凝胶过滤层析
第五章 凝胶过滤层析
第五章 凝胶过滤层析 第二节 原 理
三、凝胶过滤的有关理论问题 ㈠ 凝胶介质的多孔结构和凝胶柱的体积参数 凝胶过滤介质是由多聚物交联形成的具有三维网状结构的 颗粒。 凝胶柱的体积参数包括: 总柱床体积(total volume, Vt),是凝胶经溶胀、装柱、 沉降,体积稳定后所占据层析柱内的总体积; 外水体积(outer volume, V0),是柱中凝胶颗粒间隙的液 相体积的总和; 内水体积(inner volume, Vi),是存在于溶胀后的凝胶颗 粒网孔中的液相体积的总和; 凝胶体积(gel volume, Vg),又称支持物基质体积 (matrix volume of the support, Vs)或干胶体积,是凝胶 颗粒固相所占据的体积,
第五章 凝胶过滤层析 第三节 凝胶过滤介质
一、凝胶过滤介质的基本结构 凝胶介质的基本结构都是具有多孔网状结构的水不溶性多 聚物。 理想的凝胶过滤介质必须符合以下条件: (1)有较强的机械稳定性,能满足层析过程所需流速, 在其标称的操作压力范围内不发生体积变化; (2)高化学稳定性,凝胶颗粒对分离过程中常用的试剂 和样品都保持惰性,在很宽的pH范围内保持稳定,耐去 污剂、有机溶剂,耐高温,从而方便清洗和消毒灭菌; (3)球形,颗粒直径均匀,呈现亲水性; (4)不带电荷,不对样品产生吸附作用。
第五章 凝胶过滤层析 第一节 概 述
凝胶过滤具有的优势 : (1)凝胶介质不带电荷,具有良好的稳定性,分离条件温 和,回收率高,重现性好; (2)通常情况下,溶液中存在各种离子、小分子、去污剂、 表面活性剂、蛋白变性剂等不会对分离产生影响,层析还能 在不同pH、温度下进行; (3)应用范围广,能分离的物质相对分子质量的覆盖面 宽,从几百到数百万,因此既适用于分子量较低的寡糖、寡 肽、聚核苷酸等生物小分子的分离,也适用于蛋白质、多糖、 核酸等大分子物质的纯化; (4)设备相对简单、易于操作、分离周期短、连续分离时 层析介质不需再生即可反复使用。
凝胶过滤层析
C. Sephadex G-150(分级范围, 5,000-400,000 D)
凝胶粒度的影响
凝胶粒度的大小对分离效果有直接的影响。一般来说,细粒凝胶柱 流速低,但洗脱峰窄,分辨率高,多用于精制分离或分析等。粗粒 凝胶柱流速高,但洗脱峰平坦,分辨率低,多用于粗制分离,脱盐 等。 在一般柱层析中,使用干颗粒直径在70μ m左右较合适。对于在水中 保存的凝胶如琼脂粉凝胶颗粒直径应在150μ m左右。凝胶颗粒大小 要均匀,这样流速稳定,效果较好
层析柱 ( a )自制简易层祈柱( 1 .玻璃 管;2.橡皮塞;3.尼龙网); (b)普通商品柱; (c)双底板层析柱(1.洗脱液进 出口; 2. 多孔底板; 3 .柱床; 4 .恒温水进口; 5 .恒温水出口; 6.可调节的塞子)
4、样品的准备
样品的粘度:粘度大产生介质吸附, 一般要求样品粘度小于0.01Pa· s
选择凝胶时,应使样品中大分子组的分子量大于其排阻限,而小 分子组的分子量小于渗入限。也就是说大分子的分配系数Kd=0, 小分子的Kd=1。这样能取得最好的分离效果。
例题:从某蛋白质溶液(MW=5500D)中除去无机盐,应选择下 列哪种凝胶最合适?
A. Sephadex G-15(分级范围, <1,500 D) B. Sephadex G-25(分级范围,1000-5000 D)
凝胶过滤层析
定义
凝胶过滤层析是生化分离常用色谱技术的一种。 利用具有网状结构的凝胶的分子筛作用,根据被分离物 质的分子大小不同来进行分离,也被称为体积排阻层 析(size exclusion chromatography)、分子筛层 析(Molecular Sieve Chromatography)、凝胶渗 透层析(Gel Permeation Chromatography)
凝胶过滤层析
持柱床面平整;
洗脱时流速不可太快或太慢;
透析袋中的液体不可装满,否则会将透析袋
胀破。
生物化学与分子生物学教研室
六、实验结果
磷酸盐的鉴定
试剂量
透析前杯内 蒸馏水 透析后杯内 蒸馏水
钼酸铵试剂
氨基萘酚磺酸试剂
反应结果
15滴 10滴
2滴 2滴
3滴 3滴
无 蓝色
生物化学与分子生物学教研室
蛋白质的鉴定
生物化学与分子生物学教研室
实验八
凝胶过滤分离高铁血红蛋白与 高铁氰化钾及透析技术
生物化学与分子生物学教研室
一、实验目的
掌握凝胶层析的原理
通过血红蛋白脱盐实验,初步掌握凝 胶层析技术 了解凝胶层析的应用
生物化学与分子生物学教研室
二、实验原理
凝胶过滤层析:
是利用具有网状结构凝胶的分子筛作用, 根据被分离物质的分子大小不同来进行分 离,也称分子筛层析、排阻层析。
层析管洗净、排出管中气泡
关闭出口
固定在铁架上 加入缓冲液没过砂芯
关闭出口
将凝胶缓缓注入管内
打开出口
自然沉降至柱床高度达20cm左右 不可露出床面 盖滤纸
生物化学与分子生物学教研室
装柱要求:
连续
均匀 无气泡
无分层
床面平整
生物化学与分子生物学教研室
3. 平衡
层析柱稳定后接储液瓶,打开出 口,用两倍于床体积的缓冲液洗脱平 衡(5-10min ),不可露出床面,关闭 出口
生物化学与分子生物学教研室
蛋白质的鉴定
试液量 透析前杯内蒸 馏水 透析后杯内蒸 馏水 透析袋内溶液 15%三氯醋酸 反应结果
40滴 40滴 10滴
凝胶过滤层析简介
凝胶
层析柱
加样洗脱
再生保存
柱的选择 柱的装填
同样直径的层析柱 同样长度的层析柱 同样体积的层析柱 理想的层析柱
长层析柱比短的分辨率高; 直径大的比小的分辨率高; 层析柱长的比短的分辨率高。 直径与长度之比是1:25-1:100
常用的支持物有棉花、玻璃纤维、玻璃珠、垂熔玻璃等。 空柱中应留约1/5的水或溶剂。 不断搅拌下使胶粒均匀沉降,使不发生凝胶分层和胶面倾斜。
测定分子量
当Kd=1时,洗脱体积Ve=V0+Vi,为全渗入。 当Kd=0时,洗脱体积Ve=V0,为全排阻。
0<Kd<1时,洗脱体积Ve=Vo+KdVi,为部分渗入。
|分类与性质
凝胶
分类性质
凝 胶 含大量液体的具三维网状开孔弹性结构的多聚体结构,
一般制成球状颗粒。
性
能 多孔、亲水、惰性、稳定、色谱性能好
凝胶过滤层析技术
凝胶过滤层析技术 content
凝胶过滤的基本原理
凝胶分类与性质 凝胶过滤的基本操作
凝胶过滤层析的应用
|基本原理
原理
分子
洗脱体积
分配系数
凝胶过滤法又称为分子筛层析、凝胶 层析或排阻层析,是利用凝胶 的网状结构根据分子大小进 行分离的一种方法。凝胶过
Services 滤所用的介质是由交联葡萄
| 基本操作
凝胶
层析柱
加样洗脱
再生保存
凝胶再生 凝胶保存
仅使用过一次的凝胶柱,通常进行更新平衡后 即可再次使用; 湿法:洗净的凝胶悬浮于蒸馏水和缓冲液中,应加入 适量的防腐剂如氯仿、0.05%NaN3或20%乙醇等,不 先用水反复进行逆向冲洗,再用缓冲液进行 然微生物将生长。 平衡,平衡毕,即可重复使用 干法:用浓度逐步升高的乙醇洗净凝胶,使其脱水收 把凝胶倒出,用低浓度的酸或碱按其预处理 缩,再抽干乙醇,用60-80℃的暖风吹干,在室温下 方法进行,处理后重新装柱即可再行使用 保存。 半缩法:是过度法,用60%-70%的乙醇使凝胶部分脱 水,然后封口,4 ℃保存。
凝胶过滤层析法
第12页/共82页
Sephadex经改性后比其母体具有更广泛的用途,适用于脂类、甾类、脂肪酸、激素、维生素及其他小分子的分级分离。
10
15-20
72
5
150
5000-400000
1000-150000
15
20-30
72
5
200
5000-800000
1000-200000
20
30-40
72
5
第10页/共82页
Sephadex的型号及性能
第11页/共82页
3、主要用途:孔径较小的凝胶主要用于脱盐、肽与其他小分子的分离;孔径较大的凝胶用于蛋白质与其他大分子的分离。DNA级的Sephadex适用于DNA或低聚核苷酸的分离。
峰宽:峰的基线宽度,通过层析峰两侧拐点作切线交于基线上的距离。
标准差:样品组分被带出层析柱的分散度,用σ表示。两侧拐点之间的距离为2个标准差。
Wb=4 σ=1.699W1/2
W1/2=2.354 σ
第46页/共82页
保留值:表示样品中各组分在层析柱中停留时间的长短或组分流出时所需流动相体积的大小。
第26页/共82页
第27页/共82页
Sephacryl系列产品性能
第28页/共82页
(五)、Superdex系列产品 是最新的凝胶过滤介质,属BioProcess介质中的一种。是将葡聚糖以共价键方式结合到高交联的多孔琼脂糖珠体上形成的复合凝胶。是将交联葡聚糖优良的过滤选择性及高交联的琼脂糖的物理化学稳定性集于一身的具有优良选择性和高分辨率的产品。可在0.1mol/LHCl或1mol/LNaOH溶液中40℃处理400小时而分辨率保持不变。
凝胶过滤层析原理
凝胶过滤层析原理凝胶过滤层析原理是一种生物化学技术,常用于对蛋白质、核酸等生物大分子的分离和纯化。
它基于凝胶的选择性,通过分子大小和形状的差异来实现生物大分子的分离。
凝胶是一种多孔结构的凝胶体,通常由聚丙烯酰胺或琼脂糖等高分子物质组成。
凝胶过滤层析的原理就是将待分离样品加入到一层固定在糖凝胶基质上的膜中,再通过注入缓冲液使其在凝胶中进行迁移。
不同大小和形状的分子会在凝胶中通过不同的速度、途径和距离进行移动和分离。
在凝胶层析中,分子的迁移受到凝胶孔隙大小的限制。
孔隙越小,分子迁移的速度就越慢,分子会在凝胶中停留更长的时间。
因此,分子的分离程度取决于其分子大小和凝胶孔隙大小之间的差异。
凝胶层析可以分为两种类型:凝胶过滤层析和凝胶渗透层析。
凝胶过滤层析是利用凝胶基质孔隙大小的差异实现不同分子的过滤和分离。
较大的分子被阻挡在凝胶中,而较小的分子可以通过凝胶基质的孔隙,从而实现分离。
凝胶渗透层析则是利用凝胶基质孔隙中水合盖层的形成来实现分离。
分子在凝胶中形成水合物,而较大的分子受到水合盖层的阻挡,不能通过凝胶孔隙,从而停留在凝胶中。
较小的分子则可以通过凝胶孔隙,由于不形成水合物,迅速透过凝胶,实现分离。
凝胶层析可以通过调节凝胶孔隙大小来实现对不同大小分子的选择分离。
通过改变凝胶基质的组成、交联程度和浓度,可以调节凝胶的孔隙结构。
此外,还可以根据分子的分子量进行凝胶层析的选择性分离。
在凝胶层析中,常用的缓冲液是通过控制pH和离子浓度来维持凝胶中分子的稳定迁移。
较小的分子通常迁移速度较快,而较大的分子迁移速度较慢。
根据样品的性质,可以调节缓冲液的pH和离子浓度,以改变分子的迁移速度,实现更好的分离效果。
总之,凝胶层析通过凝胶基质的孔隙大小和水合盖层的形成来实现对生物大分子的分离和纯化。
凝胶过滤层析和凝胶渗透层析是其中两种常用的方法。
通过调节凝胶基质的孔隙结构和缓冲液的组成,可以实现对不同大小分子的选择性分离。
生化实验报告凝胶过滤
一、实验目的1. 理解凝胶过滤的原理和操作步骤。
2. 掌握凝胶过滤在蛋白质分离纯化中的应用。
3. 通过实验验证凝胶过滤的分离效果。
二、实验原理凝胶过滤,又称分子筛层析,是一种基于分子大小差异的分离技术。
层析柱内填充带有小孔的凝胶颗粒,凝胶颗粒的孔径大小不同。
当含有不同大小蛋白质的混合溶液通过层析柱时,小分子蛋白质能够进入凝胶颗粒的孔隙中,从而在层析柱中停留时间较长;而大分子蛋白质则无法进入孔隙,在层析柱中的停留时间较短。
因此,不同大小的蛋白质得以分离。
三、实验材料1. 蛋白质混合样品(如血红蛋白、肌红蛋白等)2. 凝胶过滤柱(如Sephadex G-75)3. 缓冲液(如磷酸盐缓冲液)4. 离心机5. 分光光度计6. 移液器7. 玻璃棒8. 实验记录表格四、实验步骤1. 柱的制备:将凝胶过滤柱垂直放置,用缓冲液充分洗涤,去除凝胶颗粒表面的杂质。
2. 样品的制备:取一定量的蛋白质混合样品,用缓冲液稀释至适当的浓度。
3. 样品的加载:将样品缓慢加入层析柱的顶部,使其自然流下。
4. 洗脱:用缓冲液以恒定流速(如1 mL/min)洗脱层析柱,收集洗脱液。
5. 检测:使用分光光度计检测洗脱液中的蛋白质含量,记录不同洗脱峰的位置和峰面积。
6. 收集:根据蛋白质含量变化,收集不同洗脱峰的蛋白质溶液。
五、实验结果与分析1. 洗脱曲线:根据洗脱曲线,可以观察到不同大小的蛋白质在层析柱中的洗脱顺序。
通常,小分子蛋白质先被洗脱,而大分子蛋白质后被洗脱。
2. 蛋白质分离效果:通过比较不同洗脱峰的峰面积,可以评估凝胶过滤的分离效果。
峰面积越大,说明蛋白质含量越高,分离效果越好。
六、实验讨论1. 凝胶过滤是一种高效、简便的蛋白质分离纯化方法,广泛应用于生物化学和分子生物学领域。
2. 凝胶过滤的分离效果受到凝胶类型、柱径、流速等因素的影响。
在实际应用中,需要根据具体实验目的和样品特性选择合适的凝胶类型和操作条件。
3. 凝胶过滤可以与其他分离技术(如SDS-PAGE、电泳等)联合使用,进一步提高蛋白质的分离纯化效果。
凝胶过滤层析
三 操作步骤
1 凝胶的选择和预处理 本实验样品中含有分子量差异不大的多中组 分,其中目的物为分子量60kd 的可溶性蛋白 质,因此属大分子化合物的分离纯化,故选 用SephadexG-75。对球形蛋白质而言,其排 阻限为3000-70000。 称取40g SephadexG-75,加入10倍以上吸液 量的蒸馏水浸泡,在水浴加热时充分膨胀。
三 操作步骤
4 样品预处理及加样 蛋白质样品浓度一般以不大于4%为宜,溶剂为洗脱液。 如样品浑浊,应先过滤或离心除去颗粒后再上柱。 将床面多余的洗脱液除掉,吸至离层析床面2厘米处为止。 将出口打开,使床面的洗脱液流至1毫米,关闭出口。用 加样器将样品加入床表面1厘米左右,再打开出口,使样 品渗入凝胶内。样品加完后,用尽量少的洗脱液洗涤表 面1-2次。当样品完全渗入凝胶内后,再仔细加入洗脱液 至离床面3-4厘米处,即可接上洗脱瓶进行层析。
实验六 凝胶过滤层析
一 实验原理
凝胶层析是将样品混合物通过一定孔径的凝胶固定相, 由于在层析过程中样品不同的蛋白质具有不同的洗脱, 使不同的分子量的组分得以分离的层析方法。凝胶层 析的分离过程是在装有多孔物质如交联聚苯乙烯、多 孔玻璃、多孔硅胶、交联葡聚糖等填料的柱中进行的。 填料颗粒含有许多不同大小的孔隙。这些孔隙对于溶 剂分子而言是很大的,他们可以自由扩散出入。对于 溶质分子而言,如果分子大小合适时,则可以不同程 度地往孔隙中扩散,大分子量的溶质分子只能占有较 小的孔隙,而小分子量的溶质分子除能占住大孔隙外, 还可以占有另外一些起更小的孔隙。
一 实验原理
所以随着溶质分子尺寸的减小,其占有 孔隙体积迅速增加。当具有一定分子量 分布的高聚物溶液从柱中通过时,由于 溶质分子在孔隙中溶剂与颗粒溶剂之间 进行扩散分配的差异造成较小的分子在 柱中停留的时间比大分子停留的时间要 长,所以整个样品按分子大小顺序而分 开,最先洗脱出来是最大的分子。
凝胶过滤层析
因此分子的正常Kav值0~1之间,这种由小 到大的顺序决定了物质流出的顺序。
排阻极限: 是指不能进入凝胶颗粒孔穴内部 的最小分子的分子量。
排阻极限代表一种凝胶能有效分离的最大分 子量。
第二节 凝胶介质的分类和性质
1) 葡聚糖凝胶 ① G类葡聚糖(Sephadex) ② LH-亲脂型葡聚糖 ③ Sephacryl
凝胶过滤原理示意图
凝胶层析的几个概念
外水体积(Vo):是指凝胶柱中凝胶颗粒周围空间的体积,也就是凝胶颗粒间液体流 动相的体积。 内水体积(Vi):是指凝胶颗粒中孔穴的体积,凝胶层析中固定相体积就是指内水体 积。 基质体积(Vg):是指凝胶颗粒实际骨架体积。 柱床体积(Vt):是指凝胶柱所能容纳的总体积。 洗脱体积 (Ve):样品中某组分洗脱下来所需洗脱液的总体积。
(2) 琼脂糖凝胶
商品名 Sepharose(瑞典)
1)2B,4B等型号,数字代表颗粒中琼脂糖的百 分含量,数字越大,分离的范围越小 2)与1,3-二溴异丙醇反应生成交联琼脂糖, 稳定性提高;
Bio-gel A(美国)
一般有A0.5, A1.5等型号,数字×106代表分 离的分子量极限;
与葡聚糖凝胶和聚丙烯酰胺凝胶相比,琼脂糖凝 胶机械强度和筛孔稳定性好,洗脱速度可以快些
对于凝胶层析,分配系数实质上表示某个组分在内水 体积和在外水体积中的浓度分配关系。
Kav=(Ve-Vo)/(Vt - Vo)
它只与被分离物质分子的大小和凝胶颗粒孔 隙的大小分布有关,而与柱的长短粗细无 关,也就是说它对每一物质为常数与柱的 物理条件无关。
(1)Kav = 0时,Ve = Vo,意味着该分子完全被排 阻于凝胶颗粒之外,全部分布于流动相里,在固定相 分布为0,而最先流出。
凝胶过滤层析技术原理讲解
凝胶过滤层析技术原理讲解凝胶过滤层析技术原理讲解(附动画)原创作者;gfzhang凝胶过滤层析(Gel Filtration Chromatography,GFC)又称尺寸排阻层析(Size Exclusion Chromatography,SEC)凝胶渗透层析(Gel Permeation Chromatography,GPC)分子筛层析(Molecular Sieve Chromatography,MSC)注:在高效液相色谱分析中,用GFC或SEC表示凝胶过滤色谱或尺寸排阻色谱,流动相通常是水溶液;在有机高分子分析中,常用GPC表示凝胶渗透色谱,流动相通常是有机溶剂;在蛋白质分离纯化中用GFC或SEC表示凝胶过滤层析或尺寸排阻层析;本文以下内容均针对蛋白质分离,因此均以凝胶过滤层析(GFC)表示。
(1)分离机理GFC填料是由高分子交联而成、内部具有网状筛孔的固体颗粒,利用球状凝胶内的筛孔的大小,不同水力学半径的分子在通过填料时运行路径存在差异,利用该差异将不同大小的蛋白质进行分离。
蛋白质分子流过填充凝胶的管柱时,大分子无法进入凝胶筛孔,而只流经凝胶及管柱间的孔隙,因此总体运行路径较短,从层析柱入口到出口所需时间较短;较小的分子因为进入凝胶内的筛孔,总体运行路径较长,故在管柱内的停留时间较长;基于此原理可以区分大小不同的分子,亦可与已知大小的分子作比较而确定未知样品的分子量。
注1:球形蛋白与线性分子在凝胶过滤层析中的保留行为存在差异,因此使用球形蛋白制作的分子量标准曲线不能用于明胶多肽、淀粉或其它聚合物。
(2)应用范围A蛋白质分离,基于混合中不同蛋白质分子尺寸大小进行分离;B分子量测定,蛋白质分子量(球形)的对数与其在凝胶过滤层析时的保留时间呈线性关系; C样品脱盐或溶剂置换。
(3)填料要求一般状况下,用于制备凝胶过滤层析的填料应不吸附目标成份,所有欲分离物质均被洗脱出,这是凝胶层析法与其它层析法不同的地方。
第七章层析分离技术2——凝胶过滤层析
(1)介质不带电荷, 具有化学惰性,不与被分离物 质发生化学反应,条件温和,不会使物质变性;
(2)色谱介质不需再生,可反复便用; (3)分离效率高,回收率较高; (4)广泛应用于生物大分子的初级分离,脱盐等。 (5)分辨率较低,需采用细长柱。 (6)经过凝胶过滤色谱后样品被稀释,上样前需
显影响 其分离效果不受去污剂、促溶盐类、变性剂等影响 能在多种有机溶剂存在下使用
②Superdex
根据分级范围不同,可分为若干型号(见表5.6,P80), 其中,数字越大,孔径越大。 prep grade 颗粒较大。
Superdex peptide Superdex 30 prep grade Superdex 75、200 ( prep grade )
根据交联之前母胶中琼脂糖的含量不同,Sepharose CL系 列凝胶也有三种类型:Sepharose CL-2B、Sepharose CL4B和Sepharose CL-6B。
特点
Sepharose CL系列凝胶在颗粒直径、分级范围方面与Sepharose系 列完全相同
在pH稳定范围、机械强度(流速)及温度稳定性等方面得到了很 大的改进
二、凝胶过滤介质
2. 凝胶介质的种类
按基质组成主要可以分为 :
葡聚糖凝胶、琼脂糖凝胶、聚丙烯酰胺凝胶、聚苯乙烯 -二乙烯苯凝胶、二氧化硅凝胶,以及由两种物质混合 形成的如琼脂糖-葡聚糖混合凝胶、聚丙烯酰胺-葡聚糖 混合凝胶等。
按凝胶过滤层析能达到的柱效和分辨率又可分为:
标准凝胶介质:颗粒尺寸较大(一般为100~250 μm),机
(1)葡聚糖凝胶(Sephadex ) G-数字 联度越大,分级范围越小。)
凝
胶 过
(2)琼脂糖凝胶
不同分子量蛋白质的分离—凝胶过滤层析法
不同分子量蛋白质的分离—凝胶过滤层析法一、实验目的1. 了解凝胶柱层析的原理及应用。
2. 掌握凝胶柱层析的基本操作技术。
二、实验原理凝胶层析又称凝胶过滤,是一种按分子量大小分离物质的层析方法。
该方法是把样品加到充满着凝胶颗粒的层析柱中,然后用缓冲液洗脱。
大分子不能进入凝胶颗粒中的静止相中,只留在凝胶颗粒之间的流动相中,因此以较快的速度首先流出层析柱,而小分子则能自由出入凝胶颗粒中,并很快在流动相和静止相之间形成动态平衡,因此就要花费较长的时间流经柱床,从而使不同大小的分子得以分离。
凝胶过滤柱层析所用的基质是具有立体网状结构、筛孔直径一致,且呈珠状颗粒的物质。
这种物质可以完全或部分排阻某些大分子化合物于筛孔之外,而对某些小分子化合物则不能排阻,但可让其在筛孔中自由扩散、渗透。
任何一种被分离的化合物被凝胶筛孔排阻的程度可用分配系数Kav(被分离化合物在内水和外水体积中的比例关系)表示。
Kav值的大小与凝胶床的总体积(Vt)、外水体积(Vo)及分离物本身的洗脱体积(Ve)有关,即:Kav= (Ve-Vo)/(Vt-Vo)在限定的层析条件下,Vt和Vo都是恒定值,而Ve值却是随着分离物分子量的变化而变化的。
分离物分子量大,Kav值小;反之,则Kav值增大。
通常选用蓝色葡聚糖2000作为测定外水体积的物质。
该物质分子量大(为200万),呈蓝色,它在各种型号的葡聚糖凝胶中都被完全排阻,并可借助其本身颜色,采用肉眼或分光光度仪检测(210nm或260nm或620nm)洗脱体积(即Vo)。
但是,在测定激酶等蛋白质的分子量时,宜用蓝色葡聚糖2000测定外水体积,因为它对激酶有吸附作用,所以有时用巨球蛋白代替。
测定内水体积(Vi)的物质,可选用硫酸铵、N-乙酰酪氨酸乙酯,或者其它与凝胶无吸附力的小分子物质。
本实验使用血红蛋白(分子量64,500左右)和二硝基氟苯-鱼精蛋白(DNP-鱼精蛋白分子量12,000左右)的混合物,通过Sephadex G-25层析后达到分离。
凝胶过滤层析
凝胶过滤层析
凝胶过滤层析法是一种常用的实验室分析技术,它可以将混合溶液分离成不同的成分。
该方法主要利用一种含有疏水性的底物的结构性聚合物(凝胶)作为滤床,通过滤床上物
质的比较灵活的空间配比,利用物质的大小、形状、电荷、形态等分子特性的不同,进行
凝胶过滤层析,实现它们的分离和分离富集提纯加离。
凝胶过滤层析实验室分析中,根据物质与凝胶分子相互作用方式不同,分为离子交换
层析和非离子交换层析两种方式。
离子交换层析中,常用的凝胶有Amberlite XAD-2、Amberlite IR-120等;而非离子交换层析中,常用凝胶有Sephadex G-50、Sepharose 4B、Flysorb V、ComboGel等。
凝胶过滤层析实验属于实验离子交换,首先应正确配置实验设备,然后将原混合胶固
化成凝胶颗粒,最后将混合溶液放入过滤室中,并以规定的渗透速率和浓度进行过滤,
实现各成分的分离和分离技术的提纯。
通过此技术,不仅能有效地分离和提纯高浓度的有
用物质,而且可以获得具有不同性质的物质,获得较高纯度的有用物质。
凝胶过滤层析作为一种相对简单、快捷、可操作性强的实验方法,已广泛应用于药用
植物材料及药物分析、环境污染物实验分析、食品分析、细胞培养分析等领域,可满足实
验研究中分离富集提纯加离的需要。
凝胶过滤层析
【实验目的】掌握凝胶过滤层析的原理及操作方法【实验原理】凝胶过滤层析也称分子筛层析、排阻层析。
是利用具有网状结构的凝胶的分子筛作用,根据被分离物质的分子大小不同来进行分离。
层析柱中的填料是某些惰性的多孔网状结构物质,多是交联的聚糖(如葡聚糖或琼脂糖)类物质,小分子物质能进入其内部,流下时路程较长,而大分子物质却被排除在外部,下来的路程短,当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。
1、器材:核酸蛋白检测仪、层析柱、水浴锅、真空泵2、试剂:SephadexG-25【实验步骤】(1)凝胶的选择:在经过膜分离后,分子量<5000。
本次实验选用G-25葡聚糖凝胶(分离范围1000-5000)。
(2)柱子的选择:分子量<5000,膜分离后玉米肽中不同的小肽分子量比较接近,属于分级分离,所以选用50*1.6规格的柱子。
(3)干凝胶用量的计算:柱子体积/膨胀度,G-25膨胀度是4~6。
(4)凝胶的预处理:将干胶颗粒悬浮于5-10倍量的蒸馏水或洗脱液中充分溶胀,溶胀之后将极细的小颗粒倾泻出去。
可以用玻璃棒搅拌,但是不能剧烈,防止凝胶破裂。
多洗几次,尽量洗干净。
自然溶胀费时较长,加热可使溶胀加速,即在沸水浴中将湿凝胶浆逐渐升温至近沸,1-2小时即可达到凝胶的充分胀溶。
充分溶胀后,进行真空脱气。
(5)洗脱液的选择:本实验采用蒸馏水做洗脱液。
(6)凝胶的填充:将层析柱与地面垂直固定在架子上,然后将处理好的凝胶倒入柱子里,不能有气泡,要防止干柱。
(7)柱平衡:装柱完成后,用洗脱液来平衡柱子,直至核酸蛋白检测系统基线保持水平半个小时以上。
(8)上样:上样量在5%~10%。
(9)标准曲线的制作:本次实验用到还原型谷胱甘肽、氧化型谷胱甘肽、杆菌肽(氧化型谷胱甘肽(GSSG),M=612.63;还原型谷胱甘肽(GSH),M=307.33;杆菌肽M=1422.69)。
三种肽各称取0.03g 配成2ml,进行层析,在恒定流速下进行凝胶过滤层析。
凝胶过滤层析的基本操作
凝胶过滤层析的基本操作①凝胶介质的选择根据待分离蛋白质的分子量选择具有相应分离范围的凝胶。
对于未知蛋白,应选用分离范围较宽的凝胶,如用Sephacryl S-300。
对于分子量在3~5kDa的蛋白质,脱盐时应选用Sephadex G 50或G 25;而对于小分子量多肽物质(1~5kDa),脱盐则应选用Sephadex G 10 或 Sephadex G 15。
②凝胶介质的处理和装柱商品凝胶一般是干粉,使用前应用水溶胀。
一般情况下,1份凝胶加十份水,自然溶胀至少24小时。
溶胀后,将上清中细小的凝胶碎块弃除,重新搅拌悬起,待凝胶沉淀后,再次弃去凝胶碎块,重复数次,直到液相澄清为止。
为加速溶胀,可将凝胶煮沸一小时,该法同时具有灭菌的作用。
凝胶过滤层析柱的长与直径的比例应为50~100:1。
装柱时柱体要垂直,先在柱内加入约1 /3柱床体积的水或缓冲液,然后沿柱一侧将缓冲液中的凝胶(凝胶:缓冲液=3:1)搅拌均匀,缓慢并连续地一次性注入柱内。
装柱过程中,要避免柱内缓冲液流干,注意保持柱体凝胶均匀无气泡和裂缝。
装完后,可用2 ml蓝色葡聚糖溶液检查柱体的均匀性。
如柱体均匀,可见蓝色区带均匀平稳地通过凝胶,不留任何条纹。
要保持凝胶和缓冲液温度一致,以减少气泡的产生。
③上样凝胶过滤柱层析对于样品的体积有严格的要求。
样品体积不应超过柱床体积的1~5 %,如超过5 %,则会导致分离效率降低,低于1%则分离效率也不会提高,所以蛋白质样品应尽可能浓缩至10般0 mg/ml。
样品本身对洗脱液的相对粘度不能超过2,样品粘度过高,会使层析区带不稳定,或流速不规律,区带变宽或扭曲。
上样前样品应经0.2 Pm?孔径滤膜过滤或10,000 &离心5 min,去除残渣,加样时避免破坏柱体表面,保持其表面均匀平整。
④洗脱洗脱液应保持一定的离子强度以消除凝胶中含有的游离羧基和硫酸根等与蛋白质的结合作用。
Sephadex和Sepharose CL凝胶层析所用的洗脱液的离子强度至少应为0.02 mol/L;Sephacryl凝胶应为0.05 mol/L。
凝胶过滤层析的分类
凝胶过滤层析的分类
凝胶过滤层析是一种常用的生物制剂分离和纯化技术,主要用于生物大分子的精细纯化和结构研究。
它是利用小孔隙的凝胶纤维或颗粒作为固定相,在其内部通过物质的分子筛选和分散作用,实现对混合物中生物大分子的分离和纯化。
根据其分离原理、凝胶基质和实现机制,可以将凝胶层析分为以下几类:
1. 分子筛层析
分子筛层析是利用具有一定孔径分布的凝胶基质分离混合物中分子大小差异较大的生物大分子。
该技术通常使用具有不同孔径大小的凝胶柱,较小的分子可透过凝胶孔道而较大的分子则被阻滞并在凝胶孔道内停留,从而实现克隆、富集和大分子的纯化。
2. 逆流层析
逆流层析是将混合物中组分与凝胶基质相互作用后,通过逆向流动,选择性地读出不同组分。
该技术主要利用大分子与凝胶基质的亲和作用,通过连续返流溶液在凝胶柱内的往复流动,将具有亲和性的分子迅速疏水排放,从而实现分离和纯化。
离子层析是基于凝胶基质与某些离子的亲和性而实现分离纯化的技术。
离子层析通常采用常见的阴离子或阳离子的亲和柱,利用空间分离、分子交互作用和高效分离的特性。
离子层析是分离、富集和分析各种生物大分子分子的重要技术手段之一。
4. 亲和层析
亲和层析是基于凝胶基质与生物大分子之间的特异性结合而实现分离纯化的技术。
该技术利用富集目标大分子与凝胶基质亲和性较高的特点,通过配对反应的选择性结合,进一步提高其纯化效率和选择性。
综上所述,凝胶过滤层析的分类主要包括分子筛层析、逆流层析、离子层析和亲和层析。
随着生物制剂的应用不断扩大和完善,各类凝胶层析的应用和发展将日趋重要。