筏板基础设计分析&浅基础设计的一些概念和原则
高层筏板基础宽度
高层筏板基础宽度高层建筑物的筏板基础是建筑物整个结构的重要组成部分,它承担着传递建筑物荷载至地基的重要任务。
筏板基础的宽度设计合理与否,直接关系到建筑物的安全稳定。
本文将针对高层筏板基础宽度进行分析,以期为大家提供实用的设计建议。
一、高层筏板基础概述高层筏板基础是一种深基础形式,主要适用于软弱地基和土层不均匀的地方。
筏板基础可以将建筑物的荷载均匀分布到较大的面积上,从而降低地基的不均匀沉降。
筏板基础一般分为整板式和梁板式两种形式。
二、筏板基础宽度的确定因素1.建筑物荷载:建筑物荷载的大小直接影响到筏板基础的宽度。
荷载越大,筏板基础宽度需要相应增大,以保证传递荷载的稳定性。
2.地基条件:地基的性质、承载力以及不均匀沉降程度都会对筏板基础宽度产生影响。
在不均匀地基条件下,筏板基础宽度需适当加大,以降低地基不均匀沉降对建筑物的影响。
3.建筑物高度:建筑物高度与筏板基础宽度成正比关系。
随着建筑物高度的增加,筏板基础宽度也需要相应增加,以确保建筑物在高度变化时的稳定性。
4.设计规范:根据国家相关规范,筏板基础宽度应满足一定的要求。
设计时需遵循规范要求,确保筏板基础宽度的合理性。
三、筏板基础宽度对建筑物稳定性的影响筏板基础宽度对建筑物稳定性具有重要作用。
宽度合理的筏板基础能够有效降低地基不均匀沉降,提高建筑物的抗风抗震能力。
反之,若筏板基础宽度不足,可能导致建筑物稳定性较差,甚至发生安全事故。
四、设计筏板基础宽度的注意事项1.充分了解地基条件,为筏板基础宽度的确定提供依据。
2.遵循国家相关规范,确保筏板基础宽度的合理性。
3.综合考虑建筑物荷载、高度等因素,合理确定筏板基础宽度。
4.注意筏板基础宽度的调整,以满足不同工况下的稳定性需求。
五、总结高层筏板基础宽度设计是建筑物结构设计中的重要环节。
合理确定筏板基础宽度,对保证建筑物的安全稳定具有重要意义。
在设计过程中,应充分考虑地基条件、建筑物荷载和高度等因素,遵循国家相关规范,确保筏板基础宽度的合理性。
浅谈高层建筑筏板基础的设计
浅谈高层建筑筏板基础的设计丁少润程少彬【文章以某工程为例,对高层建筑基础的选型和平板式筏板基础的结构设计进行介绍,并着重阐述运用上部结构、基础和地基共同作用的分析原理,对筏板基础内力进行分析的有限元法,以供参考。
】1概述建筑物采用何种基础型式,与地基土类别及土层分布情况密切相关。
工程设计中,常遇到这样的地质情况,地下室底板下的岩土层为风化残积土层、全风化岩层、强风化岩层或中风化软岩层,因此,有可能采用天然基础。
高层建筑地下室通常作为地下停车库,建筑上不允许设置过多的内墙,因而限制了箱型基础的使用;筏板基础既能充分发挥地基承载力,调整不均匀沉降,又能满足停车库的空间使用要求,因而就成为较理想的基础型式。
筏板基础主要构造型式有平板式筏板基础和梁板式筏板基础,平板式筏板基础由于施工简单,在高层建筑中得到广泛的应用。
本文以广州白云区某住宅楼的基础设计为例,拟对高层建筑基础的选型和筏板基础的设计方法进行介绍。
2基础选型2.1工程地质概况本工程设地下室1层,塔楼地上20层,采用剪力墙结构。
根据岩土工程勘察报告,场地土层分布自上而下分别为:①人工填土层,厚度0.5m~3.0m;②冲洪积土层,厚度0.60m;③可塑状残积土层,厚度1.6m~8.30m,标贯击数为8~16击;④硬塑状残积土层,厚度2.2m~12.0m,标贯击数为18~29击;⑤岩石全风化带,厚度2.40m~8.60m,标贯击数为30~46击;⑥岩石强风化带,厚度0.60m~12.0m,标贯击数为50~65击;⑦岩石中风化带,厚度1.10m~2.13m,天然单轴极限抗压强度24.55MPa~49.55MPa;⑧岩石微风化带,厚度1.0m~1.60m,天然单轴极限抗压强度43MPa~120MPa。
2.2基础结构方案选择高层建筑常用的基础结构型式为桩基础,本工程岩土工程勘察报告中建议基础型式采用预应力管桩基础或人工挖孔桩基础。
①采用预应力管桩基础,以强风化花岗岩为桩端持力层,由于场地基岩埋深相对较浅,地下室开挖后,最短有效桩长仅为2m左右,且场地局部地段在残积层中存在中风化岩孤石,对预应力管桩施工带来困难。
基础筏板设计分析
基础筏板设计分析摘要:根据筏板基础变形的特点,主要讲述了筏板基础的变形验算和不均匀沉降的受力特点,并提出了“板式筏基+独立柱基”的基础设计理念,不仅可以避免不均匀沉降而且经济效益显著。
关键词:筏板基础; 承载力;沉降观测;变形计算中图分类号:s611 文献标识码:a 文章编号:一、筏板基础埋深及承载力的确定天然筏板基础属于补偿性基础,因此地基的确定有两种方法。
一是地基承载力设计值的直接确定法。
它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值,并采用原位试验(如标惯试验、压板试验等)与室内土工试验相结合的综合判断法来确定岩土的特征。
二是按照补偿性基础分析地基承载力。
例如:某栋地上28层、地下2层(底板埋深10米)的高层建筑,由于将原地面下10m厚的原土挖去建造地下室,则卸土土压力达180kpa,约相当于11层楼的荷载重量;如果地下水位为地面下2m,则水的浮托力为80kpa,约相当于5层楼的荷载重量,因此实际需要的地基承载力为14层楼的荷载,即当地基承载力标准值f≥250kpa时就能满足设计要求,如果筏基底板适当向外挑出,则有更大的可靠度。
二、天然筏板基础的变形计算地基的验算包括地基承载力和变形两个方面,尤其对于高层或超高层建筑,变形往往起着决定性的控制作用。
目前的理论水平可以说对地基变形的精确计算还比较困难,计算结果误差较大,往往使工程设计人员难以把握,有时由于计算沉降量偏大,导致原来可以采用天然地基的高层建筑,不适当地采用了桩基础,使基础设计过于保守,造价提高,造成浪费。
采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同,这是受多种因素的影响造成的。
这种理论的假定条件遵循虎克定律,即应力—应变呈直线关系,土体任何一点都不能产生塑性变形,与土体的实际应力—应变状态不相一致;利用公式计算的建筑物沉降量只与基础尺寸有关,而实测沉降量已受到上部结构与基础刚度的调整。
浅谈筏板基础设计
浅谈筏板基础设计摘要:筏板基础因具有埋深深、刚度大、整体型强、抗震能力好等优点而被广泛应用,鉴于关于筏板基础设计的理论不是太完整而存在许多设计不合理的地方,简要介绍了建筑基础选用筏形基础的优势,从筏板类型、厚度、地基计算模型、内力分析、构造要求等方面阐述了筏形基础结构设计,并对其在具体工程实例中的应用进行了说明,为类似项目的基础设计计算积累了一定经验。
关键词:筏板基础;建筑;设计引言随着现代产业化的发展,高层建筑如雨后春笋办涌现出来。
建筑物高度的增加,引起水平荷载产生的弯矩饿剪力迅速增大,导致倾覆力距成倍增长,甚至起着控制设计的作用。
因此,基础设计就显得至关重要,需要根据上部结构形式,建筑场地的工程地质条件、施工条件、材料供应条件及其他相关条件进行综合考虑。
筏板基础由整块钢筋混凝土平板或板与梁等组成。
这类基础,整体性好,抗弯刚度大,可调整和避免结构物局部发生显著的不均匀沉降。
筏板基础在许多结构类型中得到广泛应用,无论是多层还是高层建筑,也无论是住宅还是公建等商业建筑。
筏板基础刚度大,整体性好,根据上部结构形式分为板式和梁式。
在大型商业建筑中,因柱网较大,上部建筑荷载较大,常常采用梁式筏板;而小型公建或者低层住宅可以采用板式。
不同形式有不同的设计计算方法,规范也有相应的规定与构造。
笔者通过不同结构类型的筏板设计,简单介绍一下筏板基础的设计。
1.筏板基础的选择依据基础选型除了应满足现行规范允许的沉降量和沉降差的限制外,整体结构也应符合规范对强度、刚度和延性的要求,其中最主要的则是选型要安全可靠、经济合理。
筏板基础适用于低级很软弱,承载能力低,而上部结构传来的荷载又很大的情况,采用十字条形基础无法提供足够的底面积,而采用桩基又明显超过工程的实际需要。
一般的高层建筑,常需在地下设置车库、人防工程、设备用房和水池等地下室,并有其适用功能要求决定地下室的层高和层数,这就基本确定了基础底板的埋置深度,然后,在更加改深度结合建筑场地的岩土工程特点减小基础选型,研究选择筏板基础的可能性。
筏板基础选型和设计分析
筏板基础选型和设计分析作者:董为华刘华伟来源:《城市建设理论研究》2013年第09期摘要:建筑设计的人员之所以青睐筏板基础,是因为它具有良好的使用性能。
针对现在在高层建筑中使用比较频繁的筏板基础的一些设计进行详细的介绍,也希望能对相关人员在工作上一定的帮助。
关键词:高层建筑;筏板基础;设计中图分类号:[TU208.3] 文献标识码:A 文章编号:0 前言在目前的一些高层建筑的设计中,其中很重要的一步就的设计的基础选型,在选择的时候,我们需要综合考虑,要考虑到经济、技术等等这些方面的需求。
就目前来说,高层建筑的最底下那一部分,通常都是被设计者设计为地下停车场的,这样子就不允许当中设计过多的墙体,像箱型这样的基础就不适合了;筏板基础在施工过程中,是相对来说比较简单的,它不仅能够满足地基的承受能力,又可以满足到人们对地下大空间的需求,因此也等到了许多高层建筑设计师和人员的青睐,让它也成为了高层建筑中相对来说比较理想的一种基础建筑形式,被广泛地应用到各种高层的建筑当中。
1 高层建筑筏板基础承载力以及埋深的确定目前,我国大中型城市用地普遍紧张,城市中的高层建筑比较密集,因而必须设置水池、设备用房、人防工程以及车库等地下室,并根据其功能的具体要求来确定建筑物地下室的层数和层高,这就相应的确定了基础需要的埋深,之后根据基础的埋深以及建筑场地土层的特点来选择基础的类型,分析是否可以使用天然筏板基础。
因为地区的地下水位较高以及地下室需要一定的埋置深度,天然筏板基础又是补偿性的基础,所以在确定地基时可以有两种办法:一是根据地基承载力的设计值来确定。
它是依照有关的设计规范并结合地基承载力的标准值,对宽度和深度进行必要的修正后得到地基承载力的设计值,使用实验室内的土工试验与压板试验、标贯试验等原位试验相结合,进而判断出高层地基下岩土的性质;二是根据补偿性基础的特点来分析地基的承载力。
2 计算筏板基础变形量建筑设计中,地基验算主要包括变形量的验算和地基承载力验算,而在超高层或者高层建筑中,起着决定性控制作用的是地基的变形量验算。
浅谈筏板基础设计的方法及注意事项
浅谈筏板基础设计的方法及注意事项摘要:建筑物地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。
而筏板基础能很好的将地基承载力充分的发挥的同时,又能使沉降不均匀得到良好的调整,因此筏板基础被广泛应用于诸多的结构类型中。
本文就筏板基础设计的方法及筏板基础设计中的相关注意事项进行了一些浅析。
关键字:筏形基础;筏形基础设计;筏板;基础随着我们国家经济水平的不断提高,近些年来,国家的建筑行业也蓬勃发展起来。
建筑设计的推陈出新和建筑使用性能的不断扩大,无论是从建筑的数量上还是质量上都对建筑行业提出了新的要求。
筏板基础也理所当然的成为人们关注的对象,越来越多的被人们所认识和研究。
筏板基础从传统的应用于大型高层的建筑开始,到现今在一些纷繁复杂的小型建筑中也得到重视,其地位和分量也不断增加,所以,我们非常有必要对筏板基础设计的方法进行探讨。
一、筏板基础由于建筑物的地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。
而筏板基础不仅充分发挥了地基的承载力,也使沉降不均匀得到良好的校正,这也是筏板基础能够广泛应用于诸多结构类型之中的原因。
筏板基础刚度大,整体性好,根据上部结构形式划分,筏板基础的构造形式主要可分为两种:平板式筏板基础和肋梁式筏板基础。
在柱网相对较大的大型商业建筑施工中,往往建筑的上部所要承受的荷载最大,所以我们通常会选择肋梁式筏板基础。
而平板式筏板基础则被广泛的应用在小型公共建筑或者是低层住宅建筑。
而近些年来,平板式筏板基础因其施工简单的特点,在高层建筑中也得到广泛的应用。
高层建筑的地下室通常被拿来建造地下的车库,因为此,这样的建筑是不被允许过多的设置内墙的,从而对箱型基础,限制了其使用。
而筏板基础因其能满足停车库对空间的使用要求,而成为较理想的基础型式。
二、筏板基础埋深及承载力的确定在城市区域,基础筏板的预埋深度取决于所需建造的建筑物地下室的层数多少和每层的高度。
筏板基础设计之沉降计算原理
筏板基础设计之沉降计算原理
筏板基础设计中的沉降计算原理是非常重要的,它涉及到土壤力学和结构工程的知识。
首先,让我们从土壤力学的角度来看。
筏板基础是一种承载结构荷载的基础形式,它通过分散荷载到较大的土体面积上来减小地基承载压力,从而减小地基沉降。
沉降计算的原理主要基于以下几个方面:
1. 土体压缩特性,土壤是一个多孔介质,当外部荷载作用于土体上时,土颗粒之间会发生压缩,导致土体沉降。
通过对土体的压缩性质进行实验和理论分析,可以得到土体的沉降特性,从而进行沉降计算。
2. 应力传递原理,筏板基础通过较大的接触面积将荷载传递到土体上,使得地基承载压力得到分散。
在沉降计算中,需要考虑到荷载在土体中的传递过程,以及不同深度处的土体应力分布情况,从而评估地基的沉降情况。
3. 土体的本构关系,土体的本构关系描述了土体的应力应变特性,通过本构关系可以得到土体的压缩模量、剪切模量等参数,从而进行沉降计算。
在结构工程中,沉降计算还需要考虑到筏板基础与上部结构的相互影响,以及不同荷载组合下的沉降情况。
此外,还需要考虑到地下水位变化、地基加固等因素对沉降的影响。
综上所述,筏板基础设计中沉降计算的原理涉及到土壤力学、结构工程以及工程实践经验等多个方面的知识,需要综合考虑土体的力学特性、结构荷载、地下水位等因素,以及进行合理的理论分析和实验验证,才能得到准确可靠的沉降计算结果。
筏板基础设计要点及计算示例
420KN 0kpa 475KN 650KN
C35
平筏板厚
柱截面 500*500mm 600*600mm
地基净反力
N max
1200KN 1370KN
地基净反力
N max
1350KN 1500KN
8.荷载和配筋:
8.1.筏板底板:
2 应该用净反力 (扣除基础自重) 。 板的手算计算方法: 单向板, 2 端简支时: M中 =PL / 8, j 2 按塑性内力重分布,弯矩调幅方法,当两端固定或连续时: M固 =M中 =PL /16 。一端固定 j 2 2 或连续,一端简支时, M固 =M中 =PL /14 。悬挑板: M固 =PL / 2。 j j
5.平筏板满足冲切时最大柱轴力设计值
由于公式比较复杂,暂且举出一些例子(平筏板抗冲切不同于梁筏板和柱帽,它是要 求产生的剪应力 板能抵抗的剪应力,单位为 kN / m2 ,并且一般是柱子向下轴力远远大于 冲切破坏椎体内的地基净反力设计值时才会产生冲切破坏, 也就是一般假设柱子轴力小, 根 本不会发生什么冲切破坏;计算外力产生的剪应力的公式中 Fl =柱下轴力设计值-(柱长+2 筏板 ho )*(柱宽+2 筏板 ho )*地基净反力;而筏板能抵抗的最大剪应力只与混凝土强度等 级有很大的关系,C35 的筏板能抵抗的最大剪应力为 1091 kN / m2 ) C30.
平筏板厚 1000mm 柱子截面 500*500mm 600*600mm 地基净反力 最大轴力设计值 地基净反力 最大轴力设计值
6300KN 0kpa 6800KN 500kpa
高层住宅楼筏板基础的设计
高层住宅楼筏板基础的设计在现代城市的建设中,高层住宅楼如雨后春笋般拔地而起。
而作为支撑这些高楼大厦的重要基础结构,筏板基础的设计至关重要。
筏板基础具有整体性好、能有效调整不均匀沉降等优点,在高层住宅楼的建设中得到了广泛应用。
一、筏板基础的概念与特点筏板基础,简单来说,就是一块像筏子一样的钢筋混凝土板,将整个建筑物的底面积全部覆盖,把建筑物的荷载均匀地传递到地基上。
其主要特点包括:1、整体性好:筏板基础能够将上部结构的荷载均匀地分布到整个基础底面,有效地减少了不均匀沉降的发生。
2、稳定性高:由于基础面积大,对地基土的承载力要求相对较低,能够适应较软弱的地基条件。
3、抗渗性能强:对于地下水位较高的地区,筏板基础可以有效地抵抗地下水的渗透,保证建筑物的安全性。
二、高层住宅楼筏板基础设计的考虑因素在设计高层住宅楼的筏板基础时,需要综合考虑多个因素,以确保基础的安全性、经济性和合理性。
1、上部结构的荷载准确计算上部结构传递到基础的竖向荷载和水平荷载是设计的关键。
这包括建筑物的自重、使用活荷载、风荷载、地震作用等。
不同的荷载组合会对筏板基础的尺寸和配筋产生重要影响。
2、地质条件地质勘察报告提供的地基土的物理力学性质、承载力特征值、地下水位等信息是设计的基础。
根据地质条件,选择合适的基础持力层,并确定地基的处理方式。
3、沉降控制高层住宅楼由于高度较大,荷载较重,对沉降的要求较为严格。
设计时需要通过合理的基础尺寸和配筋,控制建筑物的沉降量和差异沉降,避免因不均匀沉降导致结构开裂和损坏。
4、抗浮设计在地下水位较高的地区,建筑物可能会受到地下水的浮力作用。
此时,需要进行抗浮设计,确保筏板基础能够抵抗地下水的浮力,保证建筑物的稳定性。
5、温度应力由于筏板基础的混凝土体积较大,在施工过程中会产生较大的温度应力。
设计时需要采取相应的措施,如设置后浇带、添加膨胀剂等,减少温度裂缝的产生。
三、筏板基础的设计计算1、地基承载力计算根据地质勘察报告提供的地基土参数,按照相关规范和公式,计算地基的承载力。
筏板基础模板
筏板基础模板
筏板基础是一种常见的基础形式,它通常用于轻型建筑物的基础支撑。
下面我们将详细介绍筏板基础的模板设计及施工要点。
首先,筏板基础的模板设计需要遵循一定的规范。
在进行模板设计时,首先需要根据建筑物的结构荷载和基础地质条件确定筏板的尺寸和形式。
一般情况下,筏板的厚度通常为150mm至300mm,可以根据实际情况进行调整。
其次,根据建筑物的平面尺寸确定筏板的外形尺寸,保证筏板的尺寸能够完全覆盖建筑物的承载范围。
最后,根据设计要求确定筏板的钢筋布置和混凝土浇筑顺序,确保筏板的受力性能满足要求。
其次,筏板基础的模板施工要点需要引起我们的重视。
在进行筏板基础的模板施工时,首先需要对模板支撑进行检查,确保模板支撑结构稳定可靠。
其次,需要根据设计要求进行模板的搭设和固定,保证模板的准确性和稳定性。
在进行混凝土浇筑前,需要对模板进行检查,确保模板表面平整、无裂缝和渗漏现象。
在进行混凝土浇筑时,需要控制浇筑速度和均匀性,避免混凝土的分层和渗漏。
最后,在混凝土初凝后,需要及时拆除模板,并对筏板表面进行养护,以保证筏板的质量和使用性能。
总的来说,筏板基础的模板设计和施工要点对于建筑物的安全和稳定具有重要的意义。
只有严格按照设计要求进行模板设计和施工,才能保证筏板基础的质量和可靠性。
希望本文的介绍能够对大家有所帮助,谢谢阅读。
筏板基础设计方法及构造要求
筏板基础设计⽅法及构造要求前提条件:1.上部结构的计算可以提供荷载和凝聚到基础顶⾯的刚度;2.有完整准确地地质报告输⼊,并成功读⼊到合适位置。
基本参数基础埋置深度:⼀般应⾃室外地⾯标⾼算起。
对于地下室,采⽤筏板基础也应⾃室外地⾯标⾼算起,其他情况如独基、条基、梁式基础从室内地⾯标⾼算起。
⾃动计算覆⼟重:该项⽤于独基、条基部分。
点取该项后程序⾃动按20kN/m2的混合容重计算基础的覆⼟重。
如不选该项,则对话框中出现“单位⾯积覆⼟重”参数需要⽤户填写。
⼀般来说如条基、独基、有地下室时应采⽤⼈⼯填写“单位⾯积覆⼟重”,且覆⼟⾼度应计算到地下室室内地坪处,以保证地基承载⼒计算正确。
⼀层上部结构荷载作⽤点标⾼:即承台或基础顶标⾼,先进⾏估算,计算完成后进⾏修改。
该参数主要是⽤于求出基底剪⼒对基础底⾯产⽣的附加弯矩作⽤。
在填写该参数时,应输⼊PMCAD中确梁⽀座钢筋放⼤系数:1.0梁跨中钢筋放⼤系数:1.0梁箍筋放⼤系数:1.0梁主筋级别:⼆级或三级梁箍筋级别:⼀级或⼆级梁⽴⾯图⽐例、梁剖⾯图⽐例:按默认梁箍筋间距:200翼缘(纵向)分布钢筋直径、间距:8mm、200mm梁式基础的覆⼟标⾼:当不是带地下室的梁式基础时,此值为0;否则应填写地下室室内地坪标⾼。
该值⽤于判断梁式基础是否有地下室和计算地下室内覆⼟⾼度的数据梁设弯起钢筋: x板的参数:梁板混凝⼟等级:C30梁翼缘、板钢筋级别:⼀级或⼆级板钢筋归并系数:按默认板⽀座钢筋连通系数:按默认板⽀座钢筋放⼤系数:1.0板跨中钢筋放⼤系数:1.0柱下平板配筋模式:按默认梁施⼯图参数:对于独⽴基础(独⽴桩基承台)来说,如果在独基上架设连梁,连梁上有填充墙,则应将填充墙的荷载在此菜单中作为节点荷载输⼊,⽽不要作为均布荷载输⼊。
否则将会形成墙下条形基础,或丢失荷载。
选择PK⽂件、读取荷载、荷载编辑、当前组合、⽬标组合墙下条形基础可采⽤PM荷载或砖混荷载;柱下独基和桩承台采⽤尽量多的荷载组合;筏板和基础梁选相同⼯况荷载组合。
浅谈筏板基础设计
由于计算沉降量偏大 ,导致 原来 可 以采用天 然地 基 的高层
建筑 ,不适当地采用 了桩基 础 ,使基 础设 计过 于保 守 ,造 价提高 ,造成 浪费。采 用各 向同性 均质 线性 变形 体计算 模 型 ,用分层 总和法计 算 出的 自由沉 降量 往往 同实测 的地 基
变 形 量 不 同 ,这 是 受 多 种 因 素 的 影 响 造 成 的 :
维普资讯
2O 0.9N . O 7V 1 o3 3
林
业
科
技
情
报
・5 9・
浅 谈 筏 板 基 础 设 计
毛 潺
( 龙 江红兴 隆农 垦 宏 图建 筑 有 限公 司) 黑
[ 摘 要] 探 讨 了筏 板基 础的地基 承载力及 变形计 算方法, 并对筏板基 础的设计和 造型原则进行 了简述。 [ 关键 词] 筏 板基础 ; 变形 ; 计 设
A ifTak Bre l On f u a in sg Ra tFo nd to Dein
S f Gu g i i an hu t
( og rh etr Ld O ogi l gA cl r etm n, e og agPoic) H nt Ac icue t . f nx g n ut a S te et H inj n rv e u t H no ul l l i n
地基 回弹再压缩变形 不但不 应忽略 ,而应予 以重 视 和考虑
2 筏板 基础 的变形计算 地基 的验算应包括 地基承 载力 和变 形两 个方 面 ,尤其 对 于Байду номын сангаас层 或超高层建筑 ,变形往 往起 着决定性的控制 作用 。 目前 的理论水平可 以说对地基变 形的精确计算还 比较 困难 , 计算结果误差较大 ,往 往使工 程设 计人 员难 以把握 ,有时
高层建筑筏板基础结构设计要点分析与探讨
高层建筑筏板基础结构设计要点分析与探讨发表时间:2018-07-09T14:40:49.737Z 来源:《基层建设》2018年第13期作者:陆咏彬[导读] 摘要:本文通过工程实例对高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
广东建筑艺术设计院有限公司佛山分公司摘要:本文通过工程实例对高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
关键词:高层结构;结构选型;筏板基础;设计要点一、前言近年来,随着我国城镇化建设的快速发展,越来越多的高层建筑拔地而起,高层建筑区别于以往传统的建筑形式,具体表现在建筑材料的选择、建筑的结构设计、建筑施工的方案等,所以,在高层建筑前期工作中,加强基础设计环节,明确基础结构设计的要点,对高层建筑结构的各种体系安全才有保障。
某工程为高层商住楼建筑,设二层地下室作为车库(其中地下二层兼为核六级人防地下室),地上三十二层,总建筑面积约57000m²,建筑总高度99.95米。
本工程建筑结构的安全等级为一级,抗震设防烈度为6度,设计地震分组属第一组。
下面就对该高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
二、建筑基础结构选型本工程地基基础设计等级为甲级。
本工程地下二层,塔楼部分基础底面埋深约10.5米,满足规范对采用天然地基房屋1/15高度的埋深要求。
塔楼基底在绝对标高68.1米左右,持力层为强风化泥岩、粉砂岩⑦层,该持力层土质工程性质较良好,地基承载力较高,地基承载力特征值为300kPa。
经宽、深修正后的地基承载力特征值fa=530kPa,塔楼地上高32层,2层地下室,三层裙楼,标准层荷载按14.5kPa 考虑,其他按18kPa考虑,则塔楼基底平均压力约为14.5×30+18×5+1.8×25=570kPa,塔楼筏板每边悬挑2米可满足承载力要求。
裙楼基底在绝对标高69.6米左右,持力层为圆砾⑥,该持力层土质工程性质较良好,地基承载力较高,地基承载力特征值为350kPa,经宽、深修正后的地基承载力特征值fa=580kPa。
筏板基础的选型和设计
量, 因此实 际需要 的地基 承载力为 l 楼 的荷 4层 载。即当地基承载力标准值 f 5 k a ≥20 p 时就 能满
3 2
新疆化工
中一种方法进行沉降计算 。
21 0 1年第 1期
于其荷载大、 础宽 , 基 因而压缩层深度大 与一般 多层建筑 物不 同, 地基 不是均一持力层 。因此在
× 宽尺寸减小 、 刚度增大 , 这不仅 降低沉降变形的 挠曲程度 , 提高筏板 的抗 冲切能力 , 同时 , 低 了 减
板中钢筋应力 , 减少筏基 的配 筋量。为协调 各部 分的变形 , 使其趋于一致 , 还可通过变形验算调整
独 立柱 基 的 面 积 。既 满 足 结 构 使 用 要 求 , 达 到 又 相 当可观 的经济 效益 。
基微量隆起 。在实际施工 中回弹再压缩模量较难 测定和计算 , 从经验上 回弹量约为公式计算变形
量 1% ~ 0 。因此高层建筑 的实 际沉降观测结 0 3% 果将是上述计算值 的 1 1 . . ~13倍左右。应该 指
出高层 建 筑 基 础 由 于埋 置 太 深 , 基 回弹再 压 缩 地 变 形 往往 在 总 沉 降 中 占重 要 地 位 , 些 高层 建 筑 有
应 着 重考 虑 如下 问题 :
足设计要求 , 如果筏基底板适当向外挑出 , 则有更 大的可靠度 。
2 天然筏板基础的变形计算
地基的验算应包括地基承载力 和变形两个方 面, 尤其对于高层或超高层建筑 , 变形往往起着决
定性的控制作用。 目前的理论水平可 以说对地基
1 筏 板基础埋深及承载 力的确定
城市 由于用地紧张 , 高层建筑密集 , 因此常需
试验表明: 刚性筏板在试验荷 载下主要是 整 体沉降 , 挠曲变形极小 , 最大也未超过 3 0而有限 %; 刚度筏 板 基 础 则 除 了 整 体 沉 降 外 还 产 生 挠 曲 变
高层建筑筏板基础板厚设计浅见
7.8m,底板混凝土C30,如图l所示,其计算
反力是均匀分布的,这与实际情况不一致,文
过程如下:
献…中,尚东伟通过厚板的模型试验表明,柱
通过上部结构计算,柱子截面1200× 1200,砼C45,最大轴力设计值为24888kN, 取柱距的1/6为板厚试算,即h=1.4m,平均
下反力大于跨中反力,反力曲线呈波浪起伏, 筏板存在一定的局部弯曲,即实际的地基反 力应如图2所示。当然,其曲线分布的形状
FX=24888—393.9
X 4.22=17940kN
剪切验算的结果都比原设计节约。
抗冲切承载力=0.3ftUmho+0.8fy—
3.4在GBJ7川9第8.4.3条中规vAsv定u=0.,3×1.5×103×4×2.65×1.45+
“筏板厚度也可以根据楼层层数按照每层
0.8×310×103×10~6×60×754=18136kN
最大剪力V(即冲切力设计值)为:393.9×
的柱帽,或在底板底部局部加厚,或同时考虑
(8.1X 7.8—4.4 X 4.4)=17261kN,剪切承
加肋和底板局部加厚。
载力为:0.07fcUmho=0.07×15×103×4× 2.7×1.55=17902kN,满足要求。
从施工、经济、工期以及使用功能影响等 分析,如果假定基底反力不均匀分布,柱底和
(2),平板结构,板厚1.5m,在柱上板带3.2m
—4.194.1)=14426kN剪切承载力=0.07
宽度范围内加箍筋西12@150,共22肢,使柱
×15×103×4×2.6×1.4=15288kN>
上板带形成暗梁(宽3.2m),在柱脚处进行抗
14426kN,满足要求。
冲切验算:
某高层筏板基础设计实例
某高层筏板基础设计实例某高层筏板基础设计实例在建筑结构中,基础是最重要的组成部分之一,它承载建筑物的重量并将其传递到地面。
高层建筑的基础设计更加复杂和重要,因为它需要承受更大的负荷和外力。
因此,高层建筑基础设计需要更加精细和周密,以确保建筑物的安全和稳定性。
本文将介绍一个某高层筏板基础设计实例。
项目背景该项目是一座40层的商业大厦,位于某个南方城市的市中心地带。
土地基础为沉积性地层,上部为软黏土和砂土,下部为硬黏土和砾石。
地下水位约为3.5m,在雨季期间可能会上升至1.5m以下。
由于建筑体量巨大,对基础的要求是极高的。
设计过程基础设计应该以地勘、勘察报告、基坑以及现场监测为基础。
设计人员在实地勘察后,决定采用筏板基础设计方案。
筏板基础是一种适用于大型结构的基础形式,可以在不同地质条件下使用。
其主要原理是通过增加基础的面积来降低地基承压,并在上下面板之间加入隔水层,以防止土层的涌流。
设计人员计算了筏板基础的尺寸,确定了设计方案。
具体设计要求如下:1.基础深度:基础底部埋深为15米;2.基础面积:为建筑体量70%的面积,并增加适当数量的基础孔;3.下层墙厚度:底下3到5层建筑的墙厚度为1.5m,用来承受上部建筑的重量,并同时固定筏板基础;4.筏板厚度:筏板厚度为1.5m,混凝土强度为C45;5.隔水层厚度:基础底部设置隔水层,厚度为0.5m;6.顶板厚度:顶板厚度为1.2m,混凝土强度为C60;7.基础孔深度和尺寸:基础孔深为15米,孔径为2.5米,相互间距为6米;8.基础斜向支撑:在打孔过程中,基础需斜向进行支撑,使用斜撑固定孔内壁。
设计结果经过计算,筏板基础的面积为7100平方米,孔的数目为23个。
同时,为了保障施工进度和质量,设计人员提出以下建议:1.对施工现场进行充分调研和分析;2.采用现场测试测定孔壁承载能力;3.定期监测设计参数,如孔壁抗力、基础变形等。
结论某高层建筑筏板基础设计是一个很好的实践案例。
高层建筑结构筏板基础设计
浅析高层建筑结构筏板基础设计【摘要】近年来,随着我国经济建设形势及科技的迅猛发展,高层建筑发展十分迅速,而在高层建筑设计过程中,基础的分析和设计是高层建筑整体结构设计中一个极其重要的环节,对高层建筑本身及其周围环境的安全至关重要。
在各种复杂的地质条件下建造高层建筑,必须经济合理地做好基础设计。
本文对高层建筑结构筏板基础设计进行了分析,以期对相关从业人员有所借鉴意义。
【关键词】高层建筑;筏板基础;设计一、常见的高层筏板基础类型高层建筑基础选型是整个结构设计中的一个重要组成部分,直接关系到工程造价、施工难度和工期,当地基很软弱,承载能力低,而上部结构传来的荷载又很大,以致于十字条形基础还不能提供足够的底面积时,可采用钢筋混凝土筏板基础。
常见的高层建筑筏板基础类型有梁板式筏板基础及平板式筏板基础:1、梁板式筏板基础梁板式筏板基础由地梁和基础筏板组成,地基梁的布置与上部结构的柱网设置有关,地基梁一般沿柱网布置,底板为连续双向板,也可在柱网间增设次梁,把底板划分成较小都矩形板。
梁板式筏基具有:结构刚度大,混凝土用量少,但同时存在筏基高度大,受地基梁板布置的影响,基础刚度变化不均匀等特点。
2、平板式筏板基础平板式筏基由大厚板基础组成,常用的基础形式有:等厚的筏板基础、局部加厚的筏板基础等,平板式筏基适用于复杂柱网结构,具有基础刚度大,受力均匀等特点,但也存在,超厚度板混凝土的施工温度控制要求高,混凝土用量大等不足。
二、高层建筑结构筏板基础设计思路《高层建筑混凝土结构技术规程》规定,高层建筑应采用整体性好、能满足地基的承载力和建筑物容许变形要求并能调节不均匀沉降的基础形式。
筏形基础以其良好的受力特点和明显都施工优势被广泛用作高层建筑的基础结构,是高层建筑采用较多的一种基础形式。
下面本文主要对梁筏板基础设计思路进行了介绍:1、梁板式筏板基础埋深及承载力的确定城区由于用地紧张,高层建筑密集,因此需设置车库、人防工程、设备用房和水池等地下室,并由其使用功能要求决定地下室的层高和层数以及上部结构的高度,这就基本确定了基础底板的埋置深度,然后,根据该深度结合建筑场地的岩土工程特点进行基础选型,研究选择天然筏板基础的可能性。
筏形基础设计常见问题分析
地基与基础Foundation and Basement 建筑技术开发Building Technology Development第47卷第15期2020年8月筏形基础设计常见问题分析王海强郭水平2(1.中国城市建设研究院有限公司,北京100120;2.中国五洲工程设计集团有限公司,北京100053)[摘要]随着城市的不断发展,土地资源的日益紧张,为充分发挥土地单位面积利用率,建筑的高度也开始逐渐增加。
从最初的多层建筑为主,慢慢发展到以高层建筑为主。
而筏形基础以其整体性好、刚度大、并能调节不均匀沉降的特点,成为高层建筑常用的基础形式。
结合实际工程来分析平板式筏形基础设计的主要问题及软件计算中的问题及注意事项。
[关键词]平板式筏形基础;冲切;基床系数;抗浮[中图分类号]TU47[文献标志码]A[文章编号]1001-523X(2020)15-0144-02Analysis of Common Problems in Raft Foundation DesignWang Hai-qiang,Guo Shui-ping[Abstract]With the continuous development of the city and the increasing tension of land resources,in order to give full play to the utilization rate of land per unit area,the height of the building began to increase gradually.From the initial multi-storey building, slowly developed to high-rise buildings.The raft foundation has become a common foundation form of high-rise buildings because of its good integrity,large rigidity and ability to adjust uneven settlement.This paper combines the actual engineering to analyze the main problems of the flat raft foundation design and the problems and precautions in the software calculation.[Keywords]flat raft foundation;punching;bed coefficient;anti-floating1冲切设计平板式筏形基础由大厚板基础组成,常用的基础形式有等厚筏形基础、局部加厚的筏形基础和变厚度的筏形基础等。
浅谈筏板基础与独立基础的异同——某楼盘基础设计技术分析
浅谈筏板基础与独立基础的异同——某楼盘基础设计技术分析摘要:独基加防水板基础具有传力明确,构造简单,方便施工,经济实用等优点,因此,在工程设计中是首选的基础形式。
关键词:结构设计;地基基础;筏板基础某楼盘位于江门市港口路与迎宾大道交汇处西北,属于珠江三角洲冲击平原地貌,地貌为剥蚀残丘及丘间洼地;场地西侧原为丘间洼地,东侧原为小山丘,经人工挖土、填土整平,地面标高为4.80~6.76m。
6#7#楼以及商业综合楼位于场地东侧。
其工程地质条件较简单,地基上覆盖的素土层厚度较小,属建筑抗震一般地段,场地土类型为中硬土~坚硬土,场地类别为Ⅰ类,设计特征周期值0.25s。
地质勘察报告建议采用天然地基浅基础或人工挖孔桩基础。
地基类型不同,结构设计的经济性差别明显,一般情况下,采用天然基础时经济型最好,并以天然基础—地基处理—桩基础的顺序确定地基基础形式。
考虑到经济性和施工的便利性,决定6#7#和商业综合楼采用天然地基浅基础,选用持力层为强风化层,承载力特征值fa=600kPa,基准基床系数Kv1=60MN/m2。
我们首先考虑到的是使用最常见的柱下独立基础。
(图一)但是在实际设计的过程中发现,6#7#是18层的高层住宅楼,其剪力墙柱距离基本在2.5m~4m之间,而且墙柱之间布置很不规则。
如果按柱下独立基础布置,相邻基础之间基本上会连在一起。
而商业综合楼最高为14层,墙柱距以8m为主,墙柱布置比较规矩,所以仍适合用独立基础(如图二)。
而6#7#只能另外再选基础形式。
6#7#虽然柱网不规则,但是通过计算复核发现,其形心和重心X方向基本在同一个点,Y方向偏心228mm,根据偏心距验算公式:e=228 <0.1*W/A=0.1*((1/6)*b*h*h)/(bh)=0.0167h=0.0167*24677=412,可知该偏心仍满足规范要求。
可见从整体上来说6#7#墙柱布置受力均匀。
适合采用平板式筏板基础(见图一)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
筏板基础设计分析1 筏板基础埋深及承载力的确定天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法.它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度.2天然筏板基础的变形计算地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的.(1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致;(2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ]采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同;(3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调整.采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹再压缩变形往往在总沉降中占重要地位, 有些高层建筑若设置3~4 层(甚至更多层) 地下室时, 总荷载有可能等于或小于卸土荷载重量, 这样的高层建筑地基沉降变形将仅由地基回弹再压缩变形决定. 由此看来, 对于高层建筑在计算地基沉降变形中, 地基回弹再压缩变形不但不应忽略, 而应予以重视和考虑.高层建筑箱型基础与筏板基础的计算与一般中小型建筑的基础有所不同, 如前所述, 高层建筑除具有基础面积大、埋置深, 尚有地基回弹等影响. 有时将基础做成补偿基础, 在这种情况下, 将附加压力视为很小或等于零, 这与实际不符. 由于基坑面积大, 基坑开挖造成坑底回弹,建筑物荷重增加到一定程度时, 基础仍然有沉降变形, 即回弹再压缩变形. 为了使沉降计算与实际变形接近, 采用总荷载作为地基沉降计算压力比用附加压力P 0 计算更趋合理, 且对大基础是适宜的. 这一方面近似考虑了深埋基础(或补偿基础) 计算中的复杂问题, 另一方面也解决了大面积开挖基坑坑底的回弹再压缩问题. 因此《高层建筑箱形与筏形基础技术规范》(JGJ 6—99) 除规定采用室内压缩模量ES 计算沉降量外, 又规定了按压缩模量E 0 (采用野外载荷试验资料算得压缩模量E 0, 基本上解决了试验土样扰动的问题, 土中应力状态在载荷板下与实际情况比较接近) 计算沉降量的方法. 设计人员可以根据工程的具体情况选择其中一种方法进行沉降计算.按平面布置规则, 立面沿高度大体一致的单幢建筑物, 当基底压缩土层范围内沿竖向和水平方向土层较均匀时, 基础的纵向挠曲曲线的形状呈盆状形, 即“∪”状. 在研究建筑物荷载的水平分布规律时: 对于筏板基础, 可将筏板划分为许多小单元, 如果不考虑各小单元之间的相互影响, 单位面积承受的荷载重量(基底应力曲线) 与基础的纵向挠曲曲线的形状相吻合, 即也呈“∪”状. 这说明建筑物四周各点沉降量受到其它各点荷载的影响较小, 中部各点沉降量受到其它各点荷载的影响较大; 若将基础设计成整片筏板基础, 势必造成在相同的地基承载力下, 中部沉降量大, 而四周沉降量较小, 基底土变形不相协调.试验表明[ 4 ]: 刚性筏板在试验荷载下主要是整体沉降, 挠曲变形极小, 最大也未超过3‰; 而有限刚度筏板基础则除了整体沉降外还产生挠曲变形, 筏板刚度不同, 挠曲程度也不同.在筏板厚度相同的情况下, 随着长×宽(以矩形为例) 的增加, 筏板的刚度随之降低.因此设计中可选取“板式筏基+ 独立柱基”相结合的基础形式, 即中部(电梯井等剪力墙集中处) 用筏基, 四周柱基础采用独立基础或联合基础. 使筏板的长×宽尺寸减小、刚度增大,这不仅降低沉降变形的挠曲程度, 提高筏板的抗冲切能力, 同时, 减低了板中钢筋应力, 减少筏基的配筋量. 为协调各部分的变形, 使其趋于一致, 还可通过变形验算调整独立柱基的面积.既满足结构使用要求, 又达到相当可观的经济效益.在基础选型设计中, 应结合工程的具体情况, 考虑多方面的因素影响, 充分利用天然地基的承载能力, 通过比较“整片筏基”与“板式筏基+ 独立柱基”的工程造价. 以上2 种不同基础形式, 后者较前者节省约30%~40% 的费用, 经济效益显著.当由于地层分布不均匀、上部结构荷载在筏板基础上分布不均匀而引起筏板基础各部分的差异沉降较大时, 可综合考虑采用以下处理措施:(1) 将出露地质较差的土层挖出一部分, 换填低强度等级的素混凝土形成素混凝土厚垫块, 以改变和调整地基的不均匀变形. 也可以采用“换填法”, 垫层采用碎石、卵石等材料, 经碾压或振密处理, 提高基础的承载能力;(2) 调整上部结构荷载或柱网间距, 减小基底压力差;(3) 调整筏板基础形状和面积, 适当设置悬臂板, 均衡和降低基底压力;(4) 加强底板的刚度和强度, 在大跨度柱间设置加强板带或暗梁等.3筏板基础的结构设计筏板基础的主要结构形式有平板式筏基和肋梁式筏基, 包括等厚度或变厚度底板和纵横向肋梁. 一般情况下宜将基础肋梁置于底板上面, 如果地基不均匀或有使用要求时, 可将肋梁置于板下, 框架柱位于肋梁交点处. 在具体筏基设计时应着重考虑如下问题:(1) 应尽量使上部结构的荷载合力重心与筏基形心相重合, 从而确定底板的形状和尺寸.当需要将底板设计成悬挑板时, 要综合考虑上述多方面因素以减小基础端部基底反力过大而对基础弯距的影响; (2) 底板厚度由抗冲切和抗剪强度验算确定. 柱网间距较大时可在柱间设置加强板带(暗梁加配箍筋)来提高抗冲切强度以减少板厚, 也可采用后张预应力钢筋法来减少混凝土用量和造价. 决定板厚的关键因素是冲切, 应对筏基进行详细的冲切验算;(3) 无肋梁筏板基础的配筋可近似按无梁楼盖设柱上板带和跨中板带(倒楼盖法) 的计算方法进行, 精确计算可用有限元法;对肋梁式筏基, 当肋梁高度比板厚大得较多时, 可分别计算底板和肋梁的配筋,即底板以肋梁为固定支座按双向板计算跨中和支座弯矩, 并适当调整板跨中和支座的配筋;(4) 构造配筋要求: 筏板受力筋应满足规范中0. 15%的配筋率要求, 悬挑板角处应设置放射状附加钢筋等. 设计人员往往配置受力钢筋有余, 构造钢筋却配置不足.4筏板基础抗浮锚杆的设置不少设计人员担心地下水位对底板的浮托力而设置抗拔锚杆, 在这里作如下分析和讨论.(1) 施工过程中浮托力的产生是由于基坑内积水(雨水和施工用水或地下水渗透) 所致;浮托力的大小与地下室的体积和基坑内积水高度有关. 因此, 只要能在地下室施工过程中有序排水或限制水位, 在基础底板底以下就不会产生浮托力.(2) 地下室上浮是因为地下室结构及上部结构的荷载重量不足以克服地下水的浮力, 当筏板基础底板上的结构重量大于实际上浮力后, 整个基础结构就能稳定. 因此在地下室和地面上相应有限几层的结构完成后, 就可以克服地下水的上浮力, 不需要在整个施工过程中对水位保持警惕.(3) 在计算地下水的浮托力时因注意: 筏基底板所承受的浮托压力只是底板与地基岩土的缝隙水压力、孔隙水压力, 板承受的浮托力与地基岩土的缝隙发育程度、孔隙率有关, 其实际压力强度小于静水压强. 其次, 底板的水承压面积并非全部. 由于底板与地基岩土已粘结成整体,因而能提供一定的粘结(抗拔) 力. 有关试验资料认为有效粘结面积占底板面积最小比率为K = 50% , 而粘结强度最低为250kpa (相当于毛石砌体与M 10 沙浆间的抗拉力). K 值是一重要因素, 应通过试验确定.浮托力的估算: 当K = 50%~100% 时,如地下水位为- 2. 0m 的10m 深地下2 层的基坑, 当底板厚度1 600mm , 顶板单位荷重为1 600kg, 则单位面积的浮托力T 和地下室结构重量W 分别为:T = 80×(50%~100% )= 40. 0 kpa~80. 0kpaW = 1. 6×25+ 16×2= 72. 0kpa从以上分析和讨论可见, 即使按K = 1 计算使浮托力T 最大, T 与W 的差值也只有8. 0kpa, 待地面上再施工1~ 2 层后, 就能保持整体平衡, 因此只要在地下室施工过程中能保持基坑干燥, 基础和地下室结构及地上2 层结构施工完成后, 就可放弃对地下水位的监测, 从施工过程来看是无需设置抗浮锚杆的.对于一些地下室较大、较深而地面以上结构层数不多的建筑, 则应根据上述总体平衡的原则计算确定抗浮锚杆. 对于地下室面积较大而主体塔楼面积较小的建筑, 应验算裙房部位的浮托力能否与结构自重相平衡, 否则也应设置抗浮锚杆.在底板配筋设计时应注意到由于水的浮托力使底板产生的弯矩, 当板下不设置抗浮锚杆时应全面考虑浮托力产生的弯矩, 当底板设置抗浮锚杆后则可适量减少底板的配筋量.5裙房基础的设计由于裙房的单柱荷载与高层主楼相比要小的多, 因此无需采用厚筏基础, 采用薄板配柱下独立扩展基础即可. 这里需要强调的是, 裙楼独立柱基的沉降与主楼筏板基础的沉降要相协调, 即控制沉降差在允许值范围内. 应根据公式计算主楼沉降量S , 再按各柱的荷载N 值和S值反算出各独立柱基础的面积A (尚应验选地基承载力).6结束语高层建筑基础选型是整个结构设计中的一个重要组成部分, 直接关系到工程造价、施工难度和工期, 因此应认真研究场地岩土性质和上部结构特点, 通过综合技术经济比较确定.高层建筑的基础选型应因地制宜, 除基础应满足现行规范允许的沉降量和沉降差的限值外, 整体结构应符合规范对强度、刚度和延性的要求, 选用桩基或筏基都不是绝对的, 而安全可靠、经济合理才是基础选型的标准.关于浅基础设计的一些概念和原则刚性基础的刚性角α是如何确定的?答:力在一种特定的材料中是按一定的角度分布与传递,这个角叫力的分布角,也叫这种材料的刚性角α.当刚性基础底部宽度超过刚性角控制范围时,基础底部就容易因受剪而开裂. 因此,刚性材料基础设计时为避免受拉或受剪而破坏必须使基底宽度在刚性角控制范围内.刚性角用b/h表示:砖石基础b/h =1:1.25--1.5混凝土基础b/h = 1:1第5.1.1条基础的埋置深度,应按下列条件确定:1.建筑物的用途,有无地下设施,基础和形式和构造;2.作用在地基上的荷载大小和性质;3.工程地质和水文地质条件;4.相邻建筑物的基础埋深;5.地基土冻胀和融陷的影响.第5.1.2条在满足地基稳定和变形要求的前提下,基础宜浅埋,当上层地基的承载力大于下层土时,宜利用上层土作持力层.除岩石地基外,基础埋深不宜小于0.5m.第5.1.3条高层建筑筏形和箱形基础的埋置深度应满足地基承载力,变形和稳定性要求.在抗震设防区,除岩石地基外,天然地基上的箱形和筏形基础其埋置深度不宜小于建筑物高度的1/15;桩箱或桩筏基础的埋置深度(不计桩度)不宜小于建筑物高度的1/18~1/20.位于岩石地基上的高层建筑,其基础埋深应满足抗滑要求.第5.1.4条基础宜埋置在地下水位以上,当必须埋在地下水位以下时,应采取地基土在施工时不受扰动的措施.当基础埋置在易风化的岩层上,施工时应在基坑开挖后立即铺筑垫层.第5.1.5条当在相邻建筑物时,新建建筑物的基础埋深不宜大于原有建筑基础.当埋深大于原有的建筑物时,两基础间应保持一定净距,其数值应根据原有的建筑荷载大小,基础形式和土质情况确定.当上述要求不能满足时,应采取分段施工,设临时加固支撑,打板桩,地下连续墙等施工措施,或加固原有的建筑物基础.第5.1.6条确定基础埋深应考虑地基的冻胀性.地基的冻胀性类别应根据冻土层的平均冻胀率η的大小,按本规范附录G.0.1查取联系梁一般用于采用柱下独立基础的框架结构中,可以减少基础间沉降差异,可以减少底层框架柱计算长度、柱间弯矩、层间位移,同时承载首层建筑墙体。