解排列组合问题的17种基本方法(第一课时)
探析排列组合常见的十六种解题方法
探析排列组合常见的十六种解题方法ʏ福建省泉州市第七中学 彭耿铃高考排列组合试题能有效地考查同学们的阅读判断能力㊁转化与化归处理能力及应用意识㊂这类试题新颖别致,联系社会实际,贴近生活,反映了排列组合应用领域的广阔,体现了数学的应用价值㊂本文特精选一些排列组合例题予以分类探析,旨在探究题型及解题方法,希望同学们能决胜于高考㊂求解排列㊁组合问题的常见方法有以下几种㊂(1)限制条件排除法:先求出不考虑限制条件的个数,然后排除不符合条件的个数,相当于减法原理;(2)相邻问题捆绑法:在特定条件下,将几个相关元素当作一个元素来考虑,待整个问题排好之后再考虑它们 内部 的排列数,主要用于解决相邻问题;(3)插空法:先把不受限制的元素排列好,然后把特定元素插在它们之间或两端的空当中;(4)特殊元素㊁位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置;(5)多元问题分类法:将符合条件的排列分为几类,根据分类计数原理求出排列总数;(6)元素相同隔板法:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入m -1块隔板来完成分组,此法适用于同元素分组问题;(7) 至多 ㊁ 至少 间接法: 至多 ㊁ 至少 的排列组合问题,需分类讨论且一般分类的情况较多,所以通常用间接法,即排除法,它适用于反面明确且易于计算的问题;(8)选排问题先取再排法:选排问题很容易出现重复或遗漏的错误,因此常先取出元素(组合)再排列,即先取再排;(9)定序问题消序法:甲㊁乙㊁丙顺序一定,采用消序法,即除法,用总排列数除以顺序一定的排列数;(10)有序分配逐分法:有序分配是指把元素按要求分成若干组,常采用逐分的方法求解㊂一㊁定位问题优先法(特殊元素和特殊位置优先考虑)例1 由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?解析:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置㊂先排末位共有C 13种方法;然后排首位共有C 14种方法;最后排其他位置共有A 34种方法㊂由分步计数原理得,有C 14C 13A 34=288(个)满足要求的数㊂例2 6个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )㊂A.192种 B .216种C .240种D .288种解析:若最左端排甲,其他位置共有A 55=120(种)排法;若最左端排乙,最右端共有4种排法,其余4个位置有A 44=24(种)排法㊂所以共有120+4ˑ24=216(种)排法,选B ㊂小结:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其他元素㊂若以位置分析为主,需先满足特殊位置的要求,再处理其他位置㊂若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其他条件㊂二㊁相邻元素捆绑法例3 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?解析:可先将甲乙两个元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其他元素进行排列,同时对相邻元素内部进行自排㊂由分步计数原理可得,共有A55A22A22=480(种)不同的排法㊂例4某人射击了8枪,命中4枪,4枪命中且恰好有3枪连在一起的情形共有种㊂解析:命中的3枪捆绑在一起,与命中的另一枪插入到未命中4枪形成的5个空位,共有A25=20(种)情况㊂小结:要求某几个元素必须排在一起的问题,可以用捆绑法来解决㊂即将需要相邻的元素合并为一个元素,再与其他元素一起进行排列,同时要注意合并元素内部也必须排列㊂三㊁不相邻问题插空法例5某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()㊂A.72B.120C.144D.168解析:歌舞类节目设为a1,a2,a3,小品类节目设为b1,b2,相声类节目设为c㊂先排a1,a2,a3不相邻,顺序如ˑb1ˑb2ˑcˑ,共A33A34种方法,b1b2相邻前提下,ˑb1b2ˑcˑ插空法共A22A33A22种方法,所以同类节目不相邻的排法种数为A33A34-A22A33A22=A33㊃(A34-4)=6ˑ20=120,选B㊂例66把椅子摆成一排,3人随机就座,任何2人不相邻的坐法种数为()㊂A.144B.120C.72D.24解析:先把3把椅子隔开摆好,它们之间和两端有4个位置,再把3人带椅子插放在四个位置,共有A34=24(种)方法,故选D㊂例7(2022年新高考Ⅱ卷)有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有()种㊂A.12B.24C.36D.48解析:因为丙丁要在一起,先把丙丁捆绑,看作一个元素,连同乙,戊看成三个元素排列,有A33种排列方式㊂为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式㊂注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有A33ˑ2ˑ2=24(种)不同的排列方式,选B㊂小结:元素相离问题可先把没有位置要求的元素进行排队,再把不相邻元素插入中间和两端㊂四㊁定序问题除序(去重复)㊁空位㊁插入法例87人排队,其中甲乙丙3人顺序一定,共有多少种不同的排法?解析:法一(除序法):对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是A77A33=840㊂法二(空位法):设想有7把椅子,让除甲乙丙以外的4人就座共有A47种方法,其余的三个位置甲乙丙共有1种坐法,则共有1ˑA47=840(种)方法㊂法三(插入法):先选三个座位让甲乙丙三人坐下,共有C37种方法,余下4个空座位让其余四人就座,共有A44种方法,则共有C37A44=840(种)方法㊂小结:定序问题可以用除序法,还可转化为空位法㊁插入法㊂五㊁重排问题求幂法例9把6名实习生分配到7个车间实习,共有多少种不同的分法?解析:完成此事共分六步,把第一名实习生分配到车间有7种分法,把第二名实习生分配到车间也有7种分法, ,由分步计数原理知共有76种不同的分法㊂小结:允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置㊂一般地,n个不同的元素没有限制地安排在m 个位置上的排列数为m n ㊂六㊁环排问题线排法例10 8人围桌而坐,共有多少种坐法?解析:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定1人并从此位置把圆形展成直线,其余7人共有(8-1)!=7!=5040(种)排法㊂小结:一般地,n 个不同元素作圆形排列,共有(n -1)!种排法㊂如果从n 个不同元素中取出m 个元素作圆形排列,共有1nA mn ㊂七㊁排列组合混合问题先选后排法例11 有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少种不同的装法解析:第一步从5个球中选出2个组成复合元素,共有C 25=10(种)方法;再把4个元素(包含一个复合元素)装入4个不同的盒内,有A 44=24(种)方法㊂根据分步计数原理,装球的方法共有C 25A 44=240(种)㊂例12 (2021年全国乙卷)将5名北京冬奥会志愿者分配到花样滑冰㊁短道速滑㊁冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )㊂A.60种 B .120种C .240种D .480种解析:根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人组成一个小组,有C 25种选法;然后连同其余3人,看成4个元素,4个项目看成4个不同的位置,4个不同的元素在4个不同的位置的排列方法数为A 44㊂根据乘法原理,完成这件事共有C 25ˑA 44=240(种)不同的分配方案,选C ㊂例13 (2020年全国Ⅱ卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种㊂解析:因为4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,所以先取2名同学看作一组,选法有C 24种㊂现在可看成是3组同学分配到3个小区,分法有A 33种㊂根据分步乘法原理,可得不同的安排方法有C 24A 33=6ˑ6=36(种)㊂小结:解决排列组合混合问题,先选后排是最基本的指导思想,此法与相邻元素捆绑策略相似㊂八㊁元素相同问题隔板法例14 有10个运动员名额,分给7个班,每班至少1人,有多少种分配方案?解析:10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙㊂在9个空隙中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法,共有C 69=84(种)分法㊂小结:将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m -1块隔板,插入n 个元素排成一排的n -1个空隙中,所有分法数为C m -1n -1㊂九㊁正难则反总体淘汰法例15 从1,3,5,7,9这5个数中,每次取出2个不同的数分别记为a ,b ,共可得到l g a -l gb 的不同值的个数是( )㊂A.9 B .10 C .18 D .20解析:l g a -l g b =l gab,从1,3,5,7,9中任取2个数分别记为a ,b ,共有A 25=20(种)结果㊂其中l g13=l g 39,l g 31=l g 93,故共可得到不同值的个数为20-2=18,选C ㊂例16 某学校安排甲㊁乙㊁丙㊁丁4位同学参加数学㊁物理㊁化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲㊁乙不能参加同一学科,则不同的安排方法有种㊂解析:把4位同学分成3组,有C 24=6(种)方法,然后进行全排列,即有C 24A 33=36(种)方法,去掉甲㊁乙在一个组的情况,当甲㊁乙在一个组时,参加的方法有A 33=6(种)㊂故符合题意的安排方法有36-6=30(种)㊂小结:有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰㊂十㊁平均分组问题除法例17将5名同学分到甲㊁乙㊁丙3个小组,若甲小组至少2人,乙㊁丙组至少1人,则不同的分配方案种数为()㊂A.80B.120C.140D.50解析:先将5名同学分成3组,有两种分配方案,一是3组人数分别为2,2,1,分组方法有C25C23C11A22=15(种),然后将有2人的两组分给甲㊁乙或甲㊁丙,分配方法是15ˑ(A22+ A22)=60(种);二是3组人数分别为3,1,1,分组方法有C35C12C11A22=10(种),然后将有1人的两组分给乙㊁丙两组,分配方法有10ˑA22 =20(种)㊂共有60+20=80(种)方案,选A㊂小结:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为平均分的组数)避免重复计数㊂十一㊁合理分类与分步法例18甲㊁乙两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()㊂A.10种B.15种C.20种D.30种解析:由题意知比赛局数至少为3局,至多为5局㊂当局数为3局时,情况为甲或乙连赢3局,共2种㊂当局数为4局时,若甲赢,则前3局中甲赢2局,最后一局甲赢,共有C23=3(种)情况㊂同理,若乙赢,也有3种情况,共有3+3=6(种)情况㊂当局数为5局时,前4局,甲㊁乙各赢2局,最后1局胜出的人赢,共有2C24=12(种)情况㊂综上可知,共有2+6+12=20(种)情况㊂选C㊂十二㊁构造模型法例19马路上有编号为1,2,3,4,5, 6,7,8,9的9盏路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种㊂解析:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯有C35 =10(种)㊂小结:一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决㊂十三㊁分解与合成法例2030030能被多少个不同的偶数整除?解析:先把30030分解成质因数的乘积形式30030=2ˑ3ˑ5ˑ7ˑ11ˑ13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数有C05+C15+C25+C35+C45+C55=32(个)㊂例21正方体的8个顶点可连成多少对异面直线解析:我们先从8个顶点中任取4个顶点构成四面体,共有C48-12=58(个),每个四面体有3对异面直线,正方体中的8个顶点可连成3ˑ58=174(对)异面直线㊂例22从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有()㊂A.24对B.30对C.48对D.60对解析:(1)方法一:与正方体的一个面上的一条对角线成60ʎ角的对角线有8条,故共有8对,正方体的12条面对角线共有8ˑ12 =96(对),且每对均重复计算一次,故共有962 =48(对)㊂选C㊂方法二:正方体的面对角线共有12条,两条为一对,共有C212=66(对)㊂同一个面上的对角线不满足题意,对面中的对角线也不满足题意,一组平行平面共有6对不满足题意的对角线对数,所以不满足题意的共有3ˑ6=18(对)㊂从正方体六个面的对角线中任取两条作为一对,其中所成的角为60ʎ的共有66-18=48(对)㊂选C㊂小结:分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略㊂十四㊁复杂问题化归法例2325人排成5ˑ5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解析:将这个问题退化成9人排成3ˑ3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少种选法㊂这样每行必有1人,从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去㊂从3ˑ3方队中选3人的方法有C13C12C11=6(种)㊂再从5ˑ5方阵选出3ˑ3方阵便可解决问题㊂从5ˑ5方队中选取3行3列,有C35C35=100(种)选法,所以从5ˑ5方阵选不在同一行也不在同一列的3人,有C35C35C13C12C11=600(种)选法㊂例24用a代表红球,b代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+a b表示出来,如: 1 表示一个球都不取㊁ a 表示取出一个红球,而 a b 表示把红球和蓝球都取出来㊂以此类推,下列各式中,其展开式可用来表示从5个无区别的红球㊁5个无区别的蓝球㊁5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()㊂A.(1+a+a2+a3+a4+a5)(1+b5)㊃(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)㊃(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)解析:分三步:第一步,5个无区别的红球可能取出0个,1个, ,5个,则有(1+a+ a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个, ,5个,有(1+c)5种不同的取法㊂所以所求的取法种数为(1+a+a2+ a3+a4+a5)(1+b5)(1+c)5,选A㊂小结:处理复杂的排列组合问题时可以把一个问题退化成一个简单的问题,通过先解决这个简单问题,从而下一步解决原来的问题㊂十五㊁数字排序问题查字典法例25用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()㊂A.144个B.120个C.96个D.72个解析:首位填4时,比40000大的偶数有2ˑ4ˑ3ˑ2=48(个);首位填5时,比40000大的偶数有3ˑ4ˑ3ˑ2=72(个)㊂故共有48+72=120(个)数满足题意,选B㊂小结:数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数㊂十六㊁住店法例267名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数为㊂解析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将7名学生看作7家 店 ,五项冠军看作5名 客 ,每个 客 有7种住宿法,由乘法原理知有75种可能㊂小结:解决 允许重复排列问题 要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作 客 ,能重复的元素看作 店 ,再利用乘法原理直接求解㊂排列组合历来是高中学习中的难点,同学们只要对基本的解题策略熟练掌握,就可以选取不同的技巧来解决问题㊂对于一些比较复杂的问题,我们可以将几种策略结合起来应用,把复杂的问题简单化㊂请同学们对以上排列组合的几种常见的解题策略加以复习巩固,能举一反三,触类旁通,进而为后续的概率学习打下坚实的基础㊂(责任编辑徐利杰)。
苏教版2-1排列组合与概率--9.10排列组合综合问题(第一课时)
A A 2 2
1 2
1 2
分离排列问题:
引例(曾经作过的题): 4名运动员出 组成4×100米接力队,参加校运会,其 中甲,乙两人不同时跑中间两棒的安排 4 2 2 方法有多少种?间接法方便:A4 A2 A2 20. 例4:高二某班要从7名运动员出4名组成4×100 米接力队,参加校运会,其中甲,乙两人都不跑中 间两棒的安排方法有多少种? 分析:从7人中选出4人分别安排在第一、二、三、四 棒这个事,与组合和排列都有关,这里对甲、乙又有特 殊的要求,这就有几种不同的情况,所以要分类考虑, 先考虑4人的选取有几类?再考虑谁跑哪棒。 直接法:先组: 分三类。第一类,没有甲、乙,有 C54种;第二类,有甲无乙或有乙无甲,有 2C53种; 第三类,既有甲又有乙。有C52种。
结论:给出组名(非平均中未指明
各组个数)的要在未给出组名的种 数的基础上,乘以组数的阶乘。
分离排列问题:
例2:求不同的排法种数。 ①6男2女排成一排,2女相邻; ② 6男2女排成一排,2女不能相邻; ③4男4女排成一排,同性者相邻; ④4男4女排成一排,同性者不能相邻。
分析: ①由2女捆绑成一人与6男全排列,再把2女全排列, 有A77.A22种 “捆绑法” ②把6男2女8人全排列,扣去 2 女“ 相邻”就是2女“ 不相 邻”,所以有A88-A77.A22种。“排除法” ② 还可用“插空法”直接求解:先把6男全排列,再在6男相 邻的7个空位中排2女,所以共有A66.A72种.
3、在∠MON的边ON上有5个异于O点的点, OM上有4 个异于O点的点, 以这十个点(含O)为顶点,可以得到多 少个三角形?
C C C C C C 90
17种排列组合方法【优质PPT】
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五 位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置.
解:把1,5,2,4当作一个小集团与3排队,共有_A__22 _
种排法,再排小集团内部共有__A_22 _A_22 __种排法,由分步
计数原理共有_A _22_A_2_2 A__22 种排法.
小集团
1524
3
九正难则反,等价转化策略
例.从1楼2楼有17级楼梯,上楼时可以一步一级,也一步 两级,若要求11步走完这楼梯则,则有多少种不同的走法
三.排列组合混合问题先选后排策略
例.有5个不同的小球,装入4个不同的盒内,每盒 至少装一个球,共有多少不同的装法?
解:第一步从5个球中选出2个组成复合元共有C__52 种
方法.再把5个元素(包含一个复合元素)装入4个不
同的盒内有_A__44种方法.
C 根据分步计数原理装球的方法共有__52_A__44 种方法.
分析:由题意知,这11步中,6步,一步走两级,5步走 一级,因此,要确定一种走法只需确定这11步中哪6步
C 练走习两.级在即3×可4,的故方不格同中的,走从法A走为到B的最6短路径4有62多少种? 11
B
C 3 35 7
A
十一.构造模型策略
例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只 路灯,现要关掉其中的3盏,但不能关掉相邻的2盏 或3盏,也不能关掉两端的2盏,求满足条件的关灯 方法有多少种?
解决排列组合问题的常用方法
含顶点A的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法
根据分类计数原理和点A共面三点取法共有 种
(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点( 种取法)减去4点共面的取法
(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个.
(5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120个;
②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;
③千位数字是5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;
【变式】求不同的排法种数:
(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;
(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.
解:(1)是“相邻”问题,用捆绑法解决:
(2)是“不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决: 。另法:用捆绑与剔除相结合:
(2)排列数的定义:从 个不同元素中,任取 ( )个元素的所有排列的个数叫做从 个元素中取出 元素的排列数,用符号 表示。即 = ( )
(3)组合的概念:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
(4)组合数的概念:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数.用符号 表示.
2、从 五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.
排列、组合十七种解题方法(含答案)
排列、组合全部解题方法一、特殊元素和特殊位置优先策略例1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数?解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C ,然后排首位共有14C ,最后排其它位置共有34A 。
由分步计数原理得113434288C C A =。
练习:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,有多少不同的种法?二、相邻元素捆绑策略例2、 7人站成一排,其中甲乙相邻且丙丁相邻,有多少种不同的排法?解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法。
练习:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20种。
三、不相邻问题插空策略例3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行:第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法。
由分步计数原理,节目的不同顺序共有5456A A 种。
练习:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30种。
四、定序问题倍缩空位插入策略例4、7人排队,其中甲乙丙3人顺序一定,共有多少不同的排法? 解:(1)(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A 。
(2)(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有1种坐法,则共有47A 种方法。
1717解排列组合问题常用方法(二十种)
17 解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
第一课时 排列组合问题的解题方法(一)
第一课时 排列组合问题的解题方法(一)教学目标:掌握几类特殊的排列问题的解决技巧.教学重点:掌握“条件排列”、“集团排列”、“间隔排列”、“部分顺序排列”问题的解题技巧.教学难点:如何应用“技巧”解题.教学过程:【例析技巧】一.集团排列问题:部分元素必须安排在一起(相邻)的排列问题,称之为“集团排列”问题.解决这类问题,常用“捆绑法”,其方法是先排“集团”内部的元素,再把这个大“元素”与其它元素一起排列即可.例1 若7位同学站成一排(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种? 解:(1)先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有62621440A A ⋅=种. (2)方法同上,一共有55A 33A =720种. (3)解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法. 解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,所以,丙不能站在排头和排尾的排法有960)2(225566=⋅-A A A 种方法.解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有14A 55A 22A =960种方法. (4)将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:342342288A A A =(种)说明:对于相邻问题,常用“捆绑法”(先捆后松).二. 间隔排列问题:部分元素不能安排在一起(间隔)的排列问题,称之为“间隔排列”问题.解决这类问题,常用“插空法”,其方法是先排不需要间隔的元素,再将需要间隔的元素通过插空的方式插进来即可.例2 在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色.若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有( )A .55. B.56. C.46. D.45.解:没有红牌,一种方法;有一块红牌,让其插空,有18C 种方法;有二块红牌,让其插空,有27C 种方法;有三块红牌,让其插空,有36C 种方法;有四块红牌,让其插空,有45C 种方法;共有方法12348765155C C C C ++++=种.说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).例3 某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻的两孔不能同时显示,则这显示屏可以显示的不同信号的种数有 种.解:四个孔不亮,三个孔亮,相当于三个亮着的孔在四个不亮的孔之间插空,故有35222C ⨯⨯⨯=80种方法.三. 部分不同元素定序与部分相同元素排列问题:部分不同元素在排列前后的顺序固定不变(不一定相邻)的排列问题,称之为“定序排列”问题.解决这类问题的基本方法有三种.(1)“消序法”(有些地方叫“整体法”),即若有m n +个元素排成一列,其中有m 个元素之间的排列顺序不变,将这m n +个元素任意排成一列,共有m n m n A ++种不同的排法,其中未定序的n 个元素排在某一特定位置的排列的个数有m m A 种排法,但只有一个排列是我们所需要的排列,因而共有m n m n m mA A ++种不同的排法.类似地还可推广到一般情形,如有有m n k ++个元素排成一列,其中有m 个元素之间的排列顺序不变,且另外k 个元素之间的排列顺序也不变,则共有m n k m n k m k m kA A A ++++中不同的算法. (2)逐一插空法:先将定序的元素进行排列,再将其它元素逐一插入这组元素两端及中间.(3)优序法:先将所有位置中按“特殊元素”个数选出若干位置,并把这些特殊元素按规定顺序排上去,再将普通元素在其余位置上全排列.例4 若5男5女排成一排,按下列要求各有多少种排法(1)男女相间;(2)女生按指定顺序排列.解:(1)先将男生排好,有55A 种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有552A 种排法.故本题的排法有5555228800N A A =⋅=(种); (2)方法1(消序法):10510105530240A N A A ===; 方法2(逐一插空法):5个女生按序排列,有1中方法,5个男生逐个插空,有6,7,8,9,10种方法,共有67891030240⨯⨯⨯⨯=种方法.方法3(优序法):设想有10个位置,先将男生排在其中的任意5个位置上,有510A 种排法;余下的5个位置排女生,因为女生的顺序已经指定,所以她们只有一种排法.故本题的结论为510130240N A =⨯=(种).例5 今有2本相同的语文书,3本相同的数学书,4本相同的英语书排成一排,有多少种不同的排法?解:(消序法)有992342341260A A A A =种. 例6 一个楼梯共18个台阶,12步登完,可一步登一个台阶,也可一步登两个台阶,一共有多少种不同的走法?解:根据题意,要想12步登完,只能6个一步登一个台阶,6个一步登二个台阶.因此,把问题转化为“相同元素”的排列问题.因此有12126666924A A A =(种). 点评:对于部分不同元素定序排列以及相同元素的排列问题,可用优序法.【随堂练习】1.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B )A .40种B .60种C .100种D .120种2.安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有210种.(用数字作答)3.用数字0,1,2,3,4,5组成没有重复数字,且比20000大的五位偶数有( )A.288个B.240个C.144个D.126个4.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 390 种(用数字作答).5.某校开设9门课程供学生选修,其中,,A B C 三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 75 种不同选修方案.(用数值作答)6.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答)【课后作业】1.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有240种.(用数字作答)2.将数字1,2,3,4,5,6拼成一列,记第i 个数为i a (i =1,2,…,6),若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 30 种(用数字作答). 解:分两步:(1)先排1a ,3a ,5a ,当1a =2时,有2种;当1a =3时,有2种;当1a =4时,有1种,共有5种;(2)再排2a ,4a ,6a ,共有633=A 种,故不同的排列方法种数为5×6=30,填30.3.中韩两支围棋队各由8人组成,按事先排好的次序出场进行围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……,直到有一方全部被淘汰为止,另一方获胜,形成一个比赛过程.(1)已知中方动用了5名队员,取得了胜利,问这样的比赛过程有多少种?(2)求由中方第8位选手获得最后胜利的概率.解:(1)中方胜利时,双方共有8+5=13名队员参加了比赛,将他们按淘汰的顺序从左向右排列,则最右为中方5号,右第二个为韩方8号,从右第三个至最左,共11个位置上,有4个位置排中方队员,其余排韩方队员,每一种排法,对应一种比赛结果,故共有411330C =种.(2)714816415C p C ==. 4. 若7位同学站成一排(1)甲、乙两同学不能相邻的排法共有多少种?(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:(1)解法一:(排除法)3600226677=⋅-A A A ;解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002655=A A 种方法.(2)先将其余四个同学排好有44A 种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种. 【课后记】第二课时排列组合问题的解题方法(二)教学目标:掌握几类特殊的排列问题的解决技巧.教学重点:掌握“错位排列”、“圆桌排列”、“转化命题”等问题的解题技巧.教学难点:如何应用“技巧”解题.教学过程:【例析技巧】四.错位排列问题n 个不同元素排成一排,有m 个元素(m n ≤)不排在相应位置的排列种数共有: 112233123(1)n n n n m m n m n m n m n m n m n m A C A C A C A C A ---------+-+⋅⋅⋅+-.当n m =时,规定000!1A ==,这个公式亦成立.例7 五封标号为1~5的信放进5个编号为1~5的信笺里面,若信的编号与信笺的编号都不相同,一共有多少种不同放法.解:这是著名的信封问题,很多著名数学家都研究过.瑞士数学家欧拉按一般情况给出了一个递推公式:用A 、B 、C ……表示写着n 位友人名字的信封,a 、b 、c ……表示n 份相应的写好的信.把错装的总数记为()f n .假设把a 错装进B 里了,包含着这个错误的一切错装法分两类:(1)b 错装进A 里,这时每种错装的其余部分都与a 、b 、A 、B 无关,应有(2)f n -种错装法.(2)b 错装进A 、B 之外的信封,这时的装信工作实际是把(除a 之外的)信纸b 、c ……装入(除B 之外的)1n -个信封A 、C ……,显然这种错装方法有(1)f n -种.错装的其余部分都与a 、b 、A 、B 无关,应有(2)f n -种错装法.总之在a 错装入B 的错误之下,共有错装法(1)(2)f n f n -+-种.装入D ……的2n -种错误之下,同样都有(1)(2)f n f n -+-种错装法.因此()(1)[(1)(2)]f n n f n f n =--+-,显然(1)0f =,(2)1f =.由此可得(5)44f =.注意:用容斥原理亦可解决此题.普遍结论为错排公式1:1111()![1(1)]1!2!3!!n f n n n =-+-+⋅⋅⋅+-. 错排递推公式2: ()(1)[(1)(2)]f n n f n f n =--+-错排公式3:112233123(1)n n n n m m n mn m n m n m n m n m A C A C A C A C A ---------+-+⋅⋅⋅+-例8 有5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法.解析:上面两例实际上可以看成n 个不同元素中有m (m ≤n )错位排列的问题. 而这个问题是其特殊情况,即全错位排列问题.共有514233241505545352515044A C A C A C A C A C A -+-+-=种(注意000!1A ==)例9 同室四人各写一张贺年卡,先集中起来.然后每人从中拿一张别人送出的贺年卡.则四张贺年卡不同的分配方式有A.6种B.9种C.11种D.23种解析:由上面公式得:4132231404434241409A C A C A C A C A -+-+=种,∴选择B 答案.因此可得到全错位排列的公式:n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为:11223301230(1)n n n n n n n n n n n n n n A C A C A C A C A -------+-+⋅⋅⋅+-这实际上是公式112233123(1)n n n n m m n m n m n m n m n m n m A C A C A C A C A ---------+-+⋅⋅⋅+-的特殊情况.这个公式很有用,只要有特殊元素不站特殊位置的问题,都可以用这个公式很快得到解决,希望这个公式对大家有所帮助.五. 圆桌排列从n 个不同元素中不重复的取出m (1m n ≤≤)个元素排在一个圆周上,叫做这n 个不同元素的圆排列.如果一个m -圆排列旋转可以得到另一个m -圆排列,则认为这两个圆排列是相同的.特别的,当m n =时,n 个不同元素作成的圆排列总数为(1)!n -.证明:在圆周上任选一个位置排1a 有n 种排法,再选一个位置排2a 有1n -种排法,…,最后一个位置排n a 有1种排法.而这n 个人顺时针(或逆时针)挪动n 次位置都是同一种排列.所以共有!(1)!n n n=-种排法. 例10 有5对夫妇参加一场婚宴,他们被安排在一张10个座位的圆桌就餐,但是婚礼操办者并不知道他们彼此之间的关系,只是随机安排座位。
(完整版)排列组合问题常用方法(二十种)
解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解排列组合问题的17种基本方法(第一课时)
教学目的:
1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能使用解题策略解决简单的综合应用题。
提升学生解决问题分析问题的水平
3.学会应用数学思想和方法解决排列组合问题.
教学重点:掌握解决排列组合问题的常用策略;能使用解题策略解决简单的综合应用题。
教学难点:学会应用数学思想和方法解决排列组合问题.
教具:多媒体
教学过程:
一、复习巩固:
1分类、分步计数原理。
2 分类计数原理分步计数原理区别。
3. 解决排列组合综合性问题的一般过程
二、讲练结合:
(一)特殊元素和特殊位置优先法.
问题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆中,问有多少不同的种法?
练习:7个人排成一排照像,甲不站在中间也不站在两端,问可照多少张不同的照片?
(二)相邻问题捆绑法
问题:7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.?
练习:停车场上有一排七个停车位,现有四辆汽车需要停放,若要使三个空位连在一起,则停放方法数()
(三)不相邻问题插空法
问题:7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
练习:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
(四)定序问题倍缩、空位插入法
问题:7人排队,其中甲乙丙3人顺序一定共有多少不同的排法
练习:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
(五)多排问题直排法
问题:12个人排成三排,每排4人,问;
(1)有多少种不同的排法?
(2)甲只能站在中间一排,乙只能站在最后一排,有多少种不同的排法?
练习:8人排成前后两排,每排4人,其中甲乙在前排,丁在后排,共有多少排法?
(六)重排问题求幂法
问题:把6名实习生分配到7个车间实习,共有多少种不同的分法?
练习:某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法有()种。
(七)环排问题线排法
问题:5人围桌而坐,共有多少种坐法?
练习:6颗颜色不同的钻石,可穿成几种钻石圈?
四、小结:
本节课,我们对相关排列组合的几种常见的解题策略加以复习巩固。
排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。
同学们只有对基本的解题策略熟练掌握。
根据它们的条件,我们就能够选择不同的技巧来解决问题.对于一些比较复杂的问题,我们能够将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。
五、课后作业:作业手册。