坐标反算

合集下载

坐标正反算计算公式

坐标正反算计算公式

坐标正反算计算公式坐标的正反算是指根据点的经纬度坐标计算出该点所对应的位置,或者根据位置信息计算出该位置的经纬度坐标。

在地理信息系统中,正反算是非常重要的基本操作。

下面将分别介绍坐标的正算和反算的计算公式。

坐标正算即通过经纬度坐标计算出该点所对应的位置。

设经度为L,纬度为B,L0为中央经度(通常取地理区域中心点的经度),E为横轴坐标,N为纵轴坐标,M0为中央经线的投影,f为椭球扁率。

(1)将地球视为一个椭球体,对于小范围的区域,可以采用球面近似。

此时可以使用平面直角坐标系进行计算,并忽略地球的扁率和曲率。

具体计算公式如下:E=L-L0N=B-B0其中,B0为中央纬度。

(2)在地表为曲面的情况下,需要考虑地球的扁率和曲率。

此时可以使用高斯平面直角坐标系进行计算,公式如下:K = (a / √(1 - e^2 * sin^2B)) * √(1 + t^2)L = (L - L0) * cosBX=K*[L+(1-t^2+q^2)*L^3/6+(5-18*t^2+t^4+14*q^2-58*t^2*q^2)*L^5/120]Y=K*(M-M0+(1-t^2+q^2)*L^2/2+(5-14*t^2+3*t^4+14*q^2-28*t^2*q^2)*L^4/24)其中,a为椭球长半轴,e为椭球第一偏心率,M为曲面子午线弧长,t = tanB,q = (ωL)^2 * cosB,ω为地球自转角速度。

坐标反算即通过位置信息计算出该位置的经纬度坐标。

(1)对于小范围的区域,可以近似为平面直角坐标系,使用直角坐标系的计算公式即可反算出经纬度坐标。

具体计算公式如下:L=L0+EB=B0+N(2)对于地球曲面的情况,使用高斯平面直角坐标系进行反算时,可以采用交迭算法(迭代计算)。

迭代计算公式如下:L1 = [(X / K) - (1 - t^2 + q^2)(L1^3) / 6 - (5 - 18 * t^2 +t^4 + 14 * q^2 - 58 * t^2 * q^2)(L1^5) / 120] / cosBB1 = [(Y / K) - M - (1 - t^2 + q^2)(L1^2) / 2 - (5 - 14 *t^2 + 3 * t^4 + 14 * q^2 - 28 * t^2 * q^2)(L1^4) / 24] / (a /√(1 - e^2 * sin^2B))其中,L1、B1为迭代计算的经纬度坐标,X、Y为已知的平面坐标,K为局部坐标系绘图比例尺系数,t、q的计算和上述正算公式相同。

坐标正算和坐标反算名词解释

坐标正算和坐标反算名词解释

坐标正算和坐标反算名词解释
坐标正算和坐标反算是地理学和测量学中两个重要的术语,用于描述地球上某一地点的确定和定位。

坐标正算(Forward Calculation)是指根据已知的地理坐标系统或投影坐标系统的参数,通过数学计算得出地球上某一点的具体位置。

这一过程通常涉及到大地测量技术、三角测量和测量学等方法。

坐标正算被广泛应用于地图制作、导航系统、地理信息系统(GIS)等领域。

坐标反算(Inverse Calculation)是指通过已知地球上某一点的经纬度或投影坐标,利用反向的数学计算方法得出该点所在的地理或投影坐标系统的参数。

坐标反算可用于测量点的地理位置的确定,具体应用包括GPS定位系统、地图制作、地理勘测等领域。

坐标正算和坐标反算分别描述了地球上某一点的确定和定位过程。

坐标正算通过已知的参数计算出具体位置,而坐标反算则通过已知的位置反向计算出相应的参数。

这两个概念在地理学和测量学中起着重要的作用,为地理信息系统和定位导航系统等提供了基础支持。

坐标反算正算计算公式

坐标反算正算计算公式

坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B = X A + AX ABY B = X A + AY AB(1-18 )二式中,AX AB与AY AB分别称为A〜B的纵、横坐标增量,其计算公式为:AXAB = X B—X A = D AB COS O ABAYAB = Y B—Y A = D AB sin O AB(1-19)注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。

二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角OCAB ,为坐标反算。

其计算公式为:(1-20 )注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。

深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导si n( A+B) = si nAcosB+cosAs inB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。

角AOD为a,BOD为B,旋转AOB使0B与0D重合,形成新A'OD。

A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin3 )A2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 )[1](1-21 )两角和公式sin( A+B) = sin AcosB+cosAs inB sin (A-B) = sin AcosB- COSAsinB cos(A+B) = cosAcosB-s inAsinB cos(A-B) = cosAcosB+si nAsi nB tan (A+B) = (ta nA+ta nB)/(1-ta nAta nB)ta n( A-B) = (ta nA-ta nB)/(1+ta nAta nB)cot(A+B) = (cotAcotB- 1 )/(COtB + COtA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)[]倍角公式Si n2A=2Si nA?CosACos2A=CosA A2-Si nA^2=1-2Si nAA2=2CosAA2-1tan 2A=2ta nA/ (1-tanAA2 )是sinA的平方sin2 (A))(注:Si nAA2[]三倍角公式sin3 a =4sin a-sin( n /3+ a )sin( n/)cos3 a =4cos a-cos( n /3+ a )cos( n /3a )tan3a = tan a • tan( n /3+a) • tan( n /3-a)[]三倍角公式推导sin 3a=sin( 2a+a)=sin 2acosa+cos2as ina=2s in a(1-s in& sup2;a)+(1-2s in& sup2;a)s ina=3s in a-4s in³acos3a=cos(2a+a)=cos2acosa-s in 2as ina=(2cos²a-1)cosa-2(1-s in& sup2;a)cosa=4cos³a-3cosasin 3a=3s in a-4s in& sup3;a=4si na(3/4-si n& sup2;a)=4sina[( V3/2)² -sin²a]=4sina(sin²60 °-sin²a)=4sina(sin60 °+sina)(sin60 °-sina)°)/2]}=4sina*2sin[(60+a)/2]cos[(60 °-a)/2]*2sin[(60 °-a)/2]cos[(60 °-a)/2]=4sinasin(60 °+a)sin(60 °-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(V 3/2) ²]=4cosa(cos²a-cos²30 °)=4cosa(cosa+cos30° )(cosa-cos30 °) =4cosa*2cos[(a+30 ° )/2]cos[(a-30 °)/2]*{-2sin[(a+30°)/2]sin[(a-30=-4cosasin(a+30 ° )sin(a-30 °) =-4cosasin[90 °-(60 °-a)]sin[-90 °+(60°+a)]=-4cosacos(60 ° -a)[-cos(60 °+a)] =4cosacos(60° -a)cos(60 °+a) 上述两式相比可得tan3a=tanatan(60 ° -a)tan(60 °+a) []半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. []和差化积sin 0 +sin $ = 2sin[( 0 + )/2]cos[( - © )/2]sin 0-sin © = 2cos[( 0 + © )/2]sin[( - © )/2] cos 0+cos © = 2cos[( 0+©)/2]cos[( -0©)/2] cos 0-cos © = -2sin[( 0+©)/2]sin[( -©0)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) []积化和差sin a sin 3 = -1/2*[cos( a + 3-)cos( a - 3 )] cos a cos 3 = 1/2*[cos( a +3)+cos( a -3)] sin a cos 3 = 1/2*[sin( a +3)+sin( -a3)] cos a sin 3 = 1/2*[sin(a +3-s )in( a -3)][]诱导公式sin(- a ) = -sin acos(- a ) =cos aSin( n /2- a ) = -COS a cos( n /2 - a ) = sin a Sin( n /2+ a )= COS a cos( n /2+ a ) = -sin asin( n- a ) = sin a COs( n - a ) = -COs a sin( n + a ) = -sin a cos( n + a ) = -cos a tanA=sinA/COsA tan ( n /2 + a) =—cot a tan ( n /2 — a) = cot a tan ( n — a) =—tan a tan ( n+ a) = tan a[][](sin a )A2+(cos a )A2=11+(tan a )A2=(sec a )人21+(cot a)A2=(csc a)A2证明下面两式,只需将一式,左右同除(sin a )A2第二个除(COS a )A2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=^ -Ctan(A+B)=tan( n -C)(tanA+tanB)/(1- tanAtanB)=(tan n -tanC)/(1+tan n tanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n n (n € Z)时,该关系式也成立[]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a) []双曲函数sin h(a) = [e A a-e A(-a)]/2COSh(a) = [eAa+eA(-a)]/2tg h(a) = Sin h(a)/COS h(a)公式一:设a为任意角,终边相同的角的同一二角函数的值相等:sin ( 2k n + a)=sin aCOS ( 2k n+ a) = COS atan ( k n + a)=tan acot ( k n+ a)=COt a公式二:设a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin ( n+ a)= :-sin aCOS ( n+ a):=-COS atan ( n+ a)= tan aCOt ( n+ a)= COt a公式二:任意角a与- a的三角函数值之间的关系:sin (- a) = -sin aCOS ( -a) = COS atan (- a) = -tan aCOt (-a)= -COt a公式四:利用公式—和公式二可以得到n- a与a的三角函数值之间的关系sin ( n- a)= Sin aCOS ( n- a)= -COS atan ( n- a)= -tan aCOt ( n- a)= -COt a公式五:利用公式-和公式二可以得到 2 n - a与a的三角函数值之间的关系:Sin ( 2 n- a)= -Sin aCOS ( 2 n- a)= COS atan ( 2 n- a)= -tan aCOt ( 2 n- a)= -COt a公式六:n /2 土及3 n /2 ±a与a的二角函数值之间的关系:Sin ( n /2+ a) = COS aCOS ( n /2+ a) = -sin atan (n /2+ a = -COt a cot (n /2+ a = -ta n a sin((n /2- a)= COs a cos (n /2- a)= sin a tan (n /2- a)= COt a cot (n /2- a)= tan a sin((3 n /2+ a )=-COs a cos (3 n /2+ a)=sin a tan (3 n /2+ a )=-COt a cot (3 n /2+ a )=-tan a sin((3 n /2- a):=-COS a cos (3n /2- a)= -sin a tan (3n /2- a)= COt a cot (3n /2- a):= tan a (以上k € Z)这个物理常用公式我费了半天的劲才输进来A • sin( 31+ 0 )+B - sin( w t+ $ = v{(A A2+B A2 +2ABc os( 0- $ )} ? sin { +B A2; +2ABcos( 0 - $ )} }~表示根号,包括{ .... }中的内容,希望对大家有用w t + arcsin[ (A?sin 0 +B?sin $ ) / V{人人2。

坐标反算的计算公式

坐标反算的计算公式

坐标反算的计算公式坐标反算是根据两点的坐标计算它们之间的距离和方位角的过程。

这在测量、地理、工程等领域都有着广泛的应用。

咱先来说说坐标反算的公式哈。

假设已知点 A 的坐标为(X₁,Y₁),点 B 的坐标为(X₂,Y₂),那么两点之间的水平距离 D 就可以通过下面这个公式算出来:D = √[(X₂ - X₁)² + (Y₂ - Y₁)²] 。

至于方位角α嘛,那就得用反正切函数来算了。

不过这里要注意一下象限的问题。

计算公式是:α = arctan[(Y₂- Y₁)/(X₂- X₁)] 。

我给您举个例子吧。

有一次我去一个建筑工地,工人们正在进行地基的测量工作。

他们需要确定两个测量点之间的距离和方位,以便准确地规划建筑物的位置。

当时我就在旁边看着,只见测量员熟练地使用仪器获取了两点的坐标,然后迅速在纸上进行计算。

他嘴里还念叨着这些公式,神情专注又认真。

在计算距离的时候,他先把坐标值代入公式,一步一步地计算,算出的结果跟仪器直接测量出来的距离相差无几,这让周围的人都对他的专业能力赞不绝口。

而在计算方位角的时候,他特别小心地考虑了坐标的正负,判断出所在的象限,最终得出了准确的方位角。

这整个过程让我深切地感受到,坐标反算的公式虽然看起来有点复杂,但只要掌握好了,在实际工作中那可真是太有用了。

回到咱们说的坐标反算,在实际应用中,这些公式可不是光在纸上算算就行的。

比如说在道路设计中,工程师们要根据路线上各个点的坐标来计算弯道的角度和长度,这时候坐标反算就能帮他们准确地规划出道路的走向。

再比如在地理信息系统中,通过坐标反算可以确定两个地点之间的相对位置和距离,这对于资源分配、规划城市发展等都有着重要的意义。

总之,坐标反算的计算公式虽然看似枯燥,但它们在实际生活中的应用却非常广泛和实用。

掌握好这些公式,就像是拥有了一把解决各种空间位置问题的钥匙,可以让我们在各种领域中更加得心应手。

希望您也能熟练掌握这些公式,为您的工作和学习带来便利!。

测绘技术之坐标反算与正算

测绘技术之坐标反算与正算

5.3坐标反算坐标反算,就是根据直线两个端点的已知坐标,计算直线的边长和坐标方位角的工作。

如图5.3所示,若A、B为两已知点,其坐标分别为(XA,YA)和(XB,YB),根据三角函数,可以得出直线的边长和坐标方位角计算公式:tgα=△YAB/△XAB=(YB-YA)/(XB-XA)αAB =tg-1 (△YAB/△XAB)= tg-1 ((YB-YA)/(XB-XA))/td>DAB=△YAB/sin αAB=XAB/cos αAB 或 (5.6)DAB=√(△X2+△Y2)应当注意,按公式(5.5)用计算器计算时显示的反正切函数值在-90°~+90°之间,而坐标方位角范围是0°~360°,所以按(5.5)式反算方位角时,要根据ΔX、ΔY的正负符号确定直线AB 所在的象限,从而得出正确的坐标方位角。

如使用fx140等类型的计算器,可使用功能转换键 INV 和极坐标与直角坐标换算键P→R以及x←→y键直接计算求得方位角。

按键顺序为:ΔX INV R→P ΔY =显示D X←→y 显示α。

例5.2 已知B点坐标为(1536.86 ,837.54),A点坐标为(1429.55,772.73),求距离DBA和坐标方位角αBA。

解:先计算出坐标增量:ΔXBA=1429.55-1536.86=-107.31ΔYBA=772.73-837.54=-64.81直接用计算器计算:按-107.31 INV P→R -64.81 =显示125.36(距离DBA);按 x←→y 显示211°07′53″(坐标方位角αBA)。

5.2 坐标正算坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图5.3所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B 的坐标为:XB=XA+ΔXAB (5.1)YB=YA+ΔYAB (5.2)式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

第六章 坐标正算和反算

第六章 坐标正算和反算

第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

坐标正反算

坐标正反算

坐标正反算一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:=1000、=1000、方位角【例题6-1】已知点A坐标,=35°17'36.5\,2、坐标反算已知两点的坐标,计算两点水平距离=200.416,计算点的坐标?35o17'36.5\35o17'36.5\两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据正切角值换算为坐标方位角。

、的正负号所在象限,将反【例题6-2】=3712227.860、、水平距离=3712232.528、=523620.436、=523611.598,计算坐标方位角计算坐标方位角。

=62°09'29.4\29.4\注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=1771.03、=2365.16、=1181.77、、水平距离。

=1719.24,试计算坐标方位角键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[],键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。

【例题6-4】坐标正算,已知坐标方位角=200.40,试计算纵坐标增量横坐标增量=294°42'51\,。

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式工程测量中,坐标反算是一个重要的计算过程,用于根据已知点的坐标和测量数据计算出未知点的坐标。

这个计算过程可以使用一些基本的几何关系和数学公式来完成。

本文将介绍几种工程测量坐标反算的计算公式。

1. 三角形坐标反算三角形坐标反算是一种常见的坐标反算方法。

假设有三个已知点A(x1, y1, z1),B(x2, y2, z2)和C(x3, y3, z3),以及一个未知点P(x, y, z)。

通过测量已知点之间的距离和角度,我们可以使用三角形的几何关系来计算出未知点P的坐标。

首先,我们可以计算出三个已知点之间的两两距离,分别为AB、AC和BC。

然后,我们使用三角形余弦定理和正弦定理来计算出未知点P与已知点之间的距离。

再结合三角形的正弦定理,我们可以计算出未知点P的坐标。

具体的计算公式如下:距离计算: - AB = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2) - AC = √((x3 - x1)^2 + (y3 - y1)^2 + (z3 - z1)^2) - BC = √((x3 - x2)^2 + (y3 - y2)^2 + (z3 - z2)^2) 坐标计算: - P.x = x1 + AB/A * (x2 - x1) + AC/D * (x3 - x1) - P.y = y1 + AB/A *(y2 - y1) + AC/D * (y3 - y1) - P.z = z1 + AB/A * (z2 - z1) + AC/D * (z3 - z1) 其中,A = BC,B = AC,C = AB,D = √(AC^2 - AB^2 + AD^2)。

通过这种方法,我们可以根据已知点的坐标和测量数据来计算出未知点的坐标。

2. 圆法坐标反算圆法坐标反算是另一种常用的坐标反算方法,适用于测量曲线的坐标反算。

假设有三个已知点A(x1, y1, z1), B(x2, y2, z2)和C(x3, y3, z3),以及一个未知点P(x, y, z)。

坐标正反算定义及公式

坐标正反算定义及公式

第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式
工程测量坐标反算的计算公式是用于根据已知的测量数据确定未知点的坐标。

这个过程通常包括水平角、垂直角和距离等测量数据的收集和处理。

对于水平角的测量,我们可以使用正弦定理来计算未知点的水平角。

在三角形ABC中,已知两点A和B的坐标以及它们与未知点C之间的夹角α和β,我们可
以使用以下公式来计算未知点C的坐标:
x_C = x_A + d * sin(β) / sin(α+β)
y_C = y_A + d * sin(α) / sin(α+β)
其中,(x_A, y_A)为已知点A的坐标,d为A与B之间的距离。

对于垂直角的测量,我们可以使用正弦定理来计算未知点的垂直角。

在三角形ABC中,已知两点A和B的坐标以及它们与未知点C之间的夹角α和β,我们可
以使用以下公式来计算未知点C的坐标:
z_C = z_A + d * sin(γ) / sin(α+γ)
其中,z_A为已知点A的高程,γ为A与C之间的垂直角。

最后,我们可以结合水平角和垂直角的测量数据来计算未知点的三维坐标。


过以上公式,我们可以根据已知的测量数据准确地计算出工程测量坐标的反算结果。

需要注意的是,这些公式基于正弦定理的假设。

在实际应用中,也可能需要考
虑其他因素,如误差校正和不确定性。

因此,在实际测量中,还需要进行数据处理和调整来提高测量的准确性和可靠性。

总之,工程测量坐标反算的计算公式是一种根据已知的测量数据来确定未知点
坐标的方法。

通过对水平角、垂直角和距离等测量数据的处理,可以较准确地计算出工程测量的坐标结果。

工程测量坐标正反算公式

工程测量坐标正反算公式

工程测量坐标正反算公式工程测量坐标正反算公式是工程测量中常用的计算方法,用于将实际测量得到的水平角、垂直角和距离等数据计算为平面坐标系或空间坐标系中的点的坐标。

这些计算方法包括平距法、交会法、改正数法等。

以下将介绍其中的一些常用公式。

1.平距法:平距法适用于平面三角测量,其中已知一个角和两个边长,需要计算第三个边长。

公式如下:AB² = AC² + BC² - 2 * AC * BC * cos(∠CAB)2.交会法:交会法常用于平面控制测量,其中通过观测三个方向上的角度,以及相应的两个边长,计算其中一点相对于测站的坐标。

公式如下:x = 观测距离 * sin(观测方向角1) / cos(观测方向角2) + 坐标X1y = 观测距离 * sin(观测方向角3) / cos(观测方向角2) + 坐标Y13.改正数法:改正数法常用于平面闭合多边形控制测量,其中通过对内角的观测进行闭合多边形的平差计算,求得闭合差改正数。

公式如下:dX = ∑(边长 * cos(内角) / ∑(边长²) * 闭合差)dY = ∑(边长 * sin(内角) / ∑(边长²) * 闭合差)4.高差改正:在空间测量中,经常需要进行高程的改正计算。

其中,正算高差改正应用于已知起点与终点的高差、测点的高差差值以及测点的距离,计算出测点的高程。

公式如下:高程差=(终点高程-起点高程)/测点距离*高差差值5.方位角正算:在实际测量中,有时需要根据起点和终点的坐标计算出方位角。

公式如下:tan(方位角) = (终点纵坐标 - 起点纵坐标) / (终点横坐标 - 起点横坐标)6.反算坐标:反算坐标是指通过已知起点的坐标、观测角度和距离,计算出目标点的坐标。

公式如下:终点纵坐标 = 坐标纵差 * sin(观测方向角) + 起点纵坐标终点横坐标 = 坐标横差 * cos(观测方向角) + 起点横坐标这些公式都是工程测量中常用的基本公式,通过使用它们,我们可以根据测量数据计算出点的坐标。

坐标正反算计算公式

坐标正反算计算公式

坐标正反算计算公式引言在数学和计算机科学领域中,坐标转换是一种常见的操作。

坐标正反算是指从一个坐标系中的点转换到另一个坐标系中的点,并且可以从目标坐标系中的点转换回原始坐标系中的点。

这种计算在许多应用中都非常有用,例如地理信息系统、计算机图形学和机器人学。

坐标正算坐标正算是将一个坐标点从原始坐标系转换到目标坐标系的过程。

在二维平面中,我们可以使用以下公式将点(x, y)从原始坐标系转换到目标坐标系:x' = x * cos(θ) - y * sin(θ) + dxy' = x * sin(θ) + y * cos(θ) + dy其中,(x, y)是原始坐标系中的点,(x’, y’)是目标坐标系中的点,θ是旋转角度,dx和dy是平移量。

这些参数确定了坐标转换的方式。

坐标反算坐标反算是将一个坐标点从目标坐标系转换回原始坐标系的过程。

在二维平面中,我们可以使用以下公式将点(x’, y’)从目标坐标系转换回原始坐标系:x = (x' - dx) * cos(-θ) - (y' - dy) * sin(-θ)y = (x' - dx) * sin(-θ) + (y' - dy) * cos(-θ)同样地,(x’, y’)是目标坐标系中的点,(x, y)是原始坐标系中的点,θ是旋转角度,dx和dy是平移量。

应用举例坐标正反算的计算公式在各种应用中都有广泛的应用。

•地理信息系统(GIS)中,坐标转换用于将地球表面的经纬度坐标转换为平面坐标系(如投影坐标系)。

这种转换对于地图制图和空间数据分析非常重要。

•在计算机图形学中,坐标转换用于将三维物体的顶点坐标从模型空间转换到世界空间,然后转换到相机空间或屏幕空间。

通过坐标转换,我们可以实现物体的旋转、缩放和平移等操作。

•在机器人学中,坐标转换用于描述机器人的位置和姿态,以及机器人在不同坐标系中的运动。

这对于路径规划、目标追踪和运动控制非常重要。

坐标反算正算计算公式

坐标反算正算计算公式

坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角αAB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B=X A + ΔXABY B=X A+ ΔYAB(1-18)二式中,ΔXAB与ΔYAB分别称为A~B的纵、横坐标增量,其计算公式为:ΔXAB=X B-X A=D AB· cosαABΔYAB=Y B-Y A=D AB· sinαAB(1-19)注意,ΔXAB和ΔYAB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。

二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角αAB,为坐标反算。

其计算公式为:(1-20)(1-21)注意,由(1-20)式计算αAB时往往得到的是象限角的数值,必须先根据ΔXAB、ΔYAB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。

深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。

角AOD为α,BO D为β,旋转AOB使OB与OD重合,形成新A'OD。

-β),sin(α-β))A(cosα,sinα),B(cosβ,sinβ),A'(cos(αOA'=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)[1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-cot(A-B) = (cotAcotB+1)/(cotB-cotA)[]倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))[]三倍角公式-α)sin3α=4sinα·sin(π/3+α)sin(π/3cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · t an(π/3+a)· t an(π/3-a) []三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)[]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.[]和差化积-φ)/2]sinθ+sinφ = 2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ = 2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ = 2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ = -2sin[(θ+φ)/2]sin[(θtanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)[]积化和差-cos(α-β)]sinαsinβ =-1/2*[cos(α+β)cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-sin(α-β)]cosαsinβ = 1/2*[sin(α+β)[]诱导公式sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = -cosα cos(π/2-α) = sinαsin(π/2+α) =cosα cos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosAtan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα []万能公式[]其它公式(sinα)^2+(cosα)^2=11+(tanα)^2=(secα)^21+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立[]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[]双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(kπ+α)= tanα cot(kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinαtan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABc os(θ-φ)} ? sin{ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2+B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容。

坐标反算公式

坐标反算公式

坐标反算公式坐标反算是一种通过已知测点坐标和观测方位角、距离等数据,推算出未知测点坐标的数学计算方法。

坐标反算公式是根据测量原理和几何关系得出的数学表达式,它们可以用于测量工程、地理信息系统和导航定位等领域。

在坐标反算中,最常用的公式是三角形反算公式和方位角反算公式。

三角形反算公式是基于三角形相似原理推导出来的,它适用于通过已知测点坐标和观测距离、方位角来计算未知测点坐标的情况。

三角形反算公式可以分为正算和反算两种情况。

正算是已知测点坐标和测量数据,推算出未知测点坐标的过程。

其中,已知点坐标和测量数据通过正算公式进行计算,从而得到未知点的坐标。

反算是已知部分测点坐标和测量数据,推算出其他未知测点坐标的过程。

反算公式是用来求解未知测点坐标的公式,通过已知部分点的坐标和测量数据,通过反算公式推算出未知点的坐标。

三角形反算公式中常用的有正弦定理、余弦定理等。

这些公式通过三角函数的计算,可以根据已知测点和测距、方位角等数据,计算出未知点的坐标。

方位角反算公式是用来计算已知两点坐标时,求解两点之间的方位角的公式。

方位角是指从某一点指向另一点的水平方向与真北方向的夹角。

方位角反算公式可以通过正切函数的计算,根据已知点的坐标和两点之间的坐标差值,得到两点之间的方位角。

除了三角形反算公式和方位角反算公式,还有其他坐标反算公式,例如高程反算公式、大地坐标反算公式等,它们适用于不同的测量场景和问题。

坐标反算公式是测量学和地理学等领域中的基础知识和常用工具,它们方便了测量和定位的准确性和效率。

通过运用合适的坐标反算公式,人们可以更加准确地进行测距、定位、导航等工作,提升测量和定位技术的应用能力。

测绘基础:坐标反算

测绘基础:坐标反算

360
( arctan
y AB xAB
)
O
yB
yA y
arctan yAB 360
xAB
⑤特殊方位角—0°
x
xB
B
xAB
xA
A
O
yA yB
坐标反算
xAБайду номын сангаас xB xA 0 yAB yB yA 0
AB 0
y
坐标反算
◇特殊方位角(续)—90°
x
AB
xA
xB
A
B
y AB
O
yA
xAB '
xB
B
y AB
O
yA
yB y
xAB xB xA 0 yAB yB yA 0
tan ' yAB yAB
xAB xAB
' arctan yAB arctan yAB
xAB
xAB
AB
180 ' 180
( arctan
y AB xAB
)
arctan yAB 180 xAB
xA
xB
B
y AB
A AB
O
yB
yA y
AB 270
坐标反算
(3)计算举例
已知A点的坐标为(7915.957, 5317.558),B点的坐标为
(7815.832,5295.261),求A点至B点的水平距离DAB和坐标方位 角αAB。
xAB 7815.832 7915.957 100.125m 第 ? 象限 yAB 5295.261 5317.558 22.297m
坐标反算
③ 180°<αAB<270°(第Ⅲ象限)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在现场工作中,以往我们都是已知某点的里程及边距,来计算出该点的坐标,但有时我们如果能在测得某点坐标后,计算出该点的里程和距线路中心的距离(在这里我姑且称之为坐标反算)的话,将会帮我们大大减轻野外工作量,提高我们的工作效率。

例如:路基填了几层后要精确检查一下路基是否够宽,那么按照我们以往的做法,就是要先将线路中心线放出来,然后用尺拉一下路基宽度,与其在此高程的设计宽度作比较,这样做对高填方而言极不方便。

或者是先按所测高程,计算的宽度放出路基边桩,再与所填边线作比较。

以上两种方法现场工作量都比较大。

较为简便的方法是,我们可以测一下已填路基边线上任一点的三维坐标,然后将其反算求出该点的里程,及其距中线的距离(即所填宽度),由计算出的里程,可算出该里程的路面设计高程,再有所测高程,可计算出该点的设计宽度,两宽度作比较即可。

同样在桥面铺装施工时,我们也无须再像以往那样,先放出某点再测其高程,然后与设计高程比较计,算出该点铺装厚度,而可以沿桥面外边线随意布点,测其三维坐标,计算出其里程及到中心线的距离,便可由其里程及距中心距离,计算出该点的设计高程,与其测得高程作比较得出应铺厚度。

这样便大大减轻了外业工作强度(由放出点后再测其高程,变为测任意点高程),而内业计算量与常规相当。

另外在临时增加桥涵时,也常用到此方法来计算变更桥涵的中心里程(斜交或正交均可).如目前我标段就存在很多临时变更涵洞,按以往我们的方法是先估计该处大概里程,然后放出所估计里程的中心桩,再用皮尺量出所要增加涵洞处与该中心桩的距离,以此来推算出涵洞的中心里程,这一过程即繁琐又不准确。

而目前我们采用的方法是用全站仪测得跨路基现有水沟两端的沟底坐标,计算出其与路基的夹角,按所测坐标及此夹角就可以准确、快速地反算出水沟中心所对应的线路中心里程了。

我们在日常测量工作中的很多方面,也会用到这一方法来减轻野外工作量。

在目前我标段的S334分离式立交桥的架设过程中,也同样用到了此方法.支座安装好后,对支座中心位置检及高程查无误后开始梁板架设,但是尽管测量控制放样符合规范要求,可是因为其它方面的各种原因可能会使梁板出现偏位高程也可能会出现偏差,那么对现在这种问题该如何检查呢?其实方法是一样的,首先我们可以用全站仪测得架设好后梁的边板外边缘任一点的三维坐标,由此坐标反算出该点所对应的中心里程和距中心的距离,就可以和设计图纸上的距离作比较来检查其是否存在偏位,该点的设计高程也可以由反算所得的中心里程和距中心的边距算出,与所测得的实际高程作一下比较也就可以了.那么通过以上讨论问题归结到了一点,那就是如何在测得任一点坐标后,计算出其所对应的线路中心里程,及其到线路中心的距离(或是斜交的长度)呢?解决此类问题,对目前一些测量软件来说早已不成问题,但是在现场工作中我们用的更多、更方便的还是计算器,那么能否用我们常用的4800或5800计算器编程,来计算此类问
题呢?对此我做了一下尝试,取得了不错的效果,现作一简要介绍:(此法需分线元计算,其计算原理如下:)
一:直线
如图:设OP为线路中心线,C为中心线外任一点,已知起点O的坐标、OP方位角αf、和角A,测得C点坐标后,αJ 和LOC便可计算出来.
由三角关系可得:∠K =αJ-αf∠C=180-∠K-(180-∠A)
LHC=sin∠K*LOC/sin(180-∠A)
LOH= sin∠C*LOC/sin(180-∠A)
便可求得A点所对应的线路H点里程(O点里程加上LOH),及HC的长度(正交时为其边距)。

二:圆曲线

如图:圆曲线可借助于圆心O、与圆曲线起点A、测点C以及切点B、构成的三角形,利用三角关系,来求得测点里程及其到中心线的长度或距离(正交时)。

在正交时,如OD可直接由测点D的坐标,及圆心O的坐标求出OD的长度,再减去半径,即可得其到线路中心距离ED。

测点里程可由圆曲线起点里程(即A点里程),加上角a所对的圆弧的长度(即弧AE的长度)求得。

圆曲线计算原理与直线相似,但计算过程较为复杂(程序并不繁琐),在此不再赘述。

三:缓和曲线
1:此法原理是:首先确定一与待求点里程相近的一里程,输入“缓和曲线”正算程序,求出该里程的中心坐标及其切线方位角。

2:将所得坐标及方位角,作为起点坐标及方位角,输入到上述第一条中的“直线反算”程序中,以求出待求点,在该渐近直线中的里程及支距。

3:再将所得新里程输入到“缓和曲线”程序中去,以求出新的坐标及方位角。

4:再将所得坐标及方位角,作为“直线反算”中的起点坐标输入到“直线反算”程序中去。

如此反复渐近,直到所得切线,与待求点与其中心线点连线夹角,约等于已知的夹角为止(在程序中可设一判断值,实践得<0.12即可),所得里程及距离,即为要测点的里程和到中线的距离。

(或是斜交的长度)。

附:4800计算程序
一:直线Lbl1:{XY A}:X“(CDX)X”:Y“(CDY)Y”:Q“(QDLC)Q”:N“(QDX)X1”:E“(QDY)Y1”:
F“(QDFWJ)F”:A“(JIAJAO)A”:Pol(X-N,Y-E):Fixm:J<0=>J=J+360:GoTo2: ≠>J=J:
Lbl2:G=J-F:B=√((Y-E)2+(X-N)2):
L“(BZJL)L”=B*sinG/sin(180-AbsA)▲AbsA>AbsG=>U=1:GoTo3:≠>=U=-1:
Lbl3:C“(CDLC)C”=Q+U*√(L2+B2-Asb2BLcos(AbsA-AbsG))▲GoTo1
二:圆曲线
L bl1:{XYJ}:X”(CDX)X”:Y”(CDY)Y””(YQDLC)Q”:F”(YQDFWJ)F”:N”(YQDX)X1”:E”(Y QDY)Y1”:G=N+R”(BANJING)R”*cos(F+90)=E+R*sin(F+90):B=√((X-G)2+(Y-D)2):
A=sin-1(AbsR*sin(90+J“(JIAJIAO)J”)/B):AbsJ=90=>L“(BZJL)L”=AbsR-B▲
Goto2: ≠>L“(BZJL)L”=AbsR*sin(A+AbsJ-90)/sinA▲
Lbl2:H=√((X-N)2+(Y-E)2):O=cos-1((R2+B2-H2)/2AbsRB):AbsJ≤90=>C“(CDLC)C”=Q+∏Abs R*(O-Abs(AbsJ+A-90))/180▲
Goto1:≠>C“(CDLC)C”=Q+∏AbsR*(O+Abs(AbsJ+A-90))/180▲Goto1
3:缓和曲线
Lbl1:{WENO}:W”(HCDLC)W””(HQDLC)Q”:F”(HQDQXFWJ)F””(JHHQXC)D”:R”(Q
DYBJ)R””(ZDYBJ)P”:R>9998=>C=PD=0:Goto3:≠>>9998=>C=RD
=D:Goto3:≠>C=Abs(DRP/(R-D)):L=C/R:Lbl3:R>=>I=L+Abs(W-Q):W>Q=>U=1:Goto4:
≠>U=-1:Goto4∆≠>R<=>L=L-Abs(W-Q):W>Q=>U=-1:Goto4: ≠>U=1
bl4:H“(HQDX)X”:K“(HQDY)Y”:T=F-UL2/2C*180/∏:V=UI2/2C*180/∏:A=(I-L)-(I5-L5)/40C2 +(I9-L9)/3456C4:
B=(I3-L3)/6C-(I7-L7)/336C3:X=H+UAcosT-BsinT:Y=K+UAsinT+BcosT:N”(CDX)X”:E”(CDY) Y”:O”(JIAJAO)J”ol(N-X,E-Y):Fixm:J<0=>J=J+360:Goto5:≠>J=J:Lbl5:G=J-T-V:
B=√((E-Y)2+(N-X)2):
M=BsinG/sin(180-AbsO):AbsO>AbsG=>U=1:Goto6:≠>U=-1:
Lbl6:W=W+U*√(M2+B2-Abs2Bmcos(AbsO-AbsG)):
Abs(AbsO-AbsG)<0.12=>M“(BZJL)L” ▲W“(CDLC)C” ▲
Goto1:≠>Goto3。

相关文档
最新文档