最新河南中考数学模拟试题
2024年河南省南阳市第三中学中考三模数学试题(含答案)
2024年南阳市三中三模数学(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列四个数中,绝对值最大的是( )A .2B .C .0D .2.如图所示的几何体是由6个大小相同的小正方体组成的,从左面观察该几何体,看到的图形为()A .B .C .D .3.国家统计局公布了2023年社会消费品零售情况,社会消费品零售总额比上年增长,约为亿元.的原数为( )A .470B .47000C .470000D .47000004.下列运算中,正确的是( )A .B .C .D .5.如图,已知直线m ,n 被一组平行线所截,交点分别为A ,B ,C 和D ,E ,F ,若,则等于( )A .B .C .D .6.一元二次方程根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根13-3-7.2%54.710⨯54.710⨯3243-=a a a 222()+=+a b a b 321÷=a a ()2224=aba b 123,,l l l 3,2==AB BC DEDF2325353222430-+=x x7.如图,线段DE 交线段BC 于点E ,,若,则等于()A .B .C .D .8.小卢在一次用频率估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A .掷一枚正六面体的骰子,出现2点的概率B .在“剪刀石头布”的游戏中,小李随机出“石头”的概率C .从1~10这10个整数中随机抽取1个整数,它能被5整除的概率D .任意买一张电影票,座位号是偶数的概率9.如图,C ,D 是上直径AB 两侧的两点,设,则等于()A .B .C .D .10.如图,抛物线与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③;④对于任意实数n ,.∥AB CD 140,360∠=︒∠=︒2∠10︒20︒30︒40︒O 25∠=︒ABC ∠BDC 85︒75︒70︒65︒2(0)=++≠y ax bx c a (3,0)-1=-x 20+=b a 42+<a c b 0++=a b c 2-≤+a b an bn正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共15分)11.定义一种运算__________.12.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这4本著作中随机抽取2本(先随机抽取1本,不放回,再随机抽取另1本),则抽取的2本恰好是《论语》和《大学》的概率是__________.13.已知点均在二次函数的图象上,则,的大小关系是__________(用“>”连接)14.如图,在中,,射线AB 交y 轴于点D ,交双曲线于点B ,C ,连接OB ,OC ,当OB 平分时,AO 与AC 满足,若的面积为4,则__________.15.如图,在中,,点P (点P 不与点A 、B 重合)为斜边AB 上的一个动点,过点P 作,垂足分别为点D 和点E ,连接DE ,P C 交于点Q ,连接AQ ,当为直角三角形时,AP 的长是__________.=-a bad bc c d ()()()1232,,1,,1,--A y B y C y 2$3(1)7=+-y x 123,,y y y △AOB =AO AB (0,0)=>>ky k x x∠DOC 23=AO AC △OBD =k △Rt ABC 90,60,2∠=︒∠=︒=ACB B BC ,⊥⊥PD AC PE BC △APQ三、解答题(本大题共8个小题,共75分)16.(8分)(1)计算:.(2)化简:.17.(9分)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大背少年带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生的成绩进行统计,按成绩(满分100分)分为5组(A 组:;B 组:;C 组:;D 组:;E 组:),并绘制了如下不完整的统计图.(1)本次调查一共随机抽取了__________名学生的成绩,频数分布直方图(图1)中__________,扇形统计图中A 组占__________.(2)补全学生成绩频数分布直方图.学生成绩频数分布直方图学生成绩扇形统计图图1 图2(3)若将竞赛成绩在90分及以上的记为优秀,求优秀学生所在扇形(图2)对应圆心角的度数.18.(8分)如图,已知及圆外一点A ,连接线段OA ,请用无刻度直尺和圆规完成操作并解答.(1)过点A 作出的两条切线AP ,AQ ,切点分别为点P 、点Q .(保留作图痕迹,不写作法和证明)2301|4|(1)20232-⎛⎫--+-⨯ ⎪⎝⎭2()(2)+-+a b b a b 7580≤<x 8085≤<x 8590≤<x 9095≤<x 95100≤<x =m % O O(2)在(1)的条件下,若点E 为优弧上不与端点重合的一点,且,求的度数.19.(9分)在学校的数学周活动中,李老师指导学生测量学校旗杆AB 的高度如图所示,在旗杆附近有一个斜坡,坡长米,坡度,小华在C 处测得旗杆顶端A 的仰角为,在D 处测得旗杆顶端A 的仰角为.求旗杆AB 的高度,(点A ,B ,C ,D 在同一平面内,B ,C 在同一水平线上,结果保留根号)20.(10分)随着国家乡村振兴政策的推进,某村的农副产品越来越丰富.为增加该村村民收入,该村计划定价销售某种土特产,他们把该土特产(每袋的成本是10元)进行4天试销售,日销售量y (袋)和每袋销售价x (元)的记录如下:时间第一天第二天第三天第四天元15202530袋25201510若试销售和正常销售期间,日销售量y 与每袋销售价x 的一次函数关系相同,请回答下列问题.(1)求日销售量y 与每袋销售价x 的函数关系式.(2)请你帮村民设计,每袋销售价定为多少元时才能使这种土特产每日销售的利润最大?请求出最大利润.(利润=销售额-成本)21.(9分)如图,一次函数与反比例函数的图象交于点轴于点C ,轴于点D .(1)填空:__________,__________,__________.(2)在第二象限内,x 取何值时,一次函数的值大于反比例函数的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若,求点P 的坐标.22.(10分)如图所示是某景区步行街的一个横断面为抛物线的拱形大门,点M 为顶点,其高为9米,宽OE 为18米,以点O 为原点,OE 所在直线为x 轴建立平面直角坐标系.矩形ABCD 是安装的一个“光带”,且点PQ64∠=︒PEQ ∠PAQ 10=CD 3:4=i 60︒45︒/x /y 12=+y x b (0)=<ky k x(4,),(1,2),--⊥A m B AC x ⊥BD y =m =b =k =△△PCA PDB S SA ,D 在抛物线上,点B ,C 在OE 上.(1)求该抛物线的函数表达式.(2)求所需的三根“光带”AB ,AD ,DC 的长度之和的最大值,并写出此时OB 的长.23.(12分)已知点E 是正方形ABCD 内部一点,且.①② 备用图【初步探究】(1)如图①,延长CE 交AD 于点P .求证:.【深入探究】(2)如图②,连接DB 并延长交BC 于点F ,当点F 是BC的中点时,求的值.【延伸探究】(3)连接DE 并延长交BC 于点F ,DF 把分成两个角,当这两个角的度数之比为时,请求出的值.参考答案一、选择题1.解:A .;B .;C .;D ..,∴四个数中绝对值最大的是.故选D .2.解:从左面看,底层是两个小正方形,上层的左边是一个小正方形.90∠=︒BEC △∽△BEC CDP CEBE∠BEC 1:2CE BE|2|2=1133-=|0|0=33-=∣∣10233<<< 3-故选B .3.解:,原数是470000.故选C .4.解:与不是同类项,不能合并,∴A 选项结论不正确,不符合题意;,∴B 选项结论不正确,不符合题意;,∴C 选项结论不正确,不符合题意;,∴D 选项结论正确,符合题意.故选D .5.解:,.,.故选C .6.解:,,∴方程没有实数根.故选D .7.解:,.,.故选B .8.解:A .掷一枚正六面体的骰子,出现2点的概率为,故此选项不符合题意;B .在“剪刀石头布”的游戏中,小李随机出“石头”的概率为,故此选项不符合题意;54.710470000⨯=34a 2a 222()2ab a ab b +=++ 32a a a ÷= ()2224ab a b = 3,2AB BC == 325AC AB BC ∴=+=+=123,3,2l l l AB BC ==∥∥ DE ABDF AC∴=22430x x -+= 2(4)4230∴∆=--⨯⨯<,140AB CD ∠=︒∥ 140C ∴∠=∠=︒360∠=︒ 2604020∴∠=︒-︒=︒1613C .从1~10这10个整数中随机抽取1个整数,它能被5整除的概率为,故此选项符合题意;D .任意买一张电影票,座位号是偶数的概率为,故此选项不符合题意,故选C .9.解法一:连接OC ,如图,,,,,解法二:是直径,,.故选D .10.解:抛物线的对称轴为直线,,,即,故①错误:由图象可知,时,,,即,故②正确;抛物线与x 轴交于点,其对称轴为直线,∴抛物线与x 轴交于另一点,,故③正确;由题意可知时,二次函数有最小值,∴无论x 取何值,二次函数值都大于,,整理得,故④正确.故选C .二、填空题20.210=1225ABC ∠=︒ 222550AOC ABC ∴∠=∠=⨯︒=︒180********BOC AOC ∴∠=︒-∠=︒-︒=︒111306522BDC BOC ∴∠=∠=⨯︒=︒AB 90ACB ∴∠=︒9065BDC CAB ABC ∴∠=∠=︒-∠=︒ 2(0)y ax bx c a =++≠1x =-12bx a∴=-=-2b a ∴=20b a -=2x =-0y <420a b c ∴-+<42a c b +< 2(0)y ax bx c a =++≠(3,0)-1x =-2(0)y ax bx c a =++≠(1,0)0a b c ∴++=1x =-y a b c =-+a b c -+2a b c an bn c ∴-+≤++2a b an bn -≤+11.解:,故答案为:.12.解:把《论语》《孟子》《大学》《中庸》分别记为A ,B ,C ,D ,共有12种等可能的情况,其中抽取的2本恰好是《论语》和《大学》的结果有2种,即AC ,CA ,抽取的2本恰好是《论语》和《大学》的概率是故答案为:.13.解:二次函数的图象开口向上,对称轴是直线,点在对称轴上,最小.点距离对称轴有个单位,点距离对称轴有个单位,.故答案为.14.解:作轴于M ,轴于N ,,.,=-a bad bc c d2sin 60=-︒2===∴21126=1623(1)7y x =+-1=-x 2(1,)B y -2∴y ()12,-A y 1(2)1---=()31,C y 1(1)2--=312∴>>y y y 312>>y y y ⊥BM x ⊥CN x = AO AB .∴∠=∠AOB ABO∴∠+∠=∠+∠AOD BOD OCB BOC ∠=∠ BOD BOC.,,.,.的面积为4,的面积为12.,,的面积为6,的面积为10,.设,则,,,解得,故答案为:.15.解:当时,如图,∴∠=∠AOD ACO ∠=∠ OAD CAO ∴△∽△AOD ACO 23∴==AD AO OA AC = AB OA 23∴=AD AB △OBD ∴△AOB 23= AO AC 23∴=AD AB ∴△BOC ∴COD 42105∴==B c X X 2,2⎛⎫ ⎪⎝⎭k B x x 5,5⎛⎫ ⎪⎝⎭k C x x 1,||2=+-==△△△△△梯形BOC BOM CON BOM CON BMNC S S S S S S k 1(52)225⎛⎫∴==+⋅- ⎪⎝⎭△梯形BOC BMNC k k S S x x x x 407=k 40790∠=︒APQ在中,,,,,当时,如图,,四边形DPE C 是矩形,.,垂直平分CP ,,综上所述,当为直角三角形时,AP 的长或故答案为:3或三、解答题16.解:(1)原式.(2)原式.17.解:(1)本次调查一共随机抽取的学生总人数为:(名),组的人数为:(名),.△Rt ABC 90,602∠=︒∠=︒=ACB B 30∴∠=︒BAC 2224∴==⨯=AB BC ∴===AC 3∴=AP 90∠=︒AQP ,,90⊥⊥∠=︒ PD AC PE BC ACB ∴∴=CQ QP 90∠=︒ AQP ∴AQ ∴==AP AC △APQ 44(1)11=-+-⨯=-222222=++--=a ab b ab b a 9624%400÷=∴B 40015%60⨯=60∴=m组的人数为20人,扇形统计图中A组占的百分比为:.故答案为:400,60,5.(2)E 组的人数为(人)补全学生成绒频数分布直方图如下:学生成绩频数直方图(3).答:优秀学生所在扇形对应圆心角的度数为.18.解:(1)如图所示,AP ,AQ 为所作.(2)连接PE ,QE ,如图所示,由圆周角定理可知:.,AQ 为的两条切线,,,.答:的度数为.A ∴20100%5%400⨯=44020609614480----=14480360201.6400+︒⨯=︒201.6︒2128∠=∠=︒POQ PEQ AP O ,∴⊥⊥OP AP OQ QA 90∴∠=∠=︒APO AQO 180********∴∠=︒-∠=︒-︒=︒PAQ POQ ∠PAQ 52︒19.解:过点D 作,垂足为E ,过点D 作,垂足为E .由题意得,坡长米,坡度,.设米,则米.在中,,,解得,米,米.设米,米.在中,,(米).在中,,米.,,解得:,米,旗杆AB 的高度为米.⊥DE BC ⊥DF AB ,==DF BE BF DE 10=CD 3:4=i 34∴=DECE 3=DE x 4=CE x △Rt CDE 5===CD x 510∴=x 2=x 8∴=CE 6==DE BF =BC y (8)∴==+=+DF BE BCCE y △Rt ABC 60∠=︒ACB tan 60∴=⋅︒=AB BC△Rt ADF 45∠=︒ADF tan 45(8)∴=⋅︒=+AF DF y=+ AB AF BF 86=++y 7=+y (21∴==+AB ∴(21+20.解:(1)依题意,根据表格中的数据,设日销售量y (袋)与销售价x (元)的函数关系式为,得解得故日销售量y (袋)与销售价x (元)的函数关系式为:.(2)依题意,设利润为w 元,得,得.,当时,w 取得最大值为225.故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.21.解:(1)一次函数与反比例函数图象交于点,,,故答案为:.(2)当时,一次函数的值大于反比例函数的值.(3)由(1)可知,一次函数.设P 点坐标为,和的面积相等,,解得,点坐标为.22.解:(1)由题意知,顶点,可设该抛物线的函数表达式为,=+y kx b 2515,2020,=+⎧⎨=+⎩k b k b 1,40,=-⎧⎨=⎩k b 40=-+y x 2(10)(40)50400=--+=-+-w x x x x 2(25)225=--+w x 10-< ∴25=x 12=+y x b (0)=<k y k x(4,),(1,2)--A m B 1412,2(1)2∴=-=-⨯=⨯-+k m b 15,2,22∴==-=m k b 15,,222-41-<<-x 1522=+y x 15,22⎛⎫+ ⎪⎝⎭t t △PCA △PDB 11115(4)1222222⎛⎫∴⨯⨯+=⨯⨯-- ⎪⎝⎭t t 52=-t ∴P 55,22⎛⎫- ⎪⎝⎭(9,9),(18,0)M E 2(9)9=-+y a x抛物线过原点,,解得,该抛物线的函数表达式为(2)设点A 的坐标为则,根据抛物线的轴对称性:质,可得,故,.,当米时,三根“光带”长度之和的最大值为米.23.(1)证明:四边形ABCD 是正方形,,.,,.(2)解:如图,作于G ,.四边形ABCD 是正方形,,,(0,0)O 2(09)90∴-+=a 19=-a ∴2211(9)9299=--+=-+y x x x 21,29⎛⎫-+ ⎪⎝⎭m m m 21,29===-+OB m AB DC m m ==OB CE m 182==-BC AD m 2222112294521822218999922⎛⎫∴++=-++--+=-++=--+ ⎪⎝⎭AB AD DC m m m m m m m m 209-< ∴92==OB m 452 90,∴∠=︒∥D AD BC ∴∠=∠CPD BCE 90∠=︒ BEC ∴∠=∠BEC D ∴△∽△BEC CDP ⊥EG BC 90∴∠=︒BGE 90,∴∠=︒=BCD CD BC ∴△∽△FGE FCD.,点F 是BC 的中点,.设,则,,,.,...,,(3)解:(方法一)如图,当时,即,.以BC 所在的直线为x 轴,CD 所在的直线为y 轴建立坐标系,设,,以BC 的中点W 为圆心,BC 为直径作圆W ,∴==EG FG EF CD FC DF90∠=︒ BEC 12∴===EF BF CF BC 1===EF BF CF 2,===CD BC DF 21∴==EG FG EG FG ∴==1CG CF FG ∴=-==90EGB EGC ∠=∠=︒ 90CEG ECG ∴∠+∠=︒90BEC ∠=︒ 90CEG BEG ∴∠+∠=︒BEG ECG ∴∠=∠BGE EGC ∴△∽△CE CG BE EG ===12BEF CEF ∠∠=::60CEF ∠=︒120DEC ∴∠=︒6BC CD ==(,)E x y,点E 在上,则,①.作等边三角形CDG ,作的外接圆V ,则点在上,则,②,由①②得,,.如图,当时,即,,则,同上作,作等边三角形CDV ,设,则,以V 为圆心、2为半径作,则点E 在上,同理可得90BEC ∠=︒ ∴W (3,0),(6,0)W B --222(3)3x y ∴++=CDG △V V CV =222((3)x y ∴+-=6x x y x =+=-CE BE ∴===:2:1BEF CEF ∠∠=60BEF ∠=︒30CEF ∠=︒150DEC ∠=︒W 2BC CD ==( 1.0),(2,0),W B V --V V 2222(1)1,((1)4,x y x y ⎧++=⎪⎨+-=⎪⎩222,x y x x ∴+=-=综上所述:.(方法二)如图,当时,即,设,分别延长CE ,BE ,分别交AD 于G ,交CD 于H ,,G ,D ,H ,E 共圆,,.,,.在中,,,,当时,即,同理可得:,,,CEBE ∴===CEBE =12BEF CEF ∠∠=::30BEF ∠=︒BC CD a ==180ADC HEG ∠+∠=︒ ∴30DGH DEH BEF ∴∠=∠=∠=︒DG ∴=BG BH ⊥ BCH CDG ∴≌△△CH DG ∴= Rt GDH △30DGH ∠=︒)CH a CH ∴=-CH ∴=tan CE CH CBH BE BC ∴∠===:2:1BEF CEF ∠∠=60BEF ∠=︒60DGH DEH ABE ∠=∠=∠=︒DH ∴=a CH ∴-=,综上所述:.CH∴=CEBE∴=CEBE=。
2024年河南省郑州市中原区郑州桐柏一中九年级中考三模数学试题
2024年河南省郑州市中原区郑州桐柏一中九年级中考三模数学试题一、单选题1.下列各数中最大的数是( )A .1B .CD .02.如下图所示的几何体的左视图为( )A .B .C .D .3.从河南省农业农村厅获悉,截至6月5日17时,我省已收获小麦7992万亩,约占全省种植面积的93.7%.当日投入联合收割机5.4万台,日收获小麦454万亩.“7992万”用科学记数法表示为( ) A .4799210⨯B .5799210⨯C .77.99210⨯D .87.99210⨯4.光线在不同介质中的传播速度不同,从一种介质射向另一种介质时会发生折射.如图是一块玻璃的a ,b 两面,且a b ∥,现有一束光线CD 从玻璃中射向空气时发生折射,光线变成DE ,F 为射线CD 延长线上一点,已知1135∠=︒,223∠=︒,则3∠的度数为( )A .20︒B .22︒C .32︒D .35︒5.《九章算术》有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”用现在的话说就是:“有几个人一起去买物品,每人出8元,多3元;每人出7元,少4元.问人数、物价各是多少?”设人数为x 人,物价是y 元,可列方程组( )A .8374y x y x -=⎧⎨-=⎩B .8374x y y x -=⎧⎨-=⎩C .8374x y x y -=⎧⎨-=⎩D .8374y x x y -=⎧⎨-=⎩6.如图,圆O 是ABC V 的外接圆,已知AB =45C ∠=︒,则圆O 的半径OA 的长为( )A B .1C D .27.数形结合是我们解决数学问题常用的思想方法.如图,一次函数=1y x --与y mx n =+ (m ,n 为常数,0m ≠)的图象相交于点(1)2-,,则不等式1x mx n --<+的解集在数轴上表示正确的是( )A .B .C .D .8.圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究,某学校进行校园文化建设,拟从以上4位数学家的画像中随机选用2幅,则其中至少有一幅是中国数学家的概率是( )A .16B .12C .56D .19.如图,在平面直角坐标系xOy 中,已知四边形OABC 为平行四边形,其中点()3,0A ,()1,4C ,M 为对角线OB 的中点.现将平行四边形OABC 绕原点O 顺时针旋转,每次转90︒,则第71次旋转结束时,点M 的坐标为( )A .32,2⎛⎫- ⎪⎝⎭B .()2,2-C .32,2⎛⎫- ⎪⎝⎭D .()2,2-10.某款纯电动汽车采取智能快速充电模式进行充电,当充电量达到电池容量的80%时,为保护电池,充电速度会明显降低.如图是该款电动汽车某次充电时,汽车电池含电率y (电池含电率=100%⨯电池中的电量电池的容量)随充电时间x (分钟)变化的函数图象,下列说法错误的是( )A .本次充电开始时汽车电池内仅剩10%的电量B .本次充电40分钟,汽车电池含电率达到80%C .本次充电持续时间是120分钟D .若汽车电池从无电状态到充满电需要耗电70千瓦时,则本次充电耗电63千瓦时二、填空题11.代数式3n 可表示的实际意义是.12.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为312a ,则a 的值为.13.某市中招体育考试规定:除耐力类的长跑为必考项目外,考生还需在“A .掷实心球”“B .立定跳远”“C .1分钟跳绳”“D .50米跑”这四个项目中选考两项.为了解学生选考项目的选择情况,随机抽取部分九年级学生进行调查,并将调查结果绘制成了统计图(部分信息不完整),请问在被调查的学生中选择“1分钟跳绳”的人数是.14.如图,在ABC V 中,1310AB AC BC ===,,以AB 为直径的O e 交BC 于点D ,O e 的切线DE 交AC 于点E ,则DE 的长为.15.在矩形ABCD 中,1AB =,E 为CD 的中点,取AE 的中点F ,连接BE BF ,,当BEF △为直角三角形时,BC 的长为.三、解答题16.(1)计算:112sin 452-⎛⎫︒ ⎪⎝⎭;(2)化简:()2(2)4x y x x y +-+.17.为了改进几何教学,张老师选择A ,B 两班进行教学实验研究,在实验班B 实施新的教学方法,在控制班A 采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2. 表1:前测数据表2:后测数据(1)A ,B 两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A ,B 两班的后测数据. (3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价. 18.如图,ABC 是一张锐角三角形纸片.(1)按下面的步骤完成尺规作图(保留作图痕迹,不写作法) ①作BAC ∠的平分线,交BC 于点D ;②作AD 的垂直平分线,分别交AB 、AC 于点E 和F . (2)连接DE ,若3AB =,4AC =,求DE 的长.19.小晃同学借助反比例函数图像设计一个轴对称图形.如图,正方形ABCD 的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,反比例函数ky x=的图象经过正方形的顶点()2,2A ,以点C 为圆心,CB 的长为半径作扇形»,BCD BD交AC 于点F ;以CF 为对角线作正方形CEFG ,再以点C 为圆心,CE 的长为半径作扇形ECG .(1)求反比例函数的解析式;(2)求¼EG 的长;(3)直接写出图中阴影部分面积之和.20.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15︒,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)身高208cm 的小杜,头部高度为26cm ,他站在离摄像头水平距离130cm 的点C 处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm 的小若,头部高度为15cm ,踮起脚尖可以增高3cm ,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm ,参考数据sin150.26,cos150.97,tan150.27,sin 200.34,cos200.94,tan 200.36︒≈︒≈︒≈︒≈︒≈︒≈)21.水龙头关闭不严会造成滴水.为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每5min 记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表中的一组数据.(1)探究:根据上表中的数据,拟用下面三个函数模型模拟水量y 与时间t 的关系:①my t=,②y kt b =+,③2y pt qt r =++,你认为选用函数_______(填序号)模拟最合理(不必说明理由),并求出相应的函数表达式和漏记的a 值; (2)应用:①兴趣小组用100mL 量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水1600mL ,请估算这个水龙头一天的漏水量可供一位成年人饮用多少天?(结果保留一位小数)22.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为348m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案,现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度12m ON =,拱高4m PE =其中,点N 在x 轴上,PE ON ⊥,OE EN =.方案二,抛物线型拱门的跨度8m ON '=,拱高6m P E ''=其中,点N '在x 轴上,P E O N ''''⊥,O E E N ''''=.要在拱门中设置高为3m 的矩形框架,其面积越大越好(框架的粗细忽略不计),方案一中,矩形框架ABCD 的面积记为1S ,点A 、D 在抛物线上,边BC 在ON 上;方案二中,矩形框架A B C D ''''的面积记为2S ,点A ',D ¢在抛物线上,边B C ''在ON '上,现知,小华已正确求出方案二中,当3m A B ''=时,22S =,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当3m AB =时,求矩形框架ABCD 的面积1S 并比较1S ,2S 的大小. 23.【综合与实践】综合实践课上,老师带领同学们研究“菱形背景下的旋转问题”. 问题情境:在菱形ABCD 中,60,ABC E ∠=︒为边AD 上一点(与A ,D 不重合),连接BE ,并将射线BE 绕点B 在平面内顺时针旋转,记旋转角为α 0°<α<360°.操作感知:(1)小华取60a =︒,如图1,射线BE 与射线AC 交于点F ,请你帮小华同学补全下面两个问题的答案:①线段BE 与BF 的数量关系是________________;②线段AB AE AF ,,的数量关系是________________.猜想论证:(2)小夏取120α=︒,如图1,射线BF 与射线DC 交于点F ,小夏在笔记本上记录了自己的思考过程:线段BE 与BF 的数量关系与(1)①相同…… 但线段AB AE AF ,,的数量关系好像不再成立……我发现线段AB AE CF ,,之间好像具有与(1)②类似的数量关系...... 请你帮小夏同学完成线段AB AE CF ,,之间数量关系的猜想并给出证明.拓展探究:(3)小梦测量得到2,3AB BE ==,如图2,在旋转过程中,设点E 的对应点为F ,当点F 落在菱形ABCD 的边或对角线所在直线上时,记点F 到直线BC 的距离为d ,请你帮d 的值.。
2024年河南省部分学校中考一模考试数学模拟试题(含答案)
2024河南中考仿真模拟试卷(一)数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分、共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中最小的数是( )A .B .0C .1D .2.记者从河南省文化和旅游厅获悉:2024年元旦假日期间,全省统计接待游客1613.7万人次,旅游收入78.7亿元.数据“78.7亿”用科学记数法表示为( )A .B .C .D .3.在学习数与代数领域知识时,小明对代数式做如图所示的分类,下列选项符合的是( )A.B .CD .4.由6个相同的正方体组成的立体图形如图所示,它的左视图是()A .B .C .D .5.图1是一位同学抖空竹时的一个四间,数学老师把它抽象成图2所示的数学问题:已知,,,则的度数是( )1-97.8710⨯87.8710⨯878.710⨯90.78710⨯3a b+3a b +2abAB CD ∥72A ∠=︒33E ∠=︒ECD ∠A .95°B .100°C .105°D .110°阅读下列信息,完成第6-8题:某中学积极落实国家“双减”教育政策,决定为九年级学生开设科技制作、厨艺交流、园艺设计、茶艺研修四项活动以提升课后服务质量.6.开展活动前,学校对学生的活动意向进行了调查(每人限选一项),得到的统计图如图所示.若九年级共有学生750人,则选择科技制作的人数比选择园艺设计的人数多()A .160B .210C .340D .4507.为培养青少年科技创新能力,科技制作实践活动设置了无人机、3D 动画、计算机编程三个项目组,若小明和小红都选择了科技制作活动,则他们被抽到同一个项目组的概率是( )A.B .C .D .8.小明同学设置了一个数值转换机,其原理如图所示,如果第一次输入x 的值为2,可以发现第一次输出的结果是1,第二次输出的结果是4,…,那么第2024次输出的结果是()A .1B .2C .3D .49.点,是抛物线上的两个点,且,则m 的值可以是( )A .4B .3C .2D .110.如图1,在中,,直线l 经过点A 且垂直于.现将直线l 以的速度向右匀速平移,直至到达点B 时停止运动,直线l 与边交于点M ,与边(或)交于点N .设直线l 移动的时间是,的面积为,若y 关于x 的函数图象如图2所示,则的周长为()12132349()12,A y ()24,B y 221y x mx =-+12y y >ABC △CA CB =AB 1cm/s AB AC CB ()s x AMN △()2cmy ABC △A .B ..C .D .二、填空题(每小题3分,共15分)11.已知x ,y 满足方程组则的值为______.12.请写出一个y 随x 的增大而减小的函数的表达式:______.13.如图,切于点A ,交于点C ,点D 在上,若,则的度数是______.14.如图,在扇形中,,点C ,D 分别在,上,连接,,点D ,O 关于直线对称,的长为,则图中阴影部分的面积为______.15.如图,在中,,,,的垂直平分线交于点E ,交于点D ,将线段绕点D 顺时针旋转,点C 的对应点为点F ,连接,.当为直角三角形时,的长为______.三、解答题(本大题共8个小题,共75分)16cm 17cm 18cm 20cm237,328,x y x y +=⎧⎨+=⎩x y +AB O BO O O 32ADC ∠=︒ABO ∠AOB 90AOB ∠=︒OAAB BC CD BC BD4πRt ABC △90ACB ∠=︒30A ∠=︒2BC =AB MN AB AC DC ()0180αα︒<<︒BF BD BDF △BF16.(10分)(1(2)下图是小航同学化简分式的解题过程,他的解答正确吗?如果正确,请予以评价;如果不正确,请写出正确的解题步骤.解:.17.(9分)为了解双减政策实施以来学生的作业时长,某学校数学兴趣小组调查了七、八年级部分学生完成作业的时间情况,并对其调查数据进行整理和分析,共分四个时段(x 表示作业完成时间,单位:min ,x 取整数):A .;B .;C .;D ..完成作业时间不超过的学生为时间管理优秀者.现将调查数据绘制成统计表和如图所示的不完整的统计图.时间/min频数/人百分比510%12a b 54%612%合计c100%(1)表中______,______,______,补全频数分布直方图;(2)此次调查中,大多数学生完成作业的时间段是______;(3)这所学校七、八年级共有2200人,试估算七、八年级时间管理优秀的学生共有多少人?18.(8分)在如图所示的网格中,每个小正方形的边长均为1.(1)在图1中作等腰,满足条件的格点C 有______个,请在图中画出其中一个.(2)在图2中,只用一把无刻度直尺,在线段上求作一点D ,使得,并保留作图痕迹。
2024年河南省中考数学模拟卷 含答案
2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
2024年河南省九年级中考数学模拟试卷(六)
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
2023年河南省中考数学模拟试卷(经典三)及答案解析
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
河南省中考数学模拟测试卷-附参考答案与解析
河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。
河南省郑州市2024年中考模拟数学试题(含答案)
郑州市名校中考模拟数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个正确的.1.在0、3-、13-、3这四个数中,最小的数是………………………………()A .0B .3-C .13-D .32.如图是由长方体和圆柱体组成的几何体,则它的左视图是……………()A B C D 3.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷、用科学记数法表示3830000是()A .63.8310⨯B .60.38310⨯C .73.8310⨯D .70.38310⨯4.如图,已知AB CD ,将一块直角三角板按如图的位置放置,使直角顶点E 在直线CD 上,若130∠=︒,则2∠的度数为…………………………………………()第4题图第6题图A .60︒B .50︒C .40︒D .30︒5.化简2111m m m -⋅+的结果为…………………………………………………()A .1m m +B .11m m -+C .1m m -D .1m m +6.如图,四边形ABCD 内接于O ,AB 是O 的直径,点E 在O 上,且125ADC ∠=︒,则BEC ∠的度数是……………………………………………………………()A .25︒B .55︒C .45︒D .35︒7.已知关于x 的一元二次方程21202402024x mx --=,则该一元二次方程的根的情况是………………………………………………………………………………()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.“花花牛”和“生生”是河南两大牛奶品牌.现有4盒两种品牌的牛奶,其中2盒“花花牛”,2盒“生生”,随机抽取2盒,至少有一盒是“花花牛”的概率是…()A .12B .23C .34D .569.如图,等边ABC 的边长为2cm ,点P 从点A 出发,以1cm /s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm /s 的速度沿AB BC-向点C 运动,到达点C 停止,设APQ △的面积为()2cm y ,运动时间为()s x ,则下列最能反映y 与x 之间函数关系的图象是……………………………………………………………()A B C D 10.如图,点E 是边长为8的正方形ABCD 的边CD 上一动点,连接AE ,将线段AE 绕点E 逆时针旋转90︒到线段EF ,连接AF ,BF ,AF 交边BC 于点G ,连接EG ,当AF BF+取最小值时,线段EG 的长为…………………………………………………()A .B .7C .9D .203二、填空题(每小题3分,共15分)11.学校购买了一批文具,共a 套,每套有b 本笔记本,将这批文具的一半捐给贫困地区的学生,捐出的笔记本有本.12.已知二元一次方程组325234a b a b +=⎧⎨+=⎩,则a b -=.13.为了调查某校5000名学生对“中国梦”的了解程度,随机抽取部分学生进行调查,并结合数据作出如图的扇形统计图.根据统计图提供的信息,估计该校“不太了解”的学生共有名.第14题图第15题图14.如图所示,点P 为O 外一点,过点P 作O 的切线PA ,PB ,点A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,过点C 作CD PO ⊥,交PO 的延长线于点.D 已知6PA =,8AC =,则OC 的长为.15.如图,正方形ABCD 的边长为8,点E 为BC 边上一点,且2BE =,点F 为AB 边上的中点,连接EF ,以EF 为一条直角边向右侧作等腰Rt EGF ,且使90EFG ∠=︒,连接CG ,则CG 的长是.三、解答题(本大题共8小题,共75分)16.(1)(5分)计算:1113-⎛⎫--+-- ⎪⎝⎭(2)(5分)化简:211x x x -++17.(9分)在2023年国际数学日当天,甲、乙两所学校联合举办九年级数学知识竞赛.为了解两校学生的答题情况,从中各随机抽取20名学生的得分,并对这些数据进行整理、描述和分析,下面给出部分信息.【信息1】两校学生得分的数据的频数分布直方图如下图所示:(数据分成4组:2040x ≤<,4060x ≤<,6080x ≤<,80100x ≤≤)【信息2】其中乙校学生得分在6080x ≤<这一组的数据如下:6868707373747676777879【信息3】两组样本数据的平均数、中位数如上表所示:根据所给信息,解答下列问题:(1)写出表中m 的值:m =______.(2)一名学生的成绩为70分,在他所在的学校,他的成绩超过了一半以上被抽取的学生,他是哪所学校的学生?请说明理由;(3)在这次数学知识竞赛中,你认为哪所学校的学生表现较好,为什么?18.(9分)如图,在Rt ABC △中,90ACB CD AB ∠=︒⊥,于点D .(1)尺规作图:作ACD ∠的平分线交AB 边于点E .(保留作图痕迹,不写作法,标明字母)(2)试猜想线段BE 与BC 之间的数量关系,并加以证明.19.(9分)如图,已知直线:4l y x =+与反比例函数(0)k y x x =<的图象交于点(1,)A n -,直线l '经过点A ,且与l 关于直线=1x -对称.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.(3)已知直线:4l y x =+与反比例函数(0)k y x x=<的图象交于点另一点B ,P 在在平面内,若以点A ,B ,P ,O 为顶点的四边形是平行四边形,请直接写出所有符合条件点P 的坐标.20.(9分)城市规划期间,欲拆除一电线杆AB ,如图,已知距电线杆AB 的水平距离14m 的D 处有一大坝,背水坡CD 的坡度1:0.5i =,坝高CF 为2m ,在坝顶点C 处测得电线杆顶点A 的仰角为30︒,DE 之间是宽为2m 的行人道,试问在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?(提示:在地面上,以点B 为圆心,以AB 为半径的圆形区域为危险区域)(参考数据:3 1.73≈)学校平均数中位数甲校68.3571乙校68.35m21.(9分)“洛阳地脉花最宜,牡丹尤为天下奇.”河南洛阳被称为牡丹之乡,每年,月份吸引着数万名游客前来观赏.洛阳市政府组织园林科技人员改良栽培技术,开展新品种培育,其中有A ,B 两种新品种牡丹,培育5棵A 品种牡丹,6棵B 品种牡丹需要900元,已知培育一棵A 品种牡丹比培育一棵B 品种牡丹少用40元.(1)培育每棵A 品种牡丹和每棵B 品种牡丹各需要多少元?(2)今年计划培育A ,B 两种牡丹共600棵,A 品种牡丹的数量不超过B 品种牡丹数量的3倍,其中培育A 品种牡丹x 棵,培育A ,B 两品种牡丹的总费用为y 元,求y 与x 的函数关系式及总费用的最值.(3)园林科技人员在培育过程中,A ,B 两种牡丹的成活率分别为80%和90%.今年计划培育A ,B 两种牡丹共600棵;要使这两种牡丹的总成活率不低于85%,至少应投入多少钱?请说明.22.(10分)随着社会的进步,科技的力量已融入到我们生活的方方面面.为提高校学生足球队的技术水平,数学兴趣小组对某一主力球员的射门能力进行了大量的测试,并对采集的数据进行汇总分析,得出如下结论:如图所示,该球员在离球门O 点18米远的B 处时将球踢出,球在离他10米远的A 处上升到最大高度为4米.据实验测算,足球在空中运行的路线是一条抛物线.(1)求该抛物线的解析式;(2)已知球门的高为2.44米(球门的上沿离地面的距离),请你帮忙计算一下,该球员要想一次性射门成功,他应该在离球门多远的范围内将球踢出.(答案精确到0.1米,6.2≈)23.(10分)综合与实践(1)【问题提出】如图1,在Rt ABC △中,90ACB ∠=︒,AC BC =,点D 为斜边AB 上一点,连接CD 并延长到点E ,使得DE DC =,过点E 作EF AB ⊥于点F .则AC 与EF 的数量关系为______.(2)【拓展应用】如图2,在ABC 中,5AC BC k ==,8AB k =,点D 为AB 边上一点,连接CD 并延长到点E ,使得12DE CD =,过点E 作EF AB ⊥,交直线AB 于点F①当点D ,F 位于点A 异侧时,写出AC ,AD ,DF 之间的数量关系,并说明理由;②当点D ,F 位于点A 同侧时,若6AD =,1DF =,请直接写出AC 的长.。
2024年河南省洛阳市伊川县中考一模数学试题(含答案)
2023 -2024学年第二学期九年级第一次大练习数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100 分钟。
2 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)1.下列各数中,最大的数是( ) A. -1 B.2 C.π D. 52.下列四件文物是洛阳博物馆的镇馆之宝,其中主视图和左视图一样的是( )3.2024 年春节假期,洛阳文旅火爆出圈,据统计,春节期间共接待游客1113.53万人次,旅游总收入82.93 亿元,将82.93 亿用科学记数法表示为( )A.8.293×10⁸B.8.293×10⁹C.82.93×10⁸D.0.8293×10'4.如图,AB 是⊙O 的直径,CD 是弦,若∠ABD =55°,则∠BCD 等于( )A.55°B.45°C.35°D.25°5.化简 4a +2+a ―2的结果是( )A .a 2a +2 B .a 2a 2―4 C .aa +2 D.16.将国际数学家大会的其中两个奖章正反两面的图案分别印在4张完全相同的空白卡片如图,现将4张卡片印有图案的一面朝下洗匀,从中随机抽取两张,则这两张卡片上的图案恰好是同一个奖章的正反面的概率是( )A. 12 B. 13 C. 14 D. 167.二次函数y =-x 2+(m ―2)x +m 的图像与x 轴交点的情况是( )A.没有交点 B.有一个交点 C.有两个交点 D.与m 的值有关8.如图,DE 与⊙O 相切于点 D ,交直径的延长线于点E ,C 为圆上一点, ∠ACD =600若DE 的长度为3,则BE 的长度为( )A. 2B. 3C.32 D.29.鹰眼系统能够追踪、记录和触测球的轨迹,下图为足球比赛中某一时刻的鹰眼系统预测画面,足球的飞行轨迹可看成抛物线,若把对应的抛物线的函数表达式设为 y =ax 2+bx +c (a ≠0)画 二次函数的y =ax 2+bx +c (a ≠0)图象时,列表如下:x …1234…y…1-3…关于此函数下列说法不正确的是(A.函数图象开口向下 B.当x=2时,该函数有最大值C.当x=0时,y=-3D.若在函数图象上有两点A (x 1,―4)B (x 2,―12则 x₁>x₂10.如图1,点E 从菱形ABCD 的顶点A 出发、沿A→D→C 以1cm/s 的速度匀速运动到点C 停止,过点E 作EF ∥BD,与边AB(或边BC)交于点F,图2是点E 运动时. △AEF 的面积y(cm²)关于点E 的运动时间t(s)的函数图象,当点E 运动3s 时。
2024年河南省洛阳市中考数学质检模拟预测题(解析版)
2024年河南省洛阳市中考数学质检试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列实数:,0,,其中最小的是( )A. B. 0 C.D. 【答案】A 【解析】【分析】根据实数大小比较的法则解答.【详解】解:∵,∴最小的数是,故选:A .【点睛】此题考查了实数的大小比较:正数大于零,零大于负数,两个负数绝对值大的反而小,熟练掌握实数的大小比较法则是解题的关键.2. 下列运算正确的是( )A. B. C. D. 【答案】D 【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】,故选项A 不合题意;,故选项B 不合题意;,故选项C 不合题意;,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.3. 数据显示,中国已实现“带动三亿人参与冰雪运动”的目标,全国冰雪运动参与人数达到3.46亿人.数1-12-1-12-1102-<-<<1-()2224a a -=-()222a b a b +=+()257a a =()()2224a a a -+--=-22(2)4a a -=222()2ab a ab b +=++5210()a a =22(24)()a a a -+--=-据“3.46亿”用科学记数法表示是()A. B. C. D. 【答案】B 【解析】【分析】根据科学记数法的定义即可得.【详解】3.46亿=故选:B .【点睛】本题考查了科学记数法,熟记科学记数法定义(将一个数表示成的形式,其中,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.4. 如图,直线,相交于点,,垂足为点.若,则的度数为( )A. B.C. D. 【答案】B 【解析】【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.5. 如果,那么代数式的值是( )的93.4610⨯83.4610⨯734.610⨯634610⨯8346000000 3.4610=⨯10n a ⨯110a ≤<n n a n AB CD O OE CD ⊥O 40BOE ∠=︒AOC ∠40︒50︒60︒140︒OE CD ⊥40BOE ∠=︒AOC ∠OE CD ⊥90COE ∠=︒40BOE ∠=︒180°180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒2210a a +-=224a a a a ⎛⎫⋅ ⎪-⎝⎭-A. B. C. 1 D. 3【答案】C 【解析】【分析】先将等式变形可得,然后根据分式各个运算法则化简,最后利用整体代入法求值即可.【详解】解:∵∴=====1故选C .【点睛】此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键.6. 如图,是半圆的直径,,是上两点,连接,并延长交于点,连接,,如果,那么的度数为( )A. B. C. D. 【答案】C 【解析】【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,3-1-221a a +=2210a a +-=221a a +=224a a a a ⎛⎫⋅⎪-⎝⎭-2242a a a a -⋅-()()2222a a aa a ⋅+--()2a a +22a a +BC O D E BCBD CE A OD OE 70A ∠︒=DOE ∠35︒38︒40︒42︒【详解】连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.7. 若关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. 且 D. 且【答案】A 【解析】【分析】本题主要考查一元二次方程根的判别式,掌握,方程有两个实根是解题的关键,由此即可求解.【详解】解:根据题意,,∴,故选:.8. “二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大暑”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()x 210x x k ++-=k 54k ≤54k >54k <1k ≠54k ≤1k ≠240b ac ∆=-≥()214110k ∆=-⨯⨯-≥54k ≤AA.B.C.D.【答案】C 【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:将“立春”、“立夏”、“秋分”、“大暑”的图片分别记为A 、B 、C 、D .根据题意,列表如下:AB C D A (A ,B )(A ,C )(A ,D )B (B ,A )(B ,C )(B ,D )C (C,A)(C ,B )(C ,D )D(D ,A )(D ,B )(D ,C )由表格可知,共有12种等可能的结果,其中抽到的两张卡片恰好是“立春”和“立夏”的结果有2种,故其概率为:.故选:C .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.9. 已知二次函数的图象如图所示,则一次函数的图象和反比例函数的图象在同一坐标系中大致为()2312161821126=2y ax bx c =++y bx c =+a b cy x-+=A. B. C. D.【答案】A 【解析】【分析】本题考查了二次函数的图象与性质、一次函数的图象与性质以及反比例函数的图象与性质,先通过二次函数的图象确定、、的正负,再利用代入解析式,得到的正负即可判定两个函数的图象所在的象限,即可得出正确选项.详解】解:由图象可知:图象开口向下,对称轴位于轴左侧,与轴正半轴交于一点,可得:又由于当时,因此一次函数的图像经过一、二、四三个象限,反比例函数的图像位于一、三象限;故选:A .10. 如图,点从四条边都相等的的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随时间变化的关系图象,则的值为( )A.B. C.D. 【答案】C 【解析】【分析】本题综合考查了性质,动点问题的函数图象,勾股定理,解答过程中要注意函数图象变化与动点位置之间的关系.通过分析图象,点从点到用,此时,的面积为,依此可求的高,再由图象可知,,应用两次勾股定理分别求和.【详解】解:过点作于点a b c 1x =-a b c -+y y 0,0,0,a b c <<>=1x -0y a b c =-+>F ABCD Y A A D B →→1cm /s B 2F FBC ()2cm y ()s xa 252ABCD Y F A D s a FBC a ABCD YDE BD =BE a D DE BC ⊥E∵的四条边都相等,∴.由图象可知,点由点到点用时为,的面积为.,,,当点从点到点,中,,的四条边都相等,,中,,解得:故选:C .二、填空题:本题共5小题,每小题3分,共15分.11. 某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为________元.【答案】【解析】【分析】本题考查列代数式,列代数式注意规范书写格式.先表示出打“八折”后售价为元,再表示出第二次降价又减10元的售价为元.【详解】解:第一次降价打“八折”为元,ABCD Y AB BC CD AD ===F A D s a FBC 2cm a AD BC a ∴==12DE BC a ∴⋅=2DE ∴=F D B BD ∴=Rt DEB △1BE === ABCD Y1EC a ∴=-DC a=Rt DEC △2222(1)a a =+-52a =()0.810a -0.8a ()0.810a -0.8a第二次降价又减10元为元,故答案为:元.12. 不等式组的所有整数解的和为____________.【答案】2【解析】【分析】利用一元一次不等式组的解法先求出不等式组的解集,再确定出不等式组所有整数解即可求解.【详解】解:,解不等式①得,解不等式②得,不等式组的解集是,不等式组所有整数解是:-1,0,1,2,不等式组所有整数解的和为.故答案为:2.【点睛】本题考查了一元一次不等式组的解法,以及一元一次不等式组的整数解,熟练掌握一元一次不等式组的解法是解本题的关键.13. 根据如图所示的统计图,回答问题:该超市年月的水果类销售额________月的水果类销售额(填“”“”或“”).【答案】【解析】【分析】本题主要考查条形统计图与折线图的综合运用,掌握统计图的信息的关系是解题的关键,根据销售总额与占比计算出相应的量进行比较即可求解.()0.810a -()0.810a -()421325x x x ⎧-<-⎨-≤⎩()421325x x x ⎧-<-⎨-≤⎩①②2x >-73x ≤∴723x -<≤∴∴10122-+++=20221011><=>【详解】解:某超市月的销售总额为万元,水果类销售额占比为,∴某超市月水果类的销售额为:万元;某超市月销售总额为万元,水果类销售额占比为,∴某超市月水果类的销售额为:万元;∵,故答案为:.14. 如图,在扇形中,,平分交于点,点为半径上一动点.若阴影部分周长的最小值为,则扇形的半径的长为________.【答案】2【解析】【分析】本题主要考查扇形周长的计算,轴对称最短路径的计算方法,掌握扇形弧长的计算方法,轴对称求最短路径的方法是解题的关键.根据题意可求出,作点关于的对称点,可得最小,则扇形周长最小,由此即可求解.【详解】解:∵平分,,∴,设扇形的半径,∴的长为:,阴影部分的周长最小为,如图所示,作点关于的对称点,连接与交于点,此时,的值最小,即阴影部分的周长最小,106020%106020%12⨯=117015%117015%10.5⨯=1210.5>>BOC 60BOC ∠︒=OD BOC ∠ BC D E OB 3πOB 30COD BOD ∠=∠=︒D OB D 'CD 'OD BOC ∠60BOC ∠=︒30COD DOB ∠=∠=︒OC OB r ==CD3023606rr ππ︒⨯=︒3π+D OB D 'CD 'OBE CE ED CE ED CD +=+=''∴,∴,即,解得,,故答案为:.15. 如图,在△ABC中∠C =90°,AC =6,BC =8.点D 是BC 上的中点.点P 是边AB 上的动点,若要使△BPD 为直角三角形,则BP =__.【答案】5或【解析】【分析】根据勾股定理算出AB ,由已知得到DB ,然后根据三角形相似和平行线分线段成比例定理可以得到PB 的两个可能值.【详解】解:在Rt △ABC 中,∵∠C =90°,AC =6,BC =8,∴AB =10,∵D 是BC 中点,∴CD =BD =4,分两种情形:①当∠DPB =90°时,△DPB ∽△ACB ,∴=,90COD COB BOD ∠=∠+'∠='︒CD '=63rππ+=+2r =2165PB BC BDAB∴=,∴BP =.②当∠PDB =90°,易证:DP ∥AC ,∵CD =DB ,∴AP =PB =5,综上所述,满足条件的PB 的值为5或.故答案为5或.【点睛】本题考查直角三角形的应用,熟练掌握勾股定理、三角形相似的判定和性质及平行线分线段成比例定理是解题关键.三、解答题:本题共8小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. (1)计算:.(2)先化简,再求值:,其中.【答案】(1);(2),【解析】【分析】本题考查了整式的加减和代数式求值.主要考查学生的化简能力和计算能力.(1)代入特殊角三角函数值,利用负整数指数幂,绝对值和二次根式的性质化简即可.(2)先算利用完全平方公式和单项式乘多项式的运算法则化简,再合并同类项,最后代入求出即可.【详解】(1)解:原式.(2)解:原式,当时,原式.17. 为倡导绿色健康节约的生活方式,某社区开展“减少方便筷使用,共建节约型社区”活动.志愿者随机抽取了社区内50名居民,对其5月份方便筷使用数量进行了调查,并对数据进行了统计整理,以下是部分8BP 41016516516514sin 603-⎛⎫︒+ ⎪⎝⎭()()22141a a a +--18a =581+a 2432=++-32=++-5=2244144a a a a=++-+81a =+18a =8111218=⨯+=+=数据和不完整的统计图表:方便筷使用数量在范围内的数据:5,7,12,9,10,12,8,8,10,11,6,9,13,6,12,8,7.不完整的统计图表:方便筷使用数量统计表组别使用数量(双)频数1410合50请结合以上信息回答下列问题:(1)统计表中的__________;(2)统计图中组对应扇形的圆心角为__________度;(3)组数据的众数是___________;调查的50名居民5月份使用方便筷数量的中位数是__________;(4)根据调查结果,请你估计该社区2000名居民5月份使用方便筷数量不少于15双的人数.【答案】(1)9;(2)72;(3)12,10;(4)该社区2000名居民5月份使用方便筷数量不少于15双的人数为760名.【解析】【分析】(1)根据扇形统计图可知D 组所占百分比,然后问题可求解;515x ≤<A05x <≤B510x ≤<C1015x ≤<D1520x ≤<a E20x ≥=a E C(2)由统计表可得E 组人数为10人,然后可得E 组所占的百分比,然后问题可求解;(3)由题意可把在范围内的数据从小到大排列,进而可得组数据的众数及中位数;(4)根据题意可得50名被调查的人中不少于15双的人数所占的百分比,然后问题可求解.【详解】解:(1)由统计图可得:;故答案为9;(2)由统计图可得组对应扇形的圆心角为;故答案为72;(3)由题意可把在范围内的数据从小到大排列为:、6、6、7、7、8、8、8、9、9、10、10、11、12、12、12、13;∴在组()数据的众数是;调查的50名居民5月份使用方便筷数量的中位数是第25和第26名的平均数,即为;故答案为12,10;(4)由题意得:(名);答:该社区2000名居民5月份使用方便筷数量不少于15双的人数为760名.【点睛】本题主要考查中位数、众数及扇形统计图,熟练掌握中位数、众数及扇形统计图是解题的关键.18. 如图,是菱形的对角线,,(1)请用尺规作图作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接,求.【答案】(1)见解析(2【解析】【分析】本题主要考查菱形的性质,垂直平分线的画法及性质,含角的直角三角形的性质,等腰三角形的性质的综合,掌握菱形的性质,含角的直角三角形的性质是解题的关键.(1)根据垂直平分线的画法即可求解;(2)根据菱形的性质,分别求出的度数,根据含角的直角三角形的性515x ≤<C 50189a =⨯=%E 103607250︒⨯=︒515x ≤<5C 1015x ≤<121010102+=910200076050+⨯=BD ABCD 75CBD ∠=︒AB EF E AD F BF DF DB :30︒30︒ABD A BFD DBF ∠∠∠∠,,,30︒质,设,可用含的式子表示的长,由此即可求解.【小问1详解】解:如图所示,直线即为所求;【小问2详解】解:∵四边形是菱形,∴,,,∴,∴,∵垂直平分线段,∴,∴,∴,∴,作于,则,设,则,,,∴.19. 如图,反比例函数与一次函数的图象交于点,点,一次函数FG a=a DF DB ,EF ABCD 75CBD ∠=︒1752ABD CBD ABC ∠=∠=∠=︒DC AB ∥A C ∠=∠150180ABC ABC C ∠=︒∠+∠=︒,30C A ∠=∠=︒EF AB AF FB =30A FBA ∠=∠=︒60DFB ∠=︒753045DBF ABD FBA ∠=∠-∠=︒-︒=︒DG FB ⊥G 30FDG ∠=︒FG a =2FD a DG ==,DG BG ==DB =DF DB ==()0my m x=≠y kx b =+()13A ,()1B n ,与y 轴交于点C .(1)求反比例函数和一次函数解析式;(2)连接,求的面积;(3)如图2,点E 是反比例函数图象上A 点右侧一点,连接,把线段绕点A 顺时针旋转,点E 的对应点F 恰好也落在这个反比例函数的图象上,求点E 的坐标.【答案】(1);(2)4(3)点E 的坐标为【解析】【分析】(1)将代入反比例函数的解析式求得m 的值,再将代入,即可求解;(2)利用的面积,即可求解;(3)设点,,又,利用等腰直角三角形的性质列方程组,解方程组即可求解.【小问1详解】解:将代入反比例函数,解得,∴,将代入,得,将,点代入,,解得,y kx b =+OA OB ,OAB AE AE 90︒3y x=4y x =-+162⎛⎫ ⎪⎝⎭,()13A ,()1B n ,3y x=OAB COD COA CBD S S S =--△△△3E m m ⎛⎫ ⎪⎝⎭,3F n n ⎛⎫ ⎪⎝⎭,()13A ,()13A ,m y x=133m =⨯=3y x=()1B n ,3y x=3n =()13A ,()B 3,1y kx b =+331k b k b +=⎧⎨+=⎩14k b =-⎧⎨=⎩∴;【小问2详解】解:设一次函数与x 轴交于点D ,xx 令,则,令,则,∴的面积;;【小问3详解】解:设点,又,由旋转知:为等腰直角三角形,∴,解得,∴.【点睛】本题考查了反比例函数与一次函数的交点问题.也考查了等腰直角三角形的性质.利用待定系数法确定反比例函数与一次函数的解析式;要能够借助直线和y 轴的交点运用分割法求得不规则图形的面积是解题的关键.20. 如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托上,图2是其侧面结构示意图.量得托板长,支撑板长,底座长.托板固定在支撑板顶4y x =-+4y x =-+0x =4y =0y =4x =OAB COD COA CBDS S S =--△△△1114441414222=⨯⨯-⨯⨯-⨯⨯=3E m m ⎛⎫ ⎪⎝⎭,3F n n ⎛⎫⎪⎝⎭,()13A ,AEF △()()()()22222222331313333213m n m n m n m m n m ⎧⎛⎫⎛⎫-+-=-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎨⎡⎤⎛⎫⎛⎫⎪-+-=-+-⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦⎩632m n =⎧⎪⎨=-⎪⎩162E ⎛⎫ ⎪⎝⎭,120mm AB =80mm CD =90mm DE =AB端点C 处,且,托板可绕点C 转动,支撑板可绕点D 转动.若,,求点A 到直线的距离;(结果保留小数点后一位)(参考数据:,,,)【答案】【解析】【分析】如图,过A 作,交的延长线于点M ,过点C 作,垂足为F ,过点C 作,垂足为N ,则四边形是矩形,在中,由求的值,进而可得的值,根据角度之间的数量关系求得,,则,在中,求的值,根据计算求解即可.【详解】解:如图,过A 作,交的延长线于点M ,过点C 作,垂足为F ,过点C 作,垂足为N ,则四边形是矩形,由题意可知,,,,,在中,∴,∵,∴,∴,∵,40mm CB =AB CD 80DCB ∠=︒60CDE ∠=︒DE sin 400.643︒≈cos 400.766︒≈tan 400.839︒≈ 1.732≈1207mm .AM DE ⊥ED CF AM ⊥CN DE ⊥CFMN Rt CDN △sin CN CD CDE =⋅∠CN FM 30D C N ∠=︒50A BCN ∠=∠=︒905040ACF ∠=︒-︒=︒Rt AFC △sin 40AF AC =⋅︒AF AM AF FM =+AM DE ⊥ED CF AM ⊥CN DE ⊥CFMN 80AC =80CD =80DCB ∠=︒60CDE ∠=︒Rt CDN △sin 80CN CD CDE =⋅∠==FM =180DCN CND CDN ∠+∠+∠=︒30D C N ∠=︒803050BCN DCB DCN ∠=∠-∠=︒-︒=︒,AM DE CN DE ⊥⊥∴,∴,∴,在中,,∴,答:点A 到直线的距离约为.【点睛】本题考查了解直角三角形的应用,矩形的判定与性质,三角形内角和定理等知识.解题的关键在于确定线段之间的数量关系.21. 如图,在菱形中,对角线相交于点经过两点,交对角线于点,连接交于点,且.(1)求证:是的切线;(2)已知的半径与菱形的边长之比为,求的值.【答案】(1)见解析(2).【解析】【分析】(1)利用垂径定理得,利用菱形的性质得,利用半径相等得,即可证明,据此即可证明结论成立;(2)设,由题意得,求得,由勾股定理得到,求得,利用菱形的性质求得,据此求解即可.【小问1详解】证明:连接,∵,由垂径定理知,AM CN ∥50A BCN ∠=∠=︒905040ACF ∠=︒-︒=︒Rt AFC △sin 40800.64351.44AF AC =⋅=⨯≈︒51.44120.7AM AF FM =+=+≈DE 1207mm .ABCD ,AC BD ,E O ,A D AC F OF AD G AG GD =AB O O 5:8tan ADB ∠tan 2ADB ∠=OF AD ⊥GAF BAF ∠=∠OAF OFA ∠=∠90OAF BAF ∠+∠=︒4AG GD a ==:5:4OA AG =5OA a =3OG a =2FG a =ADB AFG ∠=∠OA AG GD =OF AD ⊥∴,∵四边形是菱形,∴,∴,∵,∴,∴,又∵为的半径,∴是的切线;【小问2详解】解:∵四边形是菱形,,∴设,∵的半径与菱形的边长之比为,∴在中,,∴,,∴,∵四边形是菱形,∴,即,∴,∴.【点睛】本题考查了菱形的性质,垂径定理,切线的判定,求角的正切值,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.22. 跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K 到起跳台的水平距离为,高度为(h 为定值).设运动员从起跳点A 起跳后的高度与水平距离之间的函数关系为.90OGA FGA ∠=∠=︒ABCD GAF BAF ∠=∠90GAF AFG BAF AFG ∠+∠=︒=∠+∠OA OF =OAF OFA ∠=∠90OAF BAF OAB ∠+∠=∠=︒OA O AB O ABCD AG GD =4AG GD a ==O 5:8Rt OAG △:5:4OA AG =5OA a=3OG a ==2FG OF OG a =-=ABCD BD AC ⊥90DEA FGA ∠=︒=∠ADB AFG ∠=∠4tan tan 22AG aADB AFG FG a∠=∠===OA 66m 75m m h (m)y (m)x 2(0)y ax bx c a =++≠(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时,求基准点K 的高度h ;②若时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K 点,并说明理由.【答案】(1)66(2)①基准点K 的高度h 为21m ;②b>;(3)他的落地点能超过K 点,理由见解析.【解析】【分析】(1)根据起跳台的高度OA 为66m ,即可得c =66;(2)①由a =﹣,b =,知y =﹣x 2+x +66,根据基准点K 到起跳台的水平距离为75m ,即得基准点K 的高度h 为21m ;②运动员落地点要超过K 点,即x =75时,y >21,故﹣×752+75b +66>21,即可解得答案;(3)运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,即是抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,可得抛物线解析式为y =﹣(x ﹣25)2+76,当x =75时,y =36,从而可知他的落地点能超过K 点.【小问1详解】解:∵起跳台的高度OA 为66m ,∴A (0,66),把A (0,66)代入y =ax 2+bx +c 得:是19,5010a b =-=150a =-25m 76m 9101509101509101502125c =66,故答案为:66;【小问2详解】解:①∵a =﹣,b =,∴y =﹣x 2+x +66,∵基准点K 到起跳台的水平距离为75m ,∴y =﹣×752+×75+66=21,∴基准点K 的高度h 为21m ;②∵a =﹣,∴y =﹣x 2+bx +66,∵运动员落地点要超过K 点,∴当x =75时,y >21,即﹣×752+75b +66>21,解得b >,故答案为:b >;【小问3详解】解:他的落地点能超过K 点,理由如下:∵运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,∴抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,把(0,66)代入得:66=a (0﹣25)2+76,解得a =﹣,1509101509101509101501501509109102125∴抛物线解析式为y=﹣(x ﹣25)2+76,当x =75时,y =﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K 点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.23. 综合与实践数学活动课上同学们开展了以折叠为主题探究活动,如图1,已知矩形纸片,其中(1)操作判断将矩形纸片按图1折叠,使点落在上的点处,可得到一个角,请你写出一个的角.(2)探究发现将图1纸片展平,把四边形剪下来如图2,取边的中点,将沿折叠得到,延长交于点,求的周长.(3)拓展应用改变图2中点的位置,令点为射线上一动点,按照(2)中方式将沿折叠得到,所在直线交于点,若点为的三分点,请直接写出此时的长.【答案】(1)(或)(2)(3或【解析】【分析】(1)利用矩形的性质和折叠的性质证明四边形是正方形,然后利用正方形的性质即可得出结论;(2)连结,先证明四边形是矩形,可得,由折叠性质并结合的的21252125ABCD 611AB AD ==,ABCD B AD E 45︒45︒EFCD FC M EFM △EM EF M '△EF 'CD N EDN △M M FC EFM △EM EF M '△EF 'CD N N CD NF 'BAF ∠EAF BFA EFA ∠∠∠,,176-6AEFB MN CDEF 65EF CD FC ED ====,M为的中点可得到,,,然后证明可得到,最后计算;(3)分两种情况计算:①当点为的三分点且靠近点时,②当点为的三分点且靠近点时,利用勾股定理和折叠的性质即可得出结论.【小问1详解】解:∵四边形是矩形,∴,∵将矩形纸片按图1折叠,使点落在边上的点处,∴,∴,∴四边形是矩形,∵,∴四边形是正方形,∴,∴的角有(或).【小问2详解】解:连结,∵四边形矩形,,∴,∵四边形是正方形,∴,∴,FC MF MC '=EF EF '=90MF N MF E '∠=∠='︒Rt Rt (HL)MF N MCN '△≌△F N CN '=DE EN ND ++N CD C N CD D ABCD 90B BAE ∠=∠=︒ABCD B AD E 90AB AE B AEF =∠=∠=︒,90B BAE AEF ∠=∠=∠=︒AEFB AB AE =AEFB 45BAF EAF BFA EFA ∠=∠=∠=∠=︒45︒BAF ∠EAF BFA EFA ∠∠∠,,MN ABCD 611AB AD ==,690CD AB C D ==∠=∠=︒,AEFB 690EF AB FED FEA ==∠=∠=︒,90FED D C ∠=∠=∠=︒∴四边形是矩形,∴,由折叠性质得:,∵为的中点,∴,∴,在与中,,∴,∴,∴的周长为:.【小问3详解】解:①如图,当点为的三分点且靠近点,连接,∴,∴,在中,,;②如图,当点为的三分点且靠近点时,连接,CDEF 61165EF CD FC ED AD AE ====-=-=,,,90MF MF EF EF MF N MF E ∠∠''''︒====M FC MF MC =MF MC '=Rt MF N '△Rt MCN △MF MC MN MN ='⎧⎨=⎩()Rt HL MF N Rt MCN ' ≌F N CN '=EDN △DE EN ND++DE EF F N ND''=+++()DE EF CN ND =+++DE EF CD=++56617=++=N CD C MN 116233CN CD ==⨯=624DN CD CN =-=-=Rt DNE△EN ===6NF EN EF -'=='∴-N CD D MN∴,在中,,∴综上所述,或【点睛】本题是四边形综合题,主要考查折叠的性质,矩形的判定和性质,正方形的判定与性质,全等三角形的判定与性质,勾股定理等知识,运用了分类讨论的思想.通过添加适当辅助线构造全等三角形是解题的关键.116233DN CD ==⨯=Rt DNE △EN ===6NF EF EN ''=-=-NF 6-6。
河南省2024届九年级下学期中考模拟数学试卷(一)及答案
2024年河南省中考数学复习模拟试卷(一)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.(共10题;共30分)1.(3分)绝对值小于4的所有整数的和是( )A.4B.8C.0D.17 2.(3分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A.2B.C.D.1 3.(3分)根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将3260000用科学记数法表示,下列选项正确的是( )A.3.26×105B.3.26×106C.32.6×105D.0.326×1074.(3分)如图,为的直径,弦于点E,于点F,,则为( )A.B.C.D.5.(3分)已知分式,,其中,则与的关系是( )A.B.C.D.6.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是( )A.B.C.D.7.(3分)关于的一元二次方程的根的情况,下列说法正确的是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.与的值有关,无法确定8.(3分)一个不透明的袋子中放入三个除标号外其余均相同的小球,三个小球的标号分别是2,1,-1,随机从这个袋子中一次取出两个小球,取出的两个小球上数BK字之积为负数的概率是( )A.B.C.D.9.(3分)一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是( )A.k=2B.k=3C.b=2D.b=3 10.(3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.二、填空题(每小题3分,共15分)(共5题;共15分)11.(3分)下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系 .12.(3分)已知关于x,y的方程组给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数③a=1时,方程组的解也是方程的解;④和之间的数量关系是.其中正确的是 (填序号)13.(3分)某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是 .14.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交边BC于点D,E,F分别是AD,AC上的点,连接CE,EF.若AB=10,BC=6,AC=8,则CE+EF的最小值是 .15.(3分)如图,正方形网格中的△ABC,若小方格的边长都为1,则△ABC是 三角形.三、解答题(本大题共8个小题,共75分)(共8题;共75分)16.(10分)回答下列问题.(1)(5分)计算:.(2)(5分)解方程:.17.(9分)为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998根据以上信息,解答下列问题:(1)(3分)这个班共有男生 人,共有女生 人;(2)(3分)补全初二1班体育模拟测试成绩分析表;(3)(3分)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.18.(9分)一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.19.(9分)如图,等腰Rt的直角顶点A在反比例函数的图象上.(1)(3分)已知,求此反比例函数的解析式;(2)(3分)先将点A绕原点O逆时针旋转90°,得到点E,再将点E向右平移1个单位得到点F,若点F恰好在正比例函数的图象上,求正比例函数的表达式.20.(9分)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线与河垂直,在过点S且与直线垂直的直线a上选择适当的点T,与过点Q且与垂直的直线b的交点为R.如果,,,求的长.21.(9分)一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东行为正,向西行为负,行驶里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)(3分)将最后一名乘客送到目的地,出租车在该商场的哪边?离商场有多远?(2)(3分)如果出租车每行驶100 km的油耗为10L,1L汽油的售价为7.2元,那么出租车在这天上午消耗汽油的金额是多少元?22.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)(5分)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)(5分)足球第一次落地点C距守门员多少米?23.(10分)如图,在菱形ABCD中,,将边AB绕点A逆时针旋转至,记旋转角为.过点D作于点F,过点B作BE⊥直线于点E,连接EF.【探索发现】(1)(3分)填空:当时,_ °;的值是_ ;(2)(3分)【验证猜想】当时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(4分)【拓展应用】在(2)的条件下,若,当是等腰直角三角形时,请直接写出线段EF的长.答案1.C2.C3.B4.C5.B6.C7.C8.C9.D10.D11.d-c=b-a12.①②③13.160°14.4.815.直角16.(1)解:原式(2)解:,.17.(1)20;25(2)解:甲的平均分为×(5+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:平均分方差中位数众数男生7.9287女生7.92 1.9988(3)解:可根据众数比较得出答案.从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.18.解:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上)线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.19.(1)解:如图,作AC⊥OB于C,∵△AOB是等腰直角三角形,OA=2,∴AC=OC=2,∴A(2,2),∵直角顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)解:∵A(2,2),∴将点A绕原点O逆时针旋转90°,得到点E(-2,2),再将点E向右平移1个单位得到点F(-1,2),∵点F恰好在正比例函数y=mx的图象上,∴2=-m,解得m=-2,∴正比例函数的表达式为y=-2x.20.解:由题意可知,,,设,∵,,,∴,,解得,经检验x=120是方程的解的长为.21.(1)解:9-8-5+6-8+9-3-7-5+10=(9+6+9+10)-(8+5+8+3+7+5)=34-36=-2(km).答:将最后一名乘客送到目的地,出租车在该商场的西边,离商场2 km;(2)解:|+9|+|-8|+|-5|+|+6|+|-8|+|+9|+|-3|+|-7|+|-5|+|+10|=70(km),×10×7.2= 50.4 (元).答:出租车在这天上午消耗汽油的金额是50.4元.22.(1)解:以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)解:令y=0,则﹣x2+x+1=0,解得:x1=6﹣4 (舍去),x2=6+4 =12.8(米),所以,足球落地点C距守门员约12.8米.23.(1)30;(2)解:当时,(1)中的结论仍然成立.证明:如图,连接BD,∵,∴,,∴,∴,∵,∴,∴,即,∴,,∴,又∵,∴,∴.(3)解:的长为或.。
河南省2023年最新中考数学模拟试卷及答案
一、选择题(本大题共10小题,每小题3分,共30分)
1.?1的相反数是()311D.?33A.3B.-3C.
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
3.根据中国铁路总公司3月13日披露,2023年铁路春运自2月1日起至3月12日止,为期40天.全国铁路累计发送旅客3.82亿人次,这个数用科学计数法可以表示为()
A.3.82?107B.3.82?108C.3.82?109D.0.382?10104.下列调查中适宜采用抽样方式的是()
A.了解班每个学生家庭用电数量B.调查你所在学校数学教师的年龄情况C.调查神舟飞船各零件的质量D.调查一批显像管的使用寿命5.反比例函数y??2(x>0)的图像在()xA.第一象限B.第二象限C.第三象限D.第四象限6.如图,在平面直角坐标系中,已知B、C的坐标分别为点B(-3,1)、C(0,-1),若将△ABC绕点C逆时针方向旋转90°后得到?A1B1C1,则点B对应点B1的坐标是()A.(3,1)B.(2,2)C.(1,3)D.(3,0)7.如图,在△ABC中,EF//BC AE1=,S四边形BCFE?8,则S?ABC的面积是()
EB2A.9B.10C.12D.13
8.关于x的一元二次方程(a?1)x?x?a?1?0的一个根是0,则a的值为()A.1或?1B.1C.?1D.0
9.如图,在平面直角坐标系中,以点O为圆心,以适当的长为半径画弧,交x轴于点M,交y轴于点N,在分别以M、N为圆心,以22。
2024年河南省中考二模数学试题(解析版)
2024年河南省初中第二次学业水平测试数学(A )注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.请用蓝、黑色水笔或圆珠笔直接答在答题卡上.2.答卷前将装订线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1. 下列四个数中,最大的数是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查实数的大小比较,根据两个负数比较大小,绝对值大的反而小求解即可.【详解】解:∵,∴,∴最大的数是,故选:A .2. 国家统计局1月30日发布,2023年,全国规模以上文化及相关产业企业实现营业收入129515亿元,比上年增长,文化企业发展持续回升向好.其中数据“129515亿”用科学记数法可表示为( )A. B. C. D. 【答案】B 【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:,1-3-2-321>>>321-<-<<-1-8.2%140.12951510⨯131.2951510⨯121.2951510⨯812951510⨯10n a ⨯1||10a ≤<n a n 10n a ⨯1||10a ≤<n n a n 10≥n 1<n 1312951500000000 1.2951510=⨯3. 如图,是由10个相同的小正方体搭成的几何体,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】根据三视图的画法,确定从正面看时每列正方形的个数,即可正确解答.【详解】从正面看易得第一列有3个正方形,第二列最下面一层有1个正方形,第三列有2个正方形,所以该几何体的主视图为选项A 所示图形.故选:A.【点睛】此题考查简单几何体的三视图.错因分析 容易题.失分的原因是:不会判断小正方体组合体的三视图.4. 下列运算正确的是( )A.B. C. D. 【答案】B 【解析】【分析】本题考查了二次根式的加法运算和乘法运算,幂的乘方,同底数幂的乘法,熟练掌握运算法则和公式是解题的关键.依次利用二次根式的加法,幂的乘方,同底数幂的乘法,二次根式的乘法运算进行化简即可.【详解】解:A不是同类二次根式,不能合并,故本选项不符合题意;B 、,故本选项符合题意;C 、,故本选项不符合题意;D 、,故本选项不符合题意.+=()5210x x =5630x x x ⋅==()5210x x =5611x x x ⋅=6a =5. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A. 66°B. 104°C. 114°D. 124°【答案】C 【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =∠1=22°,∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°,故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.6. 甲,乙,丙,丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如下表:甲乙丙丁平均数9.69.59.59.6方差0.270.250.270.25如果从这四人中选出一位成绩较好且状态稳定的选手参加比赛,那么应该选( )A 甲B. 乙C. 丙D. 丁【答案】D.1212【分析】本题考查平均数和方差,根据平均数越大,方差越小则成绩越好且状态越稳定求解即可.【详解】解:根据表格数据,甲和丁成绩的平均数为9.6,均高于乙和丙,说明甲和丁的成绩较好;又甲成绩的方差是0.27,大于丁成绩的方差0.25,说明丁的成绩较稳定,综上,丁的成绩较好且状态稳定,故应该选丁,故选:D .7. 下列方程中,无实数根的是( )A. B. C. D. 【答案】D 【解析】【分析】本题考查了根的判别式,牢记“当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根”是解题的关键.根据方程的系数结合根的判别式,可分别找出四个选项中方程的根的判别式△的值,取的选项即可得出结论.【详解】解:A 、,方程有两个不相等的实数根,故本选项不符合题意;B 、,方程有两个不相等的实数根,故本选项不符合题意;C 、,方程有两个相等的实数根,故本选项不符合题意;D 、,方程没有实数根,故本选项符合题意.故选:D .8. 如图,正方形的对角线相交于点O ,点E 在边上,点F 在上,过点E 作,垂足为点G ,若,,,则的长为( )230x x +=2210x x +-=2210x x ++=230x x -+=0∆>Δ0=Δ0<24b ac ∆=-Δ0< 2341090∆=-⨯⨯=>∴230x x += 2241(1)80∆=-⨯⨯-=>∴2210x x +-= 224110∆=-⨯⨯=∴2210x x ++= 2(1)413110∆=--⨯⨯=-<∴230x x -+=ABCD AB OD EG BD ⊥FE FC =EF FC ⊥3OF =BEA. 3B.C.D. 【答案】B 【解析】【分析】证明,可得,再利用等腰直角三角形即可解决问题.【详解】解:∵四边形是正方形,∴,,∵,∴,∴,∵,∴,在和中,,∴,∴,∵,∴是等腰直角三角形,∴故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解决本题的关键是得到.9. 河南是中原粮仓,粮食的水分含量是评价粮食品质的重要指标,粮食水分检测对粮食的收购、运输、储存等都具有十分重要的意义.其中,电阻式粮食水分测量仪的内部电路如图甲所示,将粮食放在湿敏电阻上,使的阻值发生变化,其阻值随粮食水分含量的变化关系如图乙所示.观察图象,下列说法不正确的是( )()ASA EFG CFO ≌3EG OF ==ABCD AC BD ⊥=45ABC ∠︒EF CF ⊥90COF EFC ∠=∠=︒90EFG CFO FCO ∠=︒-∠=∠EG BD ⊥90EGF FOC ∠=∠=︒EFG FCO 90EGF FOC EFG FCO FE CF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ASA EFG CFO ≌3EG OF ==45ABD ∠=︒EBG BE ==EFG CFO ≌1R 1RA. 当没有粮食放置时,的阻值为B.的阻值随着粮食水分含量的增大而减小C. 该装置能检测的粮食水分含量的最大值是D. 湿敏电阻与粮食水分含量之间是反比例关系【答案】D 【解析】【分析】本题考查了物理与数学的跨学科综合,成反比例关系的概念,从函数图象获取信息,是解题的关键.根据图象对每一个选项逐一判断即可.【详解】解:A 、当没有粮食放置时,即水分含量为0,由图象可知的阻值为,故本选项不符合题意;B 、由图象可知,的阻值随着粮食水分含量的增大而减小,故本选项不符合题意;C 、由图象可知,该装置能检测的粮食水分含量的最大值是,故本选项不符合题意;D 、如果两个变量的每一组对应值的乘积是一个不等于0的常数,那么就说这两个变量成反比例,从图象中得到当水分含量为0时,的阻值为,此时这水分含量的阻值为0,不符合成反比例关系的定义,故本选项符合题意.故选:D .10. 如图,平面直角坐标系中,的顶点O 为原点,,,分别以A ,B 为圆心,以大于的长为半径作弧,两弧交于P ,Q 两点,作直线,交于点C,交y 轴于点D ,交x 轴于点E ,点M 从点A 出发,沿x 轴负方向以每秒N 从点O 出发,沿以每秒1个单位长度的速度运动,当时,点M 的坐标为( )1R 40Ω1R 12.5%1R 1R 40Ω1R 12.5%1R 40Ω⨯1R Rt OAB )A()0,1B 12AB PQ AB OB MN CD ∥A. B. C. D. 【答案】B 【解析】【分析】本题考查了锐角三角函数,平行线的性质,线段的垂直平分线,熟练掌握知识点是解题的关键.先求出,再根据互余关系及平行关系得到,继而设运动时间为t ,则,由得,求出时间t ,即可求得坐标.【详解】解:如图所示,∵,,∴,∴在中,∴,由题意得垂直平分,∴,∴,⎛⎫ ⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭30A ∠=︒30MNO ODE ∠=∠=︒OM =ON t =ON =t =)A()0,1B 1OA OB ==Rt OAB tan OB BAO OA ∠==30A ∠=︒CD AB 90A CEA ODE OED ∠+∠=∠+∠=︒30A ODE ∠=∠=︒∵,∴,由得,设运动时间为t ,则,∴,解得:,∴∴,故选:B .二、填空题(每小题3分,共15分)11. 原价为m 元的商品,现打八折销售,售价为___元.【答案】0.8m 【解析】【分析】现价=原价×打折,从而可列出代数式.【详解】解:根据题意得:m •0.8=0.8m .故答案为:0.8m .【点睛】本题考查理解题意的能力,关键是知道现价=原价×打折.12. 不等式组的最大整数解是________.【答案】3【解析】【分析】分别求出两个不等式的解集,然后再求出不等式组的解集,最后求出最大整数解即可.详解】解:由,得:;由,得:,∴不等式组的解集为:;∴最大整数解是3;故答案为:3.【MN CD ∥30MNO ODE ∠=∠=︒tan 30OMON︒=ON =OM =ON t =t =35t =OM ==M ⎛⎫ ⎪ ⎪⎝⎭20260x x +>⎧⎨-≤⎩20x +>2x >-260x -≤3x ≤23x -<≤【点睛】本题主要考查了求不等式组的解集及其最大整数解,正确求出不等式组的解集是解题的关键.13. 春节前夕,哈尔滨旅游市场火爆全国,河南文旅局也及时调整政策,吸引全国游客入豫观光旅游.小明想在清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点中选择两个去旅游,则他刚好选到“清明上河园”和“龙门石窟”的概率是______.【答案】【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果,再从中选出符合事件A 结果数目,然后利用概率公式求出事件A 的概率.用A 、B 、C 、D 分别表示清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点,画树状图表示出所有的等可能结果,再找出选到A 、B 的结果数,用概率公式即可求解.【详解】解:用A 、B、C 、D 分别表示清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点,画树状图为:共有12种等可能的结果,其中选到A 、B 的结果数为2,∴他刚好选到“清明上河园”和“龙门石窟”的概率是,故答案:.14. 如图,在中,,,,以的中点O 为圆心,的长为半径作半圆交于点D ,再以点B 为圆心,以的长为半径作,交半圆于点D ,交于点E ,则图中阴影部分的周长为______.为1621126=16Rt ABC △90ABC ∠=︒6AB =BC =AB OA AC OB DEBC【答案】【解析】【分析】本题考查弧长公式、等边三角形的判定与性质,先证明是等边三角形,则,进而求得,,然后利用弧长公式求解即可.【详解】解:连接、,由题意知,,∴是等边三角形,∴,∵在中,,,∴,,∴图中阴影部分的周长为,故答案为:.15. 如图,中,,,点P 为边上不与端点重合的一个动点,点P 关于的对称点为点Q ,连接,射线与射线交于点M ,当为直角三角形时,的长为______.【答案】或##或【解析】【分析】本题考查了直角三角形的分类讨论,等腰三角形的性质,三角形内角和定理,轴对称图形的性质,3π32+BOD 60BOD OBD ∠=∠=︒30DBE ∠=︒3OBBD BE ===OD BD BE BD OB OD OA ====BOD 60BOD OBD ∠=∠=︒Rt ABC △90ABC ∠=︒6AB =906030DBE Ð=°-°=°3OB BD BE ===60π330π333π31801802⨯⨯++=+3π32+ABC 45A ∠=︒2AB AC ==AB BC CQ CP QB CQM BM 2-2-相似三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解题的关键.①当时,过点P 作交于点F ,即,先证明出,则设,那么,解得,先通过三角形内角和定理和轴对称的性质证出,那么可证明,再利用对应边成比例即可求解;②当,可得为等腰直角三角形,解即可.【详解】解:①当时,过点P 作交于点F ,即,∵,,∴,∵P 关于的对称点为点Q ,∴,∴,,∵,,∴,则为等腰直角三角形,∵,∴,∴,∴,设,则,,解得,∴ 90MCQ ∠=︒PF AP ⊥AC 90APF ∠=︒FPFC =FP FC AP x ===AF =2x +=2x =AC BM ∥APC BPM △∽△90Q ∠=︒PMB △PMB △90MCQ ∠=︒PF AP ⊥AC 90APF ∠=︒2AB AC ==45A ∠=︒1804567.52ACB ABC ︒-︒∠=∠==︒BC 45PCB QCB ∠=∠=︒67.5PBC QBC ∠=∠=︒67.54522.5PCF ∠=︒-︒=︒18067.567.545PBM ∠=︒-︒-︒=︒90APF ∠=︒45A ∠=︒45AFP ∠=︒FPA V AFP ACP FPC ∠=∠+∠4522.522.5FPC ∠=︒-︒=︒FPC PCF ∠=∠FP FC =FP FC AP x ===AF =2x +=2x =()224BP =--=-∵,∴,∴,∴,∴,解得:;②当,如图,∵P 关于的对称点为点Q,∴,由①得,∴,∴,∴,在中,,∴,∴在中,,综上所述,或,故答案为:.三、解答题(本大题8个小题,共75分)16. (145A PBM ∠=∠=︒AC BM ∥APC BPM △∽△BM BP AC AP=2BM =BM =90Q ∠=︒BC 90BPC Q BPM ∠=∠=∠=︒45PBM ∠=︒45M ∠=︒M PBM ∠=∠PB PM =Rt PAC △cos 45AP AC =⋅︒=2BP =Rt PBM △2sin PB BM M==-BM =2=BM 2-()0133π---+(2)化简:【答案】(1)(2)【解析】【分析】(1)根据立方根,零指数幂,负整数指数幂,实数的混合运算进行计算即可;(2)根据分式的混合运算进行求解即可.【详解】(1(2)解:【点睛】本题考查了立方根,零指数幂,负整数指数幂,实数的混合运算,分式的混合运算等,熟练掌握以上运算法则是解题的关键.17. 某校举行了“校园安全周”活动,并根据防火防溺水安全知识对全体学生进行了测试,校团委从八(1)班和八(2)班各随机抽取10份试卷进行统计分析,根据以下数据,请解决以下问题:收集数据:八(1)班 80 74 83 63 90 91 74 61 82 62八(2)班 74 61 83 91 60 85 46 84 74 82注:满分100分,90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.(1)整理数据:等级频数年级优秀良好及格不及格八(1)班23a 0八(2)班1441()22111x x x +⎛⎫+÷ ⎪⎝⎭1331x x +()0133π---+1413=-+133=()22111x x x +⎛⎫+÷ ⎪⎝⎭()2211x x x x +=⨯+1xx =+表中______.(2)分析数据:年级平均数众数中位数八(1)班b c 77八(2)班7474d表中______;______;______.(3)描述数据:①若该校八年级共600人,其中八(1)班和八(2)班各有50人,请估计八(1)班和八(2)以及整个八年级本次测试达到优秀的人数;②结合上述数据信息,你认为八(1)班和八(2)班中哪个班学生本次测试的成绩更好?并说明理由.【答案】(1)5 (2)76,74,78(3)①估计八(1)班本次测试达到优秀的人数约有10人,八(2)班本次测试达到优秀的人数约有5人,整个八年级本次测试达到优秀的人数约有90人;②八(1)班学生本次测试的成绩更好,理由见详解.【解析】【分析】本题考查众数、平均数及中位数、用样本估计总体,解答本题的关键是明确题意,熟练掌握知识点.(1)根据收集的数据求解即可;(2)根据众数、平均数及中位数的定义求解即可;(3)①用总人数乘以样本中七、八年级成绩合格的人数和所占比例即可;②比较平均数、优秀率,即可求解.【小问1详解】解:由表可知,八(1)班及格的人数为5,故答案为:5;【小问2详解】解:八(1)班的平均数;由表格知74出现了两次,因此八(1)班的众数;将八(2)班成绩从小到大排列46 60 61 74 74 82 83 84 85 91,因此八(2)班的中位数,=a b =c =d =1(80748363909174618262)7610b =⨯+++++++++=74c =7482782d +==故答案为:76,74,78;【小问3详解】解:①八(1)班本次测试达到优秀的人数约有(人,八(2)班本次测试达到优秀的人数约有(人,整个八年级本次测试达到优秀的人数约有(人;②八(1)班学生本次测试的成绩更好,理由:因为八(1)班的平均成绩高于八(2)班,八(1)班的优秀率高于八(2)班,所以八(1)班学生本次测试的成绩更好.18. 如图,矩形的顶点均在格点(网格线的交点)上,双曲线经过格点B .(1)求双曲线的解析式;(2)经过点B 的直线将矩形分为面积比为的两部分,求该直线的解析式.【答案】(1) (2)或【解析】【分析】此题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式.(1将点代入求解即可;(2)分为过点B 的直线与线段相交和过点B 的直线与线段相交,根据三角形的面积分两种情况求出交点的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.【小问1详解】解:根据题意得:,,,2501010⨯=)150510⨯=)36009020⨯=)OABC ()0k y x x=>()0k y x x=>y ax b =+OABC 1:2()180y x x=>3342y x =-113y x =+()6,3B ()0k y x x=>OA OC ()6,3B 36k ∴=18k ∴=双曲线的解析式为:;【小问2详解】解:如图,当过点B 的直线与线段相交时,设交点为F ,,由题意得:,∵矩形的面积分成的两部分,∴为或,∵,∴①若,解得:,,,此时点F 的坐标为,∴当时,解得:,此时直线的解析式为,②若,解得:,,此时,过点B 的直线与线段没有交点,如图,当过点B 的直线与线段相交时,设交点为F ,∴()180y x x=>OA 6318ABCD S =⨯=矩形OABC 1:2ABF S △11863⨯=218123⨯=()6,3B 1263AF ⨯=4AF =6OA = 642OF ∴=-=()2,0()()6,3,2,0B F 3602a b a b=+⎧⎨=+⎩3432a b ⎧=⎪⎪⎨⎪=-⎪⎩3342y x =-21132AF ⨯=8AF =68OA =< ∴OA OC∵矩形的面积分成的两部分,∴为或,∵,∴①若,解得:,,,此时点F 的坐标为,∴当时,解得:,此时直线的解析式为,②若,解得:,,此时,过点B 的直线与线段没有交点,综上,此时直线的解析式为或.19. 在一次课外实践活动中,九年级数学兴趣小组准备测量学校旁边的一座古塔的高度,同学们设计了两个测量方案如下:课题测量古塔的高度测量工具测角仪,1.5m 标杆,皮尺等测量小组第一组第二组OABC 1:2BCF S 11863⨯=218123⨯=()6,3B 1266CF ⨯=2CF =3OC = 321OF ∴=-=()0,1()()6,3,0,1B F 361a b b=+⎧⎨=⎩131a b ⎧=⎪⎨⎪=⎩113y x =+21162CF ⨯=4CF =34OC =< ∴OC 3342y x =-113y x =+()AB测量方案示意图说明点C 、E 、B 在同一直线上,、为标杆为古塔旁边的两层小楼测量数据从点D 处测得A 点的仰角为,从点F 处测得A 点的仰角为,=10m 从点D 处测得A 点的仰角为,=10m(1)根据以上数据请你判断,第______小组无法测量出古塔的高度?原因是____________;(2)请根据表格中的数据,依据正确的测量方案求出古塔的高度.(精确到0.1m ,参考数据:,,)【答案】(1)二;没有测量的长度;(2)古塔的高度为24.8m .【解析】【分析】(1)第二组没有测量有关线段长度;(2)根据第一组的测量数据,延长交于点,可得是等腰直角三角形,得,在中,由锐角三角函数定义求解即可.【小问1详解】第二组的数据无法算出大楼高度,理由如下:第二小组测量了从点D 处测得A 点的仰角为,=10m ,没有测量的长度,无法算出大楼高度.故答案为:二;没有测量的长度;【小问2详解】根据第一组测量的数据,CD EF CD 35︒45︒CE 35︒CD sin 350.57︒≈cos350.82︒≈tan 350.70︒≈BC DF AB G AFG AG FG =Rt ADG 35︒CD BC BC过点D 作交于点G ,m ,点F 在上,则m ,在中,,是等腰直角三角形,,设m ,则在中,m ,m ,,,解得:m ,m .故答案为:此古塔的高度为24.8m .【点睛】本题考查了解直角三角形的应用—仰角俯角问题中仰角问题,等腰直角三角形的判定与性质,解决本题的关键是熟练掌握仰角俯角定义,根据锐角三角函数解决实际问题.20. 开学初,某校准备购进一批白色无尘粉笔和彩色无尘粉笔用于教学,经市场调研,一箱彩色无尘粉笔的价格是一箱白色无尘粉笔价格的1.5倍,若花费9000元,则购买的白色无尘粉笔比彩色无尘粉笔多50箱.(1)求该校购买这两种无尘粉笔的单价;(2)该校计划购买这两种无尘粉笔共300箱,根据实际情况,其中彩色无尘粉笔的购买数量不少于50箱,且彩色无尘粉笔数量不超过白色无尘粉笔的,由于该校订购数量较多,厂家决定给予优惠,彩色无尘粉笔的价格在打七折的基础上再降低m 元(),求该校购买这两种无尘粉笔的总费用最低时m 的值.DG AB ⊥AB 1.5CD EF == ∴DG 1.5BG =Rt AGF 45AFG ∠=︒AGF ∴V AG FG ∴==AG FG x =Rt AGD AG x =()10DG DF FG x =+=+tan tan 350.70AG ADG DG∴∠==︒≈0.7010x x∴≈+23.3x ≈23.3 1.524.8AB AG BG ∴=+=+=1315m ≤≤【答案】(1)一箱白色无尘粉笔价格是60元,一箱彩色无尘粉笔的价格是90元;(2)当时,购买这两种无尘粉笔的最低费用为17850元【解析】【分析】本题考查分式方程的应用,一元一次不等式组的应用、一次函数的应用,理解题意,正确列出方程和函数关系式是解答的关键.(1)设一箱白色无尘粉笔价格是x 元,则一箱彩色无尘粉笔的价格是元,根据购买的白色无尘粉笔比彩色无尘粉笔多50箱列方程求解即可;(2)设购买彩色无尘粉笔a 箱,购买这两种无尘粉笔的总费用W 元,根据题意求得a 的取值范围和W 关于a 的一次函数关系式,根据一次函数的性质分、、分别求解即可.【小问1详解】解:设一箱白色无尘粉笔价格是x 元,则一箱彩色无尘粉笔的价格是元,根据题意,得,解得,经检验,是所列方程的解,,答:一箱白色无尘粉笔价格是60元,一箱彩色无尘粉笔的价格是90元;【小问2详解】解:设购买彩色无尘粉笔a 箱,则购买白色无尘粉笔箱,根据题意,得,解得,设该校购买这两种无尘粉笔总费用W 元,则,当时,W 随a 的增大而增大,∴当时,W 最小,最小值为;当时,;当时,W 随a 的增大而减小,∴当时,W 最小,最小值为;∴当时,W 最小,购买这两种无尘粉笔的最低费用为17850元.的5m = 1.5x 13m ≤<3m =35m <≤1.5x 90009000501.5x x-=60x =60x =1.5 1.56090x =⨯=()300a -()5013003a a a ≥⎧⎪⎨≤-⎪⎩5075a ≤≤()()()60300900.7318000W a m a m a =-+⨯-=-+13m ≤<50a =()35018000181505018000m m -⨯+=->3m =18000W =35m <≤75a =()37518000182257517850m m -⨯+=-≥5m =21. 《几何原本》是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,被广泛地认为是历史上最成功的教科书.欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品.欧几里得使用了公理化的方法,这一方法后来成了建立任何知识体系的典范,在差不多二千年间,被奉为必须遵守的严密思维的范例.这本著作是欧几里得几何的基础,在西方是仅次于《圣经》而流传最广的书籍.小明在研究《几何原本》时,对定理4.2展开分析研讨:定理4.2 在一个已知圆内作一个与已知三角形等角的内接三角形.原书作法如下:如图1,为已知三角形,为已知圆,过上一点P 作的切线,作,交于点F ,作,交于点E ,连接,即为所求.小明准备将原命题证明并进行拓展研究,请分析并帮助小明完成.(1)已知:直线切于点P ,点E ,F 为上一点,若______,求证:____________.请将已知和求证补充完整并证明.(2)若,,,求的半径.【答案】(1),,,证明过程见解析(2)【解析】【分析】本题考查了圆周角定理、垂径定理以及相似三角形的判定与性质等知识点,掌握相关几何结论是解题关键.(1)连接并延长交于点,连接,根据、即可求证;(2)连接交于点,连接,根据可得;根据题意推出即可求解.ABC O O O MN FPM ABC ∠=∠O EPN ACB ∠=∠O EF PEF !MN O O 5AB AC ==8BC =16EF =O FPM ABC ∠=∠EPN ACB ∠=∠ABC PEF ∽!253PO O Q ,QE QF 90PFQ PFE EFQ ∠=∠+∠=︒90QPN EPN EPQ ∠=∠+∠=︒PO EF D OE ABC PEF ∽!10PE PF ==1,82PD EF ED FD EF ⊥===【小问1详解】证明:连接并延长交于点,连接,如图所示:由题意得:∵为的直径∴∵∴∵∴同理可得∴【小问2详解】解:连接交于点,连接,如图所示:则∵,∴∵,,,∴由题意得:∵PO O Q ,QE QF 90QPN EPN EPQ ∠=∠+∠=︒PQ O 90PFQ PFE EFQ ∠=∠+∠=︒EPQ EFQ∠=∠EPN PFE∠=∠EPN ACB∠=∠PFE ACB∠=∠PEF ABC∠=∠ABC PEF∽!PO EF D OE 90OPM OPN ∠=∠=︒ABC PEF ∽!:::AB PE AC PF BC EF==5AB AC ==8BC =16EF =10PE PF ==EPN FPM∠=∠90OPM OPN ∠=∠=︒∴∴∴设的半径为,在中:,解得:22. 如图,矩形中,,,抛物线顶点为M .(1)若抛物线对称轴左侧部分图象交y 轴于点.①求此时抛物线的表达式;②设直线的解析式为,求当时x 的取值范围.(2)若矩形的边与抛物线恰好有2个交点,直接写出此时m 的取值范围.【答案】(1)①;②(2【解析】【分析】(1)把代入解方程即可;(2)先求直线表达式,再与二次函数解析式联立,求出交点坐标,再根据函数图像确定的解集;(3)找到两个临界状态,经过点C 时,代入点C 坐标,求出此时的m 值,随着m 的增大,当经过点B 时,代入点B 坐标,求出此时的m 值即可.【小问1详解】解:①把代入得:,EPO FPO∠=∠1,82PD EF ED FD EF ⊥===6PD ==O r Rt ODE △()22286r r =+-253r =ABCO ()8,0A ()0,4C 22444y x mx m =--+()0,12AC y kx b =+22444x mx m kx b --+>+ABCO 2812y x x =-+x <x >4m ≤≤()0,1222444y x mx m =--+AC 22444x mx m kx b --+>+()0,1222444y x mx m =--+21244m =-+解得:或,由题意得,对称轴在y 轴右侧,∴,即,∴,∴抛物线的表达式为;②将,代入得:,解得:,∴直线表达式为:,联立,可得,解得:,∴的解集为:;【小问2详解】解:,∴抛物线开口方向不变,且顶点在直线上运动,而对称轴为直线,随着m 的增大,当抛物线经过点C 时,代入点得:,解得:或(舍),此时,∴此时抛物线与边有两个交点,当抛物线经过点B 时,代入点得:,2m =2m =-4202m m --=>0m >2m =2812y x x =-+()8,0A ()0,4Cy kx b=+804kb b +=⎧⎨=⎩124k b ⎧=-⎪⎨⎪=⎩AC 142y x =-+2142812y x y x x ⎧=-+⎪⎨⎪=-+⎩2215160x x -+=x =22444x mx m kx b --+>+x <x >()22244424y x mx m x m =--+=--4y =-2x m =()0,4C 2444m -=m =m =48m BC =<=BC ()8,4B ()28244m --=解得:,∴时,矩形的边与抛物线恰好有2个交点.【点睛】本题是一道二次函数综合题,待定系数法求二次函数解析式,一次函数解析式,根据函数图像求不等式的解集,矩形的性质,熟练掌握知识点,正确理解题意是解题的关键.23. 中考前,复习完《四边形》后,刘老师给出一个问题情境让同学们探讨:问题情境:如图1,矩形中,,,点O 为对角线和的交点,点M 为上一个动点,连接并延长交于点N .小明:我可以得出.理由:∵,∴.又∵,,∴,∴.请仔细阅读问题情境及小明的研讨,完成下述任务.任务:(1)小明得出的依据是______(填序号).① ② ③ ④ ⑤小明得出的依据是______(填理由).(2)如图2,将四边形沿方向平移得到四边形,当点与点M 重合时,由(1)可得点与点D 重合,求证:四边形是平行四边形.(3)①如图3,将四边形沿折叠,当点B 与点D 重合时,求的长.②如图4,当点M 在直线上运动时,若交于点P ,连接,将三角形沿折叠,点C 的对应点为点Q ,连接,当为直角三角形时,直接写出线段的长.【答案】(1)④;对顶角相等(2)证明见解析(3)①;②或【解析】【分析】(1)根据所给证明过程结合对顶角相等即可得到答案;4m =4m =4m ≤≤-ABCO ABCD AB =2BC =AC BD BC MO AD BM ND =AD BC ∥OBM ODN ∠=∠BO DO =BOM DON ∠=∠BOM DON ≌△△BM DN =BOM DON ≌△△SSS SAS AAS ASA HLBOM DON ∠=∠ABMN BC A B M N ''''B 'N 'B M DN ''ABMN MN BM BC MN CD BP BCP BP DQ PQD △DP 222DM CM CD =+DP =DP =(2)由平移的性质可得,再由,即可证明四边形是平行四边形;(3)①由矩形的性质可得,由折叠的性质可得,设,则,在中,由勾股定理得,解方程即可得到答案;②如图所示,当点M 在延长线上时,可证明只存在这种情况,当点M 在延长线上时,可证明只存在这种情况,据此讨论求解即可.小问1详解】解:由证明过程可知,小明得出的依据是,其中小明得出的依据是对顶角相等,故答案为:④;对顶角相等;【小问2详解】证明:由平移的性质可得,又∵,∴四边形是平行四边形;【小问3详解】解:①∵四边形是矩形,∴,,由折叠的性质可得,设,则,在中,由勾股定理得,∴,解得,∴;②如图所示,当点M 在延长线上时,由折叠的性质可得,,,,【B M DN ''=B M DN ''∥B M DN ''==CD AB 90C ∠=︒BM DM =BM DM x ==2CM x =-Rt CDM △()2222x x =-+BC 90PQD ∠=︒CB 90QDP ∠=︒BOM DON ≌△△ASA BOM DON ∠=∠B M DN ''=B M DN ''∥B M DN ''ABCD ==CD AB 90C ∠=︒BM DM =BM DM x ==2CM x =-Rt CDM △222DM CM CD =+()2222x x =-+74x =74BM =BC 12QP CP CD DP =<<QPB CPB =∠∠90BQP BCP ==︒∠∠2BQ BC ==∴点Q 不可能落在上,即,∵,∴,∴,∴当为直角三角形时,只存在这种情况,∴,∴三点共线,在中,由勾股定理得∴,在中,,∴在中,∴如图所示,当点M 在延长线上时,由折叠的性质可得,∴,∴,同理可得,∴当为直角三角形时,只存在这种情况,∴此时点Q 落在上,AD 90PQD ≠︒∠BC CP >45QPB CPB CBP =>>︒∠∠∠90QPD <︒∠PQD △90PQD ∠=︒180PQD PQB +=︒∠∠B Q D 、、Rt DBC △BD ==2DQ BD BQ =-=-Rt DBC △cos CD BDC BD ==∠Rt PDQ △cos DQ QDP DP ==∠DP =CB 12PQ PC CD DP =>>QDP DQP >∠∠90DQP <︒∠90DPQ <︒∠PQD △90QDP ∠=︒AD在中,由勾股定理得,∴,设,则,在中,由勾股定理得,∴,解得,∴;综上所述,.【点睛】本题主要考查了矩形与折叠问题,勾股定理,解直角三角形,全等三角形的性质与判定,平移的性质,平行四边形的判定等等,熟练掌握相关知识是解题的关键.Rt ABQ1AQ ==1DQ =DP m =CP QP m ==-Rt PDQ △222QP DQ DP =+)2221m m =+m =DP =DP =DP =。
2024年河南省平顶山中考数学一模模拟试题(解析版)
2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。
2024年河南省南阳市中考数学模拟试卷
2024年河南省南阳市中考数学模拟试卷一、选择题(每小题3分,共30分)。
1.(3分)下列说法错误的是()A.“对顶角相等”是必然事件B.“刻舟求剑”是不可能事件C.“方程x2+k=0有实数解”是随机事件D.某彩票的中奖机会是1%,买100张一定会中奖2.(3分)下列计算正确的是()A.=×B.C.2=D.﹣=3.(3分)已知△ABC如图所示.则与△ABC相似的是下列图中的()A.B.C.D.4.(3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.5.(3分)关于x的一元二次方程x2+m=6x有两个不相等的实数根,则m的值可能是()A.8B.9C.10D.116.(3分)将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过()A.(﹣2,2)B.(﹣1,1)C.(0,6)D.(1,﹣3)7.(3分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)8.(3分)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D (4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是()A.15°B.22.5°C.30°D.45°9.(3分)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.910.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3m B.小球距O点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:2二、填空题(每小题3分,共15分)。
2023年河南省开封市中考数学模拟试卷(含解析)
2023年河南省开封市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 2023的倒数是( )A. 2023B. −2023C. −12023D. 120232.如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A.B.C.D.3. 若2+a在实数范围内有意义,则a的取值范围是( )A. a>−2B. a<−2C. a≥−2D. a≤−24. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 0.272×107B. 2.72×106C. 2.72×105D. 272×1045. 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB//CD,DC的延长线交AE于点F;若∠BAE=75°,∠AEC=35°,则∠DCE的度数为( )A. 120°B. 115°C. 110°D. 75°6.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是初三某班班长统计的全班50名学生一学期课外图书的阅读量(单位:本),则这50名学生图书阅读数量的中位数、众数和平均数分别为( )A. 18,12,12B. 12,12,12C. 15,12,14.8D. 15,10,14.57. 如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )A. 8(3−3)mB. 8(3+3)mC. 6(3−3)mD. 6(3+3)m8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,以下结论错误的是( )A. AD是∠BAC的平分线B. ∠ADC=60°C. 点D在线段AB的垂直平分线上D. S△A B D:S△A B C=1:29. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数y =kx(x <0)的图象上,且△OAB 是等边三角形,若AB =6,则k 的值为( )A. −8B. −9C. −6 3D. −1210. 如图,点E 在矩形ABCD 的AB 边上,将△ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若CD =3BF ,BE =4,则AD 的长为( )A. 9B. 12C. 15D. 16第II 卷(非选择题)二、填空题(本大题共5小题,共15.0分)11. 因式分解:x 2+2x +1= .12. 已知关于x 的一元二次方程x 2+kx−6=0的一个根是2,则另一个根是______.13. 不等式组{1−x <013x −1≤0的解集是______.14. 若关于x 的一元二次方程x 2−4x +m =0没有实数根,则m 的取值范围是______.15. 甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,则图中m 的值为______ .三、解答题(本大题共8小题,共64.0分。
2023年河南中考数学模拟试题(6)
2023河南中考数学模拟试题(6)一.选择题(共10小题,满分30分,每小题3分)1.(3分)2的相反数是()A.2B.﹣2C.D.﹣2.(3分)郑州市第47中学七年级学习小组制作了正方体卡片,以表示对广大医务工作者的感谢.如图是它的一种展开图,则在正方体中,与“最”字所在面相对的面上的汉字是()A.美B.的C.人D.逆3.(3分)如图,直线AB,CD相交于点O,OE⊥CD于点O,∠1=40°,则∠AOC的度数()A.50°B.120°C.130°D.140°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.C.4D.286.(3分)关于x的方程(a﹣1)x2﹣4x+6=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣17.(3分)某校在一次科普知识抢答比赛中,7名选手的得分分别为:8,7,6,5,5,5,4,则这组数据的众数是()A.5B.6C.7D.88.(3分)将数5 900 000 000用科学记数法表示为()A.5.9×1010B.5.9×109C.59×108D.0.59×1010 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)请你写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(﹣1,1)12.(3分)若不等式组无解,则m的取值范围.13.(3分)一个布袋里装有2个只有颜色不同的球,其中1个红球,1个白球,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球是一白一红的概率是.14.(3分)如图,正方形ABCD的边长为2,分别以顶点A,B为圆心,边长2为半径画弧,则图中阴影部分的面积为.15.(3分)如图,△ABC和△BDE都是等腰直角三角形,BA=BC,BD=BE,将△BDE绕点B逆时针旋转后得到△BD'E',当点E'恰好落在直线AD'上时,AE'=m,DE=n,则△AD'C的面积为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)2022年,教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80:D组:60≤x<70;E组:0≤x<60),将数据进行分析,得到如下统计:①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.②八年级100名学生上周劳动时间频数分布统计表:分组A B C D E频数14b27136③七、八年级各100名学生上周带动时间的平均数、中位数、众数如表:年级平均数中位数众数七年级81.379.582八年级81.3c83④七年级100名学生上周劳动时间分布扇形统计图如图.请你根据以上信息,回答下列问题:(1)a=,b=,c=;(2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条理由即可)(3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?18.(9分)如图,在平面直角坐标系中,点A在第一象限且点A到x轴、y轴的距离分别是6、2,若反比例函数的图象经过点A、点B(4,b).(1)求出点A的坐标及反比例函数的解析式;(2)连接OA、OB、AB.求△OAB的面积;(3)过点A作AC垂直于x轴,过点B作BD垂直于y轴,垂足分别是点C、点D,AC 和BD交于点E,连接AB、CD,求证:AB∥CD.19.(9分)如图,有一垂直于地面的电线杆AB.在一建筑物二楼平台上的C处和三楼平台上的D处测得A的仰角分别为45°、35°.已知建筑物的层高CE和DF都是3.3m,CF的长为3m.求电线杆AB的高度.(图中所有点都在同一平面内,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)20.(9分)某新能源汽车经销商分别花费60万元,32万元购进A,B两种型号的新能源汽车若干辆.已知A型汽车的进货单价比B型汽车的进货单价高4万元,且购进A型汽车的数量是B型汽车的数量的1.5倍.(1)求A,B两种型号汽车的进货单价;(2)由于新能源汽车需求不断增加,该店准备再次购进A,B两种型号的新能源汽车60辆,已知A型车的售价为25万元/辆,B型车的售价为20万元/辆,根据销售经验,购进B型车的数量不少于A型车的2倍.如果设将这60辆汽车全部售完会获利w万元,那么该经销商应购进A型车多少辆,才能使w最大?w最大为多少万元?21.(9分)为了节省材料,某水产养殖户利用水库的岸堤作为一边,用总长为42m的围网在水库中围成了如图所示的两块矩形区域;已知岸堤的可用长度不超过15m,设AB的长为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数解析式,并求自变量x的取值范围;(2)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?22.(10分)如图1所示,在△ABC中,AB=AC=12,∠CAB=120°,P是BC边上一点(不与B、C点重合),将线段AP绕点A逆时针旋转120°得到扇形P AQ.(1)求证:△APB≌△AQC;(2)当BC与扇形P AQ相切时,求BQ的长;(3)如图2,若AP∥CQ,求阴影部分的图形的周长.(结果不求近似值)23.(10分)矩形纸片ABCD中,AB=4.实践思考:(1)连接BD,将纸片折叠,使点B落在边AD上,对应点为E,折痕为GH,点G,H 分别在AB,BD上.若AD=AB,如图①.①BD=,tan∠ADB=;②若折叠后的△AGE为等腰三角形,则△DHE为三角形;③隐去点E,G,H,线段GE,EH,折痕GH,如图②,过点D作DF⊥BD交BC的延长线于点F,连接AF,AC,则S△ACF=;(2)若AD=(+1)AB,如图③,点M在AD边上,且AM=AB,连接BM,求∠DBM的度数;拓展探究:(3)若AD=AB,如图④,N为边AD的中点,P为矩形ABCD内一点,连接BP,CP,满足∠BPC=90°,Q是边AB上一动点,则PQ+QN的最小值为.。
【最新】河南省中考数学模拟检测试卷(及答案)
河南省中考数学模拟检测试卷(含答案)(时间:120分钟分数:120分)一.选择题(共10小题,满分30分)1.|﹣3|的值是()A.3 B .C.﹣3 D.﹣2.下列运算正确的是()A.3x+2x2=3x3B.(﹣3x)2•4x2=﹣12x4C.﹣3(x﹣4)=﹣3x+12 D.x6÷x2=x33.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形4.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示4.50 4.60 4.65 4.70 4.75 4.80成绩(米)人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.70 5.如图,AB∥CD,有图中α,β,γ三角之间的关系是()A.α+β+γ=180°B.α﹣β+γ=180°C.α+β﹣γ=180°D.α+β+γ=360°6.点A(﹣3,2)在反比例函数y=k≠0)的图象上,则k的值是()A.﹣6 B.﹣C.﹣1 D.67.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④8.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是()A.B.C.D.9.在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)10.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点F,若BE=6,AB=5,则AF的长为()A.4 B.6 C.8 D.10二.填空题(共5小题,满分15分,每小题3分)11.计算:﹣2cos60°=12.方程x2﹣(k+1)x+k+2=0有两个相等的实数根.则k= .13.如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为.14.如图,Rt△ABC中,∠B=90°,AB=6,BC=8,将Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△A′B′C,则边AB扫过的面积(图中阴影部分)是.15.在直角三角形ABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5,则△ADC的周长为.三.解答题(共8小题,满分75分,每小题8分)16.(8分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.17.(9分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.18.(9分)已知:AB为⊙O的直径,C是⊙O上一点,如图,AB=12,BC=4.BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使EF=,连接BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连接GC并延长GC交BH于点D,求证:BD=BG.19.(9分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).20.(9分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.21.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.22.(10分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).23.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(11分)(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.答案一.选择题1.【解答】解:|﹣3|=3,故选:A.2.【解答】解:A、3x+2x2,无法计算,故此选项错误;B、(﹣3x)2•4x2=36x4,故此选项错误;C、﹣3(x﹣4)=﹣3x+12,正确;D、x6÷x2=x4,故此选项错误;故选:C.3.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.6.【解答】解:∵A(﹣3,2)在反比例函数y=(k≠0)的图象上,∴k=(﹣3)×2=﹣6.故选:A.7.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:D.8.【解答】解:从阴影左边的四个小正方形中任选一个,就可以构成正方体的表面展开图,能构成这个正方体的表面展开图的概率是.故选:A.9.【解答】解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.10.【解答】解:∵AF平分∠BAD,AD∥BC,∴∠BAF=∠DAF=∠AFB,∴AB=BF,∵AE=AB,AH=AH,∴△ABH≌△AEH,∴∠AHB=∠AHE=90°,∠ABH=∠AEH=∠FBH,BH=HE=3,∴Rt△ABH中,AH==4,∴AF=2AH=8,故选:C.二.填空题11.【解答】解:原式=1﹣2×=1﹣1=0.故答案为:0.12.【解答】解:∵关于x的方程x2﹣(k+1)x+k+2=0有两个相等的实数根,∴△=0即(k+1)2﹣4(k+2)=0,∴k2﹣6k﹣7=0,∴(k﹣7)(k+1)=0,∴k1=7,k2=﹣1.即k的值为7或﹣1.故答案是:7或﹣1.13.【解答】解:设直线l与BC相交于点G在Rt△CDF中,CF⊥DG∴∠DCF=∠CGF∵AD∥BC∴∠CGF=∠ADE∴∠DCF=∠ADE∵AE⊥DG,∴∠AED=∠DFC=90°∵AD=CD∴△AED≌△DFC∴DE=CF=a在Rt△AED中,AD2=17a2,即正方形的面积为17a2.故答案为:17a2.14.【解答】解:∵∠B=90°,AB=6,BC=8,∴AC=10,∴边AB扫过的面积=﹣=9π,故答案为:9π.15.【解答】解:在Rt△ABC中,∵∠A=30°,AC=5,∴BC=ACtan∠A=5,∴AB==10,∵CD是AB边上的中线,∴CD=AB=×10=5,∴△ADC的周长=AD+DC+AC=5+5+5=10+5.故答案为:10+5.三.解答题16解:原式=÷[﹣]=÷=•=﹣,∵﹣2<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=2,当x=2时,原式=﹣.17.解:(1)这次知识竞赛共有学生=200(名);(2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×=72°;(3)小华获得“一等奖或二等奖”的概率是: =.18.解:(1)∵BH与⊙O相切于点B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直径,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴=,∵AC==4,∴CE=4.(2)连接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴=,∵BE==4,∴BF==3,∴=,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.19.解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的长度为17﹣17cm.20.解:(1)设A型自行车的单价为x元,B型自行车的单价为y元,由题意,解得,∴A型自行车的单价为210元,B型自行车的单价为240元.(2)设购买A型自行车a辆,B型自行车的(600﹣a)辆.总费用为w元.由题意w=210a+240(600﹣a)=﹣30a+144000,∵﹣30<0,∴w随a的增大而减小,∵a≤,∴a≤200,∴当a=200时,w有最小值,最小值=﹣30×200+144000=138000,∴最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.21.解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t, +t),C(4+t, +t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.22.(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)解:如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MC D=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.23.解:(1)设抛物线解析式为y=ax2+bx+c,∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)∵点M的横坐标为m,∴点M的纵坐标为m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,∴当m=﹣1时,S有最大值,最大值为S=9;故答案为:S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S 有最大值9;(3)∵点Q是直线y=﹣x上的动点,∴设点Q的坐标为(a,﹣a),∵点P在抛物线上,且PQ∥y轴,∴点P的坐标为(a, a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以点Q坐标为(﹣4,4),②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.。
2024年河南省安阳市滑县中考一模数学模拟试题(解析版)
滑县2024年中招第一次适应性测试数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下面各小题均有四个选项,其中只有一个是正确的.1. 的绝对值是( )A. B. C. D. 【答案】A【解析】【分析】本题考查实数的性质,根据绝对值的意义,进行求解即可.【详解】解:的绝对值是;故选A .2. 春节假期,我国文化和旅游市场安全繁荣有序,出游人次和出游总花费等多项指标均创历史新高.据初步统计,国内游客出游总花费为亿元.亿用科学记数法表示正确的是( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:亿.故选:C .3. 一个正方体的每个面上都写有一个汉字,如图是该正方体的展开图,则与汉字“好”相对的汉字是( )222-2-2+226326.876326.87126.3268710⨯1063.268710⨯116.3268710⨯863268710⨯10n a ⨯1||10a ≤<n n a n 6326.878116326.8710 6.3268710=⨯=⨯A. 中B. 国C. 故D. 事【答案】A【解析】【分析】本题考查正方体展开图的相对面,根据字两端为相对面,进行判断即可.【详解】解:与汉字“好”相对的汉字是中;故选A .4. 下列运算结果正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了有理数的乘方,积的乘方,分式的性质,完全平方公式;根据以上知识逐项分析判断,即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项正确,符合题意;C.,故该选项不正确,不符合题意; D. ,故该选项不正确,不符合题意;故选:B .5. 如图,是的内接三角形,直径于点.如果,,那么的长为( )A. 10B. C. 15 D. 5【答案】C【解析】Z 3515=()323628xy x y -=-1x y y x-=-()222x y x y -=-35125=()323628xy x y -=-1x y y x x -=-()2222x y x xy y -=-+APB △O CD AB ⊥E AB =60P ∠=︒CE【分析】本题考查圆周角定理,含30度角的直角三角形,连接,求出,含30度角的直角三角形的性质,求出的长,进而求出的长即可.【详解】解:连接,则:,∴,∵,∴,∴,∴,∴,∴,∴;故选C .6. 用配方法解方程时,配方后正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查配方法,根据配方法的步骤进行求解即可.【详解】解:,∴,∴,,OA OB 30OAB ∠=︒,OA OE CE ,OA OB OA OB OC ==2120AOB APB ∠=∠=︒30OAB OBA ==︒∠∠CD AB ⊥90OEA ∠=︒12AE AB ==12OE AO =AE ==5OE =10OA =15CE OC OE OA OE =+=+=2230x x --=()222x -=-()214x -=()212x -=-()224x +=2230x x --=223x x -=2214x x -+=∴;故选:B .7. “龙门石窟”和“白马寺”是洛阳市两张旅游名片.2024年春节期间,两处景点一站式旅游都有三种消费套餐.小明一家准备去两处景点旅游,则小明一家在两处景点选择同一套餐消费的概率是( )A. B. C. D. 1【答案】A【解析】【分析】本题考查列表法求概率.列出表格,利用概率公式进行求解即可.【详解】解:列表如下:共有9种情况,小明一家在两处景点选择同一套餐消费共有3种情况,∴;故选A .8. 某校组织全体党员赴革命老区开展“重走红军路,感悟革命精神”的党员主题实践活动,全程80千米.学校通知上午七点整大家乘大巴车前往目的地,因堵车大巴车晚到,推迟了10分钟出发,途中大巴车平均每小时比原计划多走,结果正好按原计划到达目的地.设大巴车原计划的平均速度为千米/时,则可列方程为( )A. B. C. D. 【答案】D【解析】【分析】本题考查列分式方程,设大巴车原计划的平均速度为千米/时,根据因堵车大巴车晚到,推迟了10的()214x -=,,A B C 131619AB C A (),A A (),A B (),A C B (),B A (),B B (),B C C (),C A (),C B (),C C 3193P ==20%x ()808010120%60x x =+-()808010120%60x x =-+()808010120%x x=++()808010120%60x x =++x分钟出发,途中大巴车平均每小时比原计划多走,结果正好按原计划到达目的地,列出方程即可.【详解】解:设大巴车原计划的平均速度为千米/时,由题意,得:;故选D .9. 每一片雪花各顶点连接其外形就是正六边形.若绕这个正六边形的中心旋转至和原图形重合,至少需要旋转( )A. B. C. D. 【答案】D【解析】【分析】本题考查正多边形与圆,求出正六边形的中心角度数,即可得出结果.【详解】解:正六边形的中心角的度数为,∴绕这个正六边形的中心旋转至和原图形重合,至少需要旋转;故选D .10. 如图,在中,,,,点在边上.连接.按以下步骤作图:(1)以点为圆心,适当长为半径作弧,分别交,于两点;(2)再分别以两点为圆心,大于的长为半径作弧,两弧交于点;(3)连接并延长,分别交,于两点.若,连接,则的值为( )A. B. C. D. 1【答案】B【解析】【分析】勾股定理逆定理,得到为直角三角形,作图得到平分,,推出,三线合一,得到垂直平分,得到,过点作,利用平行线分线段成比例,进行求解即可.20%x ()808010120%60x x =++O 360︒180︒120︒60︒360660°¸=°O 60︒ABC 6AB =8AC =10BC =D AC BD A AB AC ,M N ,M N 12MN P AP BD BC ,E F 3AD DC =DF :DF FC 233456ABC AP BAC ∠3AD DC =AD AB =AP BD BF DF =F FH AC ⊥【详解】解:∵,,,∴,∴为直角三角形,,∴,由作图可知:平分,∴,∵,∴,∴,∴垂直平分,∴ ,过点作,则:为等腰直角三角形,设,则:,∴,∴,解得:,∴,∵,∴,∴;故选B .【点睛】本题考查勾股定理逆定理,解直角三角形,等腰三角形的判定和性质,平行线分线段成比例,解6AB =8AC =10BC =222AB AC BC +=ABC 90BAC ∠=︒3tan 4AB C AC ==AP BAC ∠45FAC ∠=︒3AD DC =364AD AC AB ===,AE BD BE DE ⊥=AP BD BF DF =F FH AC ⊥AHF △FH x =AH FH x ==8CH AC AH x =-=-3tan 84FH x C CH x ===-247x =2432,77AH CH ==90FHC BAC ∠=∠=︒FH AB ∥243324DF BF AH FC FC CH ====题的关键的掌握相关知识点,添加辅助线,构造特殊三角形.二、填空题(每小题3分,共15分)11. 如图,在同一平面内,已知,直线平分,过点作于点,若,则______.【答案】##55度【解析】【分析】本题考查平行线的性质,与角平分线有关的计算,根据对顶角,结合同旁内角互补,求出的度数,根据垂直的定义结合角平分线的定义和对顶角相等,求出的度数,再用,计算即可.【详解】解:∵直线平分,,∴,∵,∴,∵,∴,∴,∴;故答案为:.12. 已知不等式组,有四个整数解,则的取值范围为______.【答案】【解析】【分析】本题考查根据不等式组的解集的情况,求出参数的范围,先求出不等式组的解集,根据解集得到关于的不等式组,求解即可.AB CD EF GEB ∠D DH EF ⊥H 70GEB ∠=︒CDH ∠=55︒CDE ∠HDE ∠CDE HDE ∠-∠EF GEB ∠70GEB ∠=︒135,702HED GEF GEB AED GEB ∠=∠=∠=︒∠=∠=︒AB CD 180110CDE AED ∠=︒-∠=︒DH EF ⊥90DHE ∠=︒9055HDE HED ∠=︒-∠=︒55CDH CDE HDE ∠=∠-∠=︒55︒()31212x x x a +⎧->⎪⎨⎪<⎩a 910a <≤a【详解】解:解,得:,∵不等式组有四个整数解,∴,∴不等式组的整数解为,∴;故答案为:.13. 根据物理学规律,如果把一物体从地面以的速度竖直上抛,那么经过x 秒物体离地面的高度(单位:m )约为.根据上述规律,物体经过_____秒落回到地面.【答案】2【解析】【分析】此题考查一元二次方程的实际运用,理解题意,建立方程解决问题.由题意可知物体回落到地面,也就是说为0,建立方程求得答案即可.【详解】解:,落回地面时,所以,解得:或,因时间为零时未扔出,所以舍去.答:物体经过2秒回落地面.故答案为:2.14. 如图,点均在上,线段经过圆心,于点,于点,已知的半径为2,,,则图中阴影部分的周长为______.【答案】为()31212x x x a +⎧->⎪⎨⎪<⎩5x x a >⎧⎨<⎩5x a <<6,7,8,9910a <≤910a <≤9.8m/s 29.8 4.9x x -S 29.8 4.9S x x =-0S =209.8 4.9x x -=0x =2x =,A C O BD AB BD ⊥B CD BD ⊥D O AB =1CD =523π++【解析】【分析】本题考查勾股定理,解直角三角形,求弧长.勾股定理求出的长,进而求出的度数,利用弧长公式求出的长度,进而求出周长即可.【详解】解:∵于点,于点,∴,∵的半径为2,∴,∵,,∴,∴,∴,∴,∴的长度为:,;故答案为:.15. 如图,在矩形中,,,的平分线交边于点,,分别是边,上的动点,且,是线段上的动点,连接.当______时,的值最小.【答案】2【解析】【分析】本题考查矩形的性质,等腰三角形的判定和性质,利用轴对称解决线段最值问题,作点关于的对称点,根据题意,易得在上,得到,再根据垂线段最短,,OB OD AOC ∠ AC AB BD ⊥B CD BD ⊥D 90,90ABO CDO ∠=︒∠=︒O 2OA OC ==AB =1CD =1,OB OD ====1sin 2AB CD AOB COD OA OC ∠==∠==60,30AOB COD ∠=︒∠=︒180150AOC AOB COD ∠=︒-∠+∠=︒ AC 150521803ππ⨯=5511233ππ+++=++523π+ABCD 3AB =4BC =BCD ∠AD E M N AB BC BM BN =P CE ,PM PN BN =PM PN +N CE N 'N 'CD PM PN PM PN MN ''+=+≥得到时,的值最小,进行求解即可.【详解】解:∵矩形,∴,∵的平分线交边于点,∴,∴为等腰直角三角形,作点N 关于的对称点,则在直线上,连接, ∴,∵垂线段最短,∴时,的值最小,如图:此时:四边形,四边形,四边形均为矩形,∴,∵,∴四边形为正方形,∴,∴;故答案为:2.三、解答题(本大题共8个小题,满分75分)16. 计算:(1);(2)先化简代数式,并求当时代数式的值.MN AB '⊥PM PN +ABCD 90BCD D ∠=∠=︒BCD ∠AD E 45BCE DCE ∠=∠=︒CDE EC N 'N 'CD PN'PM PN PM PN MN ''+=+≥MN AB '⊥PM PN +BCN M 'BNPM PNCN '4MN BC '==BM BN =BNPM 12BN NP PM PN MN ''====2BN =()10134sin603π2-⎛⎫︒+--- ⎪⎝⎭222111x x x -+--1x =【答案】(1)0(2)【解析】【分析】本题考查特殊角的三角函数值的混合运算,分式的化简求值及分母有理化,(1)先化简各数,再进行加减运算即可;(2)先通分进行分式的加减运算,再代值计算即可.【小问1详解】解:(1)原式;【小问2详解】原式;当时,原式.17. 某中学九年级3月15日举办“中考百日誓师”活动暨研学活动,为着力培养学生的核心素养,学校选取了四个研学基地举办此次活动.A .“庙底沟博物馆” B.“黄河湿地公园”C .“函谷关景区”D .“红色教育基地”为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),将调查结果绘制成了如下两幅不完整的统计图.21x +()3412=---312=--++0=222212111x x x x x --+=---2221211x x x x --+-=-()()()2111x x x -=+-21x =+1x =-===请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取______名学生,扇形统计图中A 所对应圆心角的度数为______;(2)将上面的条形统计图补充完整;(3)若该校共有4200名学生,请你估计选择C 研学基地的学生人数;(4)根据样本调查结果,请用不超过30字的一段话描述你对研学活动组织者的建议.【答案】17. 18. 补全图形见详解19. 选择C 研学基地的学生大约有人20. 适当增加对“庙底沟博物馆”,“红色教育基地”的宣传引导,鼓励学生积极参加“庙底沟博物馆”,“红色教育基地”的研学,答案不唯一【解析】【分析】本题主要考查调查与统计的相关概念计算,掌握根据样本估算总体数量,某项圆心角度数的计算方法,根据信息作决策等知识是解题的关键.(1)根据B 研学基地的人数和百分比即可求解抽样人数,根据圆心角度数的计算方法即可求解;(2)分别求C ,D 研学基地的人数即可求解;(3)运用样本百分比估算总体的方法即可求解;(4)根据调查结果作决策.【小问1详解】解:根据题意,本次调查中,抽取的人数为:(人),∴研学基地所对应的圆心角的度数为:,故答案为:;【小问2详解】解:抽样人数为人,∴研学基地的人数为:(人),∴D 研学基地的人数为:(人),2430︒,10501250%24÷=A 23603024︒⨯=︒2430︒,24C 2425%6⨯=2421264---=∴补全条形统计图如下:小问3详解】解:(人),∴选择C 研学基地的学生人数大约为人;【小问4详解】解:根据条形统计图及扇形统计图的信息可得,选择B 研学基地的学生较多,可以适当增加对“庙底沟博物馆”,“红色教育基地”的宣传引导,鼓励学生积极参加“庙底沟博物馆”,“红色教育基地”的研学,答案不唯一.18. 如图,一次函数的图象与反比例函数的图象交于两点.(1)求一次函数和反比例函数的解析式;(2)画出相关的图象,并结合已有函数的图象,请直接写出不等式组的解集.【答案】(1), (2)或【解析】【分析】本题考查反比例函数与一次函数综合应用:(1)待定系数法求出函数解析式即可;【的420025%1050⨯=1050()10y kx b k =+≠()20m y m x=≠()()2,,4,6A n B --9m kx b x -≤+≤136y x =+224y x=54x -≤≤-02x <≤(2)图象法解不等式即可.【小问1详解】解:∵一次函数的图象与反比例函数的图象交于两点,∴,∴,;∴,代入,得:,解得:,∴;【小问2详解】∵,∴随的增大而增大,当时,,∴,由图象可知:的解集为:或.19. “度高者重表,测深者累矩,孤离者三望,离而又旁求者四望.触类而长之,则虽幽遐诡伏,靡所不入.”就是说,使用多次测量传递的方法,就可以测量出各点之间的距离和高度差.——刘徽《九章算术注·序》.某市科研考察队为了求出某海岛上的山峰的高度,如图,在同一海平面的处和处分别树立标杆和,标杆的高都是5.5米,两处相隔80米,从标杆向后退11米的处,可以看到顶峰和标杆顶端在一条直线上;从标杆向后退13米的处,可以看到顶峰和标杆顶端在一条直线上.求山峰的高度及它和标杆的水平距离.注:图中各点都在一个平面内.【答案】山峰的高度为米,它和标杆的水平距离是440米()1y kx b k 0=+≠()2m y m 0x =≠()()2,,4,6A n B --()24624m n ==-⨯-=12n =224y x=()()2,12,4,6A B --()1y kx b k 0=+≠21246k b k b +=⎧⎨-+=-⎩36k b =⎧⎨=⎩136y x =+136y x =+y x 9y =-369x +=-5x =-9m kx b x-≤+≤54x -≤≤-02x <≤AB D F CD EF DF CD G A C EF H A E AB CD AB 225.5CD BD【分析】本题考查了相似三角形的应用,熟练掌握字模型相似三角形是解题的关键.根据题意可得:,,,从而可得,然后证明字模型相似,,从而利用相似三角形的性质进行计算,即可解答.详解】解:由题意得:,,,,,,,,,,,,,解得:,,解得:,山峰的高度为米,它和标杆的水平距离是440米.20. 某苗圃基地新培育两种树苗,其中种树苗的销售单价比种树苗的销售单价每捆少6元;售出种树苗5捆和种树苗4捆的销售额相同.(1)求两种树苗销售单价每捆多少钱;(2)某公司准备购进两种树苗共100捆,用于绿化单位环境.要求购进种树苗的数量不少于种树苗数量的三分之一,两种树苗总费用不超过2700元.问如何设定购进方案,公司所需费用最少?最少费用是多少?【答案】(1)种树苗的销售单价为元,种树苗的销售单价为元(2)当购进种树苗捆,购进种树苗捆时,公司所需费用最少,为元【A AB BH ⊥CD BH ⊥EF BH ⊥90ABH CDH EFH ∠=∠=∠=︒A CDG ABG ∽△△EHF AHB ∽AB BH ⊥CD BH ⊥EF BH ⊥90ABH CDH EFH ∴∠=∠=∠=︒CGD AGB ∠=∠ CDG ABG ∴ ∽∴CD DG AB BG=∴5.51111AB BD =+H H ∠=∠ EHF AHB ∴ ∽∴EF FH AB BH=∴5.5131380AB BD=++∴1113111380BD BD =+++440BD =∴5.51111440AB =+225.5AB =∴AB 225.5CD BD ,A B A B A B ,A B B A A 24B 30A 75B 252550【分析】本题考查一元一次方程的实际应用,一元一次不等式组的应用和一次函数的应用:(1)设种树苗的销售单价为元,则:种树苗的销售单价为元,根据售出种树苗5捆和种树苗4捆的销售额相同,列出方程进行求解即可;(2)设购进种树苗捆,根据题意,列出一元一次不等式组,求出的取值范围,设公司所需费用为元,列出一次函数,进行求解即可.【小问1详解】解:设种树苗的销售单价为元,则:种树苗的销售单价为元,由题意,得:,解得:,∴,答:种树苗的销售单价为元,种树苗的销售单价为元;【小问2详解】设购进种树苗捆,则:购进种树苗捆,∴,解得:,设公司所需费用为元,则:,∴随着的增大而减小,∴当时,有最小值为:(元);∴当购进种树苗捆,购进种树苗捆时,公司所需费用最少,为元.21. 花坛水池中央有一喷泉,水管,水从喷头喷出后呈抛物线状,先向上至最高点后落下,为增强欣赏效果,喷头不定时自动升降,上下升降的范围是.如图,建立平面直角坐标系,水的落地点距水池中央的水平距离为,水流所成抛物线的最高点距离水面.A xB ()6x +A B A a a w A x B ()6x +()546x x =+24x =630x +=A 24B 30A a B ()100a -()1100324301002700a a a a ⎧-≥⎪⎨⎪+-≤⎩5075a ≤≤w ()243010063000w a a a =+-=-+w a 75a =w 67530002550-⨯+=A 75B 2525503m OC =C C 1.2m ±B m n 2:23L y mx mx =-+4m(1)求的值以及抛物线顶点坐标;(2)升降喷头时,水流所成的抛物线形状不变.某一时刻,身高的小丽同学,恰好站在距花坛中心水管的位置,问喷头在升降过程中,水流是否会打湿小丽的头发?【答案】(1),,顶点坐标为(2)不会打湿小丽的头发【解析】【分析】本题考查二次函数的实际应用,正确的列出函数解析式,是解题的关键.(1)将一般式化为顶点式,根据顶点的纵坐标为4,求出的值,得到顶点坐标,求出时的的值,即可求出的值.(2)令求出值,求出点下降时的值,进行比较即可.【小问1详解】解:∵,且最高点距离水面,∴,∴,∴,顶点坐标为,当时,,解得:,∴;故:,,顶点坐标为;【小问2详解】当时,,当点下降时,,故不会打湿小丽的头发.22. 如图,在中,,以为直径的交于点,且,垂足是点,延长交于点.,m n C 1.65m 2m C 1m =-3n =()1,4m 0y =x n 2x =y C 1.2m y ()222313y mx mx m x m =-+=-+-4m 34m -=1m =-()222314y x x x =-++=--+()1,40y =2230x x -++=123,1x x ==-3n =1m =-3n =()1,42x =222233y =-+⨯+=C 1.2m 3 1.2 1.8 1.65-=>ABC AB AC =AB O BC D DEAC ⊥E CA O F(1)求证:是的切线;(2)连接,若,,求的长和的值.【答案】(1)见解析(2)【解析】【分析】此题重点考查切线的性质、平行线的判定与性质、等腰三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识,正确地作出所需要的辅助线是解题的关键.(1)连接,则,所以,由等腰三角形的性质可得,从而得出,得出,再由切线的判定定理可得结果;(2)连接,则,而,所以,可证明,得,由,得,则,求得,可得,再证,可求出,再由三角形函数定义求出的值.【小问1详解】证明:连接,则,,.,,,,,是的半径,是的切线;【小问2详解】解:连接,DE O DF DF =27CE =AE cos BAF ∠35OD OD OB =ODB B ∠=∠B C ∠=∠ODB C ∠=∠OD AC ∥,AD BF 90ADB ADC ∠=∠=︒90AED DEC ∠=∠=︒90ADE C CDE ∠=∠=︒-∠AED DEC ∽AE DE DE CE =F B C ∠=∠=∠DC DF ==9DE ==23DE AE CE==30AC AE CE =+=DEC BFC ∽BF cos BAF ∠OD OD OB =ODB B ∴∠=∠AB AC = B C ∴∠=∠ODB C ∴∠=∠OD AC ∴∥DE AC ⊥ DE OD ∴⊥OD O ∴DE O AD BF ,是的直径,,,,,,,,,,,,,,,,是的直径,,,,,,,,.23. 如图,在中,,,点是斜边上一点,,连接,过点作的垂线分别交于点,交于点,点是的中点,连接.AB O 90ADB ∴∠=︒90ADC ∴∠=︒90AED DEC ∠=∠=︒ 90ADE C CDE ∴∠=∠=︒-∠AED DEC ∴ ∽∴AE DE DE CE=F ABC C ∠=∠=∠ DC DF ∴==AB AC =CD BD ∴=27CE = 9DE ∴===229327DE AE CE ∴===32730AC AE CE ∴=+=+=30AB AC ∴==AB O 90AFB ∴∠=︒90AFB DEC ∴∠=∠=︒DE BF ∴ DEC BFC ∴ ∽∴DE CD BF BC=∴912BF =∴18BF =183cos 305BF BAF AB ∴∠===ABC 90ACB ∠=︒4AC =D AB 13BD AD =CD A CD CD E BC F M AC EM(1)问题提出:①如图1,若,则______,______;②如图2,若,求和.(2)推广应用: 如图3,若,请直接写出和的长.(用已知数或含的式子表示)【答案】(1)①,.②, (2),【解析】【分析】本题考查了全等三角形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,相似三角形的性质与判定;(1)①根据斜边上的中线等于斜边的一半即可得出,证明得出,进而证明,即可求解.②根据①同理可得,证明得出,进而证明,即可求解.(2)根据(1)②的方法即可求解.【小问1详解】解:①如图所示,过点作交的延长线于点,BC AC =EM =CF =34BC AC =EM CF 4n BC AC =EM CF n 24321692EM =163CF n =2EM =ADC BDG ∽43BG =ACF CGB ≌2EM =ADC BDG ∽43BG =ACF CGB ∽B BG BC ⊥CD G∵,点是的中点,∴,∵,,∴∴∴∴∴,∵∴∴在中,∴∴故答案为:,.②解:如图所示,过点作交的延长线于点,4BC AC ==M AC AF CD ⊥122EM AC ==90ACB ∠=︒BG BC ⊥AC BC⊥AC BG∥ADC BDG ∽13BG BD AC AD ==43BG =,90AF CD ACB ⊥∠=︒90,90FAC AFC ECF AFC ∠+∠=︒∠+∠=︒GCB FAC ∠=∠,ACF CGB GCB FAC AC CBACF CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩ACF CGB ≌43CF BG ==243B BG BC ⊥CD G∵,点是的中点,∴,同理可得∴∴∴,∵∴∴又∴∴∵∴∴【小问2详解】如图所示,过点作交的延长线于点,4BC AC ==M AC AF CD ⊥122EM AC ==ADC BDG ∽13BG BD AC AD ==43BG =,90AF CD ACB ⊥∠=︒90,90FAC AFC ECF AFC ∠+∠=︒∠+∠=︒GCB FAC ∠=∠90ACF CBG ∠=∠=︒ACF CGB ∽CF AC GB CB=34BC AC =43CF GB =4416339CF =⨯=B BG BC ⊥CD G∵,点是的中点,∴,同理可得∴∴∴,∵∴∴又∴∴∵∴4BC AC ==M AC AF CD ⊥122EM AC ==ADC BDG ∽13BG BD AC AD ==43BG =,90AF CD ACB ⊥∠=︒90,90FAC AFC ECF AFC ∠+∠=︒∠+∠=︒GCB FAC ∠=∠90ACF CBG ∠=∠=︒ACF CGB ∽CF AC GB CB=4n BC AC =441633CF n n =⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省2011年高级中等学校招生统一考试模拟试卷 数学(冲刺一)一、选择题(每小题3分,共18分)1的平方根是【 】A .2±B . 1.414± C. D .2-2.甲型H1N1流感病毒的直径约为0.08微米至0.12微米,普通纱布或棉布口罩不能阻挡甲型H1N1流感病毒的侵袭,只有配戴阻隔直径低于0.075微米的标准口罩才能有效.0.075微米用科学记数法表示正确的是【 】A .37.510⨯微米B .37.510-⨯微米C .27.510⨯微米D .27.510-⨯微米 3.如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a 、b (a b >),则这两个图形能验证的式子是【 】A .22()()4a b a b ab +--= B .222()()2a b a b ab +--=C .222()2ab ab a b +-=+ D .22()()a b a b a b +-=-4.如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的个数是【 】A .6、7或8 D .85.如图,以原点为圆心的圆与反比例函数3y x=的图象交于A 、B 、C 、D 四点,(第3题)(第4题)(第5题)ABCO(第6题)·已知点A 的横坐标为1,则点C 的横坐标【 】A .1-B .2-C .3-D .4-6.如图,圆锥的轴截面ABC △是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC = 4 cm ,母线AB = 6 cm ,则由点B 出发,经过圆锥的侧面到达母线AC 的最短路程是【 】Acm B .6cm C. D .4cm 二、填空题(每小题3分,共27分)7_________. 8.图象经过点(cos60,sin30)P ︒-︒的正比例函数的表达式为____________.9.如图,直线12l l ∥,则三个角的度数x 、y 、z 之间的等量关系是____________.10.分解因式:3228x xy -=_____________________________.11.如图,在平面直角坐标系中,矩形ABCD 的边与坐标轴平行或垂直,顶点A 、C 分别在函数2y x=的图象的两支上,则图中两块阴影部分的面积的乘积等于__________. 12.如图,点C 、D 在以AB 为直径的半圆上,120BCD ∠=︒,若AB =2,则弦BD 的长为________________.13.某著名篮球运动员在一次比赛中20投16中得28分(罚球命中一次得1分),其中3分球2个,则他投中2分球的频率是__________.14.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的xl 1 x(第9题)l 2zy(第11题)AB CO (第12题)· D的值为_____________________.15.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是AB的中点,若扇形的半径为2,则图中阴影部分的面积等于____________________.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程:32322xx x-=+-.(第14题)(第15题)17.(9分)国务院办公厅下发《关于限制生产销售使用塑料购物袋的通知》,从2008年6月1日起,在全国范围内禁止生产销售使用超薄塑料袋,并实行塑料袋有偿使用制度,“禁塑令”有效的减少了“白色污染”的来源。
某校“环保小组”在“禁塑令”颁布实施前期,到居民小区随机调查了20户居民一天丢弃废塑料袋的情况,统计结果如下表:每户一天丢弃废塑料袋的个数 2 3 4 5户数8 6 4 2请根据表中信息回答:⑴这20户居民一天丢弃废塑料袋的众数和中位数分别是多少个?⑵若该小区有居民500户,如果严格执行“禁塑令”不再丢弃塑料袋,你估计该小区一年来(按365天计算)共减少丢弃的废塑料袋多少个?18.(9分)如图,正方形ABCD中,E点在边BC上,F点在边CD上,AF ED⊥.⑴线段AF和DE相等吗?说明理由;⑵求证:222EF BE FD=+.(第18题)DAEF19.(9分)如图,是一台名为帕斯卡三角的仪器,当实心小球从入口落下,它依次碰到每层菱形挡块时,会等可能的向左或向右落下.⑴分别求出小球通过第2层的A位置、第3层的B位置、第4层的C位置、第5层的D位置的概率;⑵设菱形挡块的层数为n,则小球通过第n层的从左边算起第2个位置的概率是多少?(第19题)20.(9分)如图,Rt ABC △的斜边AB =10,3sin 5A . ⑴ 用尺规作图作线段AB 的垂直平分线l (保留作图痕迹,不要写作法、证明); ⑵ 求直线l 被Rt ABC △截得的线段长.21.(9分)小明同学周日帮妈妈到超市采购食品,要购买的A 、B 、C 三种食品的价格分别是2元、4元和10元,每种食品至少要买一件,共买了16件,恰好用了50元,若A 种食品购买m 件.⑴ 用含有m 的代数式表示另外两种食品的件数; ⑵ 请你帮助设计购买方案,并说明理由.(第20题)22.(10分)如图,在平面直角坐标系中,直线483y x=-+分别与x轴交于点A,与y轴交于点B,OAB∠的平分线交y轴于点E,点C在线段AB上,以CA 为直径的D经过点E.⑴判断D与y轴的位置关系,并说明理由;⑵求点C的坐标.(第22题)__________________________________________________23.(12分)如图,已知关于x 的一元二次函数2y x bx c =-++(0c >)的图象与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且3OB OC ==,顶点为M .⑴ 求出一元二次函数的关系式;⑵ 点P 为线段MB 上的一个动点,过点P 作x 轴的垂线PD ,垂足为D .若OD m =,PCD △的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;⑶ 探索线段MB 上是否存在点P ,使得PCD △为直角三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.(第23题)参考答案一、选择题:⑴C ⑵D ⑶B ⑷A ⑸C ⑹C .二、填空题:⑺2.⑻y x =-.⑼180y x z -+=︒.⑽2(2)(2)x x y x y +-.⑾4.⒀0.4.⒁6,29.⒂24π-.三、解答题:16.略解:同乘(2)(2)x x +-,得1x =,检验(12)(12)0+-≠,所以方程的解是1.17.略解:⑴众数和中位数分别是2和3;⑵ 8263442538642x ⨯+⨯+⨯+⨯==+++,3653500547500n =⨯⨯=.答.18.略证:⑴ AF DE =,ADF DCE △≌△(AAS ); ⑵222EF FC EC =+22BE FD =+19.略解:⑴ A 、B 、C 、D 位置的概率分别为:12、38、14、516; ⑵2nn 20.⑴ 略; ⑵ 求出6BC =,8AC =,3tan 4A =.截线长为 1535tan 344A ⨯==. 21.略解:⑴ 设B 、C 两种食品的件数分别为x 、y ,则16,241050m x y m x y ++=⎧⎨++=⎩.解得5543m x -=,73m y -=; ⑵联立55413m -≥、713m -≥、1m ≥.解得1013m ≤≤.则正整数10,11,12,13m =.只有当10m =时,5x =,1y =;当13m =时,1x =,2y =这两种方案符合题意.答.22.⑴相切,连结ED ,DEA DAE EAO ∠=∠=∠,所以ED OA ∥,所以ED OB ⊥;⑵ 易得10AB =.设(,)C m n ,ED R =,则解直角三角形得53BD R =.因为5103R R +=,则154R =.cos m R R CAF =-⨯∠15331452⎛⎫=-= ⎪⎝⎭.2sin n R CAF =⨯∠1542645=⨯⨯=.所以3,62C ⎛⎫ ⎪⎝⎭. 23.⑴(3,0)B 、(0,3)C .3,930.c b c =⎧⎨-++=⎩得2,3.b c =⎧⎨=⎩,所以223y x x =-++;⑵ 易得(1,4)M .设MB :y kx d =+,则30,4.k d k d +=⎧⎨+=⎩得2,6.k d =-⎧⎨=⎩所以26y x =-+.所以(,26)P m m -+,21(26)32S m m m m =-+=-+(13m ≤<).⑶ 存在.在PCD △中,PDC ∠是锐角,当90DPC ∠=︒时,CDO DCP ∠=∠,得矩形CODP .由263m -+=,解得32m =,所以3,32P ⎛⎫ ⎪⎝⎭; 当90PCD ∠=︒时,COD DCP △∽△,此时2CD CO PD=⋅,即293(26)m m +=-+.2690m m +-=.解得3m =-±因为13m ≤<,所以1)m =,所以()3,6(2P .__________________________________________________(5) [u:] ___[ ] ___[ ] ___[ ](6) [e] ___[ ] ___[ ] ___[ ] ___[ ] ___[ ] ___[ ](7) [B:] ___[ ]收集于网络,如有侵权请联系管理员删除。