小学奥数勾股定理“勾股树”问题

合集下载

完整版勾股定理知识点及典型例题

完整版勾股定理知识点及典型例题

(2)在直角三角形中,如果一个锐角等于 30° ,那么它所对的直角边等于斜边的一半。

(3 )在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角 等于30°。

5.勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3) 用于证明线段平方关系的问题。

(4) 利用勾股定理,作出长为j n 的线段6、2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法八下第18章《勾股定理》勾股定理知识点导航一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a 2+ b 2= C 2.即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+ b 2= c 2,那么这个三角形是直角三角形。

2.勾股数:满足 a 2+ b 2= C 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么 ka ,kb ,kc 同样也是勾股数组。

)* 附:常见勾股数:3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,13 如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为 C ); (2)若c 2= 3 +孑,则^ ABC 是以/ C 为直角的三角形;若a 2+ b 2< C 2,则此三角形为钝角三角形(其中若a 2+ b 2> C 2,则此三角形为锐角三角形(其中4. 注意:(1)直角三角形斜边上的中线等于斜边的一半a ,b ,斜边长为C ,那么3.判断直角三角形: 其他方法:(1) 有一个角为90°的三角形是直角三角形。

小学数学人教新版六年级上册奥数系列讲座:勾股定理(含答案解析)

小学数学人教新版六年级上册奥数系列讲座:勾股定理(含答案解析)

小学数学人教新版六年级上册实用资料勾股定理内容概述1.勾股定理(毕达哥拉斯定理):直角三角形中的两直角边平方后的和等于斜边的平方.公元前500年古希腊的毕达哥拉斯发现了勾股定理后,曾宰牛百头,广设盛筵以示庆贺.2. 公元前11世纪的《周髀算经》中提到:故折矩,以为句广三,股修四、径修五.既方之.外半卿一矩,环而共盘.得成三、四、五.三国时期的赵爽注解道:句股各自乘,并之为弦实,开方除之,即弦.案:弦图又可以句股相乘为朱实二,倍之为朱实四,以句股之差自相乘为中黄实,加差之,亦成弦实.汉朝张苍、狄昌寿整理的《九章算术》第九卷为《句股》.其中解释到:短面曰句,长面曰股,相与结角曰弦.句短其股,股短其弦.句股各自乘,并,而开方除之,即弦.中国科学院数学与系统科学研究院的徽标(右图所示)采用的就是赵爽的弦图.2002年在北京举行的国际数学家大会的徽标也是弦图.如下,在弦图中有EFGH S =四边形()12ABCD MNPQ S S +矩形矩形C DG ADG CDE S S S '==V V V3. 伽菲尔德证法:美国第20任总统伽菲尔德对数学有浓厚的兴趣,在还是中学教师时曾给出一种勾股定理的证明方法:梯形面积=12(上底+下底)×高 =12(a+b)×(a+b) =12(a+b)2;三个直角三角形的面积和=12ab+12ab+12c 2; 梯形面积=三个直角三角形面积和.12(a+b)2=12ab+12ab+12c 2,所以a 2+b 2=c 2. 4.公元前3世纪的欧几里得在《几何原本》中给出一种证明,简叙如下:如图,作出三个正方形,它们的边长分别为直角三角形ABC 的三边长.连接图中的虚线段对应的点;过C 作CK 平行于AF,交AB 、FG 分别于J 、K 点.易证△AFC ≌△BAE ,有12FAC S =V AF.FK=12AFKJ S 矩形,12BAE S =V EA.CA=ACDE S 正方形,所以AFKJ S =矩形ACDE S 正方形;易证△C BG ≌△HBA,有12CBG S =V BG.KG=12KGBJ S 矩形,12HBA S =V BH.IH=CBHI S 正方形,所以KGBJ S 矩形CBHI S =正方形.而AFGB AFKJ S S =正方形矩形KGBJ ACBE S S +=矩形正方形CBHI S +正方形.即有AB 2=AC 2+CB 2.5. 勾股数组:a=u 2-v 2,b=2uv,c=u 2+v 2如果a 、6、c 可以如此表达,那么a 、b 、c 称之为勾股数组,有a 2+b 2=c 2.如:u=2,v=l 时a=3,b=4,c=5;u=7,v=6时a=13,b=84,c=85.当然将已知的勾股数组内每个数都同时扩大若干倍得到的新的一组数还是勾股数组.典型问题2.智能机器猫从平面上的O 点出发.按下列规律行走:由O 向东走12厘米到A 1,由A 1向北走24厘米到A 2,由A 2向西走36厘米到A 3,由A 3向南走48厘米到A 4,由A 4向东走60厘米到A 5,…,问:智能机器猫到达A 6点与O 点的距离是多少厘米?【分析与解】 如右图所示,当智能机器猫到达A 6点时,相对 O 点,向东走了12-36+60=36厘米,向北走了24-48+72=48厘米. 有26OA =362+482,即OA 2=60.所以,A 6点到O 点的距离为60厘米.4.如图32-3所示,直角三角形PQR 的两个直角边分别为5厘米,9厘米问下图中3个正方形面积之和比4个三角形面积之和大多少?【分析与解】 如右图,延长AR,DQ,过E,F 分别作AR,DQ 的平行线,在正方形EFRQ 内交成四个全等的直角三角形和一个小正方形GHMN ,四个全等的直角三角形面积之和与四个白色的三角形面积之和相等.小正方形HGNM 的边长为9-5=4厘米,所以面积为16平方厘米,而另 外两个正方形ABPR 、CDQR 他的面积分别为25,81.所以原图中3个正方 形面积之和比4个三角形面积之和大25+8l+16=122平方厘米.6.若把边长为1的正方形ABCD 的四个角剪掉,得一四边形A 1B l C l D l ,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的59,请说明理由.(写出证明及计算过程)【分析与解】如左图所示,我们知道利用弦图,可是弦图怎么利用?设构造出的弦图中最小正方形的面积为x最大正方形面积为1,那么有剩下的正方形面积为12(x+1)=59,所以x=19.那么,最小正方形的边长为13.由于是四角对称的剪去,所以有AD l=DC l=CB l=BA1=13,AA l=BB l=CC l=DD l=23证明及计算过程略.8.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为多少?【分析与解】注意到,5个长、宽均不相等的长方形拼成一个正方形,只有一种拼法.(如右图所示,由弦图联想到).A、B、C、D中必有一个长方形的一边长为10,不妨设为A,那么显然不能组成边长为10的正方形;如果能够组成边长为11的正方形,那么有11=10+1=9+2=8+3=7+4=6+5,那么大正方形的四边必须是为11,则剩下的两个数,它们的和为11,为中问阴影部分的长、宽和;评注:如果能够组成边长为12的正方形,那么有12=10+2=9+3=8+4=7+5,剩下1、6试填不满足.对于边长为13的正方形,注意到13=10+3=9+4=8+5=7+6,剩下1、2,有见下图情形,满足.10.园林小路,曲径通幽.如图32-7所示,小路由白色正方形石板和青、红两色的三角形石板铺成.问:内圈三角形石板的总面积大,还是外圈三角形的总面积大?请说明理由.【分析与解】如图①,我们任意抽出两块相邻的白色正方形石板,及它们所夹成的青、红两色的三角形石板,如图②所示.图中有∠CDB+∠ADG=1800.如果③,将△CDE 逆时针旋转900,得△C DG '.有A 、D 、C '在同一条直线上,且△C DG '与△ADG 等底同高,所以有C DG ADG CDE S S S '==V V V .也就是说,任意两块相邻的白色正方形石板,它们所夹成的青色三角形与红色三角形面积相等.注意到在原图中,除了外圈青色的两块三角形外,外圈三角形、内圈三角形一一对应.所以原图中,外圈三角形的面积大于内圈三角形的面积,如图①所示.。

勾股定理难题50道

勾股定理难题50道

勾股定理难题50道1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对3.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留)π4.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表:若a b c m +-=,则观察上表我们可以猜想出Sl= (用含m 的代数式表示) 6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 . (2)错误的原因是 . (3)本题正确的结论是 .8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积AE=;则正方形EFGH的面积=.16=,19.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树米才是安全的.10.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要cm.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为2cm.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC∆中BC边上的高是.∆,则ABC13.如图,在ABC∠=︒,分别以BC、AB、AC为边向外作正方形,面积分∆中,90ABC别记为1S 、2S 、3S ,若24S =,36S =,则1S = .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是 .15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 米.16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 .17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于 .18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD = .19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是cm .(结果保留根号)20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =,6DE =,则EB = .21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为m.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为尺.23.如图是一个长8m、宽6m、高5m的仓库,在其内壁的点A(长的四等分点)处有一只壁虎、点B(宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为m.24.如图,Rt ABC∆的斜边AC为一直角边,另一直角∆的两直角边分别为1,2,以Rt ABC边为1画第二个ACD∆;在以ACD∆的斜边AD为一直角边,另一直角边长为1画第三个∆;⋯,依此类推,第n个直角三角形的斜边长是.ADE25.如图所示的长方体是某种饮料的纸质包装盒,规格为5610cm,在上盖中⨯⨯(单位:)开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:2 1.4≈.≈,3 1.7≈,5 2.2)26.如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm (结果用带根号和π的式子表示).评卷人得分三.解答题(共24小题)27.已知ABC∆中,AB AC=.(1)如图1,在ADE∆中,若AD AE=,且DAE BAC∠=∠,求证:CD BE=;(2)如图2,在ADE∆中,若60DAE BAC∠=∠=︒,且CD垂直平分AE,3AD=,4CD=,求BD的长;(3)如图3,在ADE∆中,当BD垂直平分AE于H,且2BAC ADB∠=∠时,试探究2CD,2BD,2AH之间的数量关系,并证明.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是11(91),(91)22-+;勾是五时,股和弦的算式分别是11(251),(251)22-+.根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含(n n为奇数,且3)n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m为偶数,且4)m>的代数式来表示股和弦.29.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB AC =,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为1h 、2h .(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,1h 、2h 、h 之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线13:34l y x =+,2:33l y x =-+,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.30.如图,在等边ABC ∆中,线段AM 为BC 边上的中线,动点D 在直线AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连接BE . (1)填空:ACB ∠= 度;(2)当点D 在线段AM 上(点D 不运动到点)A 时,试求出ADBE的值; (3)若8AB =,以点C 为圆心,以5为半径作C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.31.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题, 请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长 . (1) 如图 1 ,正方体的棱长为5cm 一只蚂蚁欲从正方体底面上的点A 沿着正方体表面爬到点1C 处;(2) 如图 2 ,正四棱柱的底面边长为5cm ,侧棱长为6cm ,一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到1C 处;(3) 如图 3 ,圆锥的母线长为4cm ,圆锥的侧面展开图如图 4 所示, 且1120AOA ∠=︒,一只蚂蚁欲从圆锥的底面上的点A 出发, 沿圆锥侧面爬行一周回到点A .32.在学习勾股定理时,我们学会运用图()I 验证它的正确性;图中大正方形的面积可表示为:2()a b +,也可表示为:214()2c ab +,即221()4()2a b c ab +=+由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图()(2002II 年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用()III 提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++; (3)请你自己设计图形的组合,用其面积表达式验证:22()()()x p x q x px qx pq x p q x pq ++=+++=+++.33.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,如图①,在盒子的内部我们先取棱1BB 的中点E ,再连接AE 、1EC .虫乙如果沿路径1A E C --爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A 沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)34.在ABC ∆中,BC a =,AC b =,AB c =,设c 为最长边,当222a b c +=时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(2)猜想,当22a b + 2c 时,ABC ∆为锐角三角形;当22a b + 2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围. 35.一、阅读理解:在ABC ∆中,BC a =,CA b =,AB c =; (1)若C ∠为直角,则222a b c +=;(2)若C ∠为锐角,则22a b +与2c 的关系为:222a b c +> 证明:如图过A 作AD BC ⊥于D ,则BD BC CD a CD =-=- 在ABD ∆中:222AD AB BD =- 在ACD ∆中:222AD AC CD =- 2222AB BD AC CD -=-2222()c a CD b CD --=- 2222a b c a CD ∴+-= 0a >,0CD >2220a b c ∴+->,所以:222a b c +>(3)若C ∠为钝角,试推导22a b +与2c 的关系.二、探究问题:在ABC ∆中,3BC a ==,4CA b ==,AB c =;若ABC ∆是钝角三角形,求第三边c 的取值范围.36.已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,试判断ABC ∆的形状.阅读下面解题过程:解:由422422a b c b a c +=+得: 442222a b a c b c -=-①2222222()()()a b a b c a b +-=-② 即222a b c +=③ABC ∴∆为Rt △. ④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号) 错误原因是 本题的结论应为 .37.如图a ,90EBF ∠=︒,请按下列要求准确画图:1:在射线BE 、BF 上分别取点A 、C ,使2BC AB BC <<,连接AC 得直角ABC ∆; 2:在AB 边上取一点M ,使AM BC =,在射线CB 边上取一点N ,使CN BM =,直线AN 、CM 相交于点P .(1)请用量角器度量APM ∠的度数为 ;(精确到1)︒ (2)请用说理的方法求出APM ∠的度数;(3)若将①中的条件“2BC AB BC <<”改为“2AB BC >”,其他条件不变,你能自己在图b 中画出图形,求出APM ∠的度数吗?38.如图,D 、E 分别是ABC ∆的边BC 和AB 上的点,ABD ∆与ACD ∆的周长相等,CAE ∆与CBE ∆的周长相等.设BC a =,AC b =,AB c =. (1)求AE 和BD 的长;(2)若90BAC ∠=︒,ABC ∆的面积为S ,求证:S AE BD =.39.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小强计算这块菜地的面积.(结果保留根号)40.ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.41.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 ⋯ a221-231-241-251-⋯ b46 810 ⋯ c221+ 231+241+251+⋯(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数(1)n n >的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.42.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算1(91)2-、1(91)2+与1(251)2-、1(251)2+,并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;(2)根据(1)的规律,用(n n 为奇数且3)n 的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m 为偶数且4)m >的代数式来表示他们的股和弦.43.如图,梯子AB 斜靠在墙上,90ACB ∠=︒,5AB =米,4BC =米,当点B 下滑到点B '时,点A 向左平移到点A '.设BB x '=米(04)x <<,AA y '=米. (1)用含x 的代数式表示y ;(2)当x 为何值时,点B 下滑的距离与点A 向左平移的距离相等?(3)请你对x 再取几个值,计算出对应的y 值,并比较对应的y 值与x 值的大小(y 值可以用精确到0.01的近似数表示,也可用无理数表示).(4)根据第(1)~(3)题的计算,还可以结合画图、观察,推测y 与x 的大小关系及对应的x 的取值范围.44.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量90A ∠=︒,3AB m =,12BC m =,13CD m =,4DA m =,若每平方米草皮需要200元,问要多少投入?45.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,在图①画出一条路径,使昆虫乙从顶点A 沿这条路径爬行,可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)(2)如图②,假设昆虫甲静止不动,昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(3)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1)s 19 4.4≈21 4.6.46.在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如图所示,已知原设计楼梯BD 长20米,在楼梯水平长度()BC 不发生改变的前提下,楼梯的倾斜角由30︒增大到45︒,那么新设计的楼梯高度将会增加多少米?(结果保留整数,参考数据:2 1.414≈,3 1.732)≈47.如图,小强在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30︒,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线AC 与江岸所成的夹角60ACE ∠=︒.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.48.在ABC ∆中,AC BC =,90ACB ∠=︒,D 、E 是直线AB 上两点.45DCE ∠=︒ (1)当CE AB ⊥时,点D 与点A 重合,显然222DE AD BE =+(不必证明); (2)如图,当点D 不与点A 重合时,求证:222DE AD BE =+;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.49.如图,四边形ABCD 中,AB BC ⊥,AD AB ⊥,1AB =,2BC CD ==.求四边形ABCD 的周长和面积.50.定义: 三边长和面积都是整数的三角形称为“整数三角形” .数学学习小组的同学从 32 根等长的火柴棒 (每 根长度记为 1 个单位) 中取出若干根, 首尾依次相接组成三角形, 进行探究活动 . 小亮用 12 根火柴棒, 摆成如图所示的“整数三角形”; 小颖分别用 24 根和 30 根火柴棒摆出直角“整数三角形”;小辉受到小亮、 小颖的启发, 分别摆出三个不同的等腰“整数三角形” . (1) 请你画出小颖和小辉摆出的“整数三角形”的示意图;(2) 你能否也从中取出若干根, 按下列要求摆出“整数三角形”, 如果能, 请画出示意图;如果不能, 请说明理由 . ①摆出等边“整数三角形”;②摆出一个非特殊 (既 非直角三角形, 也非等腰三角形) “整数三角形” .勾股定理难题50道参考答案与试题解析一.选择题(共2小题)1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形【解答】解:依题意可知,1133BP BF DH==,2233CQ CG DH==,又////PB CQ DH,APB AQC AHD∴∆∆∆∽∽,A∴、P、Q、H四点共线,平面展开图形为平行四边形(如图)故选:B.2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对【解答】解:在直角三角形ABD中,根据勾股定理,得15BD=;在直角三角形ACD中,根据勾股定理,得6CD=.当AD在三角形的内部时,15621BC=+=;当AD在三角形的外部时,1569BC=-=.则BC的长是21或9.故选:D .二.填空题(共24小题)3.在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 231π+ cm .(结果保留)π【解答】解:如图所示,无弹性的丝带从A 至C ,绕了1.5圈,∴展开后 1.523AB cm ππ=⨯=,3BC cm =,由勾股定理得:22229931AC AB BC cm ππ=+=+=+. 故答案为:231π+.4.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 10 cm .【解答】解:将长方体展开,连接A 、B ',13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=. 故答案为:10.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、ca b c +- l S /S l345 2 12 6 1/26810 4 24 24 1 51213 4 30 30 1 81517 6 40 60 3/2121620848962⋯ ⋯ ⋯ ⋯ ⋯若a b c m +-=,则观察上表我们可以猜想出S l =4m(用含m 的代数式表示) 【解答】解:3452m a b c =+-=+-=时,1224S l ==; 6810512134m a b c =+-=+-=+-=时,414S l ==; 815176m a b c =+-=+-=时,3624S l ==; 1216208m a b c =+-=+-=时,824S l ==; ⋯∴我们可以猜想出4S ml =. 故答案为4m.6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 7或25 秒.【解答】解:如图,作AD BC ⊥,交BC 于点D , 8BC cm =,142BD CD BC cm ∴===, 223AD AB BD ∴=-=,分两种情况:当点P 运动t 秒后有PA AC ⊥时,22222AP PD AD PC AC =+=-,2222PD AD PC AC ∴+=-,22223(4)5 2.25PD PD PD ∴+=+-∴=, 4 2.25 1.750.25BP t ∴=-==, 7t ∴=秒,当点P 运动t 秒后有PA AB ⊥时,同理可证得 2.25PD =, 4 2.25 6.250.25BP t ∴=+==, 25t ∴=秒,∴点P 运动的时间为7秒或25秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 ③ . (2)错误的原因是 . (3)本题正确的结论是 .【解答】解:2222222()()()c a b a b a b -=-+∴应有2222222()()()0c a b a b a b ---+=得到22222()[()]0a b c a b --+=,22()0a b ∴-=或222[()]0c a b -+=,即a b =或222a b c +=,∴根据等腰三角形得定义和勾股定理的逆定理,三角形为等腰三角形或直角三角形.故填③,不能确定22a b -是否为0,等腰三角形或直角三角形.8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积16=,1AE =;则正方形EFGH 的面积= 10 .【解答】解:四边形EFGH 是正方形,EH FE ∴=,90FEH ∠=︒,90AEF AFE ∠+∠=︒,90AEF DEH ∠+∠=︒,AFE DEH ∴∠=∠,在AEF ∆和DHE ∆中, A D AFE DEH EF HE ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEF DHE ∴∆≅∆, AF DE ∴=,正方形ABCD 的面积为16, 4AB BC CD DE ∴====, 413AF DE AD AE ∴==-=-=,在Rt AEF ∆中,2210EF AE AF + 故正方形EFGH 的面积101010=.故答案为:10.9.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树 4 米才是安全的. 【解答】解:如图,BC 即为大树折断处4m 减去小孩的高1m ,则413BC m =-=,945AB m =-=,在Rt ABC ∆中,2222534AC AB BC =-=-=米. 即小孩至少离开这棵树4米才是安全的. 故答案为:4.10.如图,长方体的底面是边长为1cm 的正方形,高为3cm .如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要73 cm .【解答】解:如图所示,从点A 开始经过4个侧面缠绕2圈到达点B ,∴展开后188AC cm cm =⨯=,3BC cm =,由勾股定理得:2273AB AC BC cm =+.故答案为:73.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm ,则A 、B 、C 、D 四个小正方形的面积之和为 144 2cm .【解答】解:如右图所示, 根据勾股定理可知,231S S S +=正方形正方形正方形, 2C D S S S +=正方形正方形正方形, 3A B S S S +=正方形正方形正方形,2112144C D A B S S S S S ∴+++===正方形正方形正方形正方形正方形.故答案是144.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC ∆,则ABC ∆中BC 边上的高是322.【解答】解:由题意知,小四边形分别为小正方形,所以B 、C 为EF 、FD 的中点,ABC AEB BFC CDA AEFD S S S S S ∆∆∆∆=---正方形 11122121112222=⨯-⨯⨯-⨯⨯-⨯⨯,32=. 22112BC =+=.ABC ∴∆中BC 边上的高是3322222⨯÷=. 故答案为:322.13.如图,在ABC ∆中,90ABC ∠=︒,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为1S 、2S 、3S ,若24S =,36S =,则1S = 2 .【解答】解:ABC ∆中,90ABC ∠=︒, 222AB BC AC ∴+=, 222BC AC AB ∴=-,21BC S =、224AB S ==,236AC S ==, 132642S S S ∴=-=-=.故答案为:2.14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是103.【解答】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x =+,24S y x =+,3S x =,12331210S S S x y ∴++=+=,故31210x y +=,1043x y +=, 所以21043S x y =+=, 故答案为:103. 15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 5 米.【解答】解:将圆柱表面切开展开呈长方形, 则有螺旋线长为三个长方形并排后的长方形的对角线长 圆柱高4米,底面周长1米222(13)491625x =⨯+=+= 所以,花圈长至少是5m .16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 4或25或10 .【解答】解:①以A 为直角顶点,向外作等腰直角三角形DAC ,90DAC ∠=︒,且AD AC =,224BD BA AD ∴=+=+=;②以C 为直角顶点,向外作等腰直角三角形ACD ,连接BD ,过点D 作DE BC ⊥,交BC 的延长线于E . ABC ∆是等腰直角三角形,90ACD ∠=︒, 45DCE ∴∠=︒,又DE CE ⊥,90DEC ∴∠=︒, 45CDE ∴∠=︒,222CE DE ∴=== 在Rt BAC ∆中,222222BC +=,2222(222)(2)25BD BE DE ∴=+=++=; ③以AC 为斜边,向外作等腰直角三角形ADC ,90ADC ∠=︒,AD DC =,且2AC =,2sin 45222AD DC AC ∴==︒=⨯=, 又ABC ∆、ADC ∆是等腰直角三角形, 45ACB ACD ∴∠=∠=︒, 90BCD ∴∠=︒,又在Rt ABC ∆中,222222BC =+=,2222(22)(2)10BD BC CD ∴=+=+=. 故BD 的长等于4或25或10.17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于27133+ .【解答】解: 延长BA 交QR 于点M ,连接AR ,AP .AC GC =,BC FC =,ACB GCF ∠=∠, ABC GFC ∴∆≅∆,30CGF BAC ∴∠=∠=︒,60HGQ ∴∠=︒,90HAC BAD ∠=∠=︒, 180BAC DAH ∴∠+∠=︒, 又//AD QR ,180RHA DAH ∴∠+∠=︒, 30RHA BAC ∴∠=∠=︒,60QHG ∴∠=︒,60Q QHG QGH ∴∠=∠=∠=︒, QHG ∴∆是等边三角形 .3cos304232AC AB =︒=⨯=. 则23QH HA HG AC ====.在直角HMA ∆中,3sin 602332HM AH =︒=⨯=.cos 603AM HA =︒=. 在直角AMR ∆中,4MR AD AB ===.2334723QR ∴=++=+. 21443QP QR ∴==+. 3736PR QR==+.PQR ∴∆的周长等于27133RP QP QR ++=+.故答案为:27133+.18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD =75.【解答】解:设AC x =,CD y =,由勾股定理得: 2222(5)6425x y x y ⎧++=⎨+=⎩, 消去x ,得:22(5)39y y +-=, 整理,得: 1014y =,即75y =, 故CD 的长为75. 19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是 42cm .(结果保留根号)【解答】解:将圆柱体展开,连接A 、B ,根据两点之间线段最短,224442AB cm =+=.20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =6DE =,则EB =334 .【解答】解:在Rt ABC ∆中,42AB =,45A ∠=︒,24242BC ∴=⨯= 在Rt EDC ∆中,60EDC ∠=︒,6DE =,3sin 6332CE DE EDC ∴=∠=⨯= 334BE CE BC ∴=-=-.故填空答案:334-.21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20489+或40165+或4085+ m .【解答】解:(1)当20是等腰三角形的底边时,根据面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线,即底边的一半10BD =, 根据勾股定理即可求得其腰长22100256289AB AD BD =++,此时三角形的周长是20489+;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况. 根据面积求得腰上的高是16;①当高在三角形的外部时,在RT ADC ∆中,2212AD AC CD =-=,从而可得32BD =,进一步根据勾股定理求得其底边是22221632165BC CD BD =+=+=,此时三角形的周长是40165+;②当高在三角形的内部时,根据勾股定理求得2212AD AC CD =-=,8BD AB AD =-=, 在RT CDB ∆中,22BC CD BD =+2216885+=,此时三角形的周长是4085+; 故本题答案为:20489+或40165+或4085+.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun 一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为 10.1 尺.【解答】解:设单门的宽度是x 米,根据勾股定理,得221(0.1)x x =+-, 5.05x =,则210.1x =尺.23.如图是一个长8m 、宽6m 、高5m 的仓库,在其内壁的点A (长的四等分点)处有一只壁虎、点B (宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为 85 .。

勾股定理及常见题型分类

勾股定理及常见题型分类

勾股定理及常见题型分类一、知识要点: 1、勾股定理2、勾股定理证明方法及勾股树3、勾股定理逆定理4、勾股定理常见题型回顾 二、典型题题型一:“勾股树”及其拓展类型求面积1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A.13B.26C.47D.942.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。

3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 1S 3S 2S 1甲 乙图15、在直线上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、=_____________。

题型二:勾股定理与图形问题1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .2.如图,求该四边形的面积3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 .5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。

【培优奥数专题】五年级下册数学-勾股定理(解析版)

【培优奥数专题】五年级下册数学-勾股定理(解析版)

【培优奥数专题】五年级下册数学-勾股定理(解析版)一、知识点1、历史三千多年前,周朝数学家商高提出“勾三股四弦五”最早由公元前3世纪中我汉代数学家赵爽在《周髀算经》注解时给出相传,公元前550年,古希腊毕达哥拉斯首先发现,但其证明方法已失传2、概念直角三角形两直角边的平方之和等于斜边的平方例如:两直角边的长度分别为a和b,斜边的长度为c,则a²+b²=c²3、勾股数组概念:指满足算式a²+b²=c²的三个正整数常见的勾股数组:(3,4,5)、(5,12,13)、(7,24,25)、(8,15,17)变形的勾股数组:将上面四组勾股数组中任意一组的三个数同时扩大或缩小相同的倍数之后仍然是勾股数组4、勾股定理的逆定理如果一个三角形的三边长a、b、c满足a²+b²=c²,那么这个三角形是直角三角形二、学习目标1.我能够了解勾股定理的概念。

2.我能够理解勾股定理的逆定理,并能准确判断一个三角形是否为直角三角形。

3.我能够运用勾股定理解决简单的实际问题。

三、课前练习1.计算下列各题,并牢牢记住答案。

11²=12²=13²=14²=15²=16²=17²=18²=19²=20²=21²=22²=23²=24²=25²=【解答】1211441691962252562893243614004414845295766252.画出下面图形的对称轴,并说一说你有什么发现?【解答】略四、典型例题思路点拨如何判断三角形为直角三角形如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。

最长边所对的角为直角。

例题11.下列各组数中能恰好作为直角三角形三边长的是。

A.(4,5,6)B.(16,12,10)C.(10,24,26)D.(5,14,17)【解答】根据两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形发现只有C符合10²+24²=26²。

小学奥数 勾股定理 知识点+例题+练习 (分类全面)

小学奥数 勾股定理 知识点+例题+练习 (分类全面)

勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。

也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2o勾膻定理勾股数★满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。

★常见的勾股数有:①3,4,5;②6,8,10;③8,15,17:④7,24,25;⑤5,12,13;⑥9,12,15…注意:①3,4,5既是勾股数,又是三个连续整数,它们非常特殊,不要认为三个连续整数都是勾股数;②每组勾股数的相同倍数也是勾股数;(如:3,4,5;6,8,10;9,12,15)③勾股数必须都是正整数,(如:0.3,0.4,0.5都是小数,因而不是勾股数)3米例2、一棵大树在离地面3米处折断,树的顶端落在离树的底部4米处,那么这棵树折断之前的高度是多少米?巩固、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?巩固、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000m 处,过了20秒,飞机距离这个女孩头顶5000m,则飞机速度是多少?例3、暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝.他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为km.丄埋宝藏点632登陆点8巩固、轮船从海中岛A出发,先向北航行9km,又往西航行9km,由于遇到冰山,只好又向南航行4km,再向西航行6km,再折向北航行2km,最后又向西航行9km,到达目的地B,求AB 两地间的距离.例4、一个圆桶,底面直径为24cm,高32cm,则桶内所能容下的最长木棒为多少厘米?如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米?B例5、下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是?巩固、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和是cm2.巩固、如图所示,阴影部分是一个正方形,则此正方形的面积为?例6、如图,已知直角三角形两直角边BC,AC的长分别为3cm和4cm,那么CD有多长?巩固、三角形的三边长分别为6,&10,它的最短边上的高为,最长边上的高为巩固、若直角三角形的三边长分别为X,6,8,则X2=例7、等腰三角形ABC的腰长为10,底边上的高为6,则底边的长为多少?巩固、如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。

五年级奥数几何专项十--勾股定理与弦图(三)

五年级奥数几何专项十--勾股定理与弦图(三)

华盛顿的傍晚亲爱的小朋友们:,“在那山的那边海的那边的美国首都华盛顿,有一位中年人,他聪明又勤奋,他潜心探讨,他反复思考与演算……”,那是1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员加菲尔德。

他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。

由于好奇心驱使,加菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。

只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。

于是加菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”加菲尔德答道:“是5呀。

”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”加菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”加菲尔德一时语塞,无法解释了,心里很不是滋味。

加菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。

他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

具体方法如下: 两个全等的Rt △ABC 和Rt △BDE 可以拼成直角梯形ACDE , 则梯形面积等于三个直角三角形面积之和。

即(AC +DE )×CD÷2=AC×BC÷2+BD×DE÷2+AB×BE÷2 (a +b )2÷2=a×b÷2+a×b÷2+c×c÷2课前预习 专项十 勾股定理与弦图(三)化简整理得a2+b2=c2点评:此种解法主要利用了三角形的面积公式:底×高÷2,和梯形的面积公式:(上底+下底)×高÷2.%而在我国对于勾股定理的证明又做出了那些贡献哪?在我国古代,把直角三角形叫做勾股形。

勾股定理详解与经典例题解析汇报

勾股定理详解与经典例题解析汇报

勾股定理(基础)学习目标1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.要点梳理要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.典型例题类型一、勾股定理的直接应用1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)若=5,=12,求;(2)若=26,=24,求.【变式】在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.类型二、与勾股定理有关的证明2、如图所示,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为N,试说明.【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2 B.BD2C.BC2 D.DE2类型三、与勾股定理有关的线段长3、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B 落在点F 处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.6类型四、与勾股定理有关的面积计算4、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.6 B.5 C.11 D.16类型五、利用勾股定理解决实际问题5、一圆形饭盒,底面半径为8,高为12,若往里面放双筷子(精细不计),那么筷子最长不超过多少,可正好盖上盒盖?巩固练习一.选择题1.在△ABC中,AB=12,AC=9,BC=15,则△ABC的面积等于()A.108 B.90C.180D.542.若直角三角形的三边长分别为2,4,,则的值可能有( )A.1个 B.2个 C.3个 D.4个3.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( )A.12米 B.10米 C.8米 D.6米4.Rt△ABC中,斜边BC=2,则的值为( )A.8 B.4 C.6 D.无法计算5.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( )A.4 B.6 C.8 D.56.如图,Rt△ABC中,∠C=90°,若AB=15,则正方形ADEC和正方形BCFG的面积和为( )A.150B.200 C.225 D.无法计算二.填空题7.甲、乙两人同时从同一地点出发,已知甲往东走了4,乙往南走了3,此时甲、乙两人相距____.8.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______米路,却踩伤了花草.9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.10.如图,有两棵树,一棵高8,另一棵高2,两树相距8,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______.11.如图,直线经过正方形ABCD的顶点B,点A、C到直线的距离分别是6、8,则正方形的边长是______.12.如图,王大爷准备建一个蔬菜大棚,棚宽2.4m,高3.2m,长15m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积是 m2.三.解答题13.如图四边形ABCD的周长为42,AB=AD=12,∠A=60°,∠D=150°,求BC的长.14.已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC 的长.勾股定理逆定理(基础)学习目标1.理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.要点梳理要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;典型例题类型一、勾股定理的逆定理1、判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=;(3),,();【变式】一个三角形的三边之比是3:4:5 则这个三角形三边上的高之比是()A.20:15:12 B.3:4:5 C.5:4:3 D.10:8:2类型二、勾股定理逆定理的应用例3、已知:为的三边且满足,试判断的形状.例:4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?巩固练习一.选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是().A. 9,12,15 B.3,4,5 C.1.4,4.8,5 D.4,7,52. 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是().A.CD、EF、GH B.AB、EF、GH C.AB、CF、EF D.GH、AB、CD3. 下列说法:(1)在△ABC中,若a2+b2≠c2,则△ABC不是直角三角形;(2)若△ABC 是直角三角形,∠C=90°,则a2+b2=c2;(3)在△ABC中,若a2+b2=c2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为.其中说法正确的有().A.4个B.3个C.2个D.1个4.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A.1∶1∶2 B.1∶3∶4C.9∶25∶26 D.25∶144∶1695.已知三角形的三边长为(其中),则此三角形( ).A.一定是等边三角形 B.一定是等腰三角形C.一定是直角三角形 D.形状无法确定6.三角形的三边长分别为、、(都是正整数),则这个三角形是().A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定二.填空题7.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.8.已知两条线段的长分别为11和60,当第三条线段的长为时,这3条线段能组成一个直角三角形(要求三边长均为整数).9. 已知,则由此为边的三角形是三角形.10.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是_____.11.若一个三角形的三边之比为5:12:13,且周长为60,则它的面积为.12.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.三.解答题13.已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=,求证:AF⊥FE.14.观察下列各式:,,,,…,你有没有发现其中的规律?请用含的代数式表示此规律并证明,再根据规律写出接下来的式子.15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?。

小学奥数勾股定理与弦图经典例题【三篇】

小学奥数勾股定理与弦图经典例题【三篇】

【导语】芬芳袭⼈花枝俏,喜⽓盈门捷报到。

⼼花怒放看通知,梦想实现今⽇事,喜笑颜开忆往昔,勤学苦读最美丽。

在学习中学会复习,在运⽤中培养能⼒,在总结中不断提⾼。

以下是为⼤家整理的《⼩学奥数勾股定理与弦图经典例题【三篇】》供您查阅。

【第⼀篇】
 例1、如图所⽰,直线上并排放置着两个紧挨着的圆,它们的⾯积都等于1680平⽅厘⽶,阴影部分是夹在两圆及直线之间的部分。

如果要在阴影部分内部放⼊⼀个尽可能⼤的圆,则这个圆的⾯积等于多少平⽅厘⽶?
【第⼆篇】
例2、如图,⾃△ABC内部⼀点P向AB、BC、CA作垂线,垂⾜依次为F、D、E,以AF、FB、BD、DC、CE、EA为边长分别向外作正⽅形,这六个正⽅形的⾯积依次记为S[sub]1[/sub]、S[sub]2[/sub]、S[sub]3[/sub]、S[sub]4[/sub]、
S[sub]5[/sub]、S[sub]6[/sub],如果S[sub]6[/sub]-S[sub]5[/sub]=2,S[sub]4[/sub]-S[sub]3[/sub]=1,那么试求S[sub]1[/sub]-
S[sub]2[/sub]的值。

【第三篇】
 例3、如图所⽰,直⾓三⾓形PQR的直⾓边为5厘⽶和9厘⽶,问图中3个正⽅形⾯积之和⽐4个三⾓形⾯积之和⼤多少?。

小学奥数勾股定理与弦图练习及答案【三篇】

小学奥数勾股定理与弦图练习及答案【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《⼩学奥数勾股定理与弦图练习及答案【三篇】》供您查阅。

【第⼀篇】
例2、△ABC是直⾓三⾓形,在边AB、BC、CA上分别取点D、E、F,使得AD=AF=FC=EC。

当△DEF成为等腰直⾓三⾓形、BE=3cm、DB=1cm时,求△ABC的⾯积。

【第⼆篇】
例1、如图,P是正⽅形ABCD外⾯的⼀点,PB=12厘⽶,△APB的⾯积是90平⽅厘⽶,△CPB的⾯积是48平⽅厘⽶。

请问:正⽅形ABCD的⾯积是多少平⽅厘⽶?
【第三篇】
习题:从⼀个正⽅形的⽊板上锯下宽0.5⽶的⼀个长⽅形⽊条以后,剩下的长⽅形⾯积为5平⽅⽶,问:锯下的长⽅形⽊条的⾯积等于多少平⽅⽶?。

六年级奥数几何问题之勾股定理与弦图

六年级奥数几何问题之勾股定理与弦图

六年级奥数几何问题之勾股定理与弦图
奥数,一直是长沙小升初的必考科目。

尤其是在“四大名校”的小升初选拔考试中,奥数往往就是拉开考生分数的一个重要题型。

因此,小升初的学生在备考阶段,千万不要忘了扎实的备考奥数知识。

下面,长沙奥数网网徐丽老师将会针对小升初奥数几何问题中的勾股定理与弦图问题,从知识点、常见解题方法、经典例题详解以及巩固练习四个方面来为来家进行讲解。

希望对大家有所帮助
一、知识点:
1、勾股定理
(1)、勾股定理
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理。

(2)、勾股定理的证明
二、常见解题方法:
1、勾股定理
勾股定理其实是一个很简单的定理,而我们小学奥数比较偏重于勾股定理的应用!首先,我们必须明确,勾股定理只能应用于直角三角形,这是大前提;其次就是,勾股定理描述的`是直角三角形的三边之间的数量关系!题目一旦牵涉到这些,我们都可以运用勾股定理来解决!
例1、若直角三角形一直角边为9,则斜边为多少?
【详解】此题是勾股定理和平方差公式的结合运用。

一直角边的长度为9,说明:斜边2-一直角边2=另一直角边2,即用字母表示为c2 -b2=a2=81=(c+b)(c-b),则
所以斜边长为41或15。

三、经典例题详解:
1、一个直角三角形,三条边的长度都是整数,其中一条边的长度是5,求三角形的面积?
【六年级奥数几何问题之勾股定理与弦图汇总】。

奥数勾股定理

奥数勾股定理

奥数勾股定理勾股定理,又称毕达哥拉斯定理,是一个关于直角三角形的重要定理。

它指出,在一个直角三角形中,斜边的平方等于两条直角边的平方和。

勾股定理的数学表达式为:a^2 + b^2 = c^2,其中a、b为直角边,c为斜边。

勾股定理在数学、物理等领域具有广泛的应用,它不仅是一个基本的几何定理,也是解决许多实际问题的关键工具。

在古代,我国的商高就已经提出了勾股定理的特例,而在西方,该定理由古希腊的毕达哥拉斯学派首次提出并证明。

勾股定理的证明方法有很多,其中比较著名的有几何证明、代数证明和切线证明等。

勾股定理的推广也有很多,例如在非欧几里得几何中,有双曲勾股定理和椭圆勾股定理等。

奥数中的勾股定理题型多种多样,主要可以分为以下几类:1. 直接应用勾股定理:这类题目直接给出一个直角三角形,要求利用勾股定理计算斜边或直角边的长度。

2. 勾股定理的逆定理:这类题目给出一个三角形,要求判断它是否为直角三角形,并说明理由。

勾股定理的逆定理指出,如果一个三角形的三条边满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,且直角边为a、b,斜边为c。

3. 勾股定理与面积的关系:这类题目要求利用勾股定理计算直角三角形的面积。

根据勾股定理,直角三角形的面积可以表示为:√(a^2 + b^2) ×h,其中a、b为直角边,h为高。

4. 勾股定理与实际问题:这类题目将勾股定理应用到实际问题中,例如测量建筑物的高度、计算物体的体积等。

这类题目需要将实际问题抽象为数学问题,并利用勾股定理进行求解。

5. 勾股定理的推广与延伸:这类题目要求利用勾股定理解决更复杂的问题,例如在非欧几里得几何中讨论勾股定理、推广勾股定理到更高的维度等。

在奥数中,勾股定理的题目往往需要灵活运用勾股定理及其相关性质,通过合理设问、逐步深入,考查学生的思维能力和解决问题的能力。

勾股定理专题(附问题详解,全面、精选)

勾股定理专题(附问题详解,全面、精选)

勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解〔1〕直角三角形的两条直角边长分别为a, b,斜边长c,如此如下关于a,b,c的关系不成立的是〔〕A、c²- a²=b²B、c²- b²=a²C、a²- c²=b²D、 a²+b²= c²〔2〕在直角三角形中,∠A=90°,如此如下各式中不成立的是〔〕A、BC²- AB²=AC²B、BC²- AC²=AB ²C、AB²+AC²= BC²D、AC²+BC²= AB ²2、应用勾股定理求边长〔3〕在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长.〔4〕在直角△中,假如两直角边长为a、b,且满足,如此该直角三角形的斜边长为.3、利用勾股定理求面积〔5〕以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。

〔6〕如图〔1〕,图中的数字代表正方形的面积,如此正方形A的面积为。

〔7〕如图〔2〕,三角形中未知边x与y的长度分别是x= ,y=。

〔8〕在Rt△ABC中,∠C=90°,假如AC=6,BC=8,如此AB的长为〔〕A、6B、8C、10D、12〔9〕在直线l上依次摆放着七个正方形〔如图4所示〕。

斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。

【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进展推导。

(完整word版)勾股树

(完整word版)勾股树

勾股树
图1中美丽的大树,叫做勾股树.
这好像是一棵柏树,如果在树上挂一串彩色灯泡,再挂上些小铃铛、小彩球、小礼盒、小的圣诞老人,就会成为一棵圣诞树.
可是,它与勾股有什么关系呢?
仔细看看,明白了,奥妙在树干和树枝上.从树干的最下端可以清清楚楚地看到一幅勾股定理的图形:一个直角三角形,以及分别以它的每边为一边向形外所作的正方形(图2).勾股定理说,斜边上正方形的面积,等于两个直角边上正方形面积的和.
顺着树干和树枝往前看,从一幅勾股定理图中两个小正方形的顶部各自长出一幅新的勾股定
理图(图3).这两位是第二代的,它们的形状都与第一代勾股定理图完全相同,拷贝不走样,只是尺码变小了.
从每个第二代勾股定理图中两个较小的正方形出发,又可分别作出一个第三代的勾股定理图(图4).就这样一生二、二生四、四生八,继续繁殖下去,就长成了图1那样的大树.整棵大树完全是由勾股定理图形组成的,把它叫做勾股树,名副其实,非常恰当.
通过改变第一代勾股定理图中直角三角形三边的比例,或者在繁殖过程中适当改变两条直角边的方向,可以得到不同形状的勾股树.图5就是另外一幅美丽的勾股树图形.。

勾股树的应用例题

勾股树的应用例题

勾股树的应用例题勾股树是一种经典的数学问题,它有着广泛的应用场景。

下面,我们来介绍一些勾股树的应用例题。

一、勾股树的历史勾股树最早由中国古代数学家、天文学家张丘建发现,又称为勾三股四弦五。

其被广泛地应用于几何学、物理学、工程学等领域。

当然,在计算机科学中,勾股树也有很多应用,例如在图像处理中使用。

二、勾股定理我们先来回顾一下勾股定理的公式:a² + b² = c²其中,a、b、c分别表示直角三角形的三条边,c为斜边。

勾股定理是数学史上的一个里程碑,它的发现引起了数学界的巨大轰动。

这个公式的意义之一就是能够解决数学定理中的勾股问题,让计算变得更加简单。

三、应用例题1. 某工程师需要制作一个角度为30度的直角三角形,边长为1和2的两条直角边相连的线段的长度是多少?解:根据勾股定理,设斜边为c,则有:1² + 2² = c²解得:c² = 5因此,斜边长度为√5,即2.236。

2. 某游泳节目需要在五边形草坪上做一个水池,为了便于测量,需要按着45度的角度将草坪分为两半。

如果五边形草坪的对角线长度为10米,求分割线段的长度。

解:根据勾股定理,设对角线长度为c,则有:a² + b² = c²已知棱长相等的正五边形,对角线长度为10米,那么正五边形的边长可以求解。

以正五边形ABCDEF为例,它可以被分割成三个等腰直角三角形:- ΔABO,其中BO = OA,AB = a,BO = 5。

- ΔOCD,其中OC = OD,CD = a,OD = 5。

- ΔOEF,其中OE = OF,EF = a,OE = 5。

假设a为正五边形的边长,则有:a² = (AB + BO)² = 100a² = (CD + OD)² = 100a² = (EF + OE)² = 100因此,a = √100/3,那么对角线的长度可以表示为2a。

【最新推荐】奥数勾股定理概念知识点及习题答案-优秀word范文 (2页)

【最新推荐】奥数勾股定理概念知识点及习题答案-优秀word范文 (2页)

【最新推荐】奥数勾股定理概念知识点及习题答案-优秀word范文
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
奥数勾股定理概念知识点及习题答案
性质
1.直角三角形两直角边为a和b,斜边为c,那a2+b2=c2
2.勾股数互质
概念
在任何一个的直角三角形(Rt△)中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。

勾股数通式和常见勾股素数
若 m 和 n 是互质,而且 m 和 n 至少有一个是偶数,计算出来的 a, b, c 就是素勾股数。

(若 m 和 n 都是奇数, a, b, c 就会全是偶数,不符合互质。

)
所有素勾股数(不是所有勾股数)都可用上述列式当中找出,这亦可推论到数学上存在无穷多的素勾股数。

常见的勾股数及几种通式:
(1) (3, 4, 5), (6, 8,10) … …
3n,4n,5n (n是正整数)
(2) (5,12,13) ,( 7,24,25), ( 9,40,41) … …
2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数)
(3) (8,15,17), (12,35,37) … …
2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数)
(4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)。

勾股定理的树折断问题

勾股定理的树折断问题

勾股定理的树折断问题
根据勾股定理,已知直角三角形的两直角边长分别为a、b,
斜边长为c,则有a^2 + b^2 = c^2。

假设有一根高为h的树,一段长度为a的树枝横向离地面距离
为b,另一段长度为c的树枝斜起来贴着树干。

我们可以组成
一个直角三角形。

根据勾股定理,我们可以得到:h^2 = a^2 + (b+c)^2。

我们知道,一棵树上方的树枝横向离地面的距离是不会超过树的高度的,所以b+c必然小于等于h。

假设b+c=h,那么勾股
定理可以变为:h^2 = a^2 + h^2。

解这个方程得到a=0,这是不符合实际的,因为一段树枝的长
度不可能为0。

所以假设b+c<h,那么勾股定理可以变为:h^2 > a^2 + h^2。

这是一个矛盾的因为h^2一定大于等于a^2,所以假设b+c<h
是不成立的。

综上所述,我们可以得出结论:不存在满足题意的树折断问题。

勾股定理数学题

勾股定理数学题

勾股定理数学题有一天呀,我在数学课上听到了一个神奇的东西,叫勾股定理。

一开始我还不知道这是啥玩意儿呢,心里直犯嘀咕:“这勾股定理到底是啥呀?” 后来老师给我们讲了一个故事,我一下子就明白啦。

老师说呀,从前有个直角三角形,它有三条边。

这三条边就像三个好朋友,它们的长度都不一样。

其中两条边比较短,我们叫它们直角边,还有一条边比较长,我们叫它斜边。

有一天,这三条边在一起玩游戏,它们想知道自己的长度有什么关系。

于是,它们就开始动脑筋想办法。

想了好久好久,终于有一个聪明的数学家发现了它们的秘密。

这个秘密就是勾股定理。

勾股定理说呀,直角三角形的两条直角边的平方和等于斜边的平方。

这听起来有点难理解,但是老师给我们举了个例子。

比如说,有一个直角三角形,一条直角边是 3 厘米,另一条直角边是 4 厘米。

那我们怎么知道斜边是多长呢?我们就可以用勾股定理来算。

3 的平方是 9,4 的平方是 16,9 加上 16 等于 25。

25 是谁的平方呢?嘿嘿,是 5 的平方。

所以呀,这个直角三角形的斜边就是 5 厘米。

我觉得这个勾股定理就像一个魔法一样。

只要我们知道了两条直角边的长度,就可以用这个魔法算出斜边的长度。

而且,勾股定理还可以反过来用呢。

如果我们知道了斜边和一条直角边的长度,也可以算出另一条直角边的长度。

有一次,我和小伙伴们一起玩游戏。

我们画了一个大大的直角三角形,然后用尺子量出了两条直角边的长度。

接着,我们就用勾股定理算出了斜边的长度。

我们都觉得好神奇呀!就像我们变成了小数学家一样。

我还发现,勾股定理在我们的生活中也很有用呢。

比如说,我们盖房子的时候,工人叔叔们就会用到勾股定理。

他们要保证房子的墙角是直角,就可以用勾股定理来检查。

还有,我们走路的时候,如果走的是直角路线,也可以用勾股定理来算我们走了多远。

我现在越来越喜欢勾股定理啦。

它不仅好玩,还很有用。

我要好好学习勾股定理,以后当一个真正的数学家。

你们也和我一起学习勾股定理吧,说不定我们以后都能成为小数学家呢!。

小学学勾股定理吗(小学奥数勾股定理)

小学学勾股定理吗(小学奥数勾股定理)

勾股定理知识领航一1 .勾股定理:如果直角三角形的两直角边分别是 角三角形中两直角边的平方和等于斜边的平方.2 .关于勾股定理的证明方法有很多.赵爽的证法是一种面积证法,其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变. 数学的钻研精神和聪明才智, 它是我国古代数学的骄傲。

年在北京召开的世界数学家大会的会徽。

【例】 如图所示,可以利用两个全等的直角三 角形拼出一个梯形.借助这个图形,你能用面积 法来验证勾股定理吗?分析:面积法验证勾股定理关键是要找到一些特殊图形(如直角三角形,正方形,梯形)的面积 之和等于另一些特殊图形的面积,从而达到验证 的目的.解:此图可以这样理解,有三个Rt △其面积分别为-ab, ^ab 和」c 2.还有一个直角梯形,其面积为1(a+b )(a+b ). 2222由图形可知: -(a+b )(a+b )= -ab+1ab+-c 22 2 22 整理得(a +b )2 = 2ab+c 2, a 2+b 2+2ab= 2ab+c 2, a 2+b 2= c 2.由此得到勾股定理.这正是美国第20任总统茄菲尔德证明勾股定理的方法. 知识领航二1 .在直角三角形中,若已知任意两边,就可以运用勾股定理求出第三边.无直角时,可作 垂线构造直角三角形.2 .勾股定理的作用:(1)计算;(2)证明带有平方的问题;(3)实际应用.【例】甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散, 他们用两部对话机联系,已知对话机的有效距离为 15千米.早晨8: 00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以 5千米/时的速度向北行进,上午 10:00, 甲、乙二人相距多远?还能保持联系吗?分析:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、 乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程, 利用勾股定理,即可求得甲、乙两人的距离.解:如图,甲从上午 8: 00到上午10: 00 一共走了走了 12千米,即OA=12乙从上午9: 00到上午10: 00 一共走了 1小时, 走了 5千米,即OB=5在 Rt^OAB 中,AE 2=122十 52= 169,AB=13 因此,上午10: 00时,甲、乙两人相距 13千米.• ,15>13, 二•甲、乙两人还能保持联系.答:上午10: 00甲、乙两人相距13千米,两人还能保持联系.a 、b,斜边为c,那么a 2 +b 2=c 2.即直“赵爽弦图”表现了我国古人对 正因为此,这个图案被选为2002知识领航三1.利用勾股定理可以画出长度是无理数的线段,也就可以在数轴上画出表示无理数的点.2.领会和掌握数形结合的数学思想方法.【例】右图是由36个边长为1的小正方形拼成的,连接小正方形中的点A、B、C、D、E、F得线段AB、BC、CD、DE、EF、FA,请说出这些线段中长度是有理数的是哪些?长度是无理数的是哪些?并在数轴上作出表示/、J2、J3、J4、55的点.解:如图,AB2=AF2+BF2=22+12=5,BC2=32+42=25,CD2=12+32=10, DE=3, EF2=ED2+DF2=32+42=25, FA=2.・•.BC、DE、EF、FA的长是有理数,AB、CD的长度是无理数在数轴上作出表示J1J2、J3、J4、55 的点如右图所示.练习提高一一、仔细读题,一定要选择最佳答案哟!1.下列说法正确的是( )A.若a、b、c是△ ABC 的三边,则a2+b2=c2;B.若a、b、c是Rt^ABC 的三边,则a2+b2=c2;C.若a、b、c 是Rt^ABC 的三边,/A =90 则a2+b2=c2;D.若a、b、c 是Rt^ABC 的三边,/C=90:,则a2+b2= c2。

勾股树的证明方法

勾股树的证明方法

勾股树的证明方法勾股定理是数学中的一个重要定理,描述了直角三角形的边长关系。

勾股树是一种递归构造的平衡二叉树,树中的每个节点都代表一个整数三元组(a,b,c),满足勾股定理的条件,即a^2+b^2=c^2勾股树的构造方法如下:1.根节点:根节点代表最小的勾股三元组(3,4,5),因为3^2+4^2=5^22.左子树:左子树的节点代表形如(a-2b,2a-b,a+b)的勾股三元组,其中a和b是父节点的值。

左子树的值来自于将父节点的a和b代入上述公式得到的新的a和b。

3.右子树:右子树的节点代表形如(a+2b,2a+b,a+b)的勾股三元组,其中a和b是父节点的值。

右子树的值来自于将父节点的a和b代入上述公式得到的新的a和b。

下面,我将详细证明勾股树中所有节点的勾股定理。

证明方法如下:1.根节点:根据上述构造过程,根节点的值是(3,4,5),显然满足a^2+b^2=c^2,即3^2+4^2=5^2成立。

2.递归证明:我们假设其中一节点(n,m,k)满足勾股定理,即n^2+m^2=k^2证明左子树节点满足勾股定理:左子树节点的值为(n-2m,2n-m,n+m)。

根据递归假设,有(n-2m)^2+(2n-m)^2=(n+m)^2展开后得到:n^2 - 4nm + 4m^2 + 4n^2 - 4nm + m^2 = n^2 + 2nm + m^2整理后得到 3n^2 - 8nm + 3m^2 = n^2 + 2nm + m^2移项整理可得 2n^2 - 10nm + 2m^2 = 0。

因此,左子树节点(n-2m,2n-m,n+m)也满足勾股定理。

证明右子树节点满足勾股定理:右子树节点的值为(n+2m,2n+m,n+m)。

根据递归假设,有(n+2m)^2+(2n+m)^2=(n+m)^2展开后得到:n^2 + 4nm + 4m^2 + 4n^2 + 2nm + m^2 = n^2 + 2nm + m^2整理后得到 5n^2 + 6nm + 5m^2 = n^2 + 2nm + m^2移项整理可得 4n^2 + 4nm + 4m^2 = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在下列简易毕达哥拉斯树图形中,三角形都是直角三角形,四边形都是正方形,如果图中所有的正方形的面积之和为192平方厘米,问最大的正方形的边长是多少厘米?
2、如图,在美丽的平面珊瑚礁图案中,三角形都是直角三角形,四边形都是正方形.如果图中所有的正方形面积之和是980平方厘米,问:最大的正方形的边长是多少厘米?
3、如图,三角形是直角三角形,四边形都是正方形,如果所有的正方形的面积之和是50平方厘米,则最大的正方形的边长是厘米.
4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为24厘米,则正方形A,B,C,D的面积之和为平方厘米.
5、如图,所有四边形均为正方形,所有三角形都是直角三角形,其中最大的正方形边长为11,则A、B、C、D、E、F的面积之和是.
6、如图,在美丽的平面珊瑚礁图案中,三角形都是直角三角形,四边形都是正方形,如果图中所有的正方形的面积之和为500平方厘米,那么最大的正方形的面积是平方厘米.
7、三角形ABC中,AD是一条高,分别以AB、BD、DC、CA为边向外作正方形,一些正方形的面积已知,则问号处正方形的面积是.
8、在下列简易毕达哥拉斯树图形中,三角形都是直角三角形,四边形都是正方形,如果图中所有的正方形的面积之和为250平方厘米,问最大的正方形的边长是厘米?
9、如图,在美丽的平面珊瑚礁图案中,三角形都是直角三角形,四边形都是正方形,如果图中所有的正方形的面积之和为600平方厘米,问最大的正方形的边长是多少厘米.
10、如图所示,在美丽的平面珊瑚图案中,三角形都是直角三角形,四边形都是正方形.如果图中最大的正方形(阴影部分)的边长为5,求图中所有正方形的面积之和.
11、如图在美丽的毕达哥拉斯树中,三角形都是直角三角形,四边形都是正方形,已知所有的正方形面积总共是680,那么最大的正方形面积是.
12、用四个直角三角形拼成如图所示的一个大正方形,已知三角形的直角边均为整数,且中间小正方形面积为25.求大正方形面积.
14、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7厘米,则正方形A、B、C、D的面积之和为多少?
15、下列两个图形都是以直角三角形ABC的三边为边长向外作三个正方形,正方形内的数代表正方形的面积,求未知正方形的面积.
16、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10厘米,则所有正方形的面积之和是多少?
17、如图,在美丽的平面珊瑚礁图案中,三角形都是直角三角形,四边形都是正方形,如果图中所有的正方形的面积之和为980平方厘米,问最大的正方形的边长是多少厘米?
18、下面图是以直角三角形ABC的三边为边长向外作三个正方形,正方形内的数代表正方形的面积,那么未知正方形的面积是.
19、如图是4个正方形以及两个直角三角形拼出来的图,已知三个正方形的边长分别为2、3和6,求剩下一个大正方形的面积.
20、如图,三角形都是直角三角形,四边形都是正方形,如果图中所有的正方形的面积之和为147平方厘米,问最大的正方形的边长是厘米.。

相关文档
最新文档