微分方程例题

合集下载

微分方程习题课例题解答

微分方程习题课例题解答

微分方程习题课例题解答例1.若微分方程的通解为x C y x +=e ,求该微分方程.解:对x C y x +=e 求导,有1e +='x C y ,消去C ,得1+-='x y y ,这就是所求的微分方程.例2.若函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23是二阶线性方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:根据非齐次线性微分方程两个解的差是相应齐次线性微分方程的解,得相应齐次线性 方程的两个线性无关的解x x y y y y 22313e e =-=--、,于是应齐次线性方程的通解为 x x C C Y 221e e +=-.取非齐次线性微分方程的一个特解为x x y y y y e 321*=-+=,所以原方程的通解为 x x x x C C y Y y e e e 221*++=+=-. (注:*y 也可以取321y y y 、、中的任何一个)例3.已知221,x y x y ==是二阶齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,x y e *=是二阶非齐次线性微分方程)()()(x f y x Q y x P y =+'+''的一个特解,写出二阶非齐次线性微分方程)()()(x f y x Q y x P y =+'+''的通解,并写出此微分方程. 解:因为221,x y x y ==线性无关,根据线性微分方程解的结果,该方程的通解为 xx C x C y e 221++=.将221,x y x y ==分别代入到齐次线性微分方程0)()(=+'+''y x Q y x P y 之中,有⎩⎨⎧=++=+,,0)()(220)()(2x Q x x xP x xQ x P 解得x x P 2)(-=,22)(x x Q =. 将xy e *=代入到非齐次线性微分方程)(222x f y xy x y =+'-''之中,得 x x x xx x x x x f e )221(e 2e 2e )(22+-=+-=.所以该微分方程为xx x y xy x y e )221(2222+-=+'-'',或写为x x x y y x y x e )22(2222+-=+'-''.例4.求解下列微分方程:(1)求xy y y x 2=+'满足初始条件0)1(=y 的特解; 解:先求方程的通解. (方法1)化为齐次方程xyx y y 2=+',令u x y =,则u u u x u x 2d d =++,分离变量有xxu u u d )1(2d -=-,积分得x C u ln )1ln(=-,即x C u =-1,通解为C x xy =-.(方法2)看作伯努利方程y xx y y 2=+'(21=n ),令y y z n ==-1,则方程化为一阶线性方程xx z z 12=+',通解为)(1)d (1)d e 1(e2d 2d x C xx C x x x C z y x xxx+=+=⎰+⎰==⎰⎰-,即C x xy =-. (方法3)令u xy =,则方程化为u x u 2d d =,分离变量为x uud 2d =,积分得C x u +=,即通解为C x xy =-.再求满足初始条件的特解,由0)1(=y ,得1=C ,特解为1=-x xy ,或写作xx y 2)1(-=.(2)求)(ln 2d d x y y x y -=的通解; 解:(方法1)将方程改写为y x y y x )(ln 2d d -=,即yy x y y x ln 22d d =+,则方程通解为 )d ln (1)d ln 2(1)d e ln 2(e222d 2d y y y y C yy y y C y y y y C x y y tyt⎰⎰⎰-+=+=⎰+⎰=-)2ln (122y y y C yy-+=,或写作2ln 222y y y C xy -+=.(方法2)令u x y =-ln ,则xux y y d d 1d d 1=-,于是u x u 211d d =+,即u u x u 221d d -=, 分离变量有x u u d d )2111(-=--,积分得C x u u ln 21)21ln(21+-=-+,即 C u x u ln )21ln()(2=-++,化简为C x y y =+-)2ln 21(2,这就是原方程通解.(3)求y x x y ++-='221的通解;解:令u y x =+2,则u y x '='+2,于是u u +='1,分离变量为x uu d 1d =+.因为t tt t t t u uu d )111(2d 121d ⎰⎰⎰+-=+=+C u u C t t -+-=-+-=)]1ln([2)]1ln([2,所以方程通解为 x C u u =-+-)]1ln([2,即C x y x y x +=++-+)]1ln([222.(4)求)ln (ln x y y y x -''=''的通解;解:令)(x p y =',则p y '='',于是)ln (ln x p p p x -=',即xpx p x p ln d d =,这是齐次方程,再令u x p =,则u u u x u x ln d d =+,分离变量为xx u u u d )1(l n d =-,积分得x C u 1ln )1ln(ln =-,即x C x xu p y 11e +===',所以方程通解为21111111)1(e ]d e [e 1d e1111C C x C x C x x y x C x C x C xC +-=-==++++⎰⎰.(5)求012=+'-''y y y 的通解;解:令)(y p y =',则p p y '='',于是012=+-'p p yp ,分离变量为y yp p p d d 12=-,积分得y C p 12ln 1ln 21=-,即22121y C y =-'. 当1±='y 时,则C x y +±=; 当1>'y 时,有22121yC y =-',则1221+±='y C y ,分离变量有x C y C y C d 1d 12211±=+,积分得211arsh C x C y C +±=,原方程的通解为)(sh 1121x C C C y ±=; 当1<'y 时,有22121y C y ='-,则2211y C y -±=',分离变量有x C yC y C d 1d 12211±=-,积分得211arcsin C x C y C +±=,原方程的通解为)(sin 1121x C C C y ±=. (6)1)9(62='++''+'''y a y y (0>a ).解:这是三阶常系数非齐次线性方程,相应齐次线性方程为0)9(62='++''+'''y a y y ,特征方程为0)9(6223=+++r a r r ,特征根是ai a r r ±-=-±-==3246023,21、,相应齐次线性方程通解为x ax C ax C C Y 3321e )sin cos (-++=.对于原方程,0=λ是单重特征根,0=m ,为此设bx y =*,代入方程有1)9(2=+b a ,得291a b +=,所以2*9a x y +=.原方程通解为23321*9e )sin cos (a xax C ax C C y Y y x++++=+=-.例5.已知1)(=πϕ,试确定函数)(x ϕ使0d )(d )]([sin =+-y x x xyx x ϕϕ是全微分方程,并对所确定的)(x ϕ,求该方程满足1)(=πy 的特解. 解:设)()]([sin x Q x y x x P ϕϕ=-=、,由0d )(d )]([sin =+-y x x xyx x ϕϕ是全微分方程,有yPx Q ∂∂=∂∂,得)]([sin 1)(x x x x ϕϕ-=',即x x x x x sin )(1)(=+'ϕϕ,这是一阶线性方程,通解为)cos (1)d sin (1)d e sin (e)(d d x C x x x C x x x x C x x xxx-=+=⎰+⎰=⎰⎰-ϕ.由1)(=πϕ,有)1(11+=C π,得1-=πC ,所以)cos 1(1)(x xx --=πϕ.这时原方程为0d )cos 1(1d )]cos 1(1[sin =--+---y x xx x y x x x ππ, )cos 1(d )cos 1(1d 0d d )(01),()0,1(x x yy x x x y Q x P y x u y x y x --=--+=+=⎰⎰⎰ππ,,于是原方程通解为1)cos 1(C x xy=--π,由1)(=πy ,得11=C ,所以原方程的特解是1)cos 1(=--x x y π,或写作xx y cos 1--=π. (注:方程通解也可以用凑微分方法得到,方程左式凑微分得0)]cos 1([d =--x xyπ,于是原方程通解为1)cos 1(C x xy=--π)例6.若函数)(x f 连续,且满足⎰--+=x t t f t x x x x f 0d )()(cos sin )(,求)(x f .解:将所给式子改写为⎰⎰+-+=x x t t tf t t f xx x x f 0d )(d )(cos sin )(,有1)0(=f ,且⎰⎰--=+---='x xt t f x x x xf x xf t t f x x x f 0d )(sin cos )()(d )(sin cos )(,1)0(='f .)(cos sin )(x f x x x f ---='',即x x x f x f cos sin )()(--=+'',这是二阶常系数非齐次线性微分方程,相应齐次线性方程为0)()(=+''x f x f ,其特征方程是012=+r ,特征根为i r ±=,相应齐次线性方程通解为x C x C F sin cos 21+=.考虑方程ixx f x f e )()(-=+'',这里i =λ是特征根,0=m ,为此设ix ax fe **=,将ax x Q =)(代入到)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ之中,有12-=ia ,得221i i a =-=,于是)cos (sin 2)sin (cos 2e 2**x i x xx i x x i x i f ix --=+==,则x x x f x f cos sin )()(--=+''的一个特解为)sin (cos 2)Re()Im(*****x x xf f f -=+=, 所以方程x x x f x f cos sin )()(--=+''的通解为)sin (cos 2sin cos )(21*x x xx C x C f F x f -++=+=. )cos (sin 2)sin (cos 21cos sin )(21x x xx x x C x C x f +--++-=',由初始条件1)0(=f 、1)0(='f ,得21121==C C 、,所以所求函数为=-++=)sin (cos 2sin 21cos )(x x xx x x f x x x x sin )221(cos )21(-++.例7.若二阶可导函数)(u f z =,其中y u xsin e =,满足方程x z yzx z 22222e =∂∂+∂∂,且0)0(=f ,2)0(='f ,试求函数)(u f .解:y u f x u u z x z x sin e )(d d '=∂∂=∂∂,y u f yuu z y z x cos e )(d d '=∂∂=∂∂, y u f y u f y u f x xz x x x sin e )()sin e )((]sin e )([222'+''='∂∂=∂∂, y u f y u f y u f y yz x x x sin e )()cos e )((]cos e )([222'-''='∂∂=∂∂, 由x z yz x z 22222e =∂∂+∂∂,有xx u f u f 22e )(e )(='',即0)()(=-''u f u f ,这是二阶常系数线性齐次微分方程,特征方程是012=-r ,特征根为1121-==r r 、,方程的通解是u u C C u f -+=e e )(21,u u C C u f --='e e )(21,由条件2)0(0)0(='=f f ,,有021=+C C , 221=-C C ,得1121-==C C 、,所所求函数是u u u f --=e e )(. 例8.求幂级数∑∞=-12!)!12(n nn x 的和函数.解:设∑∞=--=1121!)!12()(n n n x x s ,则0)0(1=s ,且)(1!)!12(1!)!32(1!)!32(1)(11122322221x xs n x x n x x n x x s n n n n n n +=-+=-+=-+='∑∑∑∞=-∞=-∞=-,即1)()(11=-'x xs x s ,这是一阶线性微分方程,通解为 )d e(e )d e (e )(x22xd d 122t C t C x s t x tt xx ⎰⎰--+=⎰+⎰=.由0)0(1=s ,得0=C ,所以幂级数∑∞=-12)!!12(n nn x 的和函数t x xs x s t x d ee)()(x 022122⎰-==.例9.设曲线位于xOy 面的第一象限,曲线上任一点)(y x M ,处的切线与y 轴交于A 点,=,且曲线过点2)323(,,求该曲线方程. 解:设所求曲线为)(x f y =,其在任一点)(y x M ,的切线方程为 ))(()(x X x f x f Y -'=-,令0=X ,得)()(x f x x f Y '-==,有222)]([Y x f Y x =-+,即)()()(2)()(222222x f x x f x xf x f x f x x '+'-='+,亦即yxx y y -='2,这是一阶齐次微分方程,令xu y =,则u x u x f '+=')(,于是u u u x u 1)(2-='+,即u u u x 212+-=',分离变量有x x u u u d d 122-=+,积分得x C u ln )1ln(2=+,即x C xy =+122.由初始条件23)23(=y ,有C 322=,得3=C ,所求曲线方程为x xy 3122=+,由曲线位于第一象限,于是)30(32≤≤-=x x x y .例10.一个质量为m 的物体,在海平面上由静止开始下沉,经过0t 秒后沉到海底,下沉过程中海水对物体的阻力与物体下沉速度成正比,求物体下沉运动的规律及海洋的深度h . 解:铅直向下取x 轴,原点在海平面,设时刻t 时,物体位于)(t x x =处,此时受力为t x k mg F d d -=(k 为比例系数),根据牛顿第二定律F ma =,有t xk mg tx m d d d d 22-=,即g tx m k t x =+d d d d 22(这是二阶常系数线性非齐次微分方程),初始条件为00==t x ,0d d 0==x t x.相应齐次微分方程为0d d d d 22=+t xm k tx ,特征方程为02=+r m k r ,特征根为01=r 、mkr -=2,相应齐次微分方程通解为t m kC C X -+=e 21.对原方程g t xm k tx =+d d d d 22,0=n 、0=λ是单重特征根,为此设at x =*,代入到方程之中,有g a m k =,得k mg a =,于是方程g t xm k tx =+d d d d 22的一个特解为t k mg x =*. 方程g t x m k tx =+d d d d 22的通解为=+=*x X x t k mg C C t m k++-e 21. kmg m k C t x t m k+-=-e d d 2,由初始条件00==t x ,0d d 0==x t x,有⎪⎩⎪⎨⎧=+-=+,,00221k m g mkC C C得222221k g m C k g m C =-=、,所以物体运动规律为t k mgk g m x t m k+-=-)1e (22.当0t t =时,得海洋深度为022)1e (0t k mgkg m h t m k+-=-.。

微分方程例题选解

微分方程例题选解

微分方程例题选解1. 求解微分方程3ln (ln )0,|2x e x xdy y x dx y =+-==。

解:原方程化为x y x x dx dy 1ln 1=+, 通解为 ⎰+⎰⎰=-]1[ln 1ln 1C dx e xe y dx x x dx x x⎰+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11ln ln 2y x x =+。

2. 求解微分方程22'0x y xy y -+=。

解:令ux y =,u x u y '+=',原方程化为 2u u u x u -='+,分离变量得 dx x udu 12=-, 积分得C x u+=ln 1, 原方程的通解为 ln xy x C=+。

3. 求解微分方程dy y y x dx xy x )()(3223+=-。

解:此题为全微分方程。

下面利用“凑微分”的方法求解。

原方程化为 03223=---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3223---42222441)(2141dy dy x dx y dx -+-=)2(414224y y x x d --=, 得 0)2(4224=--y y x x d ,原方程的通解为 C y y x x =--42242。

注:此题也为齐次方程。

4. 求解微分方程2''1(')y y =+。

解:设y p '=,则dx dp y ='',原方程化为21p dxdp+=, 分离变量得dx p dp=+21,积分得 1arctan C x p +=,于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。

5. 求解微分方程''2'20y y y -+=。

微分方程习题

微分方程习题
2 1 1 1 x3 x x2 x y = [ − + ( − ) x ]e x + e − e . e 6 2 e 6 2
例6 解
1 求解方程 y′′ − 2 y′ + y = ( x + cos 2x). 2 特征方程 r 2 + 4 = 0,
特征根
r1, 2 = ±2i ,
对应的齐方的通解为 Y = C1 cos 2 x + C 2 sin 2 x .
则 ( y * )′ = [ax 3 + ( 3a + b ) x 2 + 2bx ]e x , ( y * )′′ = [ax 3 + (6a + b ) x 2 + (6a + 4b ) x + 2b]e x ,
将 y * , ( y * )′, ( y * )′′ 代入原方程比较系数得
1 1 a= , b=− , 6 2
1 y = C1 + C 2 x + . x
2
二、练习自测
1 求下列微分方程通解或特解 求下列微分方程通解或特解:
(1) (2) (3)
ydy + e
y2 +3 x
dx = 0;
dy 2 2 = 1 + x + y + xy ; dx
( y sin x − 1)dx − cos xdy = 0;
dy 1 cos y − sin y = e x sin 2 y; (4) dx x
dy = 1 + x + y 2 + xy 2 dx
原方程变为
dy = (1 + x )(1 + y 2 ), dx

微分方程习题

微分方程习题

θ
Vs x a x 解:设所求曲线上一点M(x, y) M(x, y)
VS = {V x , V y } = {−VS cos θ, VS sin θ)
实际速效:
{−VS cos θ,V R − VS sin θ}
dx dy ⇒ = −VS cos θ, = VR − VS sin θ dt dt V R − V S sin θ dy ⇒ = dx − V S cos θ
b b

y ′ − 2 xy = 2 x → y
∫ p ( x ) dx [ Q ( x ) e ∫ p ( x ) dx dx + C ] =e ∫

= ce
x2
−1
(2)
② 由(1)分离变量后可得
dy 2 = 2 xdx → ln 1 + y = x + c 1 1+ y
⇒ y = ±e e
c1
x2
x f ′( x ) + f ( x ) = f ( x ) + 3 .
3 即 f ′( x ) = x

x =1 时

f (1) = 3
C =3
f ( x ) = ln x 3 + c
f (1) = 3 得
f ( x ) = 3 ln x 3 + 3 = 3 (ln x + 1) 故
2.设 f ( x ) = sin x −
微分方程习题课
一、解 问题1. 所有微分方程都有通解吗?
( y ′ ) 2 + 1 = 0,
( y ′) 2 + y 2 = 0
无(通)解. 只有0解(无通解)
问题2. 通解是否包含方程的所有解? ′) 2 − 4 y = 0 (y 有通解 y = ( x + c ) 2 , 但不含解

微分方程1-2-3

微分方程1-2-3

二、微分方程的定义
微分方程: 凡含有未知函数的导数或微分的方程叫微分方程.
例 y xy, y 2 y 3 y e x ,
(t 2 x)dt xdx 0,
z x y, x
实质: 联系自变量,未知函数以及未知函数的 某些导数(或微分)之间的关系式.
分类1: 常微分方程, 偏微分方程.
一、问题的提出
例 1 一曲 线通过 点 (1,2), 且在 该 曲线 上任一 点
M ( x, y)处的切线的斜率为2x ,求这曲线的方程.
解 设所求曲线为 y y( x)
dy 2x dx
其中 x 1时, y 2
y 2xdx 即 y x2 C, 求得C 1,
所求曲线方程为 y x2 1 .
[ f (u) g(u)] u dx g(u)du 0, x
dx
g(u) du 0,
x u[ f (u) g(u)]
通解为[
f
g(u) du (u) g(u)]
C.
例 3 衰变问题:衰变速度与未衰变原子含量M 成
正比,已知 M t0 M0,求衰变过程中铀含量M (t ) 随时间t 变化的规律.
y P( x) y Q( x), x( y)2 2 yy x 0;
分类4: 单个微分方程与微分方程组.
dy dx
3
y
2z,
dz
2
y
z,
dx
三、主要问题-----求方程的解
微分方程的解: 代入微分方程能使方程成为恒等式的函数称之.
设y ( x)在区间 I 上有 n 阶导数, F( x,( x),( x),,(n)( x)) 0.
k2x
0的解.
并求满足初始条件
x t0

微分方程的基础知识与练习

微分方程的基础知识与练习

微分方程的基础知识与练习(一)微分方程基本概念:首先通过一个具体的问题来给出微分方程的基本概念。

(1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。

解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足x dxdy2= (1) 同时还满足以下条件:1=x 时,2=y (2)把(1)式两端积分,得⎰=xdx y 2 即 C x y +=2 (3)其中C 是任意常数。

把条件(2)代入(3)式,得1=C ,由此解出C 并代入(3)式,得到所求曲线方程:12+=x y (4)(2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程?解 设列车开始制动后t 秒时行驶了s 米。

根据题意,反映制动阶段列车运动规律的函数)(t s s =满足:4.022-=dt sd (5) 此外,还满足条件:0=t 时,20,0===dtdsv s (6)(5)式两端积分一次得:14.0C t dtds v +-== (7)再积分一次得2122.0C t C t s ++-= (8)其中21,C C 都是任意常数。

把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得0 ,2021==C C把21,C C 的值代入(7)及(8)式得,204.0+-=t v (9) t t s 202.02+-= (10)在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间:)(504.020s t ==。

再把5=t 代入(10)式,得到列车在制动阶段行驶的路程).(5005020502.02m s =⨯+⨯-=上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。

1.微分方程的概念一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。

微分方程

微分方程

一般形式为 : F( x, y , y ) 0
• (一)、可分离变量方程
• (二)、齐次方程
• (三)、一阶线性微分方程
一、可分离变量的微分方程
g( y )dy f ( x )dx 可分离变量的微分方程.
dy 例如 2 x 2 y y dy 2 x 2dx , dx
解法 设函数 g ( y )和 f ( x ) 是连续的,
Def9.1
微分方程:
凡含有未知函数的导数或微分的方程叫微分方程.
微分方程的阶: 微分方程中出现的未知函数的导 数的最高阶数. 常微分方程 偏微分方程 未知函数为一元函数的微分方程 未知函数为多元函数的微分方程
分类1: 常微分方程, 偏微分方程. 分类2: 一阶微分方程 F ( x , y , y ) 0, y f ( x , y ); 高阶微分方程 F ( x , y , y,, y ( n ) ) 0, (常见为二阶)y ( n ) f ( x , y , y,, y ( n1) ). 分类3:
形如
y?
py? qy = f ( x)
f ( x) = Pm ( x)ea x
特解形式:(1)当
y* = x k Qm ( x)ea x
ì 0, a 不是特征根 ï ï ï k = ï 1,a 是特征单根 í ï ï 2,a 是特征重根 ï ï î
特解形式:(2)当
f ( x) = Pm ( x)ea x [cos b x + sin b x]
三、一阶线性微分方程
一阶线性微分方程的标准形式:
dy P ( x ) y Q( x ) dx
当Q( x ) 0, 上面方程称为齐次的.
当Q( x ) 0, 上面方程称为非齐次的.

第二节 可分离变量的微分方程

第二节 可分离变量的微分方程
初始条件对方程分离变量lnln初始条件为对方程分离变量代入上式后化简得特解设降落伞从跳伞塔下落后所受空气阻力与速度成正比并设降落伞离开跳伞塔时速度为0求降落伞下落速度与时间的函数关系
第二节 可分离变量的微分方程
一、可分离变量的微分方程 二、典型例题
一、可分离变量的微分方程
形如 y f ( x) g( y) 的方程,称为可分离变量
解 分离变量 , 得
dy 2xdx, y
两端积分 , 得

dy y


2
xdx,
解得 ln y x2 C1
即 y Ce x2 (C 为任意常数)
y Ce x2为所求通解.
例2 求解微分方程 ( y 1)2 y x3 0 的通解.
解 分离变量,得 ( y 1)2dy x3dx,
四、小船从河边点 0 处 出发驶向对岸(两岸为平行直线). 设船速为 a ,船行方向始终与河岸垂直,设河宽 为 h ,河中任意点处的水流速度与该点到两岸距离 的乘积成正比(比例系数为 k ).求小船的航行路 线.
练习题答案
一、1、tan x tan y C ; 2、(e x 1)(e y 1) C ; 3、4( y 1)3 3 x4 C .
正 比 , 已 知 M t0 M0 , 求 衰 变 过 程 中 铀 含 量
M (t )随时间 t 变化的规律.
解 根据题意,有
dM M ( 0)
dt M t0 M0 (初始条件)
对方程分离变量, 然后积分:

得 ln M t lnC, 即 M C e t
二、1、 2 cos y cos x ; 2、e x 1 2 2 cos y .

(完整word)高等数学:常微分方程的基础知识和典型例题

(完整word)高等数学:常微分方程的基础知识和典型例题

常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。

微分方程例题范文

微分方程例题范文

微分方程例题范文微分方程是描述物理学、化学、经济学、生物学等领域中变化规律的重要数学工具。

下面我将给出几个微分方程的例题,解析其求解过程。

例题1:一般线性微分方程已知其中一种细菌种群的个体数量N(t)随时间t的变化符合以下微分方程:dN(t)/dt = k*N(t)其中k为常数。

求解该微分方程,并给出其通解。

解析:思路:这是一个一阶线性微分方程,可以使用分离变量法进行求解。

将方程进行分离变量:dN(t)/N(t) = k*dt两边同时积分:∫ (1/N(t)) dN(t) = ∫ k dt得到:ln,N(t), = kt + C1其中C1为常数。

对上式两边取指数:N(t), = e^(kt+C1) = e^C1 * e^kt = C * e^kt其中C=e^C1为常数。

由于细菌数量N(t)永远为正数,所以可以去掉绝对值符号,得到通解:N(t) = C * e^kt其中C为常数。

例题2:二阶常系数齐次线性微分方程已知其中一振动系统满足以下微分方程:d²x(t)/dt² + 4dx(t)/dt + 5x(t) = 0求解该微分方程,并给出其通解。

解析:思路:这是一个二阶常系数齐次线性微分方程,可以使用特征根法进行求解。

将方程转化为特征方程:λ²+4λ+5=0求解特征方程的解,得到特征根:λ₁=(-4+√(-4²-4*5))/2=-2+iλ₂=(-4-√(-4²-4*5))/2=-2-i特征根为复数,分别为共轭复数对。

根据特征根的性质,解的形式为:x(t) = e^(-2t) (C₁cos(t) + C₂sin(t))其中C₁、C₂为常数。

例题3:二阶常系数非齐次线性微分方程已知其中一电路中的电流I(t)满足以下微分方程:d²I(t)/dt² + 3dI(t)/dt + 2I(t) = 6e²求解该微分方程,并给出其通解。

高数一阶微分方程(可分离变量型)

高数一阶微分方程(可分离变量型)
机动 目录 上页 下页 返回
【解】 (1)
dH ∵ <0 dt
dH ∴ = − k ( H − 20) dt
分离变量得
dH = − kdt H − 20 ln( H − 20) = − kt + C1
∴ H = 20 + Ce
∵ t = 0 时 ,H = 37 又 ∵ t = 2 时 ,H = 35
第二节
一阶微分方程
(可分离变量型 )
可分离变量方程
dy = f1(x) f2 ( y) dx M1(x)M2 ( y) dx + N1(x) N2 ( y) dy = 0
转化
解分离变量方程 g( y) dy = f (x) dx
机动 目录 上页 下页 返回
一、可分离变量的微分方程
分离变量方程的解法: 分离变量方程的解法:

dy = 3x2 dx 另解】 【另解】分离变量得 y
令C = ± e ( C 为任意常数 )
C1
⇒ ln y = x3 + C1
机动 目录 上页 下页 返回
【*****】变量代换后,化为可分离变量的微分方程题型 】变量代换后 化为可分离变量的微分方程题型 【例2】 求方程 f ( xy) ydx + g( xy)xdy = 0 通解 】 . 【解】
由 和差化积公式: 和差化积公式:
y d dy x y 2 = −2 sin x d x ⇒∫ = −2 sin ⋅ sin ⇒ ∫ 2 2 y dx 2 2 sin 2 x y y ln csc − cot = 2 cos + C , ∴ 通解为 2 2 2
机动 目录 上页 下页 返回
【思考与练习题】 思考与练习题】

全微分方程例题

全微分方程例题

全微分方程例题
1. 求解微分方程dy/dx = 2x + 3y,且y(0) = 1。

解:因为dy/dx = 2x + 3y是一个一阶线性微分方程,可化为dy/dx - 3y = 2x,然后使用常系数齐次方程的解法得到通解为y = Ce^(3x) - (2/3)x - (1/9)。

将y(0) = 1代入可得C = 10/9,所以特解为y =
(10/9)e^(3x) - (2/3)x - (1/9)。

2. 求解微分方程(x^2 + y^2)dx - 2xydy = 0,且y(1) = 2。

解:将方程变形为(x^2 + y^2)dx = 2xydy,然后对两边同时求积分
得到x^3/3 + xy^2/2 = C,其中C为积分常数。

代入y(1) = 2可得C = 11/6,所以通解为x^3/3 + xy^2/2 = 11/6。

3. 求解微分方程dy/dx = e^(-x^2),且y(0) = 1。

解:因为dy/dx = e^(-x^2)不是一个线性微分方程,所以不能使用
常系数齐次方程的解法。

但是,我们可以利用求导的逆运算——积分来解
决它。

对两边同时积分得到y = ∫e^(-x^2)dx + C,其中C为积分常数。

但是,e^(-x^2)的不定积分无法用初等函数表示,因此这个方程的解是无
法用解析表达式表示的。

我们只能使用数值方法或者级数方法来近似求解。

如使用泰勒展开把积分函数近似为多项式形式,然后求和得到级数解。

(完整版)微分方程例题选解

(完整版)微分方程例题选解

微分方程例题选解3 1. 求解微分方程 x ln xdy ( y ln x)dx 0 , y |x e。

2解:原方程化为dy1 y1dx,xln xx1 dx 1 e 1dxy eC ] 通解为x ln x[ xln xdxx1 [ ln xdx C ]1 [ 1ln 2 x C ]ln xxln x 2由 xe , y3 ,得 C1 ,所求特解为y11ln x 。

2ln x 22. 求解微分方程 x 2 y ' xy y20 。

解:令 y ux , y uxu ,原方程化为 uxuu u 2 ,分离变量得du 1dx ,1 u 2x积分得ln x C,ux原方程的通解为y。

ln x C3. 求解微分方程 ( x 3 xy 2 ) dx ( x 2 y y 3 )dy 。

解:此题为全微分方程。

下面利用“凑微分”的方法求解。

原方程化为 x 3dx xy 2 dx x 2 ydy y 3 dy 由x 3 dx xy 2 dx x 2 ydy y 3dy 1dx41( y 2 dx 2x 2 dy 2 )421d (x 4 2x 2 y 2 y 4 ) ,4 得d (x 4 2x 2 y 2y 4 ) 0 ,原方程的通解为x 42 x 2 y 2 y 4 C 。

注:此题也为齐次方程。

0 ,1 dy 444. 求解微分方程 y '' 1 ( y ') 2 。

解:设 py ,则 y dp,原方程化为 dp1 p2 ,dp dxdx分离变量得dx ,积分得 arctan px C 1 ,1 p2于是 yp tan(x C 1 ) , 积分得通解为yln cos(x C 1 ) C 2 。

5. 求解微分方程 解:特征方程为通解为 y e x (C 1y '' 2y ' 2 y 0 。

r 2 2r 2 0 ,特征根为 r1 i ,cos C 2 sin x) 。

偏微分方程求解例题

偏微分方程求解例题

偏微分方程求解例题下面是一个求解偏微分方程的例题:问题:求解以下偏微分方程:$abla^2u=f(x,y,z)$解法:首先,我们需要对偏微分方程进行化简。

可以通过选择适当的变量代换或积分方法来实现。

这里,我们选择采用变量代换法,将偏微分方程化简为:$abla^2u=f(x,y,z)$$ightarrowabla^2u=u_x^2+u_y^2+u_z^2-f$$u_x=Acos(x)+Bsin(x)$,$u_y=Asin(y)+Bcos(y)$,$u_z=Ccos(z)+Ds in(z)$$ightarrowabla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ $u_x=Acos(x)$,$u_y=Bsin(y)$,$u_z=Ccos(z)$$ightarrowabla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ 将上述化简后的偏微分方程再次化简,得到:$abla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ $ightarrowabla^2u=frac{1}{r^2}frac{partial}{partialr}(r^2frac{partial u}{partialr})+frac{1}{rsintheta}frac{partial}{partialtheta}(sinthetafrac{partial u}{partialtheta})+frac{1}{sin^2theta}frac{partial^2 u}{partialz^2}-frac{f}{r^2sin^2theta}$其中,$r=sqrt{x^2+y^2+z^2}$,$theta=frac{pi}{2}-x$现在我们可以对上述偏微分方程求解。

考虑到该偏微分方程属于椭圆型偏微分方程,可以使用椭圆型偏微分方程的通解公式求解。

第六节微分方程的应用举例

第六节微分方程的应用举例

第六节 微分方程的应用举例在学习了以上几节内容关于微分方程解法的基础上,本节将举例说明如何通过建立微分方程解决一些在几何上和物理上的实际问题。

例1 设曲线过(1,1),且其上任意点p 的切线在y 轴上的截距是切点纵坐标的三倍,求此曲线方程(图12-1)解:设所求的曲线方程为()()y x P x y y ,,=为其上任意点,则过点P 的切线方程为()x X y y Y -'=-. 其中()Y X ,是切线上动点,()y x ,是曲线上L令0=X ,的y x y Y '-=为切线在y 轴上的截距。

由x所给的条件得微分方程: 图12-1y y x y 3='-这是一阶线性齐次方程,易得其通解为2xCy =。

因曲线过点(1,1),代入上式,得1=C ,所以曲线方程为21x y =. 例2 设跳伞员开始跳伞后所受的空气阻力与他下落的速度成正比(比例系数为常数0>k ),起跳时的速度为0。

求下落的速度与时间之间的函数关系。

解:这是一个运动问题,我们可以利用牛顿第二定律ma F =建立微分方程。

首先,设下落速度为()t v ,则加速度()t v a '=。

再分析运动物体所受的外力。

在此,跳伞员只受重力和阻力这两个力的作用。

重力的大小为mg ,方向与速度方向一致;阻力大小为kv ,方向与速度方向相反。

因此,所受的外力为kv mg F -=,于是,由牛顿第二定律可得到速度()t v 应满足的微分方程为v m kv mg '=-,又因为假设起跳时的速度为0,所以,其初始条件为00==t v , 至此,我们已将这个运动问题化为一个初值问题()⎩⎨⎧=-='.00,v kv mg v m 解此初值问题。

这是一个一阶线性非齐次微分方程,但由于v v ',的系数及自由项均为常数,故也可按分离变量方程来解。

求出方程的通解为t mk Cekv mg -=-.将初始条件()00=v 代入,得mg C =。

微分方程例题

微分方程例题

典型例题1、判断下列一阶微分方程的类型并求其通解(1)0)41(2=+−dy x ydx ;(2).0cos )cos (=+−dy x yx dx x y y x ;(3)0)sin (=−+dx x y xdy ;(4)0)4(3=+−dx y y x xdy ;(5)ydy dx y xydy dx +=+2;(6)0)12(23=−+dy xy dx y ;(7).0324223=−+dy y x y dx y x (8)231dy x x ydx x++=−+2、求一阶微分方程的特解(1)求解微分方程x yx ydx dytan +=满足初始条件61π==x y 的特解.(2)求微分方程,0)ln (ln =−+dx x y xdy x 满足所给初始条件.1==e x y 的特解3、求下列微分方程的通解(1)求x y xe ′′′=的通解(2)02)1(222=−+dx dyx dx y d x (3)求方程02=′−′′y y y 的通解4、求下列微分方程的特解(1)求方程x e y x cos 2−=′′满足1)0(,0)0(=′=y y 的特解.(2)求微分方程初值问题:,2)1(2y x y x ′=′′+,10==x y 30=′=x y (3)求微分方程)(22y y y y ′−′=′′满足初始条件,1)0(=y 2)0(=′y 的特解.5、求下列微分方程的通解(1)440y y y ′′′++=(2)340y y y ′′′−−=(3)250y y y ′′′++=(4)(5)(4)220y y y y y y ′′′′′′+++++=(5)(4)250y y y ′′′′′−+=6、求方程12360y y y′′′−+=满足条件:01x y ==,00x y =′=的特解。

7、求解下列微分方程(1)求方程22y y y x ′′′−+=的一个特解。

(2)求方程2x y y y e ′′′−+=的一个特解。

微分方程例题

微分方程例题

微分方程例题请问您需要什么类型的微分方程例题呢?以下是一些例题供您参考:1. 已知 $\frac{dy}{dx}+y=x$,且 $y(0)=1$,求 $y(x)$。

解:将 $\frac{dy}{dx}+y=x$ 化为 $\frac{dy}{dx}=x-y$,再利用一阶线性微分方程的通解公式 $y(x)=\mathrm{e}^{-\int1\mathrm{d}x}\left(\int\mathrm{e}^{\int1\mathrm{d}x}f(x)\mat hrm{d}x+C\right)$,其中 $f(x)=x$,则有。

$$。

y(x)=\mathrm{e}^{-x}\left(\int\mathrm{e}^{x}xf(x)\mathrm{d}x+C\right)=\mathrm{e}^{ -x}\left(\int\mathrm{e}^{x}x^2\mathrm{d}x+C\right)=\mathrm{e}^{-x}(x^2+x+C)。

$$。

代入 $y(0)=1$ 可得 $C=1$,因此 $y(x)=\mathrm{e}^{-x}(x^2+x+1)$。

2. 某物体的速度 $v$ 随时间 $t$ 的变化满足 $\frac{dv}{dt}=at-bv$,其中 $a$ 和 $b$ 为已知常数,且初始速度 $v_0=0$,求物体的速度 $v(t)$。

解:将 $\frac{dv}{dt}=at-bv$ 化为 $\frac{dv}{dt}+bv=at$,同样利用一阶线性微分方程的通解公式 $v(t)=\mathrm{e}^{-\intb\mathrm{d}t}\left(\int\mathrm{e}^{\intb\mathrm{d}t}f(t)\mathrm{d}t+C\right)$,其中 $f(t)=at$,则有。

$$。

v(t)=\mathrm{e}^{-bt}\left(\int\mathrm{e}^{bt}at\mathrm{d}t+C\right)=\mathrm{e}^{-bt}\left(\frac{a}{b}t^2+C_1t+C_2\right)。

高阶线性微分方程习题

高阶线性微分方程习题
x
D. axe bx
x
提示 根椐线性微分方程的性质,
y y e x, y1 xae x
y y 1,
y 2 b
两个特解的和就是原方程的特解.
12
x y (D ). 微分方程 y 3 y 2 y 3 x 2e 的特解
A. (ae b)e
1, 2 1 2 i ,
y e x (C1 cos 2 x C 2 sin 2 x )
2
( 4) y 2 y 5 y 0 的通解. 求方程 例3
解 特征方程 4 2 3 5 2 0,
2( 2 2 5 ) 0 .
x x f ( x ) cos x [ x f ( t )dt t f ( t ) dt ] x 0 0 x cos x [ 0 f ( t )dt x f ( x ) x f ( x )] x



两端再对x求导, f ( x ) sin x f ( x ) 微分方程
2 2
0 0 0 0
30 x y (0) py (0) qy(0) e 1 y(0) 1
14
设f ( x ) sin x
x ( x t ) f ( t )dt , 0
积分方程
其中f为连续函数 , 求f ( x ). x 解 [ f ( x )] [ sin x ( x t ) f ( t )dt ] x 0
通解 z C1e x C 2e x ln y C1e x C 2e x . dp 或: y f ( y, y)型. 设 y p, y p . dy

伯努利方程求解微分方程例题

伯努利方程求解微分方程例题

例题:求解伯努利方程$y''+4y'+3y=0$ 的通解。

解:伯努利方程的特征方程为$r^2+4r+3=0$,根为$r_1=-1, r_2=-3$。

则通解为:$y=c_1e^{-x}+c_2e^{-3x}$。

注意:在求解伯努利方程时,需要判断特征方程的根的不同情况,如果根相等,则通解为$y=c_1xe^{-x}+c_2e^{-x}$;如果根不相等,则通解为$y=c_1e^{r_1x}+c_2e^{r_2x}$。

在求解伯努利方程的通解时,还需要注意一些细节。

例如,在本例中,$r_1=-1, r_2=-3$,则通解为$y=c_1e^{-x}+c_2e^{-3x}$。

但是,对于某些特殊的伯努利方程,可能存在特解,即使用方法与通解不同的特殊解。

特解是用来补充通解的,使得方程的通解能够满足所有可能的初值条件。

总之,伯努利方程是一类常见的微分方程,在求解时需要注意特征方程的根的不同情况,以及可能存在的特解。

通过正确的方法,我们可以快速求解伯努利方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此原方程通解为
的通解. 特征根:
例. 解: 特征方程:
特征根 :
原方程通解: (不难看出, 原方程有特解
例.
解: 特征方程: 即 其根为 方程通解 :
备用题
为特解的 4 阶常系数线性齐次微分方程, 并求其通解 .
解: 根据给定的特解知特征方程有根 :
因此特征方程为 即 故所求方程为 其通解为
例. 设线性无关函数
有根
思考与练习
1 . (填空) 设
时可设特解为
提示:
时可设特解为
2. 已知二阶常微分方程 求微分方程的通解 .
解: 将特解代入方程得恒等式
有特解
比较系数得
故原方程为 对应齐次方程通解: 原方程通解为
例1.
解:
则原方程化为
亦即

特征方程
其根
则①对应的齐次方程的通解为
设特解: 代入①确定系数, 得
例. 解微分方程 解:
则有
分离变量
积分得

代回原变量得通解
(C 为任意常数)
说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但 求解在过程中丢失了.
例. 求方程
的通解 .
解: 注意ቤተ መጻሕፍቲ ባይዱx, y 同号,
故方程可
变形为 由一阶线性方程通解公式 , 得
这是以
为因变量, y为
自变量的一阶线性方程
积分得 利用
两端再积分得 利用
代入方程得
分离变量
于是有 因此所求特解为
对于
型方程(n≥2),可以令
得 如果能求出其通解
逐次积分n-1次,就可得到原方程的通解
其中C1,C2...,Cn为任意常数.
例. 解初值问题
解: 令
代入方程得
积分得
利用初始条件,
根据

积分得 故所求特解为
例. 解: 特征方程
例5.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 , 因此设非齐次方程特解为
代入方程:
比较系数, 得 因此特解为 所求通解为
例6. 设下列高阶常系数线性非齐次方程的特解形式:
解: (1) 特征方程
有二重根
所以设非齐次方程特解为
(2) 特征方程 利用叠加原理 , 可设非齐次方程特解为
求 解: 将所给方程化为:
的通解为 的通解.
利用⑤,⑥建立方程组:
故所求通解为
积分得
例.
的通解.
解: 对应齐次方程为
由观察可知它有特解:

代入非齐次方程后化简得
(二阶常系数非齐次方程)

此题不需再作变换. 特征根:
设⑦的特解为 代入⑦可得:
于是得⑦的通解:
故原方程通解为
例1. 解: 本题
的一个特解. 而特征方程为
性方程 常数, 则该方程的通解是 (
都是二阶非齐次线
的解,
是任意
).
提示:
(89 考研 )
都是对应齐次方程的解, 二者线性无关 . (反证法可证)
例. 个解
解:
已知微分方程
有三
求此方程满足初始条件
的特解 .
是对应齐次方程的解, 且
常数
因而线性无关, 故原方程通解为
代入初始条件 故所求特解为
例.已知齐次方程
所求通解为
思考与练习
判别下列方程类型:
提示:
可分离 变量 方程
齐次方程
线性方程
线性方程
伯努利方 程
例. 求解
解:
∴ 这是一个全微分方程 .
用凑微分法求通解. 将方程改写为


故原方程的通解为
思考: 如何解方程 这不是一个全微分方程 , 但若在方程两边同乘 就化成上例 的方程 .
备用题 解方程
例. 解初值问题
解: 分离变量得
自行填充空白处 的颜色
两边积分得

( C 为任意常数 )
由初始条件得 C = 1, 故所求特解为
例. 求下述微分方程的通解:
解: 令

故有 即 解得 所求通解:
( C 为任意常数 )
例: 解法 1 分离变量
即 解法 2 故有 积分
所求通解:
(C<0 ) ( C 为任意常数 )
解法1 积分因子法. 原方程变形为 取积分因子
故通解为 此外, y = 0 也是方程的解.
解法2 化为齐次方程. 原方程变形为
积分得

代入 , 得通解
此外, y = 0 也是方程的解.
解法3 化为线性方程. 原方程变形为 其通解为
即 此外, y = 0 也是方程的解.
例. 解:
例. 求解 解:
不是特征方程的根 .
设所求特解为
代入方程 :
比较系数, 得
于是所求特解为
例2. 求解定解问题
解: 本题
特征方程为
其根为
故对应齐次方程通解为
设非齐次方程特解为
代入方程得

原方程通解为
由初始条件得
解得 于是所求解为
例4 解: 本题
的一个特解 .
特征方程
不是特征方程的根, 故设特解为
代入方程得
比较系数 , 得 于是求得一个特解
① 的通解为
换回原变量, 得原方程通解为
例2. 解: 将方程化为
则方程化为
(欧拉方程)
即 特征根: 设特解:
② 代入 ② 解得 A = 1, 所求通解为
相关文档
最新文档