化工原理实验讲义2015(2)

合集下载

化工原理实验讲义

化工原理实验讲义

实验Ⅰ:实验一 流量计校核实验一、实验目的1.了解孔板流量计、文丘里流量计的构造、原理、性能及使用方法。

2.掌握流量计的标定方法。

3.测定节流式流量计的流量系数C ,掌握流量系数C 随雷诺数Re 的变化规律。

4.学习合理选择坐标系的方法。

5.学习对实验数据进行误差估算的具体方法。

二、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量有如下关系:采用正U 形管压差计测量压差时,流量Vs 与压差计读书R 之间关系有: (1)式中: V s 被测流体(水或空气)的体积流量,m 3/s ; C 流量系数(或称孔流系数),无因次; A 0 流量计最小开孔截面积,m 2,A 0=(π/4)d 02; 下上-P P 流量计上、下游两取压口之间的压差,P a ;ρ 被测流体(水或空气)的密度,Kg/m 3; A ρ U 形管压差计内指示液的密度,Kg/m 3;ρ1 空气的密度,Kg/m 3;R U 形管压差计读数,m ; 式3-1也可以写成如下形式:()ρ下上-P P CA V s 20=()ρρρ120-=A s gR CA V(1a)若采用倒置U 形管测量压差:ρgR P P =-下上(忽略空气对测量的影响)则流量系数C 与流量的关系为:(2)用体积法测量流体的流量V s ,可由下式计算:(3) (4)式中:V s 水的体积流量,m 3/s ;△t 计量桶接受水所用的时间,s ;A 计量桶计量系数;△h 计量桶液面计终了时刻与初始时刻的高度差,mm ,△h=h 2-h 1; V 在△t 时间内计量桶接受的水量,L 。

改变一个流量在压差计上有一对应的读数,将压差计读数 R 和流量V s 绘制成一条曲线即流量标定曲线。

同时用式(1a )或式(2)整理数据可进一步得到流量系数C —雷诺数Re 的关系曲线。

(5)式中:d —实验管直径,m ; u —水在管中的流速,m/s 。

三、实验内容1、以涡轮流量计为基准,对孔板流量计进行校核,并绘制校核曲线。

化工原理实验讲义(doc 55页)

化工原理实验讲义(doc 55页)

化工原理实验讲义(doc 55页)化工原理实验讲义化工与环境学院化学工程与控制系化工原理实验室目录第 1 章........................化工基础实验技术41.1温度的测量41.2压力的测量91.3流量的测量13第 2 章.............. 实验数据分布及基本数据处理212.1实验数据的分布212.2实验数据的基本处理222.3实验报告的基本要求23第 3 章........................化工原理基本实验273.1流体流动阻力的测定273.2离心泵特性曲线的测定343.3对流传热系数的测定403.4填料塔压降曲线和吸收系数的测定453.5精馏塔效率的测定543.6干燥速率曲线的测定613.7扩散系数的测定663.8液—液萃取塔的操作72第 4 章............................... 演示实验784.1雷诺实验784.2机械能守恒与转换824.3边界层形成与分离85第 5 章.................... 化工流动过程综合实验87第 1 章化工基础实验技术1.1 温度的测量1.常用的温度计形式(1)膨胀式温度计实用的膨胀式温度计有玻璃管液体温度计,双金属片温度计和压力表式温度计。

(2)玻璃管液体温度计玻璃管液体温度计利用液体的体积与温度之间的关系,用毛细管内液体上升的高度来指示被测温度。

一般测量范围在−100℃~ +600℃。

这种温度计结构简单,使用方便,测量精度较高(0.1~2.5级)。

工作液体多使用汞和酒精,封装时充入惰性气体,以防止液柱断开。

(3)双金属片温度计双金属片温度计制作成表盘指针形式。

双金属片结合成一体,一端固定,另一端自由。

由于不同金属的热膨胀系数的差异而产生弯曲变形,带动指针的位移。

一般测量范围在−80℃~ +600℃。

这种温度计结构简单,使用方便,但测量精度不高(1~2.5级)。

(4)压力表式温度计压力表式温度计的工作原理与机械式压力表相同。

实验讲义(化工原理)

实验讲义(化工原理)

实验一、雷诺实验一、实验目的1.了解管内流体质点的运动方式,认识不同流动形态的特点,掌握判别流型的准则。

2.观察圆直管内流体作层流、过渡流、湍流的流动型态。

观察流体层流流动的速度分布。

二、实验内容1. 以红墨水为示踪剂,观察圆直玻璃管内水为工作流体时,流体作层流、过渡流、湍流时的各种流动型态。

2.观察流体在圆直玻璃管内作层流流动的速度分布。

三、实验装置实验装置流程如图1-1所示。

图1-1 雷诺实验装置1 溢流管;2 墨水瓶;3 进水阀;4示踪剂注入管5水箱;6 水平玻璃管;7 流量调节阀实验管道有效长度: L=600 mm外径: Do=30 mm内径: Di=24.5 mm孔板流量计孔板内径: do=9.0 mm四、实验步骤1. 实验前的准备工作(1) 实验前应仔细调整示踪剂注入管4的位置,使其处于实验管道6的中心线上。

(2) 向红墨水储瓶2 中加入适量稀释过的红墨水,作为实验用的示踪剂。

(3) 关闭流量调节阀7,打开进水阀3,使水充满水槽并有一定的溢流,以保证水槽内的液位恒定。

(4) 排除红墨水注入管4中的气泡,使红墨水全部充满细管道中。

2. 雷诺实验过程(1) 调节进水阀,维持尽可能小的溢流量。

轻轻打开阀门7,让水缓慢流过实验管道。

(2) 缓慢且适量地打开红墨水流量调节阀,即可看到当前水流量下实验管内水的流动状况(层流流动如图1-2所示)。

用体积法(秒表计量时间、量筒测量出水体积)可测得水的流量并计算出雷诺准数。

因进水和溢流造成的震动,有时会使实验管道中的红墨水流束偏离管的中心线或发生不同程度的摆动;此时, 可暂时关闭进水阀3,过一会儿,即可看到红墨水流束会重新回到实验管道的中心线。

图1-2层流流动示意图(3) 逐步增大进水阀3和流量调节阀7的开度,在维持尽可能小的溢流量的情况下提高实验管道中的水流量,观察实验管道内水的流动状况(过渡流、湍流流动如图1-3所示)。

同时,用体积法测定流量并计算出雷诺准数。

化工原理实验讲义

化工原理实验讲义

化工原理实验指导书##学院目录实验一流体流动阻力的测定 (1)实验二离心泵特性曲线的测定 (5)实验三传热系数测定实验 (7)实验四筛板式精馏塔的操作与塔板效率测定 (9)实验五填料塔吸收实验 (12)演示实验柏努利方程实验 (14)雷诺实验 (16)h f2dRe du实验一流体流动阻力的测定、实验目的1、了解流体在管道内摩擦阻力的测定方法;2、确定摩擦系数入与雷诺数Re的关系。

二、根本原理由于流体具有粘性,在管内流动时必须克制内摩擦力。

当流体呈湍流流动时,质点间不断相互碰撞,弓I起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。

流体的粘性和流体的涡流产生了流体流动的阻力。

在被侧直管段的两取压口之间列出柏努力方程式,可得:△ P f = △ PP fL—两侧压点间直管长度(m)P fu2d—直管内径(m)入一摩擦阻力系数u—流体流速〔m/s〕△ P f—直管阻力引起的压降〔N/m2〕卩一流体粘度〔Pa.s〕p—流体密度〔kg/m3〕本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的△ P f值,将尺寸和所测数据代入各式,分别求出入和Re,在双对数坐标纸上绘出入〜Re曲线。

三、实验装置简要说明水泵将储水糟中的水抽出,送入实验系统,首先经玻璃转子流量计测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。

被测直管段流体流动阻力△ P可根据其数值大小分别采用变压器或空气一水倒置U型管来测量。

四、实验步骤:1、向储水槽内注蒸馏水, 直到水满为止。

2、大流量状态下的压差测量系统,应先接电预热10-15 分钟,观擦数字仪表的初始值并记录后方可启动泵做实验。

3、检查导压系统内有无气泡存在. 当流量为0 时打开B1、B2 两阀门,假设空气-水倒置U 型管内两液柱的高度差不为0,那么说明系统内有气泡存在,需要排净气泡方可测取数据。

排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。

化工原理实验讲义

化工原理实验讲义

实验一流体流动形态及雷诺数的测定一、实验目的1.观察层流湍流两种流动现象2.测定流型与雷诺数的关系二、基本原理流体有两种不同的流动形态即滞流(层流)和湍流(絮流)。

流体作滞流流动时,其质点作平行于管轴的直线运动,滞流时流体质点在沿管轴流动的同时,还作着杂乱无章的随机运动。

雷诺准数是判断流动形态的准数,若流体在圆管内流动,则雷诺准数可用下式表示:μρduRe=式中d---管子的管径(m)u---流体的流速(m/s)ρ--- 流体密度(Kg/m3)μ---流体的粘度(NS/m2)一般认为:eR小于2000时,流动形态为滞流。

e R大于4000,流动为湍流。

e R 数值在两者之间时,有时为湍流,有时为滞流,其主要和环境有关。

对于一定温度的流体,在特定的圆管内流动,雷诺准数仅于流速有关,本实验是改变水在管内的速度,观察在不同雷诺数下流体流型的变化。

三、实验装置与流程1、实验装置的特点本设备为卧式装置,可视性好。

设备无动力装置,操作方便、稳定。

雷诺数的测量范围为:1000-10000。

2、主要技术数据1. 外形尺寸:2300×600×800mm2. 水箱(正面装有有机玻璃,可供观察):670×600×600mm3. 有机玻璃实验管:Φ30×2.5 mm L=1200 mm4. 流量计:LZB-25 100-1000 1/HLZB-10 10-100 1/H3、实验装置实验装置由稳压溢流水槽、实验导管和转子流量计等部分组成,具体实验装置如图所示:1 示踪剂(红墨水)2,3,4,7,8 针形阀5,6 流量计实验装置流程四.实验方法及步骤:1. 水通过进水箱,充满水箱。

开启出水阀,排除管路系统中的空气。

2. 为了保持水位恒定和避免波动,水由进口管先流入进水槽后由小孔流入水箱,其中多余的水经溢流口流入下水道中。

3. 测定水温(普通温度计)4. 将示踪剂(红墨水)加入储瓶中。

化工原理实验讲义(最终版)

化工原理实验讲义(最终版)
ρ—— 介质的密度,;
C0 —— 流量系数
1.标定流量曲线 通过计量筒电子称和记时器可测量去流体的重量及对应的时间,从 而测取其质量流量qm,同时又通过压差计读出对应的上、下游压差值 △p;这样根据若干个实验点的qm与△p值,便可绘制流量标定曲线qm~ △p。
2.确定流量系数Co 根据以上流量计的计算式
2.测定直管摩擦系数与雷诺准数Re的关系,将所得的~Re方程与 公认经验关系式比较;
3.测定阀门的阻力系数; 4.了解阀门开度对管路压力的影响。 二、实验意义及原理
流体在管路中流动时,由于粘性剪切力和涡流的存在,不可避免地 要消耗一定机械能。这部分机械能是不能自发地转换成其它机械能形 式,或者说在机械能中“永久”消失了,故在利用柏努利方程解决工程中 流体输送及与流动有关问题时,不可避免地必须将阻力损失项计算出 来。管路通常由直管和管件(如三通、肘管及弯头等)、阀件组成。流 体在直管内流动造成的机械能损失称为直管阻力,而通过管件、阀件等 局部障碍时,因流道截面的方向与大小发生变化而造成的机械能损失称 为局部阻力。
(4-3) 由于差压流量计节流元件的截面A0是不变的,加之介质水的密度不 变。由上述流量曲线标定实验中各流量qm与压差△p之值,便可计算出 对应的流量系数C0值。 又由于雷诺数
(4-4)
其中管径d1为输送管道内径;ρ,μ为水的密度与粘度。流速u1可用下
式计算: (4-5)
故可将流量系数C0与对雷诺数Re的关系标绘在单对数坐标上,便可得 到C0与Re的关系曲线,从而可了解流量的变化规律。
(1-1) 式中:——圆管内径,m;
u —— 流速,m/s; —— 流体密度,kg/m3; ——流体粘度,Pa·s。 一般认为Re<2000时,流动型态为层流;Re>4000,流动型态为 湍流。Re数在两者之间时为过渡区,有时为层流,有时为湍流,流动型 态与环境有关。 对一定温度的流体,在特定的圆管内流动,雷诺数仅与流速有关。本 实验通过改变水在管内的流速,观察流体在管内流动型态的变化。 三、思考题 1.影响流动型态的因素有哪些?

化工原理实验讲义2015

化工原理实验讲义2015

化工原理实验讲义化学化工学院实验中心2015.04目录实验1 雷诺实验--------------------------------------2 实验2 柏努利实验------------------------------------4 实验3 流体阻力测定实验------------------------------6 实验4 离心泵性能测定和流量计标定实验----------------10 实验5 传热实验--------------------------------------16 实验6 精馏实验--------------------------------------20 实验7 过滤实验--------------------------------------24 实验8 氧解吸实验------------------------------------29 实验9 液—液萃取实验--------------------------------36 实验10 干燥速率曲线测定实验--------------------------41 实验11 管路拆装实训----------------------------------45实验1 雷诺实验一、目的1.观察流体在层流和湍流时两种不同的流动形态,观察层流时流体在导管中的速度分布。

2.测定各种流动状态下的Re,建立层流、湍流与Re之间的联系。

二、原理1.层流与湍流的根本区别,在于流体内部质点的运动方式不同。

层流时,流体的质点沿着与管轴平行的方向成直线运动,互不碰撞,互不混合,湍流时流体质点的运动是不规则的,质点之间发生剧烈的碰撞与混合并导致整个流体的湍动,无论层流和湍流,管壁处速度都为零,离开管壁以后速度渐快,管中心处速度最大。

层流时,速度沿管子的直径按抛物线的规律分布。

2.流体流动状态是由多方面因素决定的,把这些因素组合成,称为雷诺准数(Re),根据Re的数值,可判断流动属于层流还是湍流。

化工原理实验讲义

化工原理实验讲义

1 流体阻力测定实验1.1实验目的1)掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。

2)测定直管摩擦系数λ与雷诺准数Re 的关系,将所得的λ~Re 方程与经验公式比较。

3)测定流体流经阀门时的局部阻力系数ξ。

4)学会倒U 形差压计、差压传感器、涡轮流量计的使用方法。

5)观察组成管路的各种管件、阀门,并了解其作用。

1.2基本原理流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。

1)沿程阻力流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低,即 ρρpp p h f ∆=-=21 (1—1)影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通过实验研究其规律。

为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。

根据因次分析,影响阻力损失的因素有, (1)流体性质:密度ρ、粘度μ;(2)管路的几何尺寸:管径d 、管长l 、管壁粗糙度ε; (3)流动条件:流速μ。

可表示为:),,,,,(ερμu l d f p =∆ (1—2)组合成如下的无因次式:),,(2d d l du u p εμρρΦ=∆ (1—3)2),(2u d l d du p..εμρϕρ=∆令 ),(ddu εμρϕλ= (1—4) 则式(1—1)变为:22u d l ph f λρ=∆= (1-5)式中,λ称为摩擦系数。

层流 (滞流)时,λ=64/Re ;湍流时λ是雷诺准数Re 和相对粗糙度的函数,须由实验确定。

2)局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。

(1)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号le 表示。

化工原理实验讲义

化工原理实验讲义
例如本装置采用涡轮流量计测流量,V,m3/h。
(5)
可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
(1)当采用倒置U型管液柱压差计时
(6)
式中:R-水柱高度,m。
(2)当采用U型管液柱压差计时
(7)
式中:R-液柱高度,m;
-指示液密度,kg/m3。
根据实验装置结构参数l、d,指示液密度 ,流体温度t0(查流体物性ρ、μ),及实验时测定的流量V、液柱压差计的读数R,通过式(5)、(6)或(7)、(4)和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。
5.如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?
离心泵特性曲线的测定
1
①掌握离心泵特性曲线的测定方法。
②了解离心泵的构造、安装、使用与操作。
1
离心泵的特性受泵的结构,叶轮形式与转速的影响,特性参数包括流量Q、扬程H、功率N、效率,对确定的泵,在一定的转速下,H、N、都随流量Q的改变而变化,以曲线形式表示这些参数之间的关系就是离心泵的特性曲线。离心泵的特性曲线能清楚的反映离心泵的操作性能,是选用离心泵和确定泵的适宜操作条件的主要依据。对任意一台离心泵的特性曲线不能用解析法进行计算,只能通过实验来测定。
3.排气:在计算机监控界面点击”引压室排气”按钮,则差压变送器实现排气。
4.引压:打开对应实验管路的手阀,然后在计算机监控界面点击该对应,则差压变送器检测该管路压差。
5.流量调节:手控状态,变频器输出选择100,然后开启管路出口阀,调节流量,让流量从1到4m3/h范围内变化,建议每次实验变化0.5m3/h左右。每次改变流量,待流动达到稳定后,记下对应的压差值;自控状态,流量控制界面设定流量值或设定变频器输出值,待流量稳定记录相关数据即可。

化工原理实验讲义-化工本

化工原理实验讲义-化工本

化工原理实验讲义-化工本1. 实验目的本实验旨在通过对化工原理的实验操作,在实践中掌握化工原理的基本原理和实验技巧,培养学生的实验能力和综合素质。

2. 实验材料和仪器设备2.1 实验材料•硫酸铜•硝酸银•氢氧化钠•蒸馏水•滤纸2.2 仪器设备•量筒•试管•灯台•滴定管•镊子•烧杯3. 实验原理化工原理是化学工程中的基础课程之一,其实验实践主要涉及以化学反应为基础的物质转化过程。

本实验主要讲解了三个基本实验,包括硫酸铜溶液的制备、硝酸银与盐酸反应以及氢氧化钠的滴定。

3.1 硫酸铜溶液的制备硫酸铜溶液是一种常用的化学试剂,用于常规实验和工业生产中的染料、催化剂等。

制备硫酸铜溶液的原理是将硫酸铜与蒸馏水按一定的配比混合,并进行搅拌,最终得到所需的溶液。

3.2 硝酸银与盐酸反应硝酸银与盐酸反应是一种重要的化学反应,常用于药物合成、污染检测等领域。

此反应的原理是将硝酸银溶液与盐酸按一定的摩尔配比混合,通过氯化银的生成来观察反应的进行。

3.3 氢氧化钠的滴定氢氧化钠的滴定是一种常用的分析方法,可用于测定溶液中的盐酸含量。

滴定的原理是将酸溶液与氢氧化钠的溶液按一定的滴定体积比进行滴定,通过酸碱中和反应的终点变化来确定溶液中酸的浓度。

4. 实验步骤4.1 硫酸铜溶液的制备步骤1.准备所需材料和仪器设备。

2.称取一定质量的硫酸铜固体。

3.将硫酸铜固体倒入量筒中。

4.加入适量蒸馏水,使溶液浓度符合要求。

5.用玻璃棒搅拌溶液,直至硫酸铜溶解完全。

4.2 硝酸银与盐酸反应步骤1.准备所需材料和仪器设备。

2.取一定体积的硝酸银溶液并倒入试管中。

3.加入适量的盐酸溶液,等待反应进行。

4.观察反应的产物,记录颜色和形态的变化。

4.3 氢氧化钠的滴定步骤1.准备所需材料和仪器设备。

2.量取一定体积的盐酸溶液。

3.将盐酸溶液倒入烧杯中。

4.加入几滴酚酞指示剂。

5.取适量氢氧化钠溶液,并用滴定管滴定,直至颜色变化。

5. 实验结果分析通过对以上三个实验的操作和观察,我们可以得到以下实验结果:•硫酸铜溶液制备完全溶解,呈现蓝色。

【免费阅读】化工原理实验讲义

【免费阅读】化工原理实验讲义

雷诺演示实验一、实验目的1 观察流体流动时的不同流动型态2 观察层流状态下管路中流体的速度分布状态3 熟悉雷诺准数(Re)的测定与计算4 测定流动型态与雷诺数(Re)之间的关系及临界雷诺数二、实验原理流体在流动过程中由三种不同的流动型态,即层流、过渡流和湍流。

主要取决于流体流动时雷诺数Re的大小,当Re大于4000时为湍流,小于2000 时为层流,介于两者之间为过渡流。

影响流体流动型态的因素,不仅与流体流速、密度、粘度有关,也与管道直径和管型有关,其定义式如下:1.1-1式中: d 管子的直径mu 流体的速度m/sρ流体的密度kg/m 3μ流体的粘度 Pa· s三、实验装置雷诺演示实验装置如图1.1所示,其中管道直径为20 mm。

图1.1 雷诺演示实验装置图1—有机玻璃水槽;2 —玻璃观察管;3 —指试液;4,5 —阀门;6 —转子流量计四、实验步骤1 了解实验装置的各个部件名称及作用,并检查是否正常。

2 打开排空阀排气,待有机玻璃水槽溢流口有水溢出后开排水阀调节红色指示液,消去原有的残余色。

3 打开流量计阀门接近最大,排气后再关闭。

4 打开红色指示液的针形阀,并调节流量(由小到大),观察指示液流动形状,并记录指示液成稳定直线,开始波动,与水全部混合时流量计的读数。

5 重复上述实验3~5次,计算Re临界平均值。

6 关闭阀1、11,使观察玻璃管6内的水停止流动。

再开阀1,让指示液流出1~2 cm 后关闭1,再慢慢打开阀9,使管内流体作层流流动,观察此时速度分布曲线呈抛物线形状。

7 关闭阀1、进水阀,打开全开阀9排尽存水,并清理实验现场。

五、数据处理及结果分析1 实验原始数据记录见下表:序号123456q(l/h)U(m/s)Re2 利用Re的定义式计算不同流动型态时的临界值,并与理论临界值比较,分析误差原因。

六、思考题1雷诺数的物理意义是什么?2 有人说可以只用流体的流速来判断管中流体的流动型态,当流速低于某一数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以只用流速来判断流体的流动型态?流体流动阻力系数的测定一、实验目的1 学习管路阻力损失( h f ) 、管路摩擦系数(λ)、管件局部阻力系数(ζ)的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识。

化工原理实验讲义

化工原理实验讲义

化工原理实验讲义一、引言化工原理是化学工程专业的核心课程,旨在通过实验教学形式,掌握化工原理的基本原理与操作技能。

本实验讲义将介绍一些常见的化工原理实验,以帮助学生更好地理解相关知识,并提高实验操作的能力。

二、实验一:物质的密度测定实验原理物质的密度是指单位体积物质的质量,可以通过以下公式计算:密度(ρ)= 质量(m)/ 体积(V)本实验将通过测量物质的质量和体积,计算物质的密度。

实验步骤1.准备一个空容器,并称重记录容器的质量(m1);2.将容器装满待测物质,并再次称重记录质量(m2);3.计算物质的质量(m)= m2 - m1;4.测量容器的体积(V),可以通过测量容器的长宽高,并计算体积;5.计算物质的密度(ρ)= m / V。

实验注意事项1.在称重过程中,应注意零点的调整,确保准确度;2.测量容器体积时,应尽量减少误差,可以多次测量并取平均值。

三、实验二:化学反应速率测定实验原理化学反应速率是指单位时间内反应产物浓度的变化量,可以通过以下公式计算:速率(v)= ΔC / Δt本实验将通过测量酶催化反应中产物的浓度随时间变化的曲线,计算化学反应速率。

实验步骤1.准备酶的溶液和底物的溶液,并将它们混合在一起;2.将混合溶液倒入试管中,并立即开始计时;3.每隔一段时间,取出试管,用分光光度计测量产物的浓度;4.将测得的产物浓度与时间绘制曲线图;5.根据曲线图上某一时间点的斜率,计算该时间点的反应速率。

实验注意事项1.在混合溶液时,要快速并彻底地混合,保证反应能够迅速发生;2.测量产物浓度时,要注意校正光度计,以消除干扰;3.绘制曲线图时,应注意选择合适的刻度和线条粗细。

四、实验三:蒸馏分离混合物实验原理蒸馏是利用液体的沸点差异,将混合物中的成分分离的常用方法。

蒸馏通常包括加热液体混合物,将产生的蒸汽冷凝并收集成为纯净的液体。

实验步骤1.将混合物加入蒸馏瓶中,并安装冷凝管;2.加热混合物,使其中沸点较低的成分先蒸发,然后冷凝成液体;3.收集冷凝液体,即得到分离的成分。

化工原理实验讲义(最终版)

化工原理实验讲义(最终版)

目录绪论 (1)实验一雷诺实验 (3)实验二伯努利方程实验 (4)实验三流体流动阻力的测定 (6)实验四流量计校核实验 (10)实验六恒压过滤常数的测定 (15)实验七传热实验 (17)实验八精馏实验 (23)实验十干燥实验 (29)绪论一、化工原理实验的特点《化工原理》是化工、食品、生物工程、环境工程等专业的重要技术基础课,它属于工程技术学科,故化工原理实验也是解决工程问题必不可少的重要部分。

面对实际的工程问题,其涉及的物料千变万化,操作条件也随各工艺过程而改变,使用的各种设备结构、大小相差悬殊,很难从理论上找出反映各过程本质的共同规律,一般采用两种研究方法解决实际工程问题,即实验研究法和数学模型法。

对于实验研究法,在析因实验基础上应用因次分析法规划实验,再通过实验得到应用于各种情况下的半理论半经验关联式或图表。

例如找出流体流动中摩擦系数与雷诺准数和相对粗糙度关系的实验。

对于数学模型法,在简化物理模型的基础上,建立起数学模型,再通过实验找出联系数学模型与实际过程的模型参数,使数学模型能得到实际的应用。

例如精馏中通过实验测出塔板效率将理论塔板数和实际塔板数联系起来。

可以说,化工原理实验基本包含了这两种研究方法的实验,这是化工原理实验的重要特征。

虽然化工原理实验测定内容及方法是复杂的,但是所采用的实验装备却是生产中最常用的设备和仪表,这是化工原理实验的第二特点。

例如流体阻力实验中,虽然要测定摩擦系数与雷诺数及相对粗糙度的复杂关系,但使用的却是极其简单的泵、管道、压力计、流量计等设备仪表。

化工原理实验的这些特点,同学们应该在实验中认真体会,通过化工原理实验对这些处理工程问题的方法加深认识并初步得以应用。

1二、化工原理实验的要求1.巩固和深化理论知识。

化工原理课堂上讲授的主要是化工过程即单元操作的原理,包括物理模型和数学模型。

这些内容是很抽象的,还应通过化工原理实验及实习这些实践性环节,深入理解和掌握课堂讲授的内容。

化工原理实验简明讲义

化工原理实验简明讲义

化工原理实验简明讲义实验目的:通过本实验,学生将了解化工原理中的一些基本概念、实验方法和实验技巧。

实验设备和材料:1.进样泵和进样泵管2.液相色谱仪3.毫升量筒4.烧杯和试管5.甲醇和乙酸乙酯6.试剂:硝酸银溶液、氢氧化钠溶液、硫酸、氯化钠溶液、酸碱指示剂等。

实验步骤:1.实验前准备:清洗实验器材,准备好实验所需的试剂和溶液。

2.加样进样泵:将所需的溶液倒入进样泵中,并连接进样泵管到液相色谱仪。

3.开启液相色谱仪:按照仪器说明书正确操作,打开电源,启动仪器。

4.进样操作:调整进样泵的进样流量和进样时间,使得待测样品能够正常进入色谱柱。

5.数据采集:根据仪器的要求,设置采集数据的时间间隔和仪器参数。

开始采集数据。

6.分析结果:通过液相色谱仪上的显示屏或计算机软件,实时观察实验结果,并记录下峰值的时间和峰面积。

7.数据处理:根据实验结果,计算得到所需的数据,并进行后续的分析和处理。

8.清洗仪器:实验结束后,关闭液相色谱仪,按照仪器说明书正确进行仪器的清洗和保养工作。

实验注意事项:1.实验操作要规范,注意安全,佩戴好实验室所需的个人防护设备。

2.实验器材和试剂要洁净,避免杂质和外部因素对实验结果的影响。

3.操作仪器时要仔细阅读仪器说明书,并按照要求正确操作。

4.实验过程中要注意观察,并记录下实验现象、数据和结果。

5.实验结束后要及时清洗仪器,归位器材,并按照实验室规定进行废物处理。

实验原理和应用:液相色谱法是一种常用的化工分析方法,广泛应用于制药、环保、食品、化工等领域。

该方法通过采用不同的液相固定相和流动相,利用了不同物质的分配行为,实现了对复杂混合物中化合物的定性和定量分析。

液相色谱法具有灵敏度高、分离效果好、分析速度快等优点,适用于分析复杂的有机物和无机物混合物。

总结:通过本实验,学生了解到了液相色谱法的基本原理和应用,并掌握了液相色谱仪的操作方法和实验技巧。

这些知识对于今后的化工原理实验和研究工作具有重要的指导意义。

化工原理实验讲义-化工本

化工原理实验讲义-化工本

化工原理实验讲义化学化工学院实验一 雷诺实验一、实验目的1、观察流体在管内流动的两种不同流型。

2、测定临界雷诺数Re c 。

二、基本原理流体流动有两种不同型态,即层流(或称滞流,Laminar flow )和湍流(或称紊流,Turbulent flow ),这一现象最早是由雷诺(Reynolds )于1883年首先发现的。

流体作层流流动时,其流体质点作平行于管轴的直线运动,且在径向无脉动;流体作湍流流动时,其流体质点除沿管轴方向作向前运动外,还在径向作脉动,从而在宏观上显示出紊乱地向各个方向作不规则的运动。

流体流动型态可用雷诺准数(Re )来判断,这是一个由各影响变量组合而成的无因次数群,故其值不会因采用不同的单位制而不同。

但应当注意,数群中各物理量必须采用同一单位制。

若流体在圆管内流动,则雷诺准数可用下式表示:μρdu =Re (1-1)式中:Re —雷诺准数,无因次;d —管子内径,m ;u —流体在管内的平均流速,m /s ;ρ—流体密度,kg /m 3;μ—流体粘度;Pa ·s 。

层流转变为湍流时的雷诺数称为临界雷诺数,用Re c 表示。

工程上一般认为,流体在直圆管内流动时,当Re ≤2000时为层流;当Re ≥4000时为湍流;当Re 在2000至4000范围内,流动处于一种过渡状态,可能是层流,也可能是湍流,或者是二者交替出现,这要视外界干扰而定,一般称这一Re 数范围为过渡区。

式(1-1)表明,对于一定温度的流体,在特定的圆管内流动,雷诺准数仅与流体流速有关。

本实验即是通过改变流体在管内的速度,观察在不同雷诺准数下流体的流动型态。

三、实验装置及流程实验装置如图1-1所示。

主要由玻璃试验导管、流量计、流量调节阀、低位贮水槽、循环水泵、稳压溢流水槽等部分组成,演示主管路为220⨯φmm 硬质玻璃。

637891-红墨水储槽;2-溢流稳压槽;3-实验管;4-转子流量计;5-循环泵;6-上水管;7-溢流回水管;8-调节阀;9-储水槽图1-1 流体流型演示实验装置示意图实验前,先将水充满低位贮水槽,关闭流量计后的调节阀,然后启动循环水泵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 流量计校核实验一、实验目的1.了解孔板流量计、文丘里流量计的构造、原理、性能及使用方法。

2.掌握流量计的标定方法。

3.学习合理选择坐标系的方法。

二、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量有如下关系:采用正U 形管压差计测量压差时,流量Vs 与压差计读数R 之间关系有: (1)式中: V s 被测流体(水或空气)的体积流量,m 3/s ; C 流量系数(或称孔流系数),无因次; A 0 流量计最小开孔截面积,m 2,A 0=(π/4)d 02; 下上-P P 流量计上、下游两取压口之间的压差,P a ;ρ 被测流体(水或空气)的密度,Kg/m 3;A ρ U 形管压差计内指示液的密度,Kg/m 3;ρ1 空气的密度,Kg/m 3;R U 形管压差计读数,m ; 式3-1也可以写成如下形式:(1a)若采用倒置U 形管测量压差:ρgR P P =-下上(忽略空气对测量的影响)则流量系数C 与流量的关系为:()ρ下上-P P CA V s 20=()ρρρ120-=A s gR CA V ρρρ)1(2-=A gR A VC s(2)用体积法测量流体的流量V s ,可由下式计算:(3) (4)式中:V s 水的体积流量,m 3/s ;△t 计量桶接受水所用的时间,s ;A 计量桶计量系数;△h 计量桶液面计终了时刻与初始时刻的高度差,mm ,△h=h 2-h 1; V 在△t 时间内计量桶接受的水量,L 。

改变一个流量在压差计上有一对应的读数,将压差计读数 R 和流量V s 绘制成一条曲线即流量标定曲线。

同时用式(1a )或式(2)整理数据可进一步得到流量系数C —雷诺数Re 的关系曲线。

(5)式中:d —实验管直径,m ; u —水在管中的流速,m/s 。

三、实验内容1、以涡轮流量计为基准,对孔板流量计进行校核,并绘制校核曲线。

2、以转子流量计为基准,对孔板流量计进行校核,并绘制校核曲线。

实验二 离心泵特性曲线测定一、实验目的1. 了解离心泵结构与特性,学会离心泵的操作;2. 掌握离心泵特性曲线测定方法。

二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。

由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实gRA V C s20=Ah V ⨯∆=tV V s ∆⨯=310μρdu =Re验测定。

1.扬程H 的测定与计算在泵进、出口取截面列柏努利方程:g u u Z Z g p p H 221221212-+-+-=ρ式中:p 1,p 2——分别为泵进、出口的压强 N/m 2 ρ——流体密度 kg/m 3u 1, u 2——分别为泵进、出口的流量m/s g ——重力加速度 m/s 2当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:gp p H ρ'1'2-=由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。

2.轴功率N 的测量与计算轴的功率可按下式计算:w N ∙=94.0 式中,N —泵的轴功率,Ww —电机输出功率,W由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。

3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne 可用下式计算: Ne=HV ρg 故η=Ne/N=HV ρg/N4.速改变时的换算泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。

但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。

换算关系如下:流量n n VV '=' 扬程 2)(n n H H '='轴功率 3)(n n N N '=' N 效率 ηρρη=='''='N gVH N g H V离心泵功率转换系数=0.89三、实验装置与流程离心泵性能特性曲线测定系统装置工艺控制流程图如图2-1:图2-1 离心泵实验装置流程示意图3.仪表控制柜面板如图2-2所示:图2-2 流体力学综合实验装置仪表面板1、空气开关2、3、4电源指示灯5、流量控制仪6、6路巡检仪(单位m3/h):第一通道测量离心泵进口压力(单位:kpa),第二通道测量离心泵出口压力(单位:kpa),第三通道测量离心泵转速(单位:r/min)第四通道测量流体阻力压差(单位:pa)第五通道测量流体温度(单位:摄氏度),第六通道没用,7、功率表(单位:KW)8、仪表电源指示灯、9、仪表电源开关,10、变频器电源指示灯,11、变频器电源开关,12、离心泵电源指示灯、13、离心泵直接或变频器运行转换开关,14、离心泵启动按钮,15、离心泵停止按钮。

四、实验步骤及注意事项1.灌泵储水箱中出水到适当位置(大概三分之二处)关闭阀1、阀2、阀3、阀4、阀5、打开离心泵出口排气阀和进口灌水阀,用水杯从灌水阀灌水,气体从排汽阀排出,直到排水阀有水排出并且没有气泡灌水完毕,关闭排气阀和灌水阀。

2.启动水泵打开控制柜上1空气开关,打开9仪表电源开关,仪表指示灯10亮,仪表上电,显示被测数据。

把转换开关转到直接位置,指示灯12亮,按一下离心泵启动按钮,离心泵运转,启动按钮指示灯亮,水泵启动完毕。

3.打开离心泵监控软件,输入班级、姓名、学号等信息,进入离心泵监控界面,打开阀1到最大,每隔2m3/h采集一组数据(等数据稳定之后再采集),从最大流量做到0。

4.数据采集完毕后,按离心泵停止按钮,泵停止。

5、打开数据处理软件,打开采集的数据,进行数据处理,计算出数据处理结果,绘出离心泵特性曲线。

实验完毕实验数据记录离心泵原始数据水温:℃五、实验报告1.在同一张坐标纸上描绘一定转速下的H~V、N~V、η~V曲线2.分析实验结果,判断泵较为适宜的工作范围。

实验三干燥速率曲线的测定实验一、实验目的1.熟悉常压洞道式(厢式)干燥器的构造和操作;2.测定在恒定干燥条件(即热空气温度、湿度、流速不变、物料与气流的接触方式不变)下的湿物料干燥曲线和干燥速率曲线;3.测定该物料的临界湿含量X0;4.掌握有关测量和控制仪器的使用方法。

二、基本原理当湿物料与干燥介质相接触时,物料表面的水分开始气化,并向周围介质传递。

根据干燥过程中不同期间的特点,干燥过程可分为两个阶段。

第一个阶段为恒速干燥阶段。

在过程开始时,由于整个物料的湿含量较大,其内部的水分能迅速地达到物料表面。

因此,干燥速率为物料表面上水分的气化速率所控制,故此阶段亦称为表面气化控制阶段。

在此阶段,干燥介质传给物料的热量全部用于水分的气化,物料表面的温度维持恒定(等于热空气湿球温度),物料表面处的水蒸汽分压也维持恒定,故干燥速率恒定不变。

第二个阶段为降速干燥阶段,当物料被干燥达到临界湿含量后,便进入降速干燥阶段。

此时,物料中所含水分较少,水分自物料内部向表面传递的速率低于物料表面水分的气化速率,干燥速率为水分在物料内部的传递速率所控制。

故此阶段亦称为内部迁移控制阶段。

随着物料湿含量逐渐减少,物料内部水分的迁移速率也逐渐减少,故干燥速率不断下降。

恒速段的干燥速率和临界含水量的影响因素主要有:固体物料的种类和性质;固体物料层的厚度或颗粒大小;空气的温度、湿度和流速;空气与固体物料间的相对运动方式。

恒速段的干燥速率和临界含水量是干燥过程研究和干燥器设计的重要数据。

本实验在恒定干燥条件下对帆布物料进行干燥,测定干燥曲线和干燥速率曲线,目的是掌握恒速段干燥速率和临界含水量的测定方法及其影响因素。

⒈ 干燥速率的测定ττ∆∆≈=S W Sd dW U '' (7-1) 式中:U —干燥速率,kg /(m 2·h );S —干燥面积,m 2,(实验室现场提供); τ∆—时间间隔,h ;'W ∆—τ∆时间间隔内干燥气化的水分量,kg 。

⒉ 物料干基含水量'''Gc Gc G X -=(7-2) 式中:X —物料干基含水量,kg 水/ kg 绝干物料; 'G —固体湿物料的量,kg ; 'Gc —绝干物料量,kg 。

⒊ 恒速干燥阶段,物料表面与空气之间对流传热系数的测定 tww tw r t t Sd r dQ Sd dW Uc )(''-===αττ (7-3) wtwt t r Uc -⋅=α (7-4)式中:α—恒速干燥阶段物料表面与空气之间的对流传热系数,W/(m 2·℃);Uc —恒速干燥阶段的干燥速率,kg/(m 2·s ); w t —干燥器内空气的湿球温度,℃; t —干燥器内空气的干球温度,℃; tw r —w t ℃下水的气化热,J/ kg 。

⒋ 干燥器内空气实际体积流量的计算由节流式流量计的流量公式和理想气体的状态方程式可推导出: 02732730t tV V t t ++⨯= (7-5)式中:t V —干燥器内空气实际流量,m 3/ s ;0t —流量计处空气的温度,℃;0t V —常压下t 0℃时空气的流量,m 3/ s ;t —干燥器内空气的温度,℃。

ρPA C V t ∆⨯⨯⨯=2000 (7-6)2004d A π=(7-7)式中:C 0—流量计流量系数,C 0=0.67; A 0—节流孔开孔面积,m 2;d 0—节流孔开孔直径, d 0=0.050 m ;ΔP —节流孔上下游两侧压力差,Pa ; ρ—孔板流量计处0t 时空气的密度,kg/m 3。

三、实验装置1.装置流程空气用风机送入电加热器,经加热的空气流入干燥室,加热干燥室中的湿毛毡后,经排出管道排入大气中。

随着干燥过程的进行,物料失去的水分量由称重传感器和智能数显仪表记录下来。

实验装置如图1所示。

图1 干燥装置流程图1-风机 2-可移动实验框架 3-旁路阀 4-气路管道 5-差压传感器 6-不锈钢孔板流量计7-电加热管 8-风量均布器 9-支杆 10、11-干球、湿球温度传感器 12-可视门 13-精密称重传感器 14-蝶阀 3 15-蝶阀 2 16-蝶阀 1 17-总电源空气开关 18-仪表电源开关19-变频器电源开关20-风机电源切换开关21-电加热管停止按钮22-干球温度手自动切换开关及手动调节旋钮23-干球温度自动调节仪24-指示灯25-电加热管启动按钮26-加热管电压指示27-智能风量控制仪28-智能多路液晶显示仪29-变频器(1)风机电源切换开关:有三个位:直接、停止、变频分别为风机电源由电网直接提供、风机停止和风机电源由变频器提供。

相关文档
最新文档