多元函数的极限与连续
多元函数的极限与连续
多元函数的极限与连续在微积分学中,我们学习了一元函数的极限与连续,而对于多元函数来说,也存在着与之对应的概念。
本文将探讨多元函数的极限与连续,并分析其重要性和应用。
一、多元函数的极限与一元函数类似,多元函数的极限也是通过变量自变量趋于某一值时的函数值的极限值来定义的。
具体而言,对于二元函数f(x, y),当点(x₀, y₀)逼近某一点(x, y)时,如果对于任意给定的ε>0,存在δ>0,使得当0<√((x-x₀)²+(y-y₀)²)<δ时,有|f(x,y)-f(x₀,y₀)|<ε成立,则称f(x, y)在点(x₀, y₀)处有极限,记作lim┬(x,y)→(x₀,y₀) f(x,y) = L其中,L为函数的极限值。
需要注意的是,与一元函数不同,多元函数的极限存在多个方向,也即(x, y)可以从任意非常靠近(x₀, y₀)的点逼近。
二、多元函数的连续对于多元函数f(x, y)来说,当其在某一点(x₀, y₀)处既存在极限,且该极限等于该点的函数值f(x₀, y₀),则称函数在该点连续。
换言之,函数在该点连续意味着函数值与极限值的两者相等。
相比一元函数,多元函数的连续需要满足更多的条件。
一元函数的连续只需要满足极限存在即可,而多元函数还需要考虑极限值的一致性。
具体而言,对于任意给定的ε>0,存在δ>0,使得当0<√((x-x₀)²+(y-y₀)²)<δ时,有|f(x,y)-f(x₀,y₀)|<ε成立。
三、多元函数的极限与连续的重要性多元函数的极限与连续是微积分学中的重要概念,具有以下重要性:1. 理论基础:多元函数的极限与连续是进一步研究微分、积分以及微分方程的基础。
只有理解了多元函数的极限与连续,才能更好地理解微积分学的其他概念。
2. 应用于实际问题:多元函数的极限与连续在各个学科和领域都有广泛的应用。
例如,在物理学中,多元函数的极限与连续用于描述粒子的运动和场的变化;在经济学中,多元函数的极限与连续用于优化问题和边际分析;在工程学中,多元函数的极限与连续用于建模和优化设计等。
【2019年整理】多元函数的极限与连续
z
f x
x x0 y y0
d dx
f (x, y0 )
x x0
M0
Tx
Ty
是曲线
z
y
f (x, y0
y)在点
M0
处的切线
M0Tx 对 x 轴的斜率.
f y
x x0 y y0
d dy
f (x0 , y)
y
y0
o
x0
x
y0
y
是曲线 斜率.
在点M0 处的切线 M 0Ty 对 y 轴的
例1 . 求 z x2 3xy y2在点(1 , 2) 处的偏导数.
当x0 y0 2k (k 0,1,)时, f (x, y)间断.
例3 证明
f
(x,
y)
x2 y x4 y2
0
x4 y2 0 x4 y2 0
在点(0,0)处沿此点的每条射线
x t cos, y t sin ,0 t
连续,
即lim f (t cos,t sin ) f (0,0). t 0
要证
例2 设
f
(
x,
y)
exy 1, x y
1,
讨论 f(x, y)的连续性.
sin
x x
sin y
y
,
x y x y x y
解 当x y时, f (x, y)连续. 下面讨论在直线x y上的情形.
在直线x y上任取一点(x , y ), 00
f (x, y)在直线x y上任一点沿x y连续.
一切多元初等函数在定义区域内连续
1. 偏导数的概念及有关结论 • 定义; 记号; 几何意义 • 函数在一点偏导数存在
函数在此点连续
8.2 多元函数的极限与连续
13
8.2
多元函数的极限与连续
x2 x+ y
3− x + y +9 (3) lim x→0 x2 + y2
2 2 y→0
1 (4) lim(1 + ) x →∞ x y →a
1 =− . 解: 3)原式 = lim 2 ( x→0 2 2 2 6 ( x + y )(3 + x + y + 9) y→0
9
8.2
多元函数的极限与连续
若在开区域(或闭区域) D 内某些孤立点,或者沿 D 内 若在开区域(或闭区域) 内某些孤立点, 某些曲线,函数没有定义,但在 D 内其余部分, f ( x , y ) 都 某些曲线,函数没有定义, 内其余部分, 部分 有定义, 有定义,则这些孤立点或这些曲线上的点都是函数 f ( x , y ) 的间断点。 的间断点。
证
y = kx 3 , 取
x3 y x 3 ⋅ kx 3 k lim 6 = lim 6 , = 2 x →0 x + y 2 x →0 x + k 2 x 6 1+ k y→ 0 y = kx 3
的不同而变化, 其值随 k 的不同而变化, 故极限不存在. 故极限不存在.
关于二元函数的极限概念, 关于二元函数的极限概念,可相应地推广到 n 元函数
2.函数 f ( x, y) 在区域 D 上的连续性
如果函数 上任意一点都连续, 如果函数 z = f ( x , y ) 在区域 D 上任意一点都连续,则称
f ( x , y ) 在区域 D 上连续。 上连续。
二元连续函数的图形是一个没有任何孔隙和裂缝的曲面。 二元连续函数的图形是一个没有任何孔隙和裂缝的曲面。 连续函数的图形是一个没有任何孔隙和裂缝的曲面
多元函数的极限与连续性
多元函数的极限与连续性在微积分学中,多元函数的极限与连续性是重要的概念和理论。
本文将介绍多元函数的极限与连续性的定义、性质和相关定理,并通过实例和推导来加深理解。
一、多元函数的极限多元函数是指自变量为多个变量的函数,例如f(x, y)。
在研究多元函数的极限时,需要先定义自变量的趋近方式。
我们定义自变量(x, y)趋近于(a, b),并记为(x, y)→(a, b),如果对于任意给定的正数ε,总存在正数δ,使得当(x, y)离开点(a, b)的距离小于δ时,对应的函数值f(x, y)与极限L的差的绝对值小于ε。
即满足以下条件:|f(x, y) - L| < ε,当0 < √((x-a)² + (y-b)²) < δ时。
二、多元函数的连续性多元函数在某个点上的连续性是指这个函数在该点的值与其极限相同。
具体地,函数f(x, y)在点(a, b)连续的定义如下:lim (x, y)→(a, b) f(x, y) = f(a, b)。
三、多元函数的极限运算法则多元函数的极限与一元函数类似,也遵循一些运算法则,如极限的唯一性、四则运算法则和复合函数的极限等。
其中,极限的唯一性法则指出:如果(x, y)→(a, b)时,f(x, y)存在极限L,则这个极限L唯一确定。
四、多元函数连续性的充分条件在一元函数中,连续函数的充分条件是极限存在。
但是在多元函数中,连续函数的充分条件有所不同。
根据多元函数的极限运算法则,可以得到以下结论:1. 一元函数的连续构成了多元函数的局部连续性;2. 极限与连续性的传递性:如果f(x, y)在点(a, b)连续,g(u, v)在点(f(a, b), c)连续,则复合函数g[f(x, y)]在点(a, b)也连续。
五、多元函数连续性的局部性质与一元函数连续性一样,多元函数的连续性也具有局部性质。
具体地,如果多元函数f(x, y)在点(a, b)连续,则在点(a, b)的任意邻域内,f(x, y)仍然连续。
多元函数的极限与连续性判定
多元函数的极限与连续性判定在数学分析中,多元函数的极限与连续性是重要的概念,在研究函数的性质和求解问题时起着关键作用。
本文将介绍多元函数的极限和连续性的概念、判定条件以及相关性质。
一、多元函数的极限1. 极限的定义对于二元函数$f(x,y)$,当自变量$(x,y)$无限接近于某一点$(a,b)$时,函数值$f(x,y)$是否趋近于某一确定的值$L$,即$\lim_{(x,y) \to(a,b)}f(x,y)=L$。
2. 多元函数的极限存在判定条件(1) 二元函数的极限存在:若对于给定的$\epsilon > 0$,存在一个$\delta > 0$,使得当$0 < \sqrt{(x-a)^2+(y-b)^2} < \delta$时,有$|f(x,y)−L| < \epsilon$成立,则称函数$f(x,y)$在点$(a,b)$处的二重极限存在,记作$\lim_{(x,y) \to (a,b)}f(x,y)=L$。
(2) 多元函数的极限存在:若对于给定的$\epsilon > 0$,存在一个$\delta > 0$,使得当$0 < \sqrt{(x_1−a_1)^2+...+(x_n−a_n)^2} < \delta$时,有$|f(x_1,...,x_n)−L| < \epsilon$成立,则称函数$f(x_1,...,x_n)$在点$(a_1,...,a_n)$处的$n$重极限存在,记作$\lim_{(x_1,...,x_n) \to(a_1,...,a_n)}f(x_1,...,x_n)=L$。
二、多元函数的连续性判定1. 连续性的定义对于二元函数$f(x,y)$,若在点$(a,b)$的某个邻域内,函数$f(x,y)$在该点处的极限存在且等于函数在该点处的函数值,即$\lim_{(x,y) \to (a,b)}f(x,y)=f(a,b)$,则称函数$f(x,y)$在点$(a,b)$处连续。
02多元函数的极限与连续
f(x ) U a ,)(即 ,|f(x ) a |,则称
lim f(X)a
进
X X0
行
lim f(x)a.
xx0
整
理
现在进行形式上的推广
设 u f(X )X ,X 0为 的.聚点
若 0 , 0 ,当 X U ˆ ( X 点 0 ,) 时 ,
f(x ) U a ,)(即 ,|f(x ) a |,则称
lim f(x)a.
xx0
现在进行形式上的推广
回忆一元函数极限的概念的
uf(X )X X0为的聚点 设 yf(x )x Ix ,0为 I的.聚点
X U ˆ(X0,)
若 0 , 0 ,当 x U ˆ ( x 0 , 点 ) 时 ,
若 X l iX 0m (X )0 ,则(称 X )为 X X 0时的.无
应用这个性质,
lifm (X ) a f(X ) a 可将一元函数的
X X 0
极限运算法则和
其 ,X 中 U ˆ(X 0 )X ,l X i0m 0 .
性质推广到多元 函数中来.
例
求 lim x2 y2 .
x0 | x | | y |
y0
怎么办? 怎么办? 解 由于
0 x2 y2 x2 y2 | x | | y | |x|| y| |x|| y|
x2 y2 | x|| y| |x| | y|
而 lim (|x|| y|)0, 故由夹逼定理, 得 x0 y0 lim x2 y2 0 x0 | x | | y | y0
limy 2. x 0 yБайду номын сангаас2
(整理)《数学分析》第十六章多元函数的极限与连续.
(整理)《数学分析》第十六章多元函数的极限与连续.第十六章多元函数的极限与连续 ( 1 0 时 )§1 平面点集与多元函数 ( 3 时 )一. 平面点集: 平面点集的表示: ),(|),{(y x y x E =满足的条件}.1. 常见平面点集:⑴ 全平面和半平面: }0|),{(≥x y x , }0|),{(>x y x , }|),{(a x y x >,}|),{(b ax y y x +≥等.⑵ 矩形域: ],[],[d c b a ?, 1|||| ),{(≤+y x y x }.⑶ 圆域: 开圆, 闭圆, 圆环. 圆的个部分. 极坐标表示, 特别是}cos 2|),{(θθa r r ≤和}sin 2|),{(θθa r r ≤.⑷ 角域: }|),{(βθαθ≤≤r .⑸ 简单域:-X 型域和-Y 型域.2. 邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域, 空心方邻域与集}||0 , ||0|),{(00δδ<-<<-<="">二. 点集的基本概念:1. 内点、外点和界点:集合E 的全体内点集表示为E int , 边界表示为E ?.集合的内点E ∈, 外点E ?, 界点不定.2. 聚点和孤立点: 孤立点必为界点 .例1 确定集} 4)2()1(1|),( {22<++-≤=y x y x E 的内点、外点集、边界和聚点.3. 开集和闭集: E int E =时称E 为开集,E 的聚点集E ?时称E 为闭集.存在非开非闭集.2R 和空集φ为既开又闭集.4. 开区域、闭区域、区域:以上常见平面点集均为区域 .5. 有界集与无界集:6. 点集的直径)(E d :两点的距离) , (21P P ρ.7. 三角不等式:||21x x -(或||21y y -)|||| )()(2121221221y y x x y y x x -+-≤-+-≤.三. 点列的极限:设) , (n n n y x P =, ) , (000y x P =.定义0l i m P P n n =∞→的定义 ( 用邻域语言 ) . 例2 ) , (n n y x → ) , (00y x ?0x x n →, 0y y n →, ) (∞→n .例3 设0P 为点集E 的一个聚点. 则存在E 中的点列} {n P , 使0lim P P n n =∞→. 四. 2R 中的完备性定理:1. Cauchy 收敛准则:先证{) , (n n y x }为Cauchy 列?} {n x 和} {n y 均为Cauchy 列.2. 闭集套定理: [1]P 89.3. 聚点原理: Weierstrass 聚点原理,列紧性.4. 有限复盖定理:五. 二元函数:1. 二元函数的定义、记法、图象:2. 定义域:例4 求定义域:ⅰ> ),(y x f 192222-+--=y x y x ; ⅱ> ),(y x f )1ln(ln 2+-=x y y . 3. 有界函数:4. n 元函数:Ex [1]P 92—93 1—8 .§2 二元函数的极限 ( 3 时 )一. 二元函数的极限:1. 二重极限A P f D P P P =∈→)(lim 0的定义: 也可记为),(lim ),(),(00y x f y x y x →A =或A y x f y y x x =→→),(lim 00例1 用“δε-”定义验证极限7)(lim 22)1,2(),(=++→y xy x y x .[1]P 94 E1.例2 用“δε-”定义验证极限 0lim 2220=+→→y x xy y x . 例3 设??=≠+-=).0,0(),( , 0),0,0(),( ,),(2222y x y x y x y x xy y x f证明0),(lim )0,0(),(=→y x f y x .(用极坐标变换 ) [1]P 94 E2.Th 1 A P f DP P P =∈→)(lim 0?对D 的每一个子集E ,只要点0P 是E 的聚点,就有A P f E P P P =∈→)(lim 0. 推论1 设D E ?1,0P 是1E 的聚点.若极限)(lim 10P f E P P P ∈→不存在, 则极限)(lim 0P f DP P P ∈→也不存在. 推论2 设D E E ?21,,0P 是1E 和2E 的聚点.若存在极限1)(lim 10A P f E P P P =∈→,2)(lim 20A P f E P P P =∈→, 但21A A ≠,则极限)(lim 0P f DP P P ∈→不存在. 推论3 极限)(lim 0P f DP P P ∈→存在?对D 内任一点列} {n P ,0P P n →但0P P n ≠,数列)}({n P f 收敛 .2 方向极限:方向极限A y x f =+++→)sin , cos (lim 000θρθρρ的定义. 通常为证明极限)(lim 0P f P P →不存在,可证明沿某个方向的极限不存在,或证明沿某两个方向的极限不相等, 或证明方向极限与方向有关; 或沿两条特殊的路径的极限存在而不相等.但应注意, 沿任何方向的极限存在且相等?/ 二重极限存在( 以下例5 ).例4 设??=≠+=. )0,0(),( , 0),0,0(),( , ),(22y x y x y x xy y x f 证明极限),(lim )0,0(),(y x f y x →不存在. (考虑沿直线kx y =的方向极限). [1]P 95 E3.例5 设+∞<<-∞<<=.,0,0,1),(2其余部分时,当x x y y x f 证明极限),(lim )0,0(),(y x f yx →不存在. [1]P 95 E4.二重极限具有与一元函数极限类似的运算性质.例6 求下列极限:ⅰ> )0,0(),(lim →y x 222yx y x +; ⅱ> )0,3(),(lim →y x y xy sin ; ⅲ> )0,0(),(lim →y x xy xy 11-+; ⅳ> )0,0(),(lim →y x 2222)1ln(yx y x +++. 3.极限),(lim),(),(00y x f y x y x →+∞=的定义: 其他类型的非正常极限,→),(y x 无穷远点的情况.例7 验证)0,0(),(lim →y x +∞=+22321yx . Ex [1]P 99—100 1⑴—⑹,4,5.二. 累次极限:1. 累次极限的定义: 定义.例8 设22),(yx xy y x f +=, 求在点) 0 , 0 (的两个累次极限 . [1]P 97 E6. 例9 设2222),(yx y x y x f +-=, 求在点) 0 , 0 (的两个累次极限 . 例10 设xy y x y x f 1sin 1sin ),(+=, 求在点) 0 , 0 (的两个累次极限与二重极限. 2. 二重极限与累次极限的关系:⑴ 两个累次极限存在时, 可以不相等. ( 例9 )⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数yx y x f 1sin ),(=在点) 0 , 0 (的情况 .⑶ 二重极限存在时, 两个累次极限可以不存在. (例10)⑷ 两个累次极限存在(甚至相等) ?/二重极限存在. ( 参阅例4和例8 ).综上, 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限),(lim ),(),(00y x f y x y x →和累次极限),(lim lim0y x f y y x x →→(或另一次序)都存在,则必相等. ( 证 ) [1]P 98. 推论1 二重极限和两个累次极限三者都存在时, 三者相等.注: 推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时, 全面极限不存在.注: 两个累次极限中一个存在,另一个不存在?/全面极限不存在. 参阅⑵的例.Ex [1]P 99 2§3 二元函数的连续性 (2 时 )一.二元函数的连续概念:由一元函数连续概念引入.1.2.连续的定义:定义用邻域语言定义连续.注: 函数),(y x f 有定义的孤立点必为连续点 .例1 设=++≠++=. 0 , 1, 0 , ),(2222222y x m m y x y x xy y x f证明函数),(y x f 在点) 0 , 0 (沿方向mx y =连续 .例1 设+∞<<∞-<<=., 0, ,0 , 1),(2其他x x y y x f ( [1]P 101)证明函数),(y x f 在点) 0 , 0 (不全面连续但在点) 0 , 0 (f 对x 和y 分别连续.2. 函数的增量: 全增量、偏增量.用增量定义连续性.3. 函数在区域上的连续性.4. 连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性. (仅证复合函数连续性[1]P102).二.一致连续性: 定义.三.四.有界闭区域上连续函数的性质:1.有界性与最值性. ( 证)2.3.一致连续性. ( 证)4.介值性与零点定理. ( 证)Ex [1]P104—105 1 ⑴—⑸,2,4,5.。
多元函数的极限和连续性
多元函数的极限和连续性在高等数学中,多元函数的极限和连续性是比较基础的概念,对于学习后续的微积分、偏微分方程等内容都有重要的意义,因此本文将从多元函数极限和连续性的定义、求解及其应用等方面进行探讨和阐述。
一、多元函数的极限和连续性的定义在一元函数中,极限的概念是比较容易理解和推广的,而在多元函数中,由于独立变量的个数增加,问题变得更加复杂。
因此,我们需要重新定义多元函数的极限。
1. 多元函数的极限定义设$f(\boldsymbol{x})$是定义在某点$\boldsymbol{x_0}=(x_0,y_0, z_0, ...)$的某一邻域内的多元函数,$\boldsymbol{\alpha}=(\alpha_1, \alpha_2, ..., \alpha_n)$是任一常数向量,那么当对于任意$\epsilon>0$,都存在$\delta>0$,使得当$0<\Vert \boldsymbol{x}-\boldsymbol{x_0}\Vert<\delta$时,都有$\vert f(\boldsymbol{x})-f(\boldsymbol{x_0}+\boldsymbol{\alpha})\vert<\epsilon$成立,则称$\boldsymbol{x_0}$是$f(\boldsymbol{x})$的一个极限点,记作$\lim\limits_{\boldsymbol{x}\rightarrow\boldsymbol{x_0}}f(\boldsymbol{x})=f(\boldsymbol{x_0}+\boldsym bol{\alpha})$。
可以看出,多元函数的极限与一元函数的极限相似,但是需要考虑的变量更多。
在多元函数中,只有当$\boldsymbol{x}$从任意方向趋近于$\boldsymbol{x_0}$时,$\lim\limits_{\boldsymbol{x}\rightarrow\boldsymbol{x_0}}f(\boldsymbol{x})$才存在。
多元函数的极限及连续性
返回 2
一、二重极限
定义1 设二元函数 f 定义在 D R2 上, P0 为 D 的
一个聚点, A 是一实数. 若 0, 0, 使得当
P U (P0; ) D 时, 都有 | f (P) A | ,
则称 f 在 D 上当 P P0 时以 A 为极限, 记作 lim f (P) A.
的一个聚点. 若 M 0, 0, 使得 P( x, y)U (P0; ) D, 都有 f ( x, y) M ,
则称 f 在 D 上当 P P0 时, 有非正常极限 , 记作 lim f ( x, y) ,
( x, y ) ( x0 , y0 )
2007年8月
南京航空航天大学 理学院 数学系
x2 y2 0, 而并不要求 x y 0.
(证法二) 作极坐标变换 x r cos, y r sin. 这时
( x, y) (0, 0) 等价于 r 0 ( 对任何 ). 由于
| f (x, y) 0 |
x2 y2 xy x2 y2
1 r 2 | sin 4 | 1 r 2 ,
y2 y
lim lim
lim
lim( y 1) 1,
y0 x0
x y
y0 y
y0
x2 y2 x y
x2 x
lim lim
lim
lim( x 1) 1.
x0 y0
x y
x0 x
x0
当沿斜率不同的直线 y mx, ( x, y) (0, 0) 时, 有
x2 y2 x y 1 m
x)
lim ( x 1)
x0
1,
( y x2x)
2007年8月
南京航空航天大学 理学院 数学系
多元函数的极限与连续性
多元函数的极限与连续性在数学中,多元函数的极限与连续性是重要的概念。
本文将介绍多元函数的极限和连续性的定义,并探讨它们的性质和应用。
一、多元函数的极限多元函数的极限可以类比于一元函数的极限,但其定义稍有不同。
对于一个二元函数,我们将自变量表示为(x,y),则当自变量趋近于某个点(a,b)时,函数值f(x,y)的极限记为:lim (x,y)→(a,b) f(x,y) = L其中,L为实数。
我们称函数f(x,y)在点(a,b)处具有极限L,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0< √((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-L|<ε 成立。
类似地,对于一个三元函数,自变量表示为(x,y,z),其极限定义与二元函数类似。
多元函数的极限有以下性质:1. 极限存在且唯一:如果一个多元函数在某点具有极限,那么它的极限是唯一的。
2. 有界性:如果一个多元函数在某点具有极限,则它在该点附近是有界的。
但需要注意,多元函数在整个定义域内有界不一定代表在每个点处都具有极限。
3. 加法性、乘法性:如果两个多元函数在某点都具有极限,则它们的和、差、积仍在该点处具有极限。
4. 复合函数的极限性质:多元函数的复合函数在某点处具有极限的条件是,内部函数在该点处具有极限,且外部函数在内部函数极限处连续。
二、多元函数的连续性多元函数的连续性是指函数在整个定义域内的连续性。
对于一个二元函数,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0<√((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-f(a,b)|<ε 成立,那么我们称函数f(x,y)在点(a,b)处连续。
类似地,对于一个三元函数,连续性的定义也类似。
多元函数的连续性具有以下性质:1. 极限与连续性的关系:如果一个多元函数在某点处具有极限L,则它在该点处连续。
第十六章 多元函数的极限与连续
数组(x, y, z)时, 三维欧氏空间3中的点集
S {( x, y, z) | z f ( x, y),( x, y) D} R3
就是二元函数 f 的图象. 通常z f (x, y)的图象是一空 间曲面, f 的定义域D便是该曲面在xOy平面上的投影.
第 十 六 章 多 元 函 数 的 极 限 与 连 续
R 2 ( x, y ) x , y .
C ( x, y) x 2 y 2 r 2 .
S ( x, y ) a x b, c y d .
第 十 六 章 多 元 函 数 的 极 限 与 连 续
§1 平面点集与多元函数
n n n
n 0. 也等价于 lim n
第 十 六 章 多 元 函 数 的 极 限 与 连 续
§1 平面点集与多元函数
定理16.1(柯西准则) 平面点列{Pn}收敛的充要条件 是: 任给正数, 存在正整数N, 使得当nN时, 对一切 正整数p, 都有
Pn , Pn p .
E U (O; r )
其中O是坐标原点, 则称E是有界点集. 否则就是 无界点集.
第 十 六 章 多 元 函 数 的 极 限 与 连 续
§1 平面点集与多元函数
点集E的直径—点集E的直径就是
d ( E) sup P 1, P 2 ,
P 1, P 2 E
其中 (P1, P2)表示P1与P2两点之间的距离, 当P1, P2的坐标分别为(x1, y1)和(x2, y2)时, 有
由于点A的任一圆邻域可以包含在点A的某一方邻域 邻域”泛指这两种形状的邻域, 并以记号U(A; )或 U(A)来表示.
3chapter1(1)多元函数的概念、极限与连续
数,且 P0 是 f (P ) 的定义域的内点,则 f (P ) 在
点
P0
处连续,于是
lim
P P0
f (P)
f (P0 ).
ex10. 求 lim xy 1 1. x0 xy
y0
Solution. 原式 lim xy 1 1 x0 xy( xy 1 1)
Chapter 1(1)
多元函数的概念、 极限与连续
教学要求:
1. 理解多元函数的概念; 2. 了解二元函数的极限与连续性的概念以及有界闭
区域上连续函数的性质.
一. 预备知识 二. 多元函数的概念 三. 多元函数的极限 四. 多元函数的连续性
一. 预备知识
1. 邻域
设P0 ( x0 , y0 )是xoy 平面上的一个点, 是某 一正数,与点P0 ( x0 , y0 )距离小于 的点P( x, y) 的全体,称为点P0 的 邻域,记为U (P0 , ) ,
xy 0 . 原结论成立.
x2 y2
ex7. 计算 lim ( x sin 1 y cos 1 ).
x0
y
x
y0
Solution. 0 x sin 1 y cos 1
y
x
x sin 1 y cos 1
y
x
x y 0 ( x 0, y 0)
由夹逼准则得,lim ( x sin 1 y cos 1 ) 0.
Solution. z ln[ x( x y)]的定义域为 x( x y) 0,
z
ln
x
ln( x
y)的定义域为
x x
0 y
, 0
z ln[ x( x y)]与z ln x ln( x y)不是同一函数
第十六章 多元函数极限与连续
第十六章 多元函数的极限与连续§1 平面点集与多元函数1. 判断下列平面点集中哪些是开集、闭集、有界集、区域?并分别指出他们的聚点与界点。
(1)[,)[,);a b c d ´ (2){(,)0};x y xy ¹(3){(,)|0};x y xy = (4)2{(,)|}x y y x > (5){(,)|2,2,2}x y x y x y <<+> (6)22{(,)|10,01}x y x y y x +==#或; (7)22{(,)|10,12};x y x y yx +?#或(8){}N +Î(x,y)|x,y ; (9)1{(,)|sin };x y y x=解:(1)有界集、区域,其聚点为{(,)|,}.E x y a x b c y d =##(2)开集,聚点为2,E R =界点为{(,)|0};x y xy = (3)闭集,{(,)|0},E x y xy ==界点为{(,)|0}.EE x y xy ?==(4)区域,开集,其聚点为2{(,)|},E x y x y = 界点为2{(,)|}.x y y x = (5)有界集,区域,开集,其聚点为{(,)|2,2,2},E x y x yxy =#?界点为{(,)2,02{(,)|2,02}{(,)|2,02}x y x yx y y xx y x y x=#=#+=#(6)有界集,闭集,其聚点为22{(,)10,01},E x y x y y x =+==#或界点为EE ?。
(7)有界集、闭集,其聚点为22{(,)|10,12};E x y x y yx =+?#或界点为22{(,)|10,12}.Ex y x y y x ?+==#或(8)闭集,其聚点是空集,界点为{(,)|,}.x y x y z Î (9)闭集1{(,)|sin ,0}{(0,)1}E x y y x y y x==> ,界点为.EE ?2.试问集合{(,)|0,0}x y x a y b d d <-<<-<与集合{(,)|,},(,)(,)x y x a y b x y a b d d -<-< 是否相同? 解:不相同,第一个点集为第二个点集的子集。
大学数学多元函数的极限与连续性
大学数学多元函数的极限与连续性一、引言在大学数学课程中,多元函数的极限与连续性是基础且重要的概念之一。
本文将探讨多元函数的极限以及连续性的概念、性质和应用。
二、多元函数的极限多元函数的极限是指当自变量趋于某一点时,函数的取值趋于一个确定的常数。
要确定一个多元函数的极限,需要考虑不同的自变量趋近方式。
1. 非路径问题对于一般的多元函数,当自变量趋于某一点时,可以用数列方法来讨论极限的存在与求解。
可以分别取函数中的两个或多个自变量构成一个数列,并分别求出数列的极限,若这些极限都相等,则可以确定该点处的极限存在,并且该极限就是所得的值。
2. 路径问题当自变量趋近于某一点的路径是任意的,需要考虑使用极限的定义来求解。
通过逐步逼近,可以确定多元函数在该点处的极限存在,并求出极限值。
三、多元函数的连续性多元函数的连续性是指函数在定义域内的任意一点满足极限存在且与该点处函数值相等。
连续性可以用一元函数的连续性来理解,即函数在某一点处的左右极限存在且相等。
1. 连续函数的性质若一个多元函数在其定义域内每一点处都连续,则称该函数为连续函数。
连续函数具有以下性质:- 两个连续函数的和、差、积仍为连续函数;- 两个连续函数的商(分母不为零)仍为连续函数;- 连续函数经过有界闭区间上时,一定可以达到最大值和最小值。
2. 连续函数的应用连续函数在实际问题中具有广泛的应用,例如在物理学、经济学等领域中,通过建立数学模型,可以将实际问题转化为多元函数的极限与连续性问题,进而对问题进行分析和求解。
四、多元函数的极限与连续性的例题分析为加深对多元函数的极限与连续性概念的理解,我们选取几个例题进行分析。
1. 例题一求函数$f(x,y)=\frac{x^2y}{x^4+y^2}$在点$(0,0)$处的极限。
首先考虑非路径问题的求解方法,我们可以分别取$(x,y)$沿直线$x=y$和$x=0$的极限。
通过计算可以得到两条直线上的函数极限都为0,并且相等,因此可以确定函数在$(0,0)$处的极限为0。
《数学分析》第十六章 多元函数的极限和连续
D = {(x, y)| x2 + y2 1 } 如图
y 1 x2 + y2 = 1
o D
1
x
易知, 圆内部的每一点都是 D 的内点. 但 圆周上的点不是 D 的内点.
又如 z = ln (x+y)的定义域 D = {(x, y)| x+y > 0}
的聚点.
一般, 集合 E 的边界点不一定是 E 的聚点. 但若 E 是开集, 则 E 的边界点一定是 E 的 聚点, 自证.
邻域, 内点, 边界点, 开集, 连通, 有界, 开区域, 闭区域, 聚点这些概念 都可毫无困难地推广到三维空间 R3 中去, 且有类似的几何意义. 它们还可 推广到 4 维以上的空间中去, 但不再 有几何意义.
y A
f (x) 0 x x0 x
x x0
y = f (x) f (x)
x
lim f (x) A用 语言表示. 就是 >0, >0.
xx0
当0<|x – x0|< 时, 有|f (x) – A |< .
设二元函数 z = f (X) = f (x, y), 定义域为D. 如图
E E0 , 所以 E 是开集.
5. 连通集
设 E 是一非空平面点集, 若X ,YE. 都 可用完全含于 E 的折线将它们连接起来, 则称 E 为连通集. 如图
X Y
E 连通
X
Y
E 不连通
几何上看, 所谓 E 是连通集, 是指 E 是 连成一片的. E 中的点都可用折线连接.
例1, 2中的 D 都是连通集. 如图
{( x, y, z) | z f ( x, y), ( x, y) D}, 这个点集称为二元函数的图形.
多元函数微分学
2 2
问在(0,0)处,f(x, y)的偏导数是否存在?偏 Biblioteka 数是否连续?f(x, y)是否可微?
5.方向导数 , 定义5 设 z f ( x , y )在 点M 0 ( x0, y0 )的 某 邻 域 内 有 定 义
xy si n x y ) ( 证 明l i m 0. 2 2 x 0 x y y 0
si n ( ) xy 求lim x 0 y y 0
例2
例3
xy 2 lim 2 是否存在? 4 x 0 x y y0
xy l n (x 2 y 2 ) x 2 y 2 0, 研 究 函 数 ( x, y) f 0 x2 y2 0 在( 0,0)处 的 连 续 性 。
(2) z x 4 y 3 2 x
在1, 2处
( 34dx 12dy)
xy x2 y2 0 2 例9 设f ( x , y ) x y 2 x2 y2 0 0 求f x (0,0), f y (0,0), 并 讨 论 f ( x , y ) 在 (0,0) 处 的 可 微 性 .
在 点M 0沿 任 一 方 向的 方 向 导 数 都 存 在 , 且 l
M0 M0
当 l 与grad f ( M 0 )同方向时,z在M 0的方向 导数取最大值,且最大 grad f ( M 0 ), 值 当 l 与grad f ( M 0 )反方向时,z在M 0的方向 导数取最小值,且最小 grad f ( M 0 ) 值
多元函数微分法
1. 多元函数的极限:
多元函数的极限与连续性
多元函数的极限与连续性在数学分析中,多元函数的极限与连续性是十分重要的概念,它们在研究函数性质和解决实际问题时起到了关键作用。
本文将对多元函数的极限与连续性进行详细探讨,并给出相应的定义和性质。
一、多元函数的极限对于一个函数f(x1, x2, ..., xn),当自变量(x1, x2, ..., xn)接近某一点(a1, a2, ..., an)时,如果函数值f(x1, x2, ..., xn)趋于某个常数L,那么我们就说f(x1, x2, ..., xn)在点(a1, a2, ..., an)处收敛于L,记作:lim(f(x1, x2, ..., xn)) = L (当(x1, x2, ..., xn) → (a1, a2, ..., an))多元函数的极限与一元函数的极限类似,但需要考虑多个自变量同时趋于某个特定值。
在计算多元函数极限时,可以使用极限的定义、夹逼定理、两个变量夹逼定理等方法。
多元函数的极限性质包括唯一性、局部有界性、局部保号性、极限的四则运算等。
这些性质的证明与一元函数类似,但需要注意多个变量同时进行推导。
二、多元函数的连续性多元函数的连续性是指函数在某一点处的极限与函数在该点处的函数值相等。
具体而言,对于函数f(x1, x2, ..., xn)在点(a1, a2, ..., an)处连续,需要满足以下条件:1. 函数在点(a1, a2, ..., an)存在;2. 函数在点(a1, a2, ..., an)的极限存在;3. 函数在点(a1, a2, ..., an)的极限等于函数在该点的函数值。
在多元函数中,我们可以使用分量函数的连续性来判断函数的连续性。
分量函数是将多元函数中的每个自变量固定,其他自变量视为参数得到的一元函数。
如果分量函数都连续,那么多元函数在该点处连续。
多元函数的连续性性质包括局部连续性、全局连续性、复合函数的连续性等。
这些性质的证明需要使用到一元函数连续性的基本性质,并进行适当的推导和运算。
多元函数极限与连续在汽车专业中的应用实例
多元函数极限与连续在汽车专业中的应用实例引言随着社会发展和科技进步,汽车工业在当今社会扮演着重要的角色。
为了提高汽车的性能和安全性,理解多元函数极限与连续的概念对汽车专业的应用来说至关重要。
本文将通过介绍多元函数极限与连续的基本概念以及在汽车专业中的实际应用示例,探讨其重要性和实用性。
二级标题1:多元函数极限与连续的基本概念三级标题1:多元函数极限的定义多元函数极限是指当自变量趋于某一点时,函数的值趋于某一特定的数值。
对于一个二元函数,其极限可以表示为:f(x,y)=Llim(x,y)→(x0,y0)其中(x0,y0)表示自变量的趋近点,L表示函数极限的值。
三级标题2:连续函数的定义连续函数是指函数在其定义域内的任意一点都满足极限存在且与函数值相等的性质。
f(x,y)对于一个二元函数,其连续性可以表示为:f(x0,y0)=lim(x,y)→(x0,y0)二级标题2:多元函数极限与连续在汽车制造中的应用示例三级标题3:燃油效率的优化在汽车制造中,燃油效率是一个重要的指标。
通过对多元函数极限的研究和应用,可以优化发动机调整参数,以提高汽车的燃油效率。
通过对不同参数的极限分析,可以找到最佳的发动机调整组合,从而降低燃油消耗,减少对环境的影响。
三级标题4:液压系统的设计液压系统在汽车制造中被广泛应用于悬挂系统、刹车系统等。
通过对多元函数极限与连续的研究和应用,可以优化液压系统的设计,以提高汽车的操控性和稳定性。
通过对不同参数的极限分析,可以确定合适的液压阻尼系数和工作压力,从而提高悬挂的减震效果和制动的响应速度。
三级标题5:车身结构的安全性分析在汽车制造中,保证车身结构的安全性是一项至关重要的任务。
通过对多元函数极限与连续的研究和应用,可以对车身结构进行安全性分析和优化设计。
通过对不同外部力的极限分析,可以确定车身结构的强度和刚度,从而保证车辆在碰撞等意外情况下的安全性。
三级标题6:车辆的悬挂系统设计车辆的悬挂系统对行驶的舒适度和稳定性有着重要影响。
多元函数判断连续
多元函数判断连续多元函数的连续性是指函数在定义域内,当自变量改变一个很小的量时,函数值的变化也很小。
在一元函数中,连续性可以通过一元函数的极限来判断。
而在多元函数中,连续性的判断需要通过多元函数的极限来进行。
首先,考虑多元函数的极限。
对于一个二元函数,其极限的定义如下:设函数$f(x,y)$在平面上的一些点$(x_0,y_0)$的一个去心邻域内有定义,如果存在一个常数$L$使得对于任意给定的正数$\varepsilon$,总存在正数$\delta$,使得当点$(x,y)$满足$0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$时,有$,f(x,y)-L, < \varepsilon$成立,则称常数$L$为函数$f(x,y)$当$(x,y)$趋于$(x_0,y_0)$时的极限,记作$\lim\limits_{(x,y)\to(x_0,y_0)} f(x,y) = L$。
有了多元函数的极限的定义,我们可以使用该定义进行多元函数连续性的判断。
多元函数在特定点连续的条件是:当$x$和$y$都趋于$a$时,$f(x,y)$以$L$为极限。
即$\lim\limits_{(x,y)\to(a,a)} f(x,y) = L$。
根据多元函数的极限的定义,我们可以得到多元函数连续的充要条件如下:1.二元函数在点$(x_0,y_0)$可导,则二元函数在点$(x_0,y_0)$连续。
2.二元函数在点$(x_0,y_0)$连续,且对于其定义域内的任意一条曲线$C$,若该曲线上的点$(x,y)$趋于点$(x_0,y_0)$时,函数值$f(x,y)$趋于一些极限$L$,则函数在点$(x_0,y_0)$连续。
3. 二元函数在点$(x_0,y_0)$连续,且$(x,y)$以及$(x',y')$都在定义域内。
如果$\lim\limits_{(x,y)\to(x_0,y_0)} f(x,y) = L$,$\lim\limits_{(x',y')\to(x_0,y_0)} f(x',y') = L'$,则$\lim\limits_{(x,y)\to(x_0,y_0)} f(x,y)+f(x',y')=L+L'$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (x, y)
(
x
,
y
(
)
x0
,
y0
)
O
x
23
8.1 多元函数的极限与连续
(2) 变点P (x, y) 与定点P0(x0, y0)之间的距离
记为 , ( x x0 )2 ( y y0 )2 PP0
不论P(x, y)趋向于P0(x0, y0) 的过程多复杂,
总可以用 0 来表示极限过程: P( x, y) P0 ( x0 , y0 )
本章在一元函数微分学的基础上, 讨论多元函 数的微分方法及其应用. 以二元函数为主, 但所得到 的概念、性质与结论都可以很自然地推广到二元以 上的多元函数. 同时, 还须特别注意一些与一元函数 微分学显著不同的性质和特点.
第8章 多元函数微分法及其应用
2
8.1 多元函数的极限与连续
8.1 多元函数的极限与连续
O a
a
a x
5
8.1 多元函数的极限与连续
下面利用邻域来描述点和点集之间的关系.
任意一点 P R2与任意一点集 E R2 之间
必有以下四 点P E,若存在
0,使U(P) E,称P为E的 内点.(P1)
显然, E的内点属于E.
P3 •
• P1
半球面. 它在xOy平面上的投影是圆域:
D {( x, y) x2 y2 R2},
z
D就是函数 z R2 x2 y2
的定义域.
O
x
y
20
8.1 多元函数的极限与连续
又如, z xy 的图形是双曲抛物面(马鞍面). 它在xOy平面上的投影是全平面.
z
O
y
x
21
8.1 多元函数的极限与连续
27
8.1 多元函数的极限与连续
多元函数的极限的基本问题有三类:
(1) 研究二元函数极限的存在性.
* 欲证明极限存在, 常用定义或夹逼定理.
* 欲证明极限不存在 (通过观察、猜测).
常选择两条不同路径, 求出不同的极限值.
特别对于 lim f ( x, y),常研究 lim f ( x, y),
x0 y0
是区域吗? 是区域.
x y0 y x y0
•
E {( x, y) x 0, y 0}
不是区域. 因为不连通. 连结两点的任何折线都与 y轴相交, 相交点不属于E.
y
O•
x
O
x
10
8.1 多元函数的极限与连续
有界集 总可以被包围在一个以原点为中心、半径适当 大的圆内的区域, 称此区域为 有界集.否则称为 无界 集 (可伸展到无限远处的区域 ).
闭集 若点集E的边界 E E,称E为闭集.
例 E2 {( x, y)1 x2 y2 4} E2为闭集.
例 E3 {( x, y)1 x2 y2 4}
E3既非开集, 也非闭集.
8
8.1 多元函数的极限与连续
连通集 如果点集E内任何两点, 都可用折线连
结起来, 且该折线上的点都属于E, 称E是 连通集.
不包括边界), 也称为点P0的邻域, y 几何表示
有时简记为 U (P0 ).
. P0
注 ① 将邻域去掉中心,
称之为 去心邻域. U (P0 , )
O
x
的几U全一何(②a体元表,点函也示)表称数可示之中将:为邻以与点域P点0P的为a0距邻概中离 域念心.小的: 于 某个的矩一形切内点(不x的算全周体界.)
例 集合{( x, y)1 x2 y2 2}是有界闭区域; 集合{( x, y) x y 0}是无界开区域; 集合{( x, y) x y 0}是无界闭区域.
11
8.1 多元函数的极限与连续
y
y
O
x
有界开区域
y
O
x
有界闭区域
y
O
x
有界半开半闭区域
O
x
无界闭区域
12
8.1 多元函数的极限与连续
即P( x, y) P0 ( x0 , y0 )时的极限.
怎样描述呢? 回忆: 一元函数的极限
注 (1) P (x, y)趋向于P0(x0, y0)的方向有任意
多个, 路径又是多种多样的.
y (x, y) (x, y)
(x, y)
(x, y)
(•x0 , y0 )
(x, y)
O
x
y (x, y) (x, y)
区域(或开区域) 连通的开集称为 区域或开区域.
• •
闭区域 开区域连同其边界一起所构成的点集,
称为闭区域.
如{( x, y)1 x2 y2 4}, {( x, y) x y 0}
都是闭区域.
9
8.1 多元函数的极限与连续
连通的开集称为区域或开区域.
E {( x, y) x y 0},
第8章 多元函数微分法 及其应用
z
z f (x, y)
•M
y
O
y
x
P
D
x
8.1 多元函数的极限与连续
上册已经讨论了一元函数微积分. 但在自然科 学、工程技术和经济生活的众多领域中, 往往涉及 到多个因素之间关系的问题. 这在数学上就表现为 一个变量依赖于多个变量的情形, 因而导出了多元 函数的概念及其研究与应用.
也是E的聚点; E的边界 E {( x, y) x2 y2 1或 x2 y2 2}.
7
8.1 多元函数的极限与连续
根据点集所属点的特征, 下面再定义一些重要 的平面点集的概念.
开集 若点集E的任意一点都是E的内点, 称E为 开集.
例 E1 {( x, y)1 x2 y2 4} E1为开集.
解
xy
0,
即定义域为
x
y
0和 0
x
y
0 0
y
O
x
无界闭区域
17
8.1 多元函数的极限与连续
(2) z 2x x2 y2 x2 y2 1
解 定义域是 ( x 1)2 y2 1且x2 y2 1
y
•
O
1
x
有界半开半闭区域
18
8.1 多元函数的极限与连续
2. 二元函数的几何意义
有
f (P) A f (x, y) A
成立. 则称A为z f ( x, y)当( x, y) ( x0 , y0 )时
的极限. 记作 lim f ( x, y) A ( x, y )( x0 , y0 )
或 f ( x, y) A ( 0)
也记作
lim
P P0
f (P)
A或
f (P)
x0 y kx 0
若其依赖于k , 则 lim f ( x, y) 不存在. x0 y0 找一条特殊路径, 使函数沿此路径的极限不存在.
28
8.1 多元函数的极限与连续
多元函数的极限的基本问题有三类: (2) 求极限值. 常按一元函数极限的求法求之. 如极限的保号性、无穷小与有界量的乘积仍 是无穷小、极限的四则运算、夹逼定理、两个重要 极限、等价无穷小替换乘除因子定理. (洛必达法则除外) (3) 研究二重极限与累次极限(二次极限)间的 关系.
13
8.1 多元函数的极限与连续
例 设R是电阻R1, R2并联后的总电阻. 由电学 知识知道, 它们之间具有如下的关系
R
R1 R2 R1 R2
,
R1
0, R2
0.
当电阻R1, R2取定后, R的值就唯一确定了.
14
8.1 多元函数的极限与连续
定义8.1 设D是R2的一个非空子集, 称映射
f : D R为定义在D上的二元(点)函数,记为 z f ( x, y), ( x, y) D
从一元函数到二元函数, 在内容和方法 上都会出现一些实质性的差别, 而多元函数 之间差异不大. 因此研究多元函数时, 将以二 元函数为主.
22
8.1 l多im元函f数(的x极) 限与A连续 0, 0,当 0
x x0
恒有
三、多元| f函(x数) 的A |极 .限
x
x0
时,
讨论二元函数z = f (x, y), 当x x0 , y y0 ,
类似, 可定义n元函数. 二元及二元以上的函数统称为 多元函数. 多元函数定义域: 实际问题中的函数: 定义域为符合实际意义 的自变量取值的全体. 纯数学问题的函数: 定义域为使运算有意义 的自变量取值的全体. 多元函数的自然定义域.
16
8.1 多元函数的极限与连续
例1 求下面函数的定义域
(1) z xy
A (P
P0 ).
内是xl恒总Eim的x有有0如聚fE果( 中 点x对)的 .于点A任(P意本|给身f定(可x0的),属于AE|0,0,也P,.当的可去0不心属x邻于域Ex0)U,则(P称时,P,)25
8.1 多元函数的极限与连续
lim f ( x, y)
( x, y )( x0 , y0 )
说明
E {( x, y) ( x, y)具有性质P}.
4
8.1 多元函数的极限与连续
邻域 (Neighborhood)
R2
设P0(x0, y0)是 xOy 平面上的一个点, 0, 令
U (P0 , ) {( x, y) ( x x0 )2 ( y y0 )2 }
它是以P0为中心、以 为半径的开圆 (“开”意味着
U(P , )内总有E中的点 (P本身可属于E, 也可不属
于E ), 则称P是E的聚点. 聚点从直观上讲: 这点附近有无穷多个E的点.
例如, 设点集 E {( x, y)1 x2 y2 2}, 点P( x0, y0 ) R2, 若 1 x02 y02 2, 则P为E的内点;