能相同 (C )两种气体分子的平均速率相同 (D )两种气体的内能相同6、有人设计一台卡诺热机(可逆的),每循环一次可以从400k 的高温热源吸热1800J ,向300k 的低温热源放热800J 。

吉林大学大学物理练习册综合练习二答案

吉林大学大学物理练习册综合练习二答案
O
c′
V
8.1mol刚性双原子分子理想气体,当温度为 时,其 . 刚性双原子分子理想气体, 刚性双原子分子理想气体 当温度为T时 内能为
3 A . RT 2 3 B . kT 2
5 C . RT 2
5 D . kT 2
4
9.对于室温下的双原子分子理想气体,在等压 .对于室温下的双原子分子理想气体, 膨胀的情况下, 膨胀的情况下,系统对外所作的功与从外界吸 收的热量之比 A/Q 等于 A. 1/3 B. 1/4 C. 2/5 D. 2/7 10.一定量的理想气体向真空作绝热自由膨 . 体积由V 增至V 胀,体积由 1增至 2,在此过程中气体的 A. 内能不变,熵增加 内能不变, B. 内能不变,熵减少 内能不变, C. 内能不变,熵不变 内能不变, D. 内能增加,熵增加 内能增加,
m mg µl M f = 2∫ ⋅ dr ⋅ gµr = 0 2l 2
l
M f ⋅ ∆t = 0 − Iω 0 ⇒ 2 lω 0 ∆t = 3 µg
8
5. 如图所示 , 质点 的质量为 . 如图所示, 质点P的质量为 的质量为2kg, 位置矢量 , r r r 的作用。 为 r ,速度为 υ ,它受到力 F 的作用。这三个 −1 量均在xOy平面内,且r = 3m, = 4.0m ⋅ s , 平面内, 量均在 平面内 , υ r F=2N。 则该质点对 点的角动量 12kkgm2s−1, 点的角动量=_________, 。 则该质点对O点的角动量 r 作用在质点上的力对O点的力矩 点的力矩=___________。 作用在质点上的力对 点的力矩 3kNm 。
角动量(动量矩) 角动量(动量矩)
r r r L = r × mυ
r r r M = r ×F

固体氢在极端压强下的超导性能

固体氢在极端压强下的超导性能

DOI: 10.11858/gywlxb.20230722固体氢在极端压强下的超导性能杜 昱1,2,孙 莹1,2,王彦超1,2,钟 鑫1,2(1. 吉林大学物质模拟方法与软件教育部重点实验室, 吉林 长春 130012;2. 吉林大学物理学院, 吉林 长春 130012)摘要:氢元素在常压下具有最简单的晶体结构和物理性质。

随着压强增加,氢单质发生相变,由绝缘体转变为金属,被称为金属氢。

数值模拟表明,金属氢具有高温超导电性,因此,金属氢研究也被称为高压物理领域的“圣杯”课题。

利用基于密度泛函理论的第一性原理计算方法,对固体氢在极端高压(0.5~5.0 TPa )下的结构和超导电性开展了系统研究。

研究结果表明:固体氢的高压相变序列为I 41/amd →oC12→cI16;对于同一种结构,随着压强增加,电声耦合系数减小,费米面处电子态密度减小,特征振动频率增加,超导转变温度发生小幅变化;在2.0 TPa 压强下,固体氢的超导转变温度高达418 K (库伦赝势经验值μ*=0.10)。

研究工作将为金属氢及其超导电性的后续理论和实验研究提供参考。

关键词:金属氢;超高压强;高温超导;相变中图分类号:O521.2 文献标志码:A氢作为宇宙中含量最丰富的元素,位于元素周期表中第一位,其原子核外只有一个电子,因此,氢应该具有最简单的物理性质。

在标准大气压下,氢与其他第一主族元素不同,以宽带隙绝缘分子相存在,这是由于2个氢原子提供2个电子,形成强共价键。

在极端高压条件下,理论预言氢单质发生高压相变,可能具有金属性和高温超导电性。

因此,氢一直是凝聚态物理领域研究的焦点。

金属氢这一概念最早始于1935年,基于J. D. Bernal 关于“任何元素都应该在足够高的压力下变成金属”的观点,美国普林斯顿大学 Wigner 等[1]预言固体氢分子在25 GPa 下会发生解离并形成全氢原子化的具有立方结构的金属固体氢。

随着密度泛函理论等第一性原理计算方法的大规模应用,理论计算精度和计算速度大大提高。

吉林大学 大学物理 练习册答案

吉林大学 大学物理 练习册答案
即外力所做的功为
AW
电磁感应学作业答案
一、选择题 1.感生电动势产生的本质原因是
A.磁场对导体中自由电子的作用 B.静电场对导体中自由电子的作用 C.感生电场(涡旋电场)对导体中自由电子作用
2. 尺寸相同的铁环与铜环所包围的面积中,通以相同 变化的磁通量,环中:
A. 感应电动势不同 B. 感应电动势相同,感应电流相同 C. 感应电动势不同,感应电流相同 D.感应电动势相同,感应电流不同
3. 两根无限长平行直导线载有大小相等方向相 反电流I, I以dI/dt的变化率增长,一矩形线圈位 于导线平面内(如图),则
A.线圈中无感应电流; B.线圈中感应电流为顺时针方向; C.线圈中感应电流为逆时针方向; D.线圈中感应电流方向不确定。
4. 在通有电流I 无限长直导线所在平面内,有一 半经r 、电阻R 导线环,环中心距导线a ,且a >> r 。当导线电流切断后,导线环流过电量为
Edl (任意路径)
8. 半径为 r 均匀带电球面1,带电量为q;其外有 一同心半径为R的均匀带电球面2,带电量为Q, 则此两球面之间的电势差U1-U2为:
A. q 1 1
4 0 r R
C.
1
4 0
q r
Q R
B. Q 1 1
4 0 R r q
D.
4 0r
9. 两个点电荷电量都是 +q,相距为2a。以左边
6.两无限大均匀带电平行平面A和B,电荷面密度分别
为+σ和-σ,在两平面中间插入另一电荷面密度为+σ
平行平面C后,P点场强大小
A.不变
B.原来的 1/2
C.原来的2倍 D.零
7.静电场中a、b两点的电势差 Ua Ub 取决于

大学物理吉林大学第9章 电磁感应作业及答案

大学物理吉林大学第9章 电磁感应作业及答案

行于ab边,bc的长度为l。当金属框架绕ab边以匀角速度w 转动时,
aUbcc=回__路__中__-的_1_感_B_应_w_l电_2_动__势。 = 0
2
,a、c两点间的电势差Ua –
B
解:任意时刻通过三角形磁通量为零,所以 回路的感应电动势为零。
b
l c
ab bc ca 0
w
- ca
5.载有电流的I长直导线附近,放一导体半圆环MeN与
长直导线共面,且端点MN的连线与长直导线垂直。半 圆环的半径为b,环心O与导线相距a。设半圆环以速度
平行导线平移,求半圆环内感应电动势的大小和方向以
及MN两端的电压UM -UN。
解(1) 弧MN 直NM 0
弧MN 直MN ab Bdx ab 0 I ln a b 2π a b
边重合。求:(1)任意时刻矩形线框内的动生电动
势;(2)任意时刻矩形线框内的感应电动势。
dΦ B dS Bldx
ab
Bldx
ab 0I (t ) ldx
a
a
0I
(
t2)πxt
ln
a
b
I (t )
a
b
l

dΦ dt
0I (t)2πln a b

a
a
18
5.如图所示,真空中一长直导线通有电流I=I(t),
3.两根无限长平行直导线载有大小相等方向相 反的电流I,I 以 dI/dt 的变化率增长,一矩形线 圈位于导线平面内(如图),则
A. 线圈中无感应电流; B. 线圈中感应电流为顺时针方向; C. 线圈中感应电流为逆时针方向; D.线圈中感应电流方向不确定。
I
I
4.在无限长的载流直导线附近放置一矩形闭合线圈, 开始时线圈与导线在同一平面内,且线圈中两条边与导 线平行,当线圈以相同的速率作如图所示的三种不同方 向的平动时,线圈中的感应电流( )

吉林大学大学物理练习册综合练习一答案

吉林大学大学物理练习册综合练习一答案

R1
R2O
λ1 r P
λ2
D. 0
9. 真空中一半径为 的球面均匀带电 ,在球心 处有一 真空中一半径为R的球面均匀带电 的球面均匀带电Q,在球心O处有一 带电量为q的点电荷 如图所示。 的点电荷, 带电量为 的点电荷,如图所示。设无穷远处为电 势零 则在球内离球心O距离为 距离为r的 点处电势为 点,则在球内离球心 距离为 的P点处电势为
二、填空题 x = 6 t − t 2 ( SI) ,则在 由0至4 s的 1. 一质点的运动方程为 则在t由 至 的 则在 时间间隔内, 时间间隔内,质点的位移大小为 8m ,在t由0到4 s 由 到 的时间间隔内质点走过的路程为 10m 。 2. 半径为 半径为30cm的飞轮 从静止开始以 的飞轮,从静止开始以 的飞轮 从静止开始以0.5rad/s2的匀角加速 度转动, 度转动,则飞轮边缘上一点在飞轮转过 240°时的切向 ° 法向加速度的大小a 加速度的大小 at= 0.15 m/s2 , 法向加速度的大小 n = 0.4π m/s2 。 3.一定量的理想气体处于热动平衡状态时,此热力学 .一定量的理想气体处于热动平衡状态时, 系统不随时间变化的三个宏观量是____________, 系统不随时间变化的三个宏观量是 P,V ,T 2 1 而随时间不断变化的微观量是_________________. 而随时间不断变化的微观量是 υ, 2 mυ , mυ等
m dMf = rµ gdm = rµ g 2 2π rdr πR
mg 2 Mf = ∫ rµ 2 2πrdr = mgµ R 3 πR 0
R
1 2 − Mf θ = 0 − Iω0 2
n =θ
3Rω = 2π 16πµ g
2 0
3. 一卡诺热机 可逆的 ,当高温热源的温度为 一卡诺热机(可逆的 当高温热源的温度为127oC, 低温 可逆的), 热源温度为27 时 其每次循环对外作净功8000J。今维 热源温度为 oC时,其每次循环对外作净功 。 持低温热源的温度不变,提高高温热源温度, 持低温热源的温度不变,提高高温热源温度,使其每次 循环对外作净功10000J 。若两个卡诺循环都工作在相同 循环对外作净功 的两条绝热线之间,试求: 的两条绝热线之间,试求: (1) 第二个循环热机的效率; 第二个循环热机的效率; (2) 第二个循环的高温热源的温度。 第二个循环的高温热源的温度。 T1 − T2 A 解: = η = ⇒Q2 = 24000J T1 Q2 + A 两循环工作在相同的两条绝热线之间, 两循环工作在相同的两条绝热线之间,且低温热源的 温度不变, 不变。 温度不变,故Q2不变。

理论力学1_绪论 拉格朗日力学

理论力学1_绪论 拉格朗日力学
主动力 约束力 非惯性力
f (r , t ) 0
约束方程
分析力学的发展
• 1717, 约翰 伯努利,虚功原理 Johann Bernoulli, Principle of virtual work • 1744, 莫培督,最小作用量原理 Maupertuis, Principle of least action • 1752,达朗贝尔, 达朗贝尔原理 D’Alembert, D’Alembert Principle • 1760, 拉格朗日,拉格朗日方程 Lagrange, Lagrange’s equation • 1788, 拉格朗日,《分析力学》 Lagrange, 《Analytical mechanics》 • 1834, 哈密顿,哈密顿原理 Hamilton, Hamilton’s Principle • 1835, 哈密顿,正则方程 Hamilton, Canonical equation
第二章 拉格朗日力学 Chapter 2. Lagrangian mechanics
牛顿力学的局限性
r , r 0 0 初始条件 mr F ( r , r , t ) f ( r , t ) mat mac
x1
l
x2

2D平面运动
2D平面运动
f 2, ( x1 , x2 )
f 1, , l , A
h

2D平面运动
第二章 拉格朗日力学 复习
1.1 约束和广义坐标
• 1. 约束(限制质点自由运动的条件) • 2. 自由度f(对受完整约束的系统,唯一地 确定体系的位置和形状必须给出的独立量 的数目) • 3. 广义坐标q(任何一组能明确表明体系位 形的参数) • 4. 位形空间(由f个广义坐标张成的f维空间) • 5. 虚位移r (符合约束条件的无限小、瞬时 的位置变更,不经历时间)

2022年吉林大学计算机应用技术专业《计算机网络》科目期末试卷B(有答案)

2022年吉林大学计算机应用技术专业《计算机网络》科目期末试卷B(有答案)

2022年吉林大学计算机应用技术专业《计算机网络》科目期末试卷B(有答案)一、选择题1、若将网络21.3.0.0/16划分为128个规模相同的子网,则每个子网可分配的最大IP地址个数是()。

A.254B.256C.510D.5122、下列关于路由算法的描述中,()是错误的。

A.静态路由有时也被称为非自适应的算法B.静态路由所使用的路由选择一旦启动就不能修改C.动态路由也称为自适应算法,会根据网络的拓扑变化和流量变化改变路由决策D.动态路由算法需要实时获得网络的状态3、利用模拟通信信道传输数字信号的方法称为()A.同步传输B.异步传输C.基带传输D.频带传输4、为了使模拟信号传输得更远,可以采用的设备是()。

A.中继器B.放大器C.交换机D.路由器5、下列关于交换机的叙述中,正确的是()A.以太网交换机本质上是一种多端口网桥B.通过交换机互连的一组工作站构成一个冲突域C.交换机每个端口所连网络构成一个独立的广播域D.以太网交换机可实现采用不同网络层协议的网络互连6、无法隔离冲突域的网络互连设备是()A.路由器B.交换机C.集线器D.网桥7、一般来说,学校的网络按照空间分类属于()。

A.多机系统B.局域网C.城域网D.广域网8、世界上第一个计算机网络是()。

A.ARPANETB.因特网C.NSFnetD.CERNET9、在OS1参考模型中,直接为会话层提供服务的是()。

A.应用层B.表示层C.传输层D.网络层10、图中,若主机H2向主机H4发送1个数据帧,主机H4向主机H2立即发送1个确认帧,则除H4外,从物理层上能够收到该确认帧的主机还有().A.仪H2B.仅H3C.仅H1,H2D. 仅H2、H311、用户提出服务请求,网络将用户请求传送到服务器:服务器执行用户请求,完成所要求的操作并将结果送回用户,这种工作模式称为()。

A.客户/服务器模式B.对等模式C.CSMA/CD 模式D.令牌环模式12、某TCP分组的选项字段长度为9B,则该TCP分组的数据偏移字段内容为()。

吉林大学大学物理实验 实验2.17偏振光的研究

吉林大学大学物理实验 实验2.17偏振光的研究

实验2.17偏振光的研究光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。

目前,偏振光的应用已遍及工农业、医学、国防等部门。

利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。

一、实验目的1、观察和理解光的偏振现象。

2、掌握产生和检验偏振光的方法。

3、验证马吕斯定律和布鲁斯特定律。

4、用1/4波片产生并检验椭圆偏振光和圆偏振光。

二、实验原理由于光波是横波,所以光矢量总是与光的传播方向垂直。

在与传播方向垂直的平面内,光矢量可能有各种不同的振动状态,我们称之为光的偏振态。

最常见的光的偏振态有:自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振光。

1.马吕斯定律从自然光获得偏振光的过程叫起偏。

起偏的最简单方法是让自然光通过一块偏振片,其透过的光就成为线偏振光,这块偏振片叫起偏器。

使用另一块偏振片来检验偏振光,用来检验偏振光的装置称为检偏器。

如果检偏器的偏振化方向与起偏器的偏振化方向相同,则透过的光强最大。

如果把检偏器转过90º,则透射光强为零。

对于检偏器与起偏器的偏振化方向的夹角为任意角度,若入射到检偏器上的线偏振光强度为I 0,出射的光强为I ,由于光强与振幅平方成正比,透射光强为αα220200c o s )c o s (==A A I I 或者写成I = I 0cos 2α (2.17-1)上式为马吕斯定律。

2 布儒斯特定律自然光在两种各向同性介质的分界面上反射和折射时,反射光和折射光都成为部分偏振光,不过反射光中垂直于入射面的振动(简称垂直振动)较强;而折射光中平行于入射面的振动(简称平行振动)较强。

如图2.17-1所示。

当入射角等于某一特定值i 0时,反射光是光振动垂直于入射面的线偏振光,如图2.17-2所示。

这个特定的入射角i 0叫做布儒斯特角。

并且21120tan n n n i == (2.17-2) 式中, n 21=n 2/n 1为介质2对介质1的相对折射率。

《大学物理(一)》2019-2020学年第二学期期末考试卷

《大学物理(一)》2019-2020学年第二学期期末考试卷

吉林大学《大学物理(一)》2019-2020学年第二学期期末考试卷考试形式闭卷年月院系年级专业学号姓名成绩一、填空题:(每空2分,共40分。

在每题空白处写出必要的算式)1、一个半径R=1.0m 的圆盘,可以绕一水平轴自由转动。

一根轻绳绕在盘子的边缘,其自由端拴一物体A (如图),在重力作用下,物体A 从静止开始匀加速地下降,在t=2.0s 内下降距离h=0.4m 。

物体开始下降后t '=3s 末,轮边缘上任一点的切向加速度a t =,法向加速度a n =。

2、一质量m=50g ,以速率v=20m/s 作匀速圆周运动的小球,在1/4周期内向心力加给它的冲量的大小是。

3、一个沿x 轴作简谐运动的弹簧振子,劲度系数为k ,振幅为A ,周期为T ,其振动方程用余弦函数表示,当t=0时,振子过2Ax =处向正方向运动,则振子的振动方程为x=,其初始动能E k =。

4、一横波沿绳子传播的波动方程为)410cos(05.0x t y ππ-=,式中各物理量单位均为国际单位制。

那么绳上各质点振动时的最大速度为,位于x=0.2m 处的质点,在t=1s 时的相位,它是原点处质点在t 0=时刻的相位。

5、一空气平行板电容器两极板面积均为S ,电荷在极板上的分布可认为是均匀的。

设两极板带电量分别为±Q ,则两极板间相互吸引的力为。

6、一同轴电缆,长m l 10=,内导体半径mm R 11=,外导体内半径mm R 82=,中间充以电阻率m ⋅Ω=1210ρ的物质,则内、外导体间的电阻R=。

7、真空中半径分别为R 和2R 的两个均匀带电同心球面,分别带有电量+q 和-3q 。

现将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为。

8、图示电路中,当开关K 断开时,a 、b 差U ab =;K 闭合时,图中10μF 电量变化为Δq=。

9、一空气平行板电容器,极板面积为S d ,电容器两端电压为U ,则电容器极q=。

激光诱导等离子体冲击波增强水和重水晶格振动受激拉曼散射

激光诱导等离子体冲击波增强水和重水晶格振动受激拉曼散射

激光诱导等离子体冲击波增强水和重水晶格振动受激拉曼散射单肖宁;门志伟;周密;孙成林;里佐威;王一丁;李占龙【摘要】利用532 nm的脉冲激光进行了水和重水受激拉曼散射研究,不仅实现了O—H和O—D的伸缩振动受激拉曼散射,同时还实现了晶格振动的受激拉曼散射.水在激发光能量为130 mJ时出现低频受激Stocks和Anti-Stoks 313 cm-1谱线;重水在激发光能量为160mJ时出现低频受激Stocks和Anti-Stoks 280cm-1谱线.利用激光诱导等离子体解释了这种拉曼散射增强模式.%Stimulated Raman scattering was studied in water and heavy water using pulse laser at the wavelength of 532nm,not only obtaining the stimulated Raman of O—H and O—D stretching vibration,but also obtaining the stimulated Raman lattice vibration.When the laser energy was 130 mJ,the low frequency Stokes and anti-Stokes 313 cm-1 line of water could be observed;Whenthe laser energy was 160 mJ,the low frequnecy Stokes and anti-Stokes 280 cm-1 line of heavy water could be observed.The results were explained by physics mechanism of laser induced plasrn.【期刊名称】《光谱学与光谱分析》【年(卷),期】2013(033)008【总页数】4页(P2031-2034)【关键词】受激拉曼散射;激光诱导等离子体;水;重水【作者】单肖宁;门志伟;周密;孙成林;里佐威;王一丁;李占龙【作者单位】吉林大学物理学院,吉林长春130012;吉林大学物理学院,吉林长春130012;吉林大学物理学院,吉林长春130012;吉林大学物理学院,吉林长春130012;吉林大学物理学院,吉林长春130012;吉林大学,集成光电子学国家重点联合实验室,吉林长春130012;吉林大学物理学院,吉林长春130012 ;吉林大学,集成光电子学国家重点联合实验室,吉林长春130012【正文语种】中文【中图分类】O657.3引言水是世界上数量最多的分子型化合物,对人类生产生活有着极其重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林大学物理试题(2007~2008学年第二学期)注意:第一大题和第二大题的答案填写在题后的表格内,否则按零分处理。

玻尔兹曼常数: 1231038.1--⋅⨯=K J k 普适气体常数:1131.8--⋅⋅=K mol J R 一、 单选题1、汽车用不变力制动时,决定其停止下来所通过路程的量是(A ) 速度 (B )质量 (C) 动量 (D) 动能2、一均质细棒绕过其一端和绕过其中心并与棒垂直的轴转动时,角加速度β相等, 则二种情况下棒所受的外力矩之比21:M M 是(A )1:1 (B )2:1 (C )4:1 (D )1:43、在由两个质点组成的系统中,若此系统所受的外力的矢量和为零,则此系统(A )动量、机械能守恒,但角动量是否守恒不能确定 (B )动量守恒,但机械能和角动量是否守恒不能确定 (C ) 动量和角动量守恒,但机械能是否守恒不能确定 (D) 动量、机械能守恒、角动量均守恒4、已知一定量的某种理想气体,在温度为T 1与T 2时,分子最可几速率分别为1p υ和 2p υ,分子速率分布函数的最大值分别为)(1p f υ和)(2p f υ。

若21T T >,则(A )21p p υυ>,)()(21p p f f υυ> (B) 21p p υυ>,)()(21p p f f υυ<(C )21p p υυ<,)()(21p p f f υυ> (C )21p p υυ<,)()(21p p f f υυ< 5、两容器内分别盛有氢气和氦气,若它们的温度和摩尔数分别相同,则(A )两种气体分子的平均平动动能相同 ( B) 两种气体分子的平均动能相同 (C )两种气体分子的平均速率相同 (D )两种气体的内能相同6、有人设计一台卡诺热机(可逆的),每循环一次可以从400k 的高温热源吸热1800J ,向300k 的低温热源放热800J 。

同时对外作功1000J ,这样的设计是 (A) 可以的,符合热力学第一定律。

(B) 可以的,符合热力学第二定律。

(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量。

(D) 不行的,这个热机的效率超过理论值。

7、在下述四种力中,做功与路径有关的力是(A) 万有引力 (B) 弹性力 (C) 静电场力 (D) 涡旋电场力 8、当一个带电导体达到静电平衡时,则(A )表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C ) 导体内部的电势比导体表面的电势高 (D) 导体内任一点与其表面上任一点的电势差等于零 9、位移电流的大小取决于(A ) 电场强度的大小 (B )电位移矢量的大小(B ) 电通量的大小 (C )电场随时间变化率的大小10、一圆线圈的半径为R ,载有电流I ,置于均匀外磁场B 中。

线圈的法线方向与B的方向相同。

在不考虑载流线圈本身所激发的磁场的情况下,线圈导线上的张力是(A )BIR 2 (B) 0(C ) BIR (D) BIR 21[一题答案填写处] 请按题号将选项填入表格中二、填空题(将答案填写在题后表格内)1、已知质点运动方程为j t i t r)32(42++=,则该质点的轨道方程为______________________________。

2、一质量沿半径为0.1m 的圆周运动,其角位置θ随时间t 的变化规律是242t +=θ (SI )则在t=2s 时,它的法向加速度a n =_____________,切向加速度a t = 。

3、转动着的飞轮的转动惯量为I ,在t=0时角速度为0ω,此后飞轮经历制动过程,阻力矩M 的大小与角速度ω的平方成正比,比例系数为k (k 为大于0的常数)。

当031ωω=时,飞轮的角加速度=β ,从开始制动到031ωω=所经过的时间t= 。

4、摩尔质量为μ的理想气体,温度是T ,分子的平均速率表达式为_______________。

5、所谓第二类永动机是指 ,它不可能制成是因为违背了 。

6、对处于温度为T 的平衡状态下的双原子理想气体,气体分子的平均平动动能是 ;1摩尔气体的内能是 。

7、一半径为R 带有缺口的细圆环,缺口长度为d (d<<R ),环上均匀带正电,总电量为q ,则圆心O 处的场强大小E=_________________________,圆心O 处电势大小U 0=___________________。

8、若S d tD J l d H L S ⋅∂∂+=⋅⎰⎰)(是麦克斯韦方程组中的方程之一,则磁场强度H可能由 和 激发产生。

9、有一通有电流为I 、半径为R 的单匝圆形线圈,该线圈的磁矩大小是 ,在线圈中心处产生的磁感应强度的大小是 。

10、半径分别为a 和b 的同轴圆柱面,每单位长度上均匀带有等量异号电荷λ±。

一电子(电量是e )在两圆柱面之间沿半径为r 的圆周上旋转,则电子轨道处的电场强度大小是 ,电子的动能是 。

三、计算题[要求有计算步骤]1、 质量为kg 2的物体受到合外力)(642N j t i t F +=的作用而在xy 平面内运动,0=t 时刻物体位于原点并静止。

求:(1)s t 2=时物体速率;(2)前s 2内合外力的功和s t 2=时的功率。

2、如图所示,一根质量为m 、长为l 的均匀细棒OA 可绕通过其一端的光滑轴O 在竖直平面内转动,今使棒从水平位置开始自由下摆,试求: (1) 细棒摆到竖直位置时重力矩的功; (2) 细棒摆到竖直位置时的角速度;(3) 细棒摆到竖直位置时中心点C 和端点A 的线速度。

3、如图所示,一质量为m 的小球置于光滑的水平面上,轻绳的一端系小球,另一端通过桌面上一无摩擦的小孔向下由人握持,先使小球以速率0υ沿半径为0r 的圆周运动,然后人用手向下拉绳,使小球转动半径由0r 减小到r ,试求: (1) 小球转动半径为r 时的线速度及角速度; (2) 由0r 减小到r 过程中拉力F 做的功。

4、以摩尔双原子理想气体,作如图所示的循环,其中bc 是绝热过程。

求:(1)以此循环过程中系统对外作的功; (2)循环效率。

10-3m 3) 1.02.0O CA5、一介电常数为ε、半径为R 的带电球体,其电荷体密度为⎩⎨⎧>≤=Rr Rr Ar 0ρ其中A 是常数。

该介质球置于空气中,求: (1)带电球体内、外的电场强度;(2)若在球体表面放置电荷为q +、质量为m 的静止粒子,在电场力的作用下运动到无穷远时的速率。

6、一半径为R 的长直圆柱形载流体(视为无限长),电流1I 沿轴线方向且均匀分布在圆柱体截面上。

圆柱体内外磁导率是μ、0μ,求: (1)圆柱体内外的磁感应强度(2)在圆柱体轴线平面内放一长为L 、通有电流2I 的水平直导线,其左端到圆柱体轴线的距离是a (R a >),如图所示。

载流直导线2I 所受的力。

7、在圆柱形均匀磁场中,与磁场方向相垂直放置一段长为L 的导体棒ab 。

磁场随时间变化关系是t B B ωsin 0=(ω、0B 为正常数),以垂直于纸外为正方向。

导体棒从O 点开始以匀速υ沿纸面运动。

在ωπ43=t 时,运动到距磁场中心O 为h 处,图示位置。

求:(1)在该位置时的动生电动势,并指示其方向; (2)在该位置时的感生电动势,并指示其方向; (3)在该位置时的感应电动势。

吉林大学物理试题(2007~2008学年第一学期)参考答案及评分标准一.单选题(每小题2分,共20分)二.填空题(第5、7、8题各2分,其它题每空1分,共20分)三.计算题(50分)1.(5分)(1) =4=2Hz2mmAAυωυωωπυπ===(2分)(2) 设0.02cos(4)40.02sin(4)=2x t t t sπφυππφ=+=-⨯+时40.02sin0.0450.02cos06xυπφπφπφ=-⨯=⎧∴=-⎨=<⎩(1分)振动方程50.02cos46x tππ⎛⎫=-⎪⎝⎭(2分)2.(7分)由题知:24m,4,2,A m T su Tλπλωπ======(1)0点:t=0时0cos0sin0y AAφυωφ==⎧⎨=->⎩2πφ∴=-振动方程04cos 2y t ππ⎛⎫=- ⎪⎝⎭(2分)(2)波动方程 4cos 22x y t ππ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭(2分) (3)B 点:34cos =4cos()22B y t t ππππ⎡⎤⎛⎫=+-+ ⎪⎢⎥⎝⎭⎣⎦由()222x t t k πϕππππ⎡⎤⎛⎫∆=+--+= ⎪⎢⎥⎝⎭⎣⎦得43(0,1,2,)x k k =+=±± (3分)3.(7分)(1)由()sin a b k ϕλ+= 2k = 62210m sin 30a b λ-+==⨯︒(2分)(2)由()sin a b k ϕλ+= 取sin 1ϕ=4a bk λ+==缺级:2(1,2,)a bk k k k a+'''===能观察到的全部主极大级数 0,1,3k =±± (3分) (3)斜入射 由()(sin30sin )a b k ϕλ+︒+= 取sin 1ϕ=67210(sin 301)6510k --⨯︒+==⨯最高级数 5k = (2分) 4. (7分)(1)由22e k λλ+=75252322910m 222e e e λλλλλ-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭∆=-=-==⨯ (3分) (2)空气劈尖:12l λθ≈充入液体:22l n λθ≈ (2分) 12112l l l n λθ⎛⎫∆=-=- ⎪⎝⎭411 1.710rad 2l n λθ-⎛⎫∴=-=⨯ ⎪∆⎝⎭(2分) 5.(6分)设k '相对k 沿x 轴正向运动(1) k 系中:两事件同地21()x x =发生,则4t s ∆=为原时 k '系中:5t s '∆=由t r t '∆=∆=得1228431 1.810m/s 55c c υ⎡⎤⎛⎫=-==⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(3分)(2) k '系测:3x c '∆===- (x t υ''∆=∆) (3分)6.(7分) (1)电子01.4m m ===2222200001.40.40.204k E mc m c m c m c m c MeV=-=-== (3分)(2)由 0011k E h h hc υυλλ⎛⎫=-=-⎪⎝⎭0.029A khc hcE λλ==- (2分)(3)由 00(1cos )(1cos )C hm cλλλϕλϕ∆=-=-=- 0cos 10.7542Cλλϕλ-=-= (2分) 7.(4分)由 222220()E P c m c =+ (1分)又由题意 200k E E E qU m c =+=+ (1分)P ∴=h p λ==(2分) 另种解法:由220k E mc m c qU =-= (1分)得202qu m c m c += (1分)0υ=(1分)将m 、υ代入h m λυ==(1分) 8.(7分) (1)由22200|()|sin 1aan x x dx A dx a πψ⎛⎫==⎪⎝⎭⎰⎰A =()n x x aπψ=(2分)(2) 222()x n x aπψ==222222()|()|sin xx x a aπωψ== 令2()0d x dx ω= 得3,44a x x a ==处 2()x ω最大 (3分) (3)基态(n=1)22331021|()|sin 0.1934a a x W x dx dx a a πψπ===-=⎰⎰(2分)工科大学物理试题(2005~2006学年第二学期)注意:第一大题和第二大题的答案填写在题后的表格内,否则按零分处理。

相关文档
最新文档