人教版九年级数学下册 28.1 特殊角的三角函数值 同步练习题
人教版九年级数学下册特殊角的三角函数值同步练习题
28.1锐角三角函数第3课时 特殊角的三角函数1. 3tan30°的值等于( ) A. 3 B .3 3 C.33 D.322. 计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5 3D .53.如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( ) A.12 B.22 C.32D .1第3题图 第5题图 4.如果在△ABC 中,sin A =cos B =22,则下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形5.如图,当太阳光线与水平地面成30°角时,一棵树的影长为24 m ,则该树高为( ) A .8 3 m B .12 3 m C .12 2 m D. 12 m6.(1)3cos30°的值是____.(2)计算:sin30°·cos30°-tan30°=____(结果保留根号).(3)cos 245°+tan30°·sin60°=____. 7.根据下列条件,求出锐角A 的度数. (1)sin A =32,则∠A =____;(2)cos A =12,则∠A =____; (3)cos A =22,则∠A =____;(4)cos A =32,则∠A =____. 8.如图是引拉线固定电线杆的示意图,已知CD ⊥AB ,CD =3 m ,∠CAD =∠CBD =60°,求拉线AC 的长.9.计算:(1)cos45°sin45°+2sin60°tan60°-1tan30°+tan45°; (2)sin45°+cos30°3-2cos60°-sin60°(1-sin30°).10.已知α是锐角,且sin(α+15°)=32,计算8-4cos α-(π-3.14)0+tan α+⎝ ⎛⎭⎪⎫13-1的值.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..◆类型二简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
九年级数学下册《第二十八章 解直角三角形及其应用》练习题附答案解析-人教版
九年级数学下册《第二十八章解直角三角形及其应用》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.图,在Rt△ABC中△ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F,若BC=4,sin△CEF= 3,则△AEF的面积为()5A.3B.4C.5D.62.小丽在小华北偏东40°的方向,则小华在小丽的()A.南偏西50°B.北偏西50°C.南偏西40°D.北偏西40°3.如图,小明在距离地面30米的P处测得A处的俯角为15︒,B处的心角为60︒,若斜面坡度为,则斜面AB的长是()米.A.B.C.D.4.如图,某渔船正在海上P处捕鱼,先向北偏东30°的方向航行10km到A处.然后右转40°再航行到B处,在点A的正南方向,点P的正东方向的C处有一条船,也计划驶往B处,那么它的航向是()A .北偏东20°B .北偏东30°C .北偏东35°D .北偏东40°5.如图,某建筑物的顶部有一块宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°,已知斜坡AB 的坡角为30°,10AB =米,15AE =米,则宣传牌CD 的高度是( )米A .20-B .20+C .15+D .56.如图,已知正六边形ABCDEF 内接于半径为r 的O ,随机地往O 内投一粒米,落在正六边形内的概率为( )A B C D .以上答案都不对7.如图,小明利用标杆BE 测量建筑物DC 的高度,已知标杆BE 的长为1.2米,测得AB =85米,BC =425米,则楼高CD 是( )A .6.3米B .7.5米C .8米D .68.如图,点E 是⊥ABCD 的边AB 上一点,过点E 作EF ∥BC ,交CD 于F ,点P 为EF 上一点,连接PB 、PD .下列说法不正确的是( )A .若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上B .若AE :EB =2:3,EP :PF =1:2,则S △BEP :S △DFP =3:4C .若S △BEP =S △DFP ,则点P 在AC 上D .若点P 在BD 上,则S △BEP =S △DFP9.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米10.如图,等腰Rt △ABC 中⊥A =90°,AB =AC ,BD 为△ABC 的角平分线,若2CD =,则AB 的长为( )A.3 B .2 C .4 D 2+二、填空题11.在Rt ABC 中90C ∠=︒,有一个锐角为60︒,6AB =若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______.12.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若⊥O =90°,OA =2,则阴影部分的面积为______.13.如图,在一次数学实践活动中小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A的仰角为30︒,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.14.如图,在直角坐标系中点A 的坐标为(0,点B 为x 轴的正半轴上一动点,作直线AB ,⊥ABO 与⊥ABC 关于直线AB 对称,点D ,E 分别为AO ,AB 的中点,连接DE 并延长交BC 所在直线于点F ,连接CE ,当⊥CEF 为直角时,则直线AB 的函数表达式为__.15.如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=≠的图象经过点B .若OC AC =,则k =________.16.在⊥ABC 中AB =6AC =且45B ∠=,则BC =______________.17.如图,大坝横截面的迎水坡AB 的坡比为1:2,(即BC :AC=1:2),若坡面AB 的水平宽度AC 为12米,则斜坡AB 的长为________米.18.如图,等边ABC 中115,125AOB BOC ∠=︒∠=︒,则以线段,,OA OB OC 为边构成的三角形的各角的度数分别为______________________________.三、解答题19.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?20.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7521.如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B之间的距离. 1.41 1.73≈结果精确到0.1m )参考答案与解析1.C【分析】连接BF ,由已知CE AE BE ==得到A FBA ACE ==∠∠∠,再得出CEF ∠与CBF ∠的关系,由三角函数关系求得CF 、BF 的值,通过BF AF =,用三角形面积公式计算即可.【详解】解:连接BF⊥CE 是斜边AB 上的中线 ⊥12CE AE BE AB ===(直角三角形斜边上的中线等于斜边的一半)⊥A FBA ACE ==∠∠∠又⊥90BCA BEF ==︒∠∠在⊥ABC 中180902CBF ACB A ABF A =︒-∠-∠-∠=︒-∠∠在⊥AEC 中180902CEF AEF A ACE A =︒-∠-∠-∠=︒-∠∠⊥CEF CBF ∠=∠3sin sin 5CBF CEF ∴∠=∠=4BC =,设3,5CF x BF x ==则222BC CF BF +=,即()()222435x x +=解得1x =(负值舍掉)3,5CF BF ∴== ⊥EF 是AB 的垂直平分线, ⊥5BF AF ==11·541022AFB S AF BC ∴==⨯⨯=△ 152AEF ABF S S ∴==△△故选:C .【点睛】本题综合考查了垂直平分线的性质、直角三角形和等腰三角形的性质、勾股定理及三角函数等相关知识,熟练利用相关定理和性质进行计算是解决本题的关键.2.C【分析】画出示意图,确定好小丽和小华的的方向和位置即可.【详解】解:如图所示,当小丽在小华北偏东40°的方向时,则小华在小丽的南偏西40°的方向.故选:C【点睛】本题考查了方位角的知识点,确定好物体的方向和位置是解题的关键.3.B【分析】过点A 作AF BC ⊥于点F ,根据三角函数的定义得到30ABF ∠=︒,根据已知条件得到3045HPB APB ∠∠=︒=︒,求得60HBP ∠=︒,解直角三角形即可得到结论.【详解】如图所示:过点A 作AF BC ⊥于点F斜面坡度为AF tan ABF BF ∠∴=== 30ABF ∠∴=︒在P 处进行观测,测得山坡上A 处的俯角为15︒,山脚B 处的俯角为60︒3045HPB APB ∠∠∴=︒=︒,60HBP ∠∴=︒9045PBA BAP ∠∠∴=︒=︒,PB AB ∴=303060PH PH m sin PB PB =︒===,解得:)PB m =故AB =故选:B .【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,正确得出PB AB =是解题关键.4.C【分析】连接BC ,由锐角三角函数定义得AC A = km ,则AC =AB ,再由等腰三角形的性质得⊥ACB =⊥ABC =35°,即可得出结论.【详解】解:如图,连接BC由题意得:⊥ACP =⊥ACD =90°,⊥P AC =30°,P A =10km ,⊥BAE =40°,AB =⊥⊥BAC =180°—⊥P AC —⊥BAE =180°—30°—40°=110°⊥cos⊥P AC =ACPA =cos30°=⊥AC =P A =×10= km⊥AC =AB⊥⊥ACB =⊥ABC =12×(180°—⊥BAC )=12×(180°—110°)=35°即B 处在C 处的北偏东35°方向故选:C .【点睛】本题考查了解直角三角形的应用—方向角问题,等腰三角形的性质,锐角三角函数定义等知识,由锐角三角函数定义求出AC 的长是解题的关键.5.A【分析】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,在Rt ⊥ABG 中由已知可求得BG 、AG 的长,从而可易得EF 及EG 、BF 的长度,由等腰直角三角形的性质可得CF 的长度,在Rt ⊥DAE 中由正切函数关系可求得DE 的长度,从而可求得CD 的长度.【详解】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,如图在Rt ⊥ABG 中⊥BAG =30゜⊥152BG AB ==米,cos3010AG AB =︒==⊥15)EG AG AE =+=米⊥BG ⊥AE ,BF ⊥ED ,AE ⊥ED⊥四边形BGEF 是矩形⊥EF =BG =5米,15)BF EG ==米⊥⊥CBF =45゜,BF ⊥ED⊥⊥BCF =⊥CBF =45゜⊥15)CF BF ==米在Rt ⊥DAE 中⊥DAE =60゜,AE =15米⊥tan DE AE DAE =∠=米)⊥155(20CD CF EF DE =+-=+-=-米故选:A【点睛】本题考查了解直角三角形的实际应用,理解坡角、仰角的含义,构造辅助线得到直角三角形是解题的关键.6.A【分析】连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得⊥OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出⊥OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.【详解】解:如图:连接OB ,过点O 作OH ⊥AB 于点H⊥六边形ABCDEF 是正六边形⊥⊥AOB =60°⊥OA =OB =r⊥⊥OAB 是等边三角形⊥AB =OA =OB =r ,⊥OAB =60°在Rt OAH △中sin OH OA OAB r =⋅∠==⊥21122OAB S AB OH r =⋅==△⊥正六边形的面积226== ⊥⊥O 的面积=πr 2⊥米粒落在正六边形内的概率为:222rπ 故选:A .【点睛】本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出⊥OAB 的面积是解决问题的关键.7.B【分析】先判断出⊥ABE ⊥⊥ACD ,再根据相似三角形对应边成比例解答.【详解】⊥AB =85,BC =425 ⊥AC =AB +BC =10⊥BE ⊥AC ,CD ⊥AC⊥BE ⊥CD⊥AB :AC =BE :CD ⊥85:10=1.2:CD⊥CD =7.5米.故选:B .【点睛】本题只要是把实际问题抽象到相似三角形中利用相似三角形的相似比,列出方程,通过解方程求出建筑物的高度,体现了方程的思想.8.D【分析】根据平行四边形的性质和判定进行判断即可.【详解】解:A 、若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上,说法正确;B 、若AE :EB =2:3,EP :PF =1:2则S △BEP :S △DFP =3:4,说法正确;C 、过点P 作GH AB ∥,分别交AD ,BC 于G ,H⊥GH AB ∥ GA HB ∥⊥四边形ABHG 是平行四边形同理:四边形CDGH 、四边形BHPE ,四边形DGPE 都是平行四边形 ⊥12BEP BHPE S S =△ 12DFP DGPF S S =△又BEP DFP S S =△△⊥BEPH DGPF SS = ⊥ABHG ADFE S S =同理:BCFE CDGH S S =⊥点P 在AC 上,C 说法正确;D 、若点P 在BD 上,不能得出EP =PF ,所以S △BEP 不一定等于S △DFP ,说法错误;故选:D .【点睛】此题考查平行四边形的判定和性质,掌握平行四边形的性质是解题的关键.9.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中4==sin sin 40AP BP ABP ∠︒ 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米) 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.10.D【分析】过点D 作DE ⊥BC 于点E ,设AB =AC =x ,则AD =x -2,根据等腰Rt △ABC 中90,A AB AC ∠=︒= 得到⊥C =45°,根据BD 为△ABC 的角平分线,⊥A =90°,DE ⊥BC ,推出DE =AD =x -2,运用⊥C 的正弦即可求得.【详解】解:过点D 作DE ⊥BC 于点E ,则⊥DEB =⊥DEC =90°设AB =AC =x ,则AD =x -2⊥等腰Rt △ABC 中,⊥A =90°,AB =AC ,⊥⊥C =(180°-⊥A )=45°⊥BD 为△ABC 的角平分线⊥DE =AD =x -2⊥sin sin 452DE C CD ︒===⊥22x -⊥2x ,即2AB =.故选D .【点睛】本题主要考查了等腰直角三角形,角平分线,解直角三角形,熟练掌握等腰直角三角形的性质,角平分线的性质,正弦的定义和45°的正弦值,是解决问题的关键.11.92或9或3 【分析】分⊥ABC =60、⊥ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当⊥ABC =60°时,则⊥BAC =30°⊥132BC AB ==⊥AC ==当点P 在线段AB 上时,如图⊥30PCB ∠=︒⊥⊥BPC =90°,即PC ⊥AB⊥9cos 2AP AC BAC =⋅∠==;当点P 在AB 的延长线上时⊥30PCB ∠=︒,⊥PBC =⊥PCB +⊥CPB⊥⊥CPB =30°⊥⊥CPB =⊥PCB⊥PB =BC =3⊥AP =AB +PB =9;当⊥ABC =30°时,则⊥BAC =60°,如图⊥132AC AB ==⊥30PCB ∠=︒⊥⊥APC =60°⊥⊥ACP =60°⊥⊥APC =⊥P AC =⊥ACP⊥⊥APC 为等边三角形⊥P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3 【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.12.3π【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2 AOB ∠=90°,将扇形AOB 沿OB 方向平移90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形 OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯3π=故答案为:3π+【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.13.(20m +【分析】过D 作DF ⊥BC 于F ,DH ⊥AB 于H ,设DF =x m ,CF m ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH DH ,即可求解. 【详解】解:过D 作DF ⊥BC 于F ,DH ⊥AB 于H⊥DH =BF ,BH =DF⊥斜坡的斜面坡度i =1⊥:DF CF =设DF =x m ,CFm⊥CD 220x ==⊥x =10⊥BH =DF =10m ,CF =⊥DH =BF =(m )⊥⊥ADH =30°⊥AH 10=+m ) ⊥AB =AH +BH =20103(m )故答案为:(20m +【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.14.y【分析】证明⊥ABO ⊥⊥ABC ,于是可知⊥CBA =⊥ABO =30°,得出OB =3即可求出直线AB 的函数表达式.【详解】解:⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ACB =⊥AOB =90°⊥点E 是AB 的中点⊥CE =BE =EA⊥⊥EAC =⊥ECA⊥⊥ECA +⊥ECF =90°,⊥ECF +⊥CFE =90°⊥⊥CFE =⊥BAC而点D ,E 分别为AO ,AB 的中点⊥DF ∥OB⊥⊥CFE =⊥CBO =2⊥CBA =2⊥ABO⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ABO ⊥⊥ABC⊥⊥OAB =⊥CAB =2⊥ABO⊥⊥ABO =30°而点A 的坐标为(0,即OAAB ∴=⊥OB =3即点B 的坐标为(3,0)于是可设直线AB 的函数表达式为y =kx +b ,代入A 、B 两点坐标得30b k b ⎧=⎪⎨+=⎪⎩解得kb故答案为y【点睛】本题考查的是三角形的全等,并考查了用待定系数法求函数解析式,找到两个已知点的坐标是解决本题的关键.15.3【分析】过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,先证四边形CDEB 为矩形,得出CD =BE ,再证Rt △COD ⊥Rt △BAE (HL ),根据S 平行四边形OCBA =4S △OCD =2,再求S △OBA =112OCBA S =平行四边形即可. 【详解】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E⊥CD ⊥BE⊥四边形ABCO 为平行四边形⊥CB OA ∥ ,即CB DE ∥,OC =AB⊥四边形CDEB 为平行四边形⊥CD ⊥OA⊥四边形CDEB 为矩形⊥CD =BE⊥在Rt △COD 和Rt △BAE 中OC AB CD EB =⎧⎨=⎩⊥Rt △COD ⊥Rt △BAE (HL )⊥S △OCD =S △ABE⊥OC =AC ,CD ⊥OA⊥OD =AD⊥反比例函数1yx=的图象经过点C⊥S△OCD=S△CAD=12⊥S平行四边形OCBA=4S△OCD=2⊥S△OBA=11 2OCBAS=平行四边形⊥S△OBE=S△OBA+S△ABE=13 122 +=⊥3232k=⨯=.故答案为3.【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.16.3或3【分析】画出图形,分⊥ABC为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当⊥ABC为锐角三角形时,如图1所示:过A点作AH⊥BC于H⊥⊥B=45°⊥⊥ABH为等腰直角三角形⊥363322ABAH BH在Rt⊥ACH中由勾股定理可知:2236273CH AC AH⊥333BC BH CH.情况二:当⊥ABC为钝角三角形时,如图2所示:由情况一知:363322ABAH BH2236273CH AC AH⊥333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将⊥ABC 分成锐角三角形或钝角三角形分类讨论.17.【分析】根据坡面AB 的坡比以及AC 的值,求出BC ,再利用勾股定理即可求出斜面AB 的长.【详解】解:⊥大坝横截面的迎水坡AB 的坡比为1:2,AC=12米⊥1212BC BC AC == ⊥BC=6⊥AB =故答案为:【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,能根据坡度求出BC 是解题关键. 18.55°,60°,65°.【分析】通过旋转AOB 至CDB △,可得BOD 是等边三角形,将,,OA OB OC 放在一个三角形中进而求出各角大小。
人教版九年级数学下册第二十八章28.1第3课时 特殊角的三角函数值
30° ,∠B= 120° .
14. 如图, 直线 MN 与⊙O 相切于点 M, ME=EF 1 且 EF∥MN,则 cos∠E= 2 .
15. 计算:(1)(2018· 宜宾)sin30° +(2018- 3)0- 2-1+|-4|;
1 1 解:原式=2+1-2+4=5;
24 (2) 2(2cos45° -sin60° )+ 4 ;
A.15°
B.30° C.45°
D.60°
10. (2018· 陕西)如图, 在△ ABC 中, AC=8, ∠ABC =60° ,∠C=45° ,AD⊥BC,垂足为 D,∠ABC 的平 分线交 AD 于点 E,则 AE 的长为( C )
4 A.3
2
B.2
8 2 C.3
2
D.3
2
【解析】由题意易得∠ABE=∠DBE=∠BAE= 30° ,∠ACD=∠CAD=45° ,∴AE=BE,AD=CD, ∵AC=8,∴AD=8cos45° =4 =AE+AEsin30° =4 2,又 AD=AE+DE
a-b a2-b2 16. 先化简,再求值: ÷2 2 - 1. a+2b a +4ab+4b 其中 a=2sin60° -tan45° ,b=1.
a-b (a+b)(a-b) 解:原式= ÷ -1 a+2b (a+2b)2 a-b (a+2b)2 = × -1 a+2b (a+b)(a-b) a+2b b = -1= . a+b a+b 当 a=2sin60° -tan45° = 3-1,b=1 时, 1 1 3 原式= = =3. ( 3-1)+1 3
8 2 2,∴AE= 3 .
11. 已知 α 为锐角,若 3tan(α+20° )=3,则 α = 40° .
28、1 锐角三角函数——特殊角的三角涵数应用及用计算器求角的三角涵数值 —21学年数学九年级下册
求∠A的度数; B
解: 在图中,
sin A BC 3 2 , AB 6 2
6
3
A 45;
A
C
(2)如图,AO是圆锥的高,OB是底面半径,AO= 3 OB,
求 的度数.
解: 在图中,
A
tan AO 3OB 3 ,
OB OB
60.
O B
当堂练习
1. 3 tan(α+20°)=1,锐角α的度数应是( D ) A.40° B.30° C.20° D.10°
DE⊥AB于点E,BC=1,AC= 3 ,则∠D的度数
为 30 .
状元成才路
课堂小结
锐角 锐角A 三角函数
sin A
cos A
tan A
30°
1 2 3 2 3 3
45°
2 2 2 2 1
60°
3 2 1 2 3
课堂小结
用计算器求 锐角三角函 数值及锐角
用计算器求锐角 的三角函数值或 角的度数
利用计算器 探索锐三角 函数的新知
不同的计算器操作步 骤可能有所不同
sin = cos(90? ) cos = sin(90? )
sin2 + cos2 1 tan tan(90 ) 1
正弦值随着角度的增大(或减小)而增大(或减小); 余弦值随着角度的增大(或减小)而减小(或增大); 正切值随着角度的增大(或减小)而增大(或减小).
tan 30 a 3 3a 3
sin 60 3a 3 2a 2
cos 60 a 1
2a 2
60°
tan 60 3a 3 a
设两条直角边长为a,则斜边长= a2 a2 2a
sin 45 a 2 2a 2
九年级数学下册常考点微专题提分精练(含特殊角三角函数值的混合运算中考最新模拟30道(解析版)
专题25 含特殊角三角函数值的混合运算中考最新模拟30道1.计算:()1013tan30132π-⎛⎫+︒--- ⎪⎝⎭;2()01 3.14tan 603π⎛⎫---︒ ⎪⎝⎭.3.计算01(2)1tan602π︒⎛⎫---- ⎪⎝⎭4.计算:100()3tan 30(13π---+5.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan 245°+34tan 230°-cos60°.614cos 45()|2|2-︒++-7.计算:10()2cos 451(3.14)4π-︒-+-+-. 45(2017-直接利用绝对值的性质以及特殊角的三角函数值和完全平方公式分别化简求出答案.45(2017-9.计算:01(24602sin π⎛⎫-+︒ ⎪⎝⎭. 2cos6012+-原式利用负整数指数幂法则,【答案】-1【分析】直接利用绝对值、算术平方根、零指数幂的性质以及特殊角的三角函数值分别化简13.计算 01(12cos302︒⎛⎫++⋅ ⎪⎝⎭15.计算:022tan 60( 3.14)()2π--︒--+-+二次根式的化简是解决本题的关键.16.计算:(12)﹣1﹣2tan45°+4sin60°17.计算:10()(1)2cos6092π-++-+ 2cos609+18.计算:40111 1.414)2sin 602︒⎛⎫-++-- ⎪⎝⎭19101()2cos60(2π)2---︒+-.【答案】3.【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.【详解】原式31213=+-+=【点睛】本题考查实数的混合运算,解题关键是熟练掌握运算法则.21.计算:1145tan 603-⎛⎫+-- ⎪⎝⎭°°22.计算:02(2020)sin 45()2︒--+- 12sin 45(2︒-【点睛】此题考查计算能力,掌握零次幂的定义,23.计算:222cos602sin 45tan 60sin 303︒-︒+︒-︒.24.计算:012sin 45(2)()3π-︒+--.252012cos30()2-+︒+-.26.计算:1201tan 452cos60(2)2π-⎛⎫︒-︒+--- ⎪⎝⎭=3.【点睛】本题考查了特殊角三角函数、0指数幂、负整数指数幂等知识,熟知相关知识点是解题关键.27.计算:(13)﹣2﹣(π)02|+4tan60°.28.计算)013460.2cos ⎛⎫+--︒ ⎪⎝⎭ 29.计算()0cot 3012sin 60cos60tan 30︒--︒+︒+︒.【点睛】此题主要考查不同特殊角三角函数值的混合运算,解题的关键是熟知特殊三角函数值.30.计算:2tan452sin60 cot302cos45︒-︒︒-︒.。
【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)
一、选择题1.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒C .75︒D .105︒C解析:C 【分析】根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解. 【详解】解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭,1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =,解得:60A ∠=︒,45B ∠=︒, 则180604575C ∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键.2.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .(5352mD .()535m D解析:D 【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°, ∴BD=BC=5,设AC=x m ,则AB=(x +5)m , 在Rt △ABD 中,tan60°=AB BD, 则535x +=, 解得:535x =-, 即AC 的长度是()535m -; 故选:D . 【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ) 题目测量铁塔顶端到地面的高度测量目标示意图相关数据10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒A解析:A 【分析】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,根据矩形的性质得到HE =CD =10,CE =DH ,求得FH =x−10,得到CE =x−10,根据三角函数的定义列方程即可得到结论. 【详解】过D 作DH ⊥EF 于H , 则四边形DCEH 是矩形, ∴HE =CD =10,CE =DH , ∴FH =x−10,∵∠FDH =α=45°, ∴DH =FH =x−10, ∴CE =x−10,∵tanβ=tan50°=EF CE =-10x x , ∴x =(x−10)tan 50°, 故选:A . 【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒ B .22sin 45 cos 451︒+︒= C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒A解析:A 【分析】根据特殊角的三角函数值、二次根式的运算即可得. 【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 45122︒+︒=+=+=⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A . 【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.如图,河坝横断面迎水坡AB 的坡比为1BC =3m ,则AB 的长度为( )A .6mB .33mC .9mD .63m A解析:A 【分析】根据坡比的概念求出AC ,根据勾股定理求出AB . 【详解】解:∵迎水坡AB 的坡比为1:3, ∴13BC AC =,即313AC =, 解得,AC =33, 由勾股定理得,AB 22BC AC =+=6(m ),故选:A . 【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 6.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B 3米C .2米D .1米B解析:B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可. 【详解】解:设点P 到直线AB 距离PC 为x 米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B . 【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.7.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1--D解析:D 【分析】根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论. 【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 2∴2,BD ⊥x 轴,AE=BE ,∠BAE=45° ∴AE=BE=AB·sin ∠BAE=1 ∴OE=OA +AE=2 ∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1) 故选D . 【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键. 8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .1313B 解析:B 【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解. 【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABCSAC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B . 【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A 21B 2﹣1C 2D .12B 解析:B 【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值. 【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x ,()22.5==211+2AC xC tan taD xn D =∠=-︒故选:B. 【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.二、填空题11.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC解析:3或3 【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可. 【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒, ∴C ,A ,P 共线,BC BP AC AP ===, ∴△BPC 是等边三角形,当D′是PB 中点时,AD′=12BP=AC=3,此时ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒=3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件, ∴CD″=3,∴满足条件的CD 的长为3或3. 故答案为:3或3. 【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题.12.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。
2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数专题练习试题(含答案解析)
人教版九年级数学下册第二十八章-锐角三角函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正方形ABCD 中、E 是BC 的中点,F 是CD 上的一点,AE EF ⊥,则下列结论:(1)1sin 2BAE ∠=;(2)2BE AB CF =⋅;(3)3CD CF =;(4)ABE AEF △△.其中结论正确的个数有( )A .1个B .2个C .3个D .4个2、如图所示,九(二)班的同学准备在坡角为α的河堤上栽树,要求相邻两棵树之间的水平距离为8 m ,那么这两棵树在坡面上的距离AB 为( )A .8cos αmB .8cos α mC .8sina mD .8sin αm 3、如图,某停车场入口的栏杆AB ,从水平位置绕点O 旋转到A B ''的位置,已知AO 的长为5米.若栏杆的旋转角AOA α'∠=,则栏杆A 端升高的高度为( )A .5sin α米B .5cos α米C .5sin α米D .5cos α米4 )A . 2B .32 C .D .25、如图,在33⨯的网格中,A ,B 均为格点,以点A 为圆心,AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则tan BAC ∠的值是( )A .12B .255 C .53D .23 6、如图①,5AB =,射线AM BN ∥,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ AB ∥.设AP x =,QD y =.若y 关于x 的函数图象(如图②)经过点()9,2E ,则cos B 的值等于( )A.25B.12C.35D.7107、边长都为4的正方形ABCD和正EFG如图放置,AB与EF在一条直线上,点A与点F重合,现将EFG沿AB方向以每秒1个单位长度的速度匀速运动,当点F与点B重合时停止,在这个运动过程中,正方形ABCD和EFG重合部分的面积S与运动时间t的函数图象大致是()A.B.C.D.8、如图所示,某村准备在坡角为 的山坡上栽树,要求相邻两棵树之间的水平距离为m(m),那么这两棵树在坡面上的距离AB为()A .m cos α(m )B .co m s α(m )C .m sin α(m )D .sin mα(m )9、在ABC 中,(22cos 1tan 0A B +-= ,则ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 10) A .2 B .3 C .4 D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图公路桥离地面的高度AC 为6米,引桥AB 的水平宽度BC 为24米,为降低坡度,现决定将引桥坡面改为AD ,使其坡度为1:6,则BD 的长____.2、半径为3cm 的圆内有长为的弦,则此弦所对的圆周角的度数为______.3、已知斜坡AB 的水平宽度为12米,斜面坡度为AB 的长为________;坡角为________.4、如图,点A 、B 、C 都在格点上,则∠CAB 的正切值为______.5、已知正方形ABCD 中,AB =2,⊙A 是以A 为圆心,1为半径的圆,若⊙A 绕点B 顺时针旋转,旋转角为α(0°<α<180°),则当旋转后的圆与正方形ABCD 的边相切时,α=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知反比例函数1k y x=1(0)k >与一次函数21y k x =+2(0)k ≠相交于A 、B 两点,AC x ⊥轴于点C .若OAC ∆的面积为1,且tan 2AOC ∠=.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 在什么范围取值时,使12(1)0k k x x -+>2、计算:()1112cos30---︒3、先化简,再求代数式21()(1)11a a a a -⋅--+的值,其中tan 602sin30a ︒︒=-. 4、如图,某学校新建了一座雕塑CD ,小林站在距离雕塑3.5米的A 处自B 点看雕塑头顶D 的仰角为60°,看雕塑底部C 的仰角为45°,求雕塑CD 的高度.(最后结果精确到0.1米,参考数据:1.7)5、如图,四边形ABCD内接于⊙O,AB为直径,连结AC,BD交于点E,弦CF⊥BD于点G,连结AG,且满足∠1=∠2.(1)求证:四边形AGCD为平行四边形.(2)设tan F=x,tan∠3=y,①求y关于x的函数表达式.②已知⊙O的直径为y=34,点H是边CF上一动点,若AF恰好与△DHE的某一边平行时,求CH的长.③连结OG,若OG平分∠DGF,则x的值为.---------参考答案-----------一、单选题1、B【分析】首先根据正方形的性质与同角的余角相等证得:△BAE∽△CEF,则可证得②正确,①③错误,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,即可求得答案.【详解】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴AB CE BE CF,∵BE=CE,∴BE2=AB•CF.∵AB=2CE,∴CF=12CE=14CD,∴CD=4CF,故②正确,③错误,∴tan ∠BAE =BE :AB =12,∴∠BAE ≠30°,1sin 2BAE ∠≠故①错误; 设CF =a ,则BE =CE =2a ,AB =CD =AD =4a ,DF =3a ,∴AE =,EF ,AF =5a ,∴AE AF ==,BE EF == ∴AE BE AF EF=, ∵∠ABE =∠AEF =90°,∴△ABE ∽△AEF ,故④正确.故选:B .【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质.熟练掌握相似三角形的判定与性质是解题的关键.2、B【分析】运用余弦函数求两树在坡面上的距离AB .【详解】解:∵坡角为α,相邻两树之间的水平距离为8米, ∴两树在坡面上的距离8cos AB α=(米). 故选:B .【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力.3、C【分析】过点A ′作A ′C ⊥AB 于点C ,根据锐角三角函数的定义即可求出答案.【详解】解:过点A ′作A ′C ⊥AB 于点C ,由题意可知:A ′O =AO =5,∴sinα=A CA O'', ∴A ′C =5sinα,故选:C .【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.4、B【分析】先分别求解特殊角的三角函数值,再代入运算式进行计算即可.【详解】22323212221322=+- 32=故选B【点睛】本题考查的是特殊角的三角函数值的混合运算,正确的记忆特殊角的三角函数值是解本题的关键.5、B【分析】利用CD AB ∥,得到∠BAC =∠DCA ,根据同圆的半径相等,AC =AB =3,再利用勾股定理求解,CD 可得tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD =225,CD AC AD在Rt △ACD 中,tan ∠ACD =AD CD∴tan ∠BAC =tan ∠ACD故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.6、D【分析】由题意可得四边形ABQP 是平行四边形,可得AP =BQ =x ,由图象②可得当x =9时,y =2,此时点Q 在点D 下方,且BQ =x =9时,y =2,如图①所示,可求BD =7,由折叠的性质可求BC 的长,由锐角三角函数可求解.【详解】解:∵AM ∥BN ,PQ ∥AB ,∴四边形ABQP 是平行四边形,∴AP =BQ =x ,由图②可得当x =9时,y =2,此时点Q 在点D 下方,且BQ =x =9时,QD =y =2,如图①所示,∴BD =BQ ﹣QD =x ﹣y =7,∵将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,∴AC ⊥BN ,∴BC =CD =12BD =72,∴cos B =BC AB =725=710, 故选:D .【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识.理解函数图象上的点的具体含义是解题的关键.7、C【分析】由题意知当t =2时,三角形和正方形重合一半面积,由此可列0≤t ≤2和2≤t ≤4分段函数.【详解】当0≤t ≤2时,设运动时GF 与AD 交于点H∵四边形ABCD 为正方形,三角形EFG 为正三角形∴∠FAH =90°,∠AFH =60°∴AF =t ,AH =tan 60°·AF21122AHF S S AH AF t ==⋅⋅=⋅=△重合,开口向上当2≤t ≤4时,设运动时GE 与AD 交于点O∵四边形ABCD 为正方形,三角形EFG 为正三角形∴∠EAO =90°,∠OEA =60°∴AF =t ,EA =4-t ,AO =tan 60°·EA 4-t )1144604422GEF OEA S S S sin t t =-=⨯⨯⨯︒-⋅--△△重合()224S t =-=+-重合)综上所述,由图象可知仅C 选项满足两段函数.故选:C .【点睛】本题考查了动点的图像问题,做此类题需要弄清横纵坐标的代表量,并观察确定图像分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等.匀速变化呈现直线段的形式,平行于x 轴的直线代表未发生变化,成曲线的形式需要看切线的坡度的大小确定变化的快慢.8、B【分析】 直接利用锐角三角函数关系得出m cos AB α=,进而得出答案. 【详解】 由题意可得:m cos ABα=, 则AB =co m s α.故选:B .【点睛】此题主要考查了解直角三角形的应用,正确记忆锐角三角函数关系是解题关键.9、D【分析】结合题意,根据乘方和绝对值的性质,得(32cos 0A =,1tan 0B -=,从而得cos A =tan 1B =,根据特殊角度三角函数的性质,得45A ∠=︒,45B ∠=︒;根据等腰三角形和三角形内角和性质计算,即可得到答案.【详解】解:∵(32cos 1tan 0A B +-=∴(32cos 0A =,1tan 0B -=∴02cos A =,1tan 0B -=∴cos A tan 1B = ∴45A ∠=︒,45B ∠=︒∴18090C A B ∠=︒-∠-∠=︒,BC AC = ∴ABC 一定是等腰直角三角形故选:D .【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解.10、B【分析】如图,O 为正三角形ABC 的外接圆,过点O 作OD ⊥AB 于点D ,连接OA , 再由等边三角形的性质,可得∠OAB =30°,12AD AB =,然后根据锐角三角函数,即可求解.【详解】解:如图,O 为正三角形ABC 的外接圆,过点O 作OD ⊥AB 于点D ,连接OA ,根据题意得:OA,∠OAB =30°,12AD AB =, 在Rt AOD △中,3cos 2AD OA OAB =⋅∠== , ∴AB =3,即这个正三角形的边长是3.故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.二、填空题1、12米##12m【解析】【分析】根据坡度的概念可得AA AA =16,求得CD ,即可求解.【详解】解:根据坡度的概念可得AA AA =16, AA =6AA =36m ,AA =AA −AA =12m ,故答案为:12m【点睛】此题考查了坡度的概念,掌握坡度的概念是解题的关键,坡面的垂直高度和水平方向的距离的比叫做坡度.2、60°或120°【解析】【分析】如下图所示,分两种情况考虑:D 点在优弧CDB 上或E 点在劣弧BC 上时,根据三角函数可求出∠OCF 的大小,进而求出∠BOC 的大小,再由圆周角定理可求出∠D 、∠E 大小,进而得到弦BC 所对的圆周角.【详解】解:分两种情况考虑:D 在优弧CDB 上或E 在劣弧BC 上时,可得弦BC 所对的圆周角为∠D 或∠E ,如下图所示,作OF ⊥BC ,由垂径定理可知,F 为BC 的中点,∵BC =∴CF =BF =12BC =12×又因为半径为3,∵OC =3,在Rt△FOC 中,cos∠OCF =CF CO ∴∠OCF =30°,∵OC =OB ,∴∠OCF =∠OBF =30°,∴∠COB =120°,∴∠D =12∠COB =12×120°=60°,又圆内接四边形的对角互补,∴∠E =120°,则弦BC 所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.3、 8√3 30°##30度【解析】【分析】如图,由题意得:AA ⊥AA ,AA =12,AA :AA =1:√3,再利用坡度的含义求解∠A =30°, 再利用∠A 的余弦函数值求解AB 即可.【详解】解:如图,由题意得:AA ⊥AA ,AA =12,AA :AA =1:√3,又∵tan A=AAAA =√3=√33,∴∠A=30°,而cos A=AAAA,∴AA=12cos30°=12×√3=8√3,故答案为:8√3,30°【点睛】本题考查的是解直角三角形的应用,坡度,坡角的含义,由坡度求解出坡角为30是解本题的关键.4、12##0.5【解析】【分析】过C作CD垂直于AB的延长线于点D,则ADC为直角三角形,解直角三角形即可求解.【详解】如图:过C作CD垂直于AB的延长线于点D,∴ADC 为直角三角形∴在Rt ADC 中1tan 2CD A AD ∠== 1tan 2CAB ∴∠= 故答案为:12【点睛】本题考查的是解直角三角形,解题关键是结合网格的特点构造直角三角形,利用锐角三角形函数解答.5、30°,60°或120°【解析】【分析】根据题意得,可分三种情况讨论:当旋转后的圆A '与正方形ABCD 的边AB 相切时,与边CD 也相切;当旋转后的圆A ''与正方形ABCD 的边AD 相切时,与边BC 也相切;当旋转后的圆A ''' 与正方形ABCD 的边BC 相切时,即可求解.【详解】∵正方形ABCD 中AB =2,圆A 是以A 为圆心,1为半径的圆,∴当圆A 绕点B 顺时针旋转α(0°<α<180°)过程中,圆A 与正方形ABCD 的边相切时,可分三种情况讨论:如图1,当旋转后的圆A '与正方形ABCD 的边AB 相切时,与边CD 也相切,设圆A ' 与正方形ABCD 的边AB 相切于点E ,连接A 'E ,A 'B ,则在Rt △A 'EB 中,A 'E =1,A 'B =2, ∴1sin 2A E A BE AB ''∠==' , ∴∠A 'BE =30°,即∠α=30°;如图2,当旋转后的圆A ''与正方形ABCD 的边AD 相切时,与边BC 也相切,设圆A ''与正方形ABCD 的边BC 相切于点F ,连接A ''F ,A ''B ,则1,2A F A B ''''== , ∴在Rt A BF '' 中,1sin 2A F A BF AB ''''∠=='' , ∴∠A ''BF =30°,∴∠α=∠A ''BA =∠ABC -∠A ''BF =60°;如图3,当旋转后的圆A ''' 与正方形ABCD 的边BC 相切时,设切点为G ,连接,A G A B '''''' ,则1,2A G A B ''''''== ,∴在Rt A BG ''' 中,1sin 2A G A BG A B ''''''∠==''' ,∴∠A '''BG =30°,∴∠α=∠A '''BA =∠ABC +∠A '''BG =120°综上,旋转角α=30°,60°或120°.故答案为:30°,60°或120°【点睛】本题主要考查了切线的性质,图形的旋转,解直角三角形,熟练掌握相关知识点,并利用分类讨论的思想解答是解题的关键.三、解答题1、(1)2y x=,1y x =+;(2)(2,1)B --,2x <-或01x <<.【解析】【分析】(1)先根据正切函数的定义可得点A 的坐标,再利用待定系数法即可得;(2)联立反比例函数和一次函数的解析式可得点B 的坐标,再利用函数图象法即可得.【详解】解:(1)设点A 的坐标为(,)A m n ,则,OC m AC n ==, OAC 的面积为1,且tan 2AOC ∠=,11,22n mn m ∴==, 解得1,2m n ==或10,20m n =-<=-<(不符题意,舍去),(1,2)A ∴,将点(1,2)A 代入1k y x=得:1122k =⨯=, 则反比例函数的解析式为2y x =;将点(1,2)A 代入21y k x =+得:212k +=,解得21k =,则一次函数的解析式为1y x =+;(2)联立21y x y x ⎧=⎪⎨⎪=+⎩, 解得12x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩, 则点B 的坐标是(2,1)B --,12(1)0k k x x-+>表示的是反比例函数的图象位于一次函数的图象的上方, 则2x <-或01x <<.【点睛】本题考查了反比例函数与一次函数的综合、正切,熟练掌握待定系数法是解题关键.2、0【解析】【分析】根据化简绝对值,负整数指数幂,特殊角的三角函数值,进行混合运算即可【详解】解:()1112cos30---︒原式()112=---11=+0=【点睛】本题考查了化简绝对值,负整数指数幂,特殊角的三角函数值,牢记特殊角的三角函数值并正确的进行实数的混合运算是解题的关键.3、11a +【解析】【分析】由题意根据分式的运算规则进行化简后,进而代入特殊锐角三角函数值进行计算即可.【详解】 解:21()(1)11a a a a -⋅--+ 221()(1)11a a a a a -=-⋅--- 1(1)(1)(1)a a a =⋅-+⋅- 11a =+tan 602sin 312201a ︒︒=-=⨯=,把31a 代入11a ==+【点睛】本题考查分式的化简求值以及特殊锐角三角函数值,熟练掌握分式的运算规则以及特殊锐角三角函数值是解题的关键.4、 2.5CD ≈米【解析】【分析】首先分析图形:根据题意构造两个直角三角形DEB ∆、CEB ∆,再利用其公共边BE 求得DE 、CE ,再根据CD DE CE =-计算即可求出答案.【详解】解:在Rt DEB 中, 3.5 5.95tan 30BE DE ==≈︒米, 在Rt CEB 中,tan 45 3.5CE BE =︒=米,则 5.95 3.5 2.45 2.5CD DE CE =-=-=≈米.故塑像CD 的高度大约为 2.5CD ≈米.【点睛】本题考查解直角三角形的知识,解题的关键是要先将实际问题抽象成数学模型.分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系.5、(1)见解析;(2)①y =1x 2.②245或185.③1或2 【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADB =∠DGC =90°,证明AD∥CG ;根据∠1=∠2=∠ACD ,证明AG∥CD ;根据平行四边形的定义判定即可;(2)①如图1,过点A 作AP ⊥CF 于点P ,根据AD ∥CF ,得AF =DC ,四边形APGD 是矩形,△APF ≌△DGC ,从而得到CG =GP =PF =AD ,设CG =GP =PF =AD =a ,DE =EG =b ,则GF =2a ,GD =2b ,BG =CG GF GD=2a b ,在Rt △BGC 中,tan∠3=y =CG GB ,在Rt △APF 中,tan F =x =AP PF , 消去a ,b 即可; ②运用勾股定理,确定a ,b 的值,显然DE 与AF 是不平行的,故分DH∥AF 和EH∥AF 两种情形计算即可.③过点O 作OM ⊥CF 于点M ,过点O 作ON ⊥BD 于点N ,根据OG 平分∠DGF ,OM =ON ,于是BD =CF ,从而确定a ,b 之间的数量关系,代入计算即可.【详解】(1)∵AB 是⊙O 的直径,弦CF ⊥BD 于点G ,∴∠ADB=∠DGC=90°,∴AD∥CG;∵∠1=∠2=∠ACD,∴AG∥CD;∴四边形AGCD为平行四边形;(2)①如图1,过点A作AP⊥CF于点P,则四边形ADGP是矩形∵四边形AGCD为平行四边形∴AD∥CF,AD=CG,DE=EG,∠DAC=∠ACF∴AF=DC,AP=DG,∴△APF≌△DGC,∴CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,CF=3a,GD=2b,∵BG GD CG GF⋅=⋅,∴BG =CG GF GD =2a b, 在Rt △BGC 中,tan∠3=y =CG GB =2b a a ⨯=b a, 在Rt △APF 中,tan F =x =AP PF =2b a, 消去a ,b 即可; ∴x =2y , ∴y 关于x 的函数表达式为y =1x 2; ②∵tan∠3=y =CG GB =2b a a ⨯=b a ,y =34, ∴ba =34, ∴b =34a ,∴GD =2b =32a , ∴BG =2a b =43a , ∴BD =DG +BG =43a +32a =176a ,∵AB 222AD BD AB +=,∴22217()6a a +=, 解得a =125; 显然DE 与AF 是不平行的,如图2,当DH ∥AF 时,∵AD ∥FH ,∴四边形ADHF是平行四边形,∴AD=FH=a,∴CH=2a=245;如图3,当EH∥AF时,∵四边形AGCD是平行四边形,∴AE=EC,∴H是CF的中点,∵CF=3a=365,∴CH=185;故CH的长为245或185;③如图4,过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,∵OG平分∠DGF,∴OM=ON,∴BD=CF,∴3a=2b+2ab,整理,得2232a ab b-+=0,解得a=b或a=2b,∵tan F=x=APPF=2ba,当a=b时,x=2ba=2,当a=2b时,x=2ba=1,故答案为:1或2.【点睛】本题考查了圆的基本性质,圆心角,弦,弦心距之间的关系,圆周角的性质,勾股定理,平行四边形的判定和性质,三角形函数,因式分解,熟练掌握圆的基本性质,灵活掌握三角函数的计算,分类思想是解题的关键.。
1.2《特殊角的三角函数值》同步练习(含答案)
1.2 30 °,45 °,60 °角的三角函数值知识点 1 30 °,45 °,60 °角的三角函数值 1.sin 60°的值为( )A.12B.22C.32 D.3 2.已知∠A =30°,下列判断正确的是( )A .sinA =12B .cosA =12C .tanA =12D .cotA =123.计算sin 245°+cos 30°·tan 60°,其结果是( ) A .2 B .1 C.52 D.544.在Rt △ABC 中,∠C =90°,若∠B =2∠A ,则tanA 等于( ) A. 3 B.33 C.32 D.125.计算:(1)2(2cos 45°-sin 60°)+244; (2)sin 30°cos 60°-tan 45°+3tan 30°.知识点 2 由特殊角的三角函数值求角度6.在△ABC 中,∠A ,∠B 都是锐角,如果sinA =12,cosB =22,那么∠C =________°.7.[2017·杨浦区一模] 已知α是锐角,tanα=2cos 30°,那么α=________°. 8.已知∠α为锐角,且tan (α-10°)=3,则∠α等于( ) A .50° B .60° C .70° D .80° 知识点 3 特殊角的三角函数值的实际应用9.如图1-2-1,小明爬一土坡,他从A 处到B 处所走的直线距离AB =4 m ,此时,他距离地面的高度h =2 m ,则这个土坡的坡角∠A 的度数为( )A .30°B .45°C .60°D .以上都不对1-2-1 1-2-210.如图1-2-2,是某商场一楼与二楼之间的手扶电梯示意图,其中AB ,CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )A.833 m B .4 m C .4 3 m D .8 m图1-2-311.[2017·云南模拟] 如图1-2-3,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB =30°,在D 点测得∠ADB =60°,又CD =100 m ,则河宽AB 为________m (结果保留根号).12.如图1-2-4,长4 m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .2 3 mB .2 6 mC .(2 3-2)mD .(2 6-2)m1-2-4 1-2-513.如图1-2-5,要测量点B 到河岸AD 的距离,在点A 测得∠BAD =30°,在点C测得∠BCD =60°,又测得AC =100 m ,则点B 到河岸AD 的距离为( )A .100 mB .50 3 m C.200 33m D .50 m14.在△ABC 中,若锐角∠A ,∠B 满足关系式⎪⎪⎪⎪cos A -12+⎝⎛⎭⎫sin B -222=0,则∠C =________°.15.如图1-2-6,在△ABC 中,∠A =30°,tanB =13,BC =10,则AB 的长为________.图1-2-616.[2017·普陀区一模] 计算:cos 245°+cos 30°2sin 60°+1-3·tan 30°.17.计算:|1-3|+3tan 30°-(3-5)0-(-13)-1.18.数学拓展课程《玩转学具》课堂中,小陆同学发现:在一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等,于是,小陆同学提出一个问题:如图1-2-7,将一副三角板的直角顶点重合拼放在一起,点B ,C ,E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.图1-2-719.如图1-2-8,在△ABC 中,∠C =150°,AC =4,tanB =18.(1)求BC 的长;(2)利用此图形求tan 15°的值(精确到0.1,参考数据:2≈1.4,3≈1.7,5≈2.2).图1-2-820.对于钝角∠α,定义它的三角函数值如下:sinα=sin (180°-α),cosα=-cos (180°-α).(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的度数之比是1∶1∶4,A ,B 是这个三角形的两个顶点,sinA ,cosB 是方程4x 2-mx -1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的度数.详解详析1.C2.A [解析] ∵∠A =30°,∴sinA =12,cosA =32,tanA =33,cotA = 3.故选A. 3.A4.B [解析] ∵∠C =90°,∠B =2∠A , ∴∠A =30°,∴tanA =33. 5.解:(1) 原式=2×(2×22-32)+2 64=2-62+62=2.(2)原式=1212-1+3×33=1-1+1=1.6.105 [解析] ∵sinA =12,cosB =22,∴∠A =30°,∠B =45°, ∴∠C =180°-30°-45°=105°. 故答案为105. 7.60 8.C 9.A10.B [解析] 过点C 作CE ⊥AB 于点E ,则CE =h . ∵∠ABC =150°,∴∠CBE =30°. 在Rt △CBE 中,∵sin ∠CBE =CEBC ,∴CE =BC ·sin ∠CBE =8sin 30°=4(m ).11.50 3 [解析] ∵∠ACB =30°,∠ADB =60°, ∴∠CAD =30°,∴AD =CD =100 m . 在Rt △ABD 中,AB =AD ·sin ∠ADB =100×32=50 3(m ).故答案是50 3. 12.B[解析] 在Rt △ABD 中,∵sin ∠ABD =ADAB ,∴AD =4sin 60°=23(m ).在Rt △ACD 中,∵sin ∠ACD =AD AC ,∴AC =2 3sin45°=2 6(m ).13.B14.[75 [解析] 由题意得cosA -12=0,sinB -22=0,所以cosA =12,sinB =22,解得∠A =60°,∠B =45°.所以∠C =180°-∠A -∠B =180°-60°-45°=75°.15.[全品导学号:77264020]3+3 [解析] 过点C 作CD ⊥AB 于点D , ∵tanB =CD BD =13,∴设CD =x ,BD =3x ,则BC =10x . ∵BC =10,∴x =1. ∴BD =3x =3,CD =x =1. 在Rt △ACD 中,tanA =CDAD ,∴AD =CD tan A =1tan30°= 3. ∴AB =AD +BD =3+3.16.解:原式=(22)2+322×32+1-3×33=12+3-34-1 =1-34. 17.解:原式=3-1+3×33-1+3=3-1+3-1+3=2 3+1.18.解:∵在Rt △ABC 中,∠ACB =90°,BC =2,∠A =30°,∴AC =BCtan A =2 3,则EF =AC =2 3.∵∠ECF =90°,∠E =45°,∴FC =EF ·sinE =6,∴AF =AC -FC =2 3-6.∴AF 的长为2 3- 6.19.解:(1)过点A 作AD ⊥BC ,交BC 的延长线于点D ,如图所示, ∵∠ACB =150°,∴∠ACD =30°.在Rt △ADC 中,AC =4,∴AD =12AC =2,CD =AC ·cos 30°=4×32=2 3.在Rt △ABD 中,∵tanB =AD BD =2BD =18,∴BD =16.∴BC =BD -CD =16-23.(2)在BC 边上取一点M ,使得CM =AC ,连接AM ,如图所示. ∵∠ACB =150°,∴∠AMC =∠MAC =15°. ∴tan 15°=tan ∠AMD =AD MD =24+2 3=12+3≈12+1.7≈0.3. 20.解:(1)由题意,得sin 120°=sin (180°-120°)=sin 60°=32, cos 120°=-cos (180°-120°)=-cos 60°=-12,sin 150°=sin (180°-150°)=sin 30°=12.(2)∵三角形的三个内角的度数之比是1∶1∶4, ∴三个内角分别为30°,30°,120°.①当∠A =30°,∠B =120°时,方程的两根为12,-12.将12代入方程,得4×(12)2-m ×12-1=0,解得m =0,经检验,-12是方程4x 2-1=0的根,∴m =0符合题意;②当∠A =120°,∠B =30°时,两根为32,32,不符合题意; ③当∠A =30°,∠B =30°时,两根为12,32.将12代入方程,得4×(12)2-m ×12-1=0,解得m =0,经检验32不是方程4x 2-1=0的根. 综上所述:m =0,∠A =30°,∠B =120°.。
特殊角的三角函数值及用计算器求角的三角函数值
A.2
B. 3
C. 2
D.1
中考限时突破训练
(4)在ABC中,若角A,B满足 cos A 3 1 tan B2 0,
2
则C的大小是 B
A.45
B.60
C.75
D.105
课堂小结
特殊角的三角函数值
锐角 A 锐角三角函数
sin A cos A tan A
30°
1 2
3 2 3 3
45°
2 2 2 2 1
求A, B的度数
B
A 30 B 60
7
C
21
A
中考限时突破训练
(1)sin 60的值为 B
A. 3
B. 3
C. 2
D. 1
2
2
2
中考限时突破训练
(2)已知是锐角,且 sin 15 3 , 2 则 45°
中考限时突破训练
(3)计算2sin 30 2cos60 tan 45的结果是 D
九年级 下册
28.1 锐角三角函数(第3课时)
一、复习我们学过哪些三角函数C AB
a c
c
a
sin
B
对 斜
AC AB
b c
A
b
C
余弦 cos
A
邻 斜
AC AB
b c
cosB
邻 斜
BC AB
a c
正切tanA
对 邻
BC AC
a b
tan B
对 邻
AC BC
b a
二、探究:特殊角30°、45°、60°的三角函数值分别是 多少?
三、学以致用 注意:sin2 60 sin 60 2 sin 60 sin 60
锐角三角函数的计算——特殊角的三角函数值(专项练习)-2022-2023学年九年级数学下册知识讲练
专题1.5 锐角三角函数的计算——特殊角的三角函数值(专项练习)一、单选题 1.tan45°=( ) A .1B .22C 3D 323). A .cos30︒B .tan30︒C .cos45︒D .sin30︒3.点()sin60,cos30︒︒关于y 轴对称的点的坐标是( ). A .132⎛- ⎝⎭B .13,2⎛ ⎝⎭C .33⎛ ⎝⎭D .33⎝⎭4.已知()3tan 903α︒-=α的度数是( )A .60°B .45°C .30°D .75°5.在△ABC 中,∠C =90°,AB 2BC =1,则∠A 的度数为( ) A .30B .45︒C .60︒D .75︒6.关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ-=-,由该公式可求得sin15︒的值是( )A 62+B 62-C 32-D 31-7.若)23A 32cos B 30-+=,则ABC 的形状是( )A .含有60°直角三角形B .等边三角形C .含有60°的任意三角形D .等腰直角三角形82x 0(x ≠0),cos30°38 ) A .1个B .2个C .3个D .4个9.如图,30BAC ∠=︒,AD 平分BAC ∠,DF AB ⊥交AB 于F ,DE DF ⊥交AC 于E .若8AE =,则DF 等于( )A .5B .4C .3D .210.如果∠A 为锐角,cos A 3∠A 取值范围是( ) A .0°<∠A ≤30° B .30°<∠A ≤45° C .45°<∠A<60° D .60°<∠A <90°二、填空题11.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos∠AOB 的值等于______12.如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则AOB ∠的正切值是______.13.两块全等的等腰直角三角形如图放置,90,A DE ∠=︒交AB 于点P ,E 在斜边BC 上移动,斜边EF 交AC 于点Q ,32,10BP BC ==,当BPE 是等腰三角形时,则AQ 的长为___________.14.如图,平行四边形ABCD 的边AB 在x 轴正半轴上,5BC =,4sin 5CBA ∠=,一次函数4y x =-的图象经过点A 、C ,反比例函数ky x=的图象经过点D ,则k =________.15.如图,在菱形ABCD 中,AB =8,∠B =120°,点O 是对角线AC 的中点,OE ∠CD 于点E ,则OE 的长为 __.16.如图,在∠ABC 中,AB =4,BC =7,∠B =60°,点D 在边BC 上,CD =3,联结AD .如果将∠ACD 沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为____.17.如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.18.如图,已知线段4AB =,O 是AB 的中点,直线l 经过点O ,160∠=,P 点是直线l 上一点,当APB ∆为直角三角形时,则BP =_____.三、解答题19.计算:(1) 3tan30tan 452sin30︒+︒+︒; (2) 2cos 30tan 30sin 60245︒︒︒︒+⨯. 20.计算 (1) 013131(2007)()3tan 3084π-+---︒(2) 2cos 6045tan 30cos30︒+︒+︒⋅︒.21.计算与化简题(1) 计算:11351220224sin 603-⎛⎫-⨯++︒ ⎪⎝⎭(2) 先化简,再求代数式21691224a a a a -+⎛⎫-÷⎪--⎝⎭的值,其中4cos303tan 45a =︒+︒.22.如图,已知等边三角形ABC 的边长为6cm ,点P 从点A 出发,沿A →C →B 的方向以2cm/s的速度向终点B运动,同时点Q从点B出发,沿B→A的方向以1cm/s的速度向终点A运动.当点P运动到点B时,两点均停止运动.运动时间记为t,请解决下列问题:(1)若点P在边AC上,当t为何值时,APQ为直角三角形?(2)是否存在这样的t值,使APQ的面积为3 2 ?若存在,请求出t的值,若不存在,请说明理由.23.四边形ABCD是菱形,∠ABC=60°,E是对角线BD上的一个动点,连接AE,将线段AE绕点A逆时针旋转120°得到线段AF,连接EF,DF.(1)如图1,求∠BDF的度数;(2)如图2,当DB=3DF时,连接EC,求证:四边形FECD是矩形;(3)若G为DF中点,连接EG,当线段BD与DF满足怎样的数量关系时,四边形AEGF 是菱形,并说明理由.24.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将∠BCD沿直线BD翻折得到∠BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D的坐标;参考答案1.A【分析】根据直角三角形中45°角的正切值计算并判断即可.解:tan45°=1,故选:A .【点拨】本题考查直角三角形中45°角的正切值,能够牢记直角三角形中特殊度数的角的正切值,正弦值,余弦值是解决此类题型的关键.2.A【分析】根据特殊角的三角函数值解答. 解:A 、cos30︒3B 、tan30︒3C 、cos45︒=22,不符合题意; D 、sin30︒=12,不符合题意;故选A .【点拨】本题考查特殊角的三角函数值,准确掌握常见的特殊角的三角函数值是解题的关键.3.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可. 解:∠sin60°3cos30°3∠33y 轴对称的点的坐标是(33.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.4.A【分析】根据3tan 30︒=9030α︒-=︒即可求解. 解:∠()3tan 903α︒-=,α为锐角,∠9030α︒-=︒, ∠60α=︒, 故选:A .【点拨】本题考查根据特殊角三角函数值求角的度数,熟记特殊角的三角函数值是解答的关键.5.B【分析】直接利用已知画出直角三角形,再利用锐角三角函数关系得出答案. 解:∠∠C =90°,AB 2BC =1,∠sin A =22BC AB = ∠∠A =45°. 故选:B .【点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 6.B【分析】根据()sin15sin 4530sin45cos30cos45sin30︒=︒-︒=︒︒-︒︒,代入特殊三角函数值计算即可.解:()sin15sin 4530︒=︒-︒sin45cos30cos45sin30=︒︒-︒︒23212=62-=故选:B .【点拨】本题考查了实数的运算,特殊角的三角函数值,灵活运用公式把一般角转化为特殊角的和或者差是解题的关键.7.A333,cos A B ==,从而得到60,30A B ∠=︒∠=︒,即可求解.解:解∠∠)23A 32cos B 30-+=,330,2cos 30A B -==,333,cos A B =, ∠60,30A B ∠=︒∠=︒, ∠∠C =90°,∠ABC 是含有60°直角三角形. 故选:A【点拨】本题主要考查了特殊角锐角三角函数值,绝对值和平方的非负性,熟练掌握特殊角锐角三角函数值是解题的关键.8.B【分析】根据零指数幂,特殊角的三角函数值,实数的意义,即可解答. 2x 0(x ≠0)=1,3cos30°382382,x 0=1, 所以,有理数的个数是2, 故选:B .【点拨】本题考查了零指数幂,特殊角的三角函数值,实数,熟练掌握这些数学概念是解题的关键.9.B【分析】过D 点作DG ∠AC 于G 点,通过DF ∠AB ,DE ∠DF ,可得AB ED ∥,进而有∠BAD =∠ADE ,∠DAE =∠ADE =15°,即可得AE =DE =8,易证得AFD AGD ≅△△,即可求解DF =DG =4.解:过D 点作DG ∠AC 于G 点,如图,∠AD 平分∠BAC ,∠BAC =30°, ∠∠BAD =∠CAD =15°, 又∠DF ∠AB ,DE ∠DF ,∠AB ED ∥,∠AFD =∠AGD =90°, ∠∠BAD =∠ADE , ∠∠DAE =∠ADE =15°, ∠∠AED 是等腰三角形,∠AE=DE=8,∠DEC=∠EDA+∠EAD=30°,在Rt∠DEG中,有1sin sin302 DGDEGDE=∠==,∠DG=4,∠∠AFD=∠AGD,∠BAD=∠CAD,AD=AD,∠AFD AGD≅△△,∠DF=DG=4,故选:B.【点拨】本题考查了角平分线的性质、平行的相关的性质、等腰三角形的判定和性质以及特殊角的三角函数等知识,利用角平分线的性质是解答本题的关键.10.C【分析】分别求出60°和45°角的余弦值,由此得到答案.解:∠cos60°=12,cos45°2,且1322∠45°<∠A<60°.故选C.【点拨】此题考查了角度的余弦公式,余弦值随着角度的增大而减小的性质,熟记公式是解题的关键.11.1 2解:∠OA=OB=AB,∠∠ABC是等边三角形,∠∠AOB=60°,∠cos∠AOB=cos60°=12.故答案是:12.12.1【分析】连接AB,由勾股定理求得AB、AO、BO的长,判断△ABO是等腰直角三角形,即可求得答案.解:连接AB,由勾股定理得:AB 221310+AO 221310+OB 222425+= ∠AB =AO ,(22222101020OA AB OB +=+==,∠△ABO 是以OB 为斜边的等腰直角三角形,∠tan tan 451AOB ∠︒==,故答案为:1.【点拨】此题考查了勾股定理在网格中的应用、勾股定理的逆定理、等腰直角三角形的性质、特殊角的三角函数值等知识,熟练掌握勾股定理及其逆定理是解题的关键.13.8210322【分析】解答时,分BE =PE ,PB =PE 和BP =BE 三种情况求解即可.解:当BE =PE 时,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠BPE =45°,∠BEP =90°,∠QEC =45°,∠EQC =90°,∠PE =BE =BPsin 45°=232,EQ =CQ =ECsin 45°=272(103)- ∠ BC =10,∠AC =BCsin 45°=210=52 ∠AQ =AC -QC =723252= 当PB =PE 时, 根据前面计算,得到BH =PH =3,∠BH =HE =3,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠EQC =45°,∠CEQ =90°,EC =EQ =BC -BE =10-6=4,∠CQ =4=42sin 452CQ =, ∠ BC =10,∠AC =BCsin 45°=210=52 ∠AQ =AC -QC =52422当BP =BE 时,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠BPE =∠BEP =∠QEC =∠EQC ,∠PE =BE =32EQ =CQ =BC -BE =(1032)-,∠ BC =10,∠AC =BCsin 45°=210=522⨯ ∠AQ =AC -QC =52(1032)8210-=,综上所述AQ 的长为8210232, 故答案为:8210232【点拨】本题考查了等腰直角三角形的性质,勾股定理,等腰三角形的判定和性质,特殊角的三角函数值,熟练掌握等腰直角三角形的性质和准确进行等腰三角形的等腰分类,灵活运用特殊角的三角函数值是解题的关键.14.4【分析】根据平行四边形的性质、三角函数值,结合一次函数求出D 的坐标即可求解; 解:如图,过点D 作DE ∠AB将y =0代入y =x -4中记得x =4∠A (4,0)在平行四边形ABCD 中,∠∠OAD =∠CBA∠4sin 5DE OAD AD ∠== ∠AD =BC =5∠DE =4,AE =3∠OE =OA -AE =4-3=1∠D (1,4)∠144k x y =⋅=⨯=故答案为:4【点拨】本题主要考查反比例函数、平行四边形、三角函数值、一次函数,掌握相关知识并灵活应用是解题的关键.15.23【分析】连接OB ,由菱形的性质得BC =AB =8,BO ∠AC ,再由等腰三角形的性质得∠ACB =∠ACD =30°,然后由锐角三角函数定义求出OC =3最后由含30°角的直角三角形的性质求解即可.解:连接OB,如图所示:∠四边形ABCD为菱形,点O是对角线AC的中点,∠BC=AB=8,BO∠AC,∠∠ACB=∠ACD12=(180°﹣120°)=30°,在Rt∠BOC中,OC=cos30°•BC3=8=3∠OE∠CD,∠∠CEO=90°,在Rt∠COE中,OE12=OC12=⨯33故答案为:3【点拨】本题考查了菱形的性质、等腰三角形的性质、锐角三角函数定义以及含30°角的直角三角形的性质,解题的关键是熟练掌握菱形的性质.1633【分析】过E点作EH∠BC于H,证明∠ABD是等边三角形,进而求得∠ADC=120°,再由折叠得到∠ADE=∠ADC=120°,进而求出∠HDE=60°,最后在Rt∠HED中使用三角函数即可求出HE的长.解:如图,过点E作EH∠BC于H,∠BC=7,CD=3,∠BD=BC-CD=4,∠AB=4=BD,∠B=60°,∠∠ABD是等边三角形,∠∠ADB =60°,∠∠ADC =∠ADE =120°,∠∠EDH =60°,∠EH ∠BC ,∠∠EHD =90°.∠DE =DC =3,∠EH =DE 333 ∠E 到直线BD 33 33 【点拨】本题考查了折叠问题,解直角三角形,点到直线的距离,本题的关键点是能求出∠ADE=∠ADC=120°,另外需要重点掌握折叠问题的特点:折叠前后对应的边相等,对应的角相等.17.15【分析】如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,再利用矩形的性质与锐角三角函数求解EN 即可得到答案.解:如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,四边形ABCD 为矩形,10BC =,30ABD ∠=︒,10,20,cos303,AD BD AB BD ∴===•︒= ,AG BD AD AB •=•2010103,AG ∴=⨯53,2103,AG AE AG ∴===,,,AE BD EN AB EMG BMN ⊥⊥∠=∠30,E ABD ∴∠=∠=︒3cos3010315,EN AE ∴=•︒== 15,AM MN ∴+=即AM MN +的最小值为15.故答案为:15.【点拨】本题考查的是矩形的性质,锐角三角函数的应用,同时考查利用轴对称与垂线段最短求线段和的最小值问题,解题的关键是掌握以上知识. 18.2或2327【分析】分90APB ∠=、90PAB ∠=、90PBA ∠=三种情况,根据直角三角形的性质、勾股定理计算即可.解:如图:∠2AO OB ==,160∠=∠当2BP =时,90APB ∠=,当90PAB ∠=时,∠60AOP ∠=,∠tan 23AP OA AOP =⋅∠=, ∠2227BP AB AP +=当90PBA ∠=时,∠60AOP ∠=,∠tan 123BP OB =⋅∠=故答案为2或2327【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .19.3 2 (2)14【分析】(1)根据特殊角的三角函数值解决此题.(2)根据特殊角的三角函数值及二次根式的乘法进行计算即可解决此题.(1)解:原式=331+212⨯ 3=1+13=2; (2)解:原式=23⎝⎭33223142=+-1 14=. 【点睛】本题主要考查特殊角的三角函数值及二次根式的运算,熟练掌握特殊角的三角函数值是解决本题的关键.20.(1)2-;(2)32【分析】(1)先化简绝对值、计算零指数幂与负整数指数幂、特殊角的正切值、立方根,再计算二次根式的乘法与加减法即可得;(2)先计算特殊角的三角函数值,再计算二次根式的乘法与加减法即可得.(1) 解:原式3311432=+-- 323=2=-.(2) 解:原式122332=111222=++ 32=. 【点睛】本题考查了含特殊角的三角函数的混合运算、二次根式的乘法与加减法、零指数幂与负整数指数幂等知识点,熟记特殊角的三角函数值是解题关键.21.(1)3-(2)23a -3【分析】(1)根据负整数指数幂,胡加绝对值,零次幂,特殊角的三角函数值,进行计算求解即可;(2)先去括号,把除法变为乘法把分式化简,再把数代入求值.(1) 解:原式=3335314-⨯+-+951=-++ 3=-;(2)21691224a a a a -+⎛⎫-÷ ⎪--⎝⎭()()2222123a a a a ---=⨯-- ()()222323a a a a --=⨯-- 23a =-; 4cos303tan 45a =︒+︒3431=⨯ 33=; 原式323333==+-. 【点睛】本题考查了实数的混合运算,分式的化简求值,正确的计算是解题的关键.22.(1)1.2s 或3s ; (2)存在,(35)s 或4s【分析】(1)当APQ 为直角三角形时,∠A =60度,所以可能只有∠APQ =90°或∠AQP =90°,当∠APQ =90°时,∠AQP =30°,AP =12AQ ,求出t =1.2秒;当∠AQP =90°时,∠APQ =30°,AQ =12AP ,求得t =3秒;(2)当点P 在AC 上时,边AQ =6-t ,算出AQ 上的高PD 3t ,即可写出12(6-t )3t =23t =35P 在BC 上时,算出AQ 边上的高PF )36t -,即可写出12(6-t ))36t -=23t =4. (1)解:∠∠ABC 是等边三角形,∠AB =BC =CA =6,∠A =∠B =∠C =60°,当点P 在边AC 上时,由题意知,AP =2t ,AQ =6-t ,当∠APQ =90°时,AP =12AQ ,即2t =12(6-t ),解得t =1.2,当∠AQP =90°时,AQ =12AP ,即6-t =12×2t ,解得t =3,所以,点P 在边AC 上,当t 为1.2s 或3s 时,∠APQ 为直角三角形;(2)存在∠当点P 在边AC 上时,此时0≤t ≤3,过点P 作PD ∠AB 于点D ,在Rt∠APD 中,∠A =60°,AP =2t , ∠sin A =PD AP ,即sin60°=2PD t 3 ∠PD 3t ,S △APQ =12AQ ●PD =12(6-t )3t ,由12(6-t )3t =23135t =,235t =∠当点P 在边BC 上时,此时3≤t ≤6,如图,过点P 作PF ∠AB 于点F ,在Rt∠BPF 中,∠B =60°,BP =12-2t , ∠sin B =PF BP,即sin60°=122PF t -3 ∠PF )36t -,S △APQ =12AQ ●PF =12(6-t ))36t -, 由12(6-t ))36t -=3()1248t t ==,不合题意,舍去因此,当t 为(35s 或4s 时,∠APQ 的面积为3【点睛】本题主要考查了直角三角形的存在性和三角形的面积的存在性,解决问题的关键是熟练掌握直角三角形的直角三个角都有可能,要分类讨论;面积是同一个值的三角形不可能只有一个,全面考虑,分类讨论.23.(1)60︒;(2)证明见解析;(3)32BD DF =,理由见解析 【分析】(1)先证明,BAE DAF ≌可得,ABE ADF ∠=∠再证明30,30,ABE ADB 从而可得答案;(2) 先证明2,DEDF 再证明90,EFD FDC ∠=∠=︒90,FEC ∠=︒ 从而可得结论; (3)先证明2,DF DE 结合,BE DF = 可得3,BD DE 从而可得答案.【详解】解(1) 四边形ABCD 是菱形,∠ABC =60°,120BAD ∴∠=︒,由旋转可得:120,,EAF AE AF120,BAD EAF ,,BADBAE EAD EAF EAD DAF ,BAE DAF又∠四边形ABCD 是菱形,,AB AD ∴=,BAE DAF ≌,ABE ADF ∴∠=∠又∠四边形ABCD 是菱形,60,ABC ∠=︒30,30,ABE ADBBDC30,ADF ∴∠=︒ 60.BDF ADB ADF (2)由(1)可得:60,BDF30,CDB90,CDF ∴∠=︒由(1)可得:,BAE DAF ≌,BE DF ∴= 33,DB DF BE DE BE2,DE DF60,30,BDF BDC 90,FDC ∴∠=︒1cos cos60,2EDF ∠=︒= 1cos ,2DF EDF DE ∴∠== EDF ∴是直角三角形,90,EFD180906030,FED ∴∠=︒-︒-︒=︒120,,EAF AE AF ∠=︒=30,AEF AFE ∴∠=∠=︒60,AED ∴∠=︒由菱形的对称性可得:60,DEC DEA ∠=∠=︒306090,FEC ∴∠=︒+︒=︒ 而90,EFD FDC ∠=∠=︒∴ 四边形ABCD 为矩形.(3)3,2BD DF 理由如下:如图,四边形AEGF 是菱形,120,EAF ∠=︒1120,302EGF EAF FEG GFE AEG 60,BDF 90,FED2,DF DE,BE DF =2,BE DE3,BD DE 3,2BD DF3.2BD DF 【点睛】本题考查的是旋转的性质,全等三角形的判定与性质,菱形的性质,锐角三角函数的应用,灵活的应用以上知识解题是解题的关键.24.(1)y =x 2﹣2x ﹣3;(2)点C ′的坐标为(1,3,点D 的坐标为(123) 【分析】(1)根据抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点,利用待定系数法求得该抛物线的解析式即可;(2)先确定二次函数对称轴,BC 长度,根据题意和翻折的性质,得到B C′长度,利用三角函数求出∠C′BC ,再根据角平分线求出∠DBC ,解直角三角形可以求得点C '和点D 的坐标,本题得以解决.【详解】解:(1)∠抛物线y =ax 2+bx +c 经过点A (﹣2,5),与x 轴相交于B (﹣1,0),C (3,0)两点,∠4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,得123a b c =⎧⎪=-⎨⎪=-⎩,即抛物线的函数表达式是y =x 2﹣2x ﹣3;(2)∠与x 轴相交于B (﹣1,0),C (3,0)两点,∠BC =3﹣(﹣1)=3+1=4,该抛物线的对称轴是直线x =132-+=1, 设抛物线的对称轴与x 轴的交点为H ,则点H 的坐标为(1,0),∠BH =2,∠将∠BCD 沿直线BD 翻折得到∠BC ′D ,点C ′恰好落在抛物线的对称轴上,∠BC =BC ′=4,∠C ′HB =90°,∠C ′BD =∠DBC ,∠OC 2242-3cos∠C ′BH ='BH BC =24=12, ∠C ′的坐标为(1,3,∠C ′BH =60°,∠∠DBC =30°,∠BH =2,∠DBH =30°,∠OD =BH 323 ∠点D 的坐标为(123), 由上可得,点C ′的坐标为(1,3,点D 的坐标为(123).【点睛】本题考查待定系数法求抛物线解析式,图形翻折变化、二次函数的性质、特殊角的三角函数值,解答本题的关键是明确题意,利用数形结合的思想解答.。
28_1_3 特殊角的三角函数值 基础训练(解析版)
28.1.3 特殊角的三角函数值基础训练一、单选题:1)A.cos30︒B.tan30︒C.cos45︒D.sin30︒2.已知()tan90α︒-α的度数是()A.60°B.45°C.30°D.75°3.在ABC中,90C∠=︒,若1sin2A=,则cos B的值为()A.12B C.2D 【答案】A4.下列各式中不成立的是( )A .22sin 60sin 301︒+︒=B .tan 45tan30︒>︒C .tan45sin45>︒︒D .sin30cos301︒+︒=5.若2(tan 1)|2cos 0A B -+=,则ABC ∆的形状是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形6.式子2cos30tan45︒-︒的值是()A.0B.C.2D.2-7.若菱形的周长为2,则菱形两邻角的度数比为()A.6:1B.5:1C.4:1D.3:1菱形的周长为AB CD//C∴∠=135∴∠∠C B:故选:D.二、填空题:8.已知α是锐角,tan0α-=,则α=______;cosα=______.##0.5【答案】60°##60度129.在Rt△ABC中,∠ACB=90°,若∠A=60°,AC=6,则sin ABC∠=____.##0.5【答案】12【分析】利用直角三角形的两锐角互余求得∠ABC 的度数,再利用特殊角的三角函数即可求得sin ABC ∠的10.已知()2sin 453α+=α=________.15)453=)3452=【详解】解:()2sin 453α+=)3452=, 4560=,15.故答案为:15.【点睛】本题主要考查了特殊角的三角函数值,灵活变形,熟记公式是解题的关键.11.计算:()22cos 60sin 45︒+︒︒=___________.【答案】34##0.75 【分析】将特殊角的三角函数值代入原式,即可求解.12.0111()()23--+|tan45°=_____.13.在ABC 中,若()2sin tan 10A B -= ,则C ∠的度数为__________ 【答案】75︒##75度∠的正切值是______.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则AOB三、解答题:15.计算:(1)()012260cos60-+-π︒-︒;(2))021sin 4520226tan302︒+︒.16.先化简,再求值:22231393a a a a -⎛⎫-÷ ⎪+-+⎝⎭,其中2sin603tan 45a =︒+︒.17.已知:如图,AB 是O 的直径,弦CD AB ⊥于点E ,G 是弧AC 上一动点且不与点A ,C 重合,AG DC ,的延长线交于点F ,连结BC .CD =2BE =.(1)求半径长.(2)求扇形DOC 的面积. 设O 的半径为Rt OEC 中,32COE ∠=60COE =︒,再由垂径定理可得扇形的面积公式求解即可.)解:如图,连接OC .设O 的半径为R .Rt OEC 中,22OC OE =+()222R =-。
人教版九年级数学下册《28章 锐角三角函数 28.1特殊角的三角函数值及用计算器求角的三角函数值》教案_4
《特殊角的三角函数值及用计算器求三角函数值》教材内容分析:《特殊角的三角函数值》选自新人教版九年级数学下册第二十八章《锐角三角函数》。
这一课时是在学生学习了正弦函数,余弦函数和正切函数的概念后,转入对30°,45°,60°这几个特殊角的三角函数值的研究,是根据锐角三角函数的概念求几个特殊角的三角函数值,运用特殊角的三角函数值进行加、减、乘、除运算;并能根据函数值说出对应的锐角度数。
学好本节内容能使学生灵活运用锐角三角函数解决实际生活中的问题。
学生特征分析:九年级的学生已经学习了正弦的概念、勾股定理的知识,且能自觉学习、能较好地完成30°、45°、60°角的三角函数值的得出。
本节课从创设问题情境出发,让学生从简单问题入手,通过复习、自主探究、得出特殊角的三角函数值,并得到应用。
教学目标:知识与技能:(1)会推导30°、45°、60°角的三角函数值;(2)熟记30°、45°、60°角的各个三角函数值;(3)会计算含有这三个特殊锐角的三角函数值的式子;(4)会由一个特殊锐角的三角函数值说出这个角的度数。
过程与方法:(1)、通过对特殊角三角函数的探究加深学生对锐角三角函数的认识,了解特殊与一般的关系,并对学生进行逆向思维的训练。
(2)会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。
情感态度与价值观:引导学生积极参加数学活动,增强学习数学的好奇心。
教学重点:会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。
教学难点:30°、45°、60°角的三角函数值的推导过程。
教法与学法分析:本节课采用问题引领,自主探究,合作交流的教学方法,以高质量的问题启发引导学生进行自主探究,将学生的独立思考,小组交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用,变被动学习为主动学习,从而达到最佳教学的效果。
第二十八章 锐角三角函数 第3课时 特殊角的三角函数值 《全品学练考》九年级下数学
∴∠A=30°,∠B=60°.
第3课时 特殊角的三角函数值
【归纳总结】由特殊角的三角函数值确定角的度数的一般步骤: (1)通过边之间的关系或者其他关系得到三角函数值; (2)根据特殊角的三角函数值确定角的度数.
第3课时 特殊角的三角函数值
目标三 会用计算器求锐角的三角函数值或由三角函数值求角度
例 3 教材补充例题 用计算器求下列锐角三角函数值: (1)cos63°17′;(2)tan27.35°;(3)sin39°57′6″.
第3课时 特殊角的三角函数值
例4 教材补充例题 已知下列锐角三角函数值,用计算器求其 相应锐角A的度数: (1)sinA=0.9816; (2)cosA=0.8067; (3)tanA=0.189.
[解析] 首先选择第二功能键 2nd F ,转换功能后再按其他键.
第3课时 特殊角的三角函数值
解: (1)按键顺序: 2nd F sin 0 ·9 8 1 6 = ,得到结果:∠A=78.99184039°. (2)按键顺序: 2nd F cos 0 ·8 0 6 7 = , 得到结果:∠A=36.22524578°. (3)按键顺序: 2nd F tan 0 ·1 8 9 = , 得到结果:∠A=10.70265749°.
余弦值为
23,
秋九年级数学下册 第二十八章 锐角三角函数练习 (新版)新人教版-(新版)新人教版初中九年级下册数学
第二十八章 锐角三角函数28.1 锐角三角函数第1课时 正弦01基础题知识点1 已知直角三角形的边长求锐角的正弦值如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.1.(某某中考)在Rt △ABC 中,∠C=90°,AC =12,BC =5,则sin A 的值为(D )A.512B.125 C.1213D.5132.已知△ABC 中,AC =4,BC =3,AB =5,则sin A =(A )A.35B.45C.53D.343.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么sin α的值是(A )A.35B.45C.34D.43第3题图 第4题图4. 如图,网格中的每一个正方形的边长都是1,△ABC 的每一个顶点都在网格的交点处,则sin A =35.5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sin B 的值是34.6.根据图中数据,求sin C 和sin B 的值.解:在Rt△ABC 中,BC =AB 2+AC 2=34, ∴sinC =AB BC =53434,sinB =AC BC =33434.7.如图所示,在Rt △ABC 中,∠ACB=90°,a∶c=2∶3,求sin A 和sin B 的值.解:在Rt△ABC 中,∠ACB =90°,a∶c =2∶3,设a =2k ,c =3k.(k>0)∴b =c 2-a 2=5k. ∴sinA =a c =2k 3k =23,sinB =b c =5k 3k =53.知识点2 已知锐角的正弦值,求直角三角形的边长8.(来宾中考)在△ABC 中,∠C=90°,BC =6,sin A =23,则AB 边的长是9.9.(某某中考)在△ABC 中,AB =AC =5,sin ∠ABC=0.8,则BC =6.易错点 对正弦的概念理解不清10.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值(A )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定02中档题11.已知Rt △ABC∽Rt △A′B′C′,∠C=∠C′=90°,且AB =2A′B′,则sin A 与sin A′的关系为(B )A .sin A =2sin A ′ B.sin A =sin A ′ C .2sin A =sin A ′ D.不确定12.如图,在Rt △ABC 中,∠C=90°,AB =2BC ,则sin B 的值为(C )A.12B.22C.32D .1 13.在△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a ,b ,c ,c =3a ,则sin A 的值是(A )A.13B.233 C .3 D .以上都不对14.如图,在Rt △ABC 中,∠ACB=90°,CD⊥AB,垂足为点 D.若AC =5,BC =2,则sin ∠ACD 的值为(A )A.53 B.255 C.52 D.23第14题图 第16题图15.已知锐角A 的正弦sin A 是一元二次方程2x 2-7x +3=0的根,则sin A =12.16.(某某中考)如图,⊙O 的直径CD =10 cm ,且AB⊥CD,垂足为P ,AB =8 cm ,则sin ∠OAP=35.17.如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧OC 上一点,求∠OBC 的正弦值.解:连接OA 并延长交⊙A 于点D ,连接CD.∴∠OBC =∠ODC, ∠OCD =90°.∴sin∠OBC =sin∠ODC =OC OD =510=12.03综合题18.(某某中考)如图,根据图中数据完成填空,再按要求答题:sin 2A 1+sin 2B 1=1;sin 2A 2+sin 2B 2=1;sin 2A 3+sin 2B 3=1.(1)观察上述等式,猜想:在Rt△ABC 中,∠C =90°,都有sin 2A +sin 2B =1;(2)如图4,在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,利用三角函数的定义和勾股定理,证明你的猜想;(3)已知:∠A +∠B =90°,且sin A =513,求sin B .解:(2)∵在Rt△ABC 中,∠C =90°,sinA =a c ,sinB =b c ,∴sin 2A +sin 2B =a 2+b 2c2.∵∠C =90°, ∴a 2+b 2=c 2. ∴sin 2A +sin 2B =1.(3)∵sinA =513,sin 2A +sin 2B =1,且sinB >0,∴sinB =1-(513)2=1213.第2课时 锐角三角函数01基础题 知识点1 余弦如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=bc.1.(某某中考)如图,在Rt △ABC 中,∠C=90°,AB =5,BC =3,则cos B 的值是(A )A.35B.45C.34D.432.在Rt △ABC 中,∠C=90°,cos A =35,AC =6 cm ,那么BC 等于(A )A .8 cm B.245 cmC.185 cm D.65cm 3.在△ABC 中,∠C=90°,AC =2,BC =1,求cos A 和cos B 的值.解:∵∠C =90°,AC =2,BC =1,∴AB =AC 2+BC 2=22+12= 5.cosA =AC AB =25=255,cosB =BC AB =15=55.知识点2 正切如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边=a b.4.(某某中考)在Rt △ABC 中,∠C=90°,AB =5,BC =3,则tan A 的值是(A )A.34B.43C.35D.455.在4×4的正方形的网格中画出了如图所示的格点△ABC,则tan ∠ABC 的值为(D )A.31313 B.21313 C.32 D.23第5题图 第6题图6.(某某中考)如图,在△ABC 中,∠C=90°,AC =2,BC =1,则tan A 的值是12.7.已知等腰三角形的腰长为6 cm ,底边长为10 cm ,则底角的正切值为115.知识点3 锐角三角函数∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.8.(某某中考)如图,在Rt △ABC 中,∠C=90°,BC =15,tan A =158,则AB =17.第8题图 第9题图9.(崇左中考)如图,在Rt △ABC 中,∠C=90°,AB =13,BC =12,则下列三角函数表示正确的是(A )A .sin A =1213B .cos A =1213C .tan A =512D .tan B =12510.在Rt △ABC 中,∠C=90°,AC =7,BC =24.(1)求AB 的长;(2)求sin A ,cos A ,tan A 的值. 解:(1)由勾股定理,得AB =AC 2+BC 2=72+242=25.(2)sinA =BC AB =2425,cosA =AC AB =725,tanA =BC AC =247.02中档题11.在△ABC 中,若三边BC ,CA ,AB 满足BC∶CA∶AB=5∶12∶13,则cos B =(C )A.512 B.125C.513 D.121312.(某某中考)在Rt △ABC 中,∠C=90°,若sin A =35,则cos B 的值是(B )A.45B.35C.34D.4313.将△AOB 按如图所示放置,然后绕点O 逆时针旋转90°至△A′OB′的位置,点A 的坐标为(2,1),则tan ∠A′OB′的值为(A )A.12B .2 C.55 D.255第13题图 第14题图14.(某某中考)如图,在Rt △ABC 中,∠ACB=90°,AC =8,BC =6,CD⊥AB ,垂足为D ,则tan ∠BCD 的值是34.15.(某某中考)如图,在半径为3的⊙O 中,直径AB 与弦CD 交于点E ,连接AC ,B D.若AC =2,则cos D =13.16.(某某中考)如图,在△ABC 中,CD⊥AB,垂足为D.若AB =12,CD =6,tan A =32,求sin B +cos B 的值.解:在Rt△ACD 中,CD =6,tanA =32,∴CD AD =6AD =32,即AD =4. 又AB =12,∴BD =AB -AD =8.在Rt△BCD 中,BC =CD 2+BD 2=10.∴sinB =CD BC =610=35,cosB =BD BC =810=45.∴sinB +cosB =35+45=75.17.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,求tan ∠DCF 的值.解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°. ∵AB BC =23,且由折叠知CF =BC , ∴CD CF =23.设CD =2x ,CF =3x (x>0),∴DF =CF 2-CD 2=5x. ∴tan∠DCF =DF CD =5x 2x =52.03综合题18.如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作c tan α,即c tan α=角α的邻边角α的对边=ACBC,根据上述角的余切定义,解下列问题:(1)c tan 30°=3;(2)如图,已知tan A =34,其中∠A 为锐角,试求c tan A 的值.解:∵tanA =34,且tanA =BC AC,∴设BC =3x ,AC =4x. ∴ctanA =AC BC =4x 3x =43.第3课时 特殊角的三角函数值01基础题知识点1 特殊角的三角函数值填写下表:30° 45° 60° sin α 12 22 32 cosα 32 22 12 tanα33131.已知∠A=30°,下列判断正确的是(A )A .sin A =12B .cos A =12C .tan A =12D .cot A =122.计算:cos 230°=(D )A.12B.14C.32D.34 3.(某某中考)计算:cos 245°+sin 245°=(B )A.12B .1 C.14 D.224.计算:tan 45°+2cos 45°=2. 5.计算:(1)sin 30°+cos 45°; 解:原式=12+22=1+22.(2)cos30°·tan30°-tan 245°; 解:原式=32×33-12=12-1=-12. (3)22sin45°+sin60°·cos45°. 解:原式=22×22+32×22=2+64.知识点2 由三角函数值求特殊角6.(某某中考)在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是(D )A .30° B.45° C.60° D.90° 7.如果在△ABC 中,sin A =cosB =22,那么下列最确切的结论是(C ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形8.已知α为锐角,且cos (90°-α)=12,则α=30°.9.在△ABC 中,∠C=90°,AC =2,BC =23,则∠A=60°.知识点3 用计算器计算三角函数值10.用计算器计算cos 44°的结果(精确到0.01)是(B )A .0.90B .0.72C .0.6911.如图,在△ABC 中,∠ACB=90°,∠ABC=26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是(D )A .5÷tan26°=B .5÷sin26°=C .5×cos26°=D .5×tan26°=12.利用计算器求∠A =18°36′的三个锐角三角函数值.解:sinA =sin18°36′≈0.319 0,cosA =cos18°36′≈0.947 8, tanA =tan18°36′≈0.336 5.13.已知下列正(余)弦值,用计算器求对应的锐角(精确到0.1°).(1)sin α=0.822 1; 解:α≈55.3°.(2)cos β=0.843 4. 解:β≈32.5°.02中档题14.点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是(B )A.(32,12) B.(-32,-12)C.(-32,12) D.(-12,-32)15.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是(D)A.40° B.30° C.20° D.10°16.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为(D)A.12B.33C.22D.3217.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=2,则点B的坐标为(C) A.(2,1) B.(1,2)C.(2+1,1) D.(1,2+1)第17题图第18题图18.(某某中考)如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接C B.若⊙O的半径为2,∠ABC=60°,则BC=8.19.计算:(1)(某某中考改编)2 0180+(-1)2-2tan45°+4;解:原式=1+1-2×1+2=2.(2)(-1)-2+|2-3|+(π-3.14)0-tan60°+8.解:原式=1+(3-2)+1-3+2 2=2+ 2.20.若tan A 的值是方程x 2-(1+3)x +3=0的一个根,求锐角A 的度数.解:解方程x 2-(1+3)x +3=0, 得x 1=1,x 2= 3.由题意知tanA =1或tanA = 3.∴∠A =45°或60°.21.(原创题)如图,在等腰△ABC 中,AB =AC =1.(1)若BC =2,求△ABC 三个内角的度数; (2)若BC =3,求△ABC 三个内角的度数.解:(1)∵AB =AC =1,BC =2,∴AB 2+AC 2=BC 2.∴∠BAC =90°,∠B =∠C =45°.(2)过点A 作AD⊥BC,垂足为D.∵AB =AC =1,AD⊥BC, ∴BD =12BC =32.∴cosB =BD AB =321=32.∴∠B =30°.∴∠C =30°,∠BAC =120°.03综合题22.(某某中考)一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin α·cos β+cos α·sin β;sin (α-β)=sin α·cos β-cos α·sin β.例如:sin 90°=sin (60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=32×32+12×12=1.类似地,可以求得sin 15°的值是6-24. 解直角三角形及其应用 28. 解直角三角形01基础题知识点1 已知两边解直角三角形如图,已知两边:(1)已知a ,b ,则c =a 2+b 2,sin A =cos B =a c,sin B =cos A =bc ,tan A =a b ,tan B =b a;(2)已知a ,c ,则b =c 2-a 2,sin A =cos B =a c ,sin B =cos A =b c ,tan A =a b ,tan B =b a. 1.在△ABC 中,∠C=90°,AC =3,AB =4,欲求∠A 的值,最适宜的做法是(C )A .计算tan A 的值求出B .计算sin A 的值求出C .计算cos A 的值求出D .先根据sin B 求出∠B ,再利用90°-∠B 求出2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cos A 的值是(A )A.35B.45C.43D.543.在Rt △ABC 中,∠C=90°,a =20,c =202,则∠A=45°,∠B =45°,b =20. 4.如图,在Rt △ABC 中,∠C=90°,已知BC =26,AC =62,解此直角三角形.解:∵tanA =BC AC =2662=33,∴∠A =30°.∴∠B =90°-∠A =90°-30°=60°,AB =2BC =4 6.知识点2 已知一边一锐角解直角三角形如图,已知一边一角:(1)已知a ,∠A ,则∠B =90°-∠A ,c =a sinA ,b =a tanA; (2)已知c ,∠A ,则∠B =90°-∠A ,a =c·sinA .5.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB =8,则BC 的长是(D )A.433B .4C .8 3D .4 36.在Rt △ABC 中,∠C=90°,tan A =43,BC =8,则△ABC 的面积为(C )A .12B .18C .24D .487.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC =32,则AC =24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)8.(教材9下P 73例2变式)如图,在Rt △ABC 中,∠C=90°,∠B=55°,AC =4,解此直角三角形.(结果保留小数点后一位)解:根据题意,∠A =90°-∠B =90°-55°=35°. 根据正弦定义,sinB =AC AB,则AB =AC sinB =4sin55°≈4.9.根据正切的定义,tanB =AC BC,则BC =AC tanB =4sin55°≈2.8.所以△ABC 的另一个锐角度数为35°,另一条直角边长为2.8,斜边长为4.9. 易错点 忽视钝角三角形而致错9.在△ABC 中,AB =23,AC =2,∠B=30°,则BC 的长为2或4.02中档题10. 如图,在△AB C 中,∠C=90°,AC =8 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC的长是(A )A .4 cmB .6 cmC .8 cmD .10 cm11.(某某中考)在△ABC 中,AB =122,AC =13,cos B =22,则BC 边长为(D )A .7B .8C .8或17D .7或1712.(某某中考)如图,在△ABC 中,AC =6,BC =5,sin A =23,则tan B =43.第12题图 第13题图13.(某某中考)如图,在菱形ABCD 中,DE⊥AB 于点E ,cos A =35,BE =4,则tan ∠DBE 的值是2.14.(某某中考)如图,在△ABC 中,BD⊥AC,AB =6,AC =53,∠A=30°.(1)求BD 和AD 的长; (2)求tan C 的值.解:(1)∵BD⊥AC,∴∠ADB =∠BDC =90°.在Rt△ADB 中,AB =6,∠A =30°,∴BD =12AB =3.∴AD =3BD =3 3.(2)CD =AC -AD =53-33=23, 在Rt△BDC 中,tanC =BD CD =323=32.15.(某某中考)如图,在四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB =6,CD =4,BC 的延长线与AD 的延长线交于点E.(1)若∠A=60°,求BC 的长; (2)若sin A =45,求AD 的长.解:(1)∵在Rt△ABE 中,∠ABE =90°,∠A =60°,AB =6,tanA =BE AB,∴BE =6·tan60°=6 3.∵在Rt△CDE 中,∠CDE =90°,∠E =90°-60°=30°, CD =4, ∴CE =2CD =8.∴BC =BE -CE =63-8.(2) ∵在Rt△ABE 中,∠ABE =90°,sinA =45,∴BE AE =45. 设BE =4x ,则AE =5x (x >0).∵AE 2-BE 2=AB 2,∴(5x )2-(4x )2=62.∴x =2. ∴BE =8,AE =10.∵在Rt△CDE 中,∠CDE =90°,CD =4,tanE =CD ED ,而在Rt△ABE 中,tanE =AB BE =68=34,∴CD ED =34. ∴ED =43CD =163.∴AD =AE -ED =143.03综合题16. 如图,在△ABC 中,CD 是边AB 上的中线,∠B 是锐角,且sin B =22,tan A =12,AC =3 5. (1)求∠B 的度数与AB 的长; (2)求tan ∠CDB 的值.解:(1)作CE⊥AB 于E ,设CE =x , 在Rt△ACE 中,∵tanA =CE AE =12,∴AE =2x.∴AC =x 2+(2x )2=5x. ∴5x =35,解得x =3. ∴CE =3,AE =6.在Rt△BCE 中,∵sinB =22, ∴∠B =45°.∴△BCE 为等腰直角三角形. ∴BE =CE =3. ∴AB =AE +BE =9.(2)∵CD 是边AB 上的中线,∴BD =12AB =4.5.∴DE =BD -BE =-3=1.5. ∴tan∠CDE =CEDE=错误!=2,即tan∠CDB 的值为2.28.2.2 应用举例第1课时 与视角有关的解直角三角形应用题01基础题知识点1 利用解直角三角形解决简单问题1. 如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10米,∠B=36°,则中柱AD(D 为底边中点)的长是(C )A .5sin36°米B .5cos36°米C .5tan36°米D .10tan36°米第1题图 第2题图2.(教材9下P 74例3变式)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q.若∠QAP=α,地球半径为R ,则航天飞船距离地球表面最近距离AP =Rsinα-R. 3.(某某中考)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).如图,在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB =30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)解:过点C 作CD⊥AB,垂足为D.∵∠CAB =30°, ∴AD =3CD. ∵∠CBA =60°,∴DB =33CD. ∵AB =AD +DB =30,∴3CD +33CD =30. ∴CD =1523=152×1.73≈13(米).答:河的宽度约为13米.知识点2 解与视角有关的实际问题4.(教材9下P 75例4变式)(某某中考)如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为(A )A .160 3 mB .120 3 mC .300 mD .160 2 m5.(某某中考)如图,两幢建筑物AB 和CD ,AB⊥BD,CD⊥BD,AB =15 m ,CD =20 m ,AB 和CD 之间有一景观池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B ,E ,D 在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1 m ,参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)解:由题意,得∠AEB =42°,∠DEC =45°.∵AB⊥BD,CD⊥BD,∴在Rt△ABE 中,∠ABE =90°. ∵AB =15,∠AEB =42°, tan∠AEB =ABBE ,∴BE =15tan42°=503.在Rt△DEC 中,∠CDE =90°,∠DEC =45°,CD =20.∴ED =CD =20.∴BD =BE +ED =503+(m ).答:两幢建筑物之间的距离BD 约为36.7 m.易错点 混淆三点函数的数量关系而导致错误6.(某某中考)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为(C )A.30tanα米 B .30sinα米 C .30tanα米 D .30cosα米 02中档题7. (某某中考)某某市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=CE AE ,∴CE=AE·tan60°=153米.在Rt△ABE中,tan∠BAE=BEAE=17+15315,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.8.(某某中考)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)解:(1)由题意知∠ABP=30°,AP=97,∴AB=APtan∠ABP =97tan30°=9733=973≈168.答:主桥AB的长度约为168 m.(2)∵∠ABP=30°,AP=97,∴PB=2PA=194.又∵∠DBC=∠DBA=90°,∠PB A=30°,∴∠DBP=∠DPB=60°.∴△PBD是等边三角形.∴DB=PB=194.在Rt△BCD中,∵∠C=80°36′,∴BC=DBtanC =194tan80°36′≈32.答:引桥BC的长约为32 m.03综合题9.(六盘水中考)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动.如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得数据如下:①小明的身高DC=1.5米;②小明的影长CE=1.7米;③小明的脚到旗杆底部的距离BC=9米;④旗杆的影长BF=7.6米;⑤从D点看A点的仰角为30°.请你选择需要的数据,求出旗杆的高度.(计算结果精确到0.1米,参考数据:2≈1.414,3≈1.732)情况一:选用①,②,④.∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°.又∵AF∥DE,∴∠AFB=∠DEC.则△ABF∽△DCE.∴ABDC=FBEC.又∵DC =1.5 m ,FB =7.6 m ,EC =1.7 m ,∴AB≈6.7 m.即旗杆高度约为6.7 m. 情况二: 选用①,③,⑤. 过D 点作DG⊥AB 于G 点, ∵AB⊥FC,DC⊥FC,∴四边形BCDG 为矩形. ∴CD =BG =1.5 m ,DG =BC =9 m.在Rt△AGD 中,∠ADG =30°,tan30°=AG DG,∴AG =3 3 m.又AB =AG +GB ,∴AB =33+(m).∴旗杆高度约为6.7 m.第2课时 与方位角、棱角有关的解直角三角形应用问题01基础题知识点1 解与方位角有关的实际问题1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是(A )A .250米B .2503米 C.50033米 D .5002米第1题图 第2题图2.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.则船继续航行50海里与钓鱼岛A的距离最近.3.(某某中考)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)解:过P作PC⊥AB于C,在Rt△APC中,AP = 200 m,∠ACP =90°,∠PAC =60°.∴PC= 200×sin60°=200 ×32=1003(m).∵在Rt△PBC中,sin37°=PCPB ,∴PB=PCsin37°=错误!≈288(m).答:小亮与妈妈相距约288米.知识点2解与坡角有关的实际问题4.(聊城中考)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1∶3,则AB的长为(A) A.12米 B.43米C.53米 D.63米第4题图第5题图5.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是35米.6.(教材9下P77练习T2变式)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形.由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1∶2.5,在Rt△ABE中,BEAE=错误!,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=3CF=203米.∴AD=AE+EF+FD=50+6+203(米).答:坝底AD的长度约为米.02中档题7.(某某中考)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.已知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(3≈1.732)解:该轮船不改变航向继续前行,没有触礁危险.理由如下:由题意,得∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD.∴BC =AC =200海里.在Rt△ACD 中,设CD =x ,则AC =2x ,AD =AC 2-CD 2=(2x )2-x 2=3x. 在Rt△ABD 中,AB =2AD =23x ,BD =AB 2-AD 2=(23x )2-(3x )2=3x.又∵BD =BC +CD ,∴3x =200+x ,解得x =100.∴AD =3x =1003≈173.2.海里>170海里,且D 处距离A 处最近,∴轮船不改变航向继续向前行驶,轮船无触礁的危险.8.(某某中考)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡角为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1 790 m .如图,DE∥BC,BD =1 700 m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1 m )解:过点D 作DF⊥BC 于点F ,延长DE 交AC 于点M. 由题意,得EM ⊥AC,DF =CM ,∠AEM =29°, 在Rt△DFB 中,sin80°=DFBD,∴DF =BDsin80°.AM =AC -CM =1 790-1 700sin80°.在Rt△AME 中,sin29°=AM AE,∴AE =AM sin29°=1 790-1 700sin80°sin29°(m ),答:斜坡的长度约为238.9 m. 03综合题9.(黔东南中考)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学测量学校附近一电线杆的高,如图,已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30°,在C 处测得电线杆顶端A 的仰角为45°,斜坡与地面成60°角,CD =4 m ,请你根据这些数据求电线杆的高(AB).(结果精确到1 m ,参考数据:2≈1.4,3≈1.7)解:延长AD交BC的延长线于点G,过点D作DH⊥BG,垂足为点H,则∠G=30°.∵在Rt△DHC中,∠DCH=60°,CD=4,∴C H=CD·cos∠DCH=4×cos60°=2.DH=CD·sin∠DCH=4×sin60°=2 3.又∵DH⊥BG,∠G=30°,∴HG=DHtanG =23tan30°=6.∴CG=CH+HG=2+6=8.设AB=x m.又∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x.∴BG=ABtanG =xtan30°=3x.∵BG-BC=CG,∴3x-x=8.解得x≈11 m.答:电线杆的高(AB)约为11 m.小专题17解直角三角形的实际应用1.(某某月考)如图,在一次测量活动中,小华站在离旗杆底部(B)处6 m的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5 m.试帮助小华求出旗杆AB的高度.(结果精确到0.1 m,3≈1.732)解:过点E作EC⊥AB于C.∵CE=BD=6 m,∠AEC=60°,∴AC=CE·tan60°=6×3=63(m).∴AB=AC+DE=+=(m).答:旗杆AB的高度约为11.9 m.2.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我国海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).解:(1)如图.(2)AB=30×=15(海里).在Rt△ABC中,tan∠BAC=BC AB ,∴BC=AB·tan∠BAC=AB·tan30° =15×33=53(海里).答:钓鱼岛C 到B 处距离为53海里.3.(某某中考)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道A B.如图,在山外一点C 测得BC 距离为200 m ,∠CAB =54°,∠CBA =30°,求隧道AB 的长.(参考数据: sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,结果精确到个位)解:过点C 作CD⊥AB 于D ,在Rt△BCD 中,∵∠B =30°,BC =200,∴CD =12BC =100,BD =1003≈173.在Rt△ACD 中,∵tan∠CAB =CD AD ,∴AD =100tan54°≈72.∴AB =AD +BD≈245.答:隧道AB 的长约为245米.4.(黔东南中考)如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,2,3≈1.73,4≈2.24)解:假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE⊥AC 于点E ,作D′E′⊥AC 于点E′,∵CD =12米,∠DCE =60°, ∴DE =CD·sin60°=12×32=63(米), CE =CD·cos60°=12×12=6(米).易知:四边形DEE′D′是矩形.∴DE =D′E′=63米. ∵∠D′CE′=39°,∴CE′=D′E′tan39°≈错误!≈12.8,∴EE′=CE′-CE =-6=(米). ∴DD′=EE′=米.答:学校至少要把坡顶D 向后水平移动米才能保证教学楼的安全.5.(某某中考)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF⊥BC 于F ,∠CDF=45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)解:设BM =x 米.∵∠CDF =45°,∠CFD =90°, ∴CF =DF =x 米.∴BF =BC -CF =(4-x )米. ∴EN =DM =BF =(4-x )米.∵AB =6米,DE =MN =1米,BM =x 米, ∴AN =AB -MN -BM =(5-x )米.在△AEN 中,∠ANE =90°,∠EAN =31°,∴EN =AN·tan31°,即4-x =(5-x ). ∴x =2.5.答:DM 和BC 的水平距离BM 的长度约为米.6.(某某中考)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB 的长为3 m ,静止时,踏板到地面距离BD 的长为0.6 m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为h m ,成人的“安全高度”为2 m .(计算结果精确到0.1 m ,参考数据:2≈1.41,sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)(1)当摆绳OA 与OB 成45°夹角时,恰为儿童的安全高度,则h =m ; (2)某成人在玩秋千时,摆绳OC 与OB 的最大夹角为55°,问此人是否安全?解:过C 点作CM⊥DF,CE⊥OD,垂足分别为M ,E ,∵在Rt△CEO 中,∠CEO =90°, ∠COE =55°, ∴cos∠COE =OEOC.∴OE =OC·cos∠COE =3·cos55°≈1.7 m. ∴ED =3+-=(m ).∴CM =ED =1.9 m <2 m.∴此人是安全的.章末复习(八) 锐角三角函数01分点突破知识点1 求锐角三角函数值1.如图,在Rt △ABC 中,∠BAC=90°,AD⊥BC 于点D ,则下列结论不正确的是(C )A .sinB =AD AB B .sin B =AC BC C .sin B =AD ACD .sin B =CD AC第1题图第3题图2.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是(D )A.13B .3 C.24D .2 2 3.如图,在△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cos C =23.知识点2 特殊角的三角函数值(某某2016T19、2015T19、2014T19) 4.在△ABC 中,若(3tan A -3)2+|2cos B -3|=0,则△ABC 为(A )A .直角三角形B .含60°角的任意三角形C .等边三角形D .顶角为钝角的等腰三角形5.(某某中考改编)计算:(π-2 016)0+|1-2|+2-1-2sin 45°=12.知识点3 解直角三角形及其应用(某某2017T22、2016T21、2015T21、2014T21、2013T21) 6.在△ABC 中,∠C =90°,AB =2,BC =3,则tan A 2=33.7.如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)解:过点A 作AH⊥CD,垂足为H. 则AB =DH =米,BD =AH =6米.在Rt△ACH 中,∵∠CAH =30°,tan∠CAH =CH AH,∴CH =AH·tan∠CAH =6·tan30°=23(米). ∴CD =CH +HD =(23+)米.在Rt△CDE 中,∵∠CED =60°,sin∠CED =CD CE,∴CE =CDsin60°=4+3(米).答:拉线CE 的长约为米.02中考题型演练8.(某某中考)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是(A )A .5米B .6米C .6.5米D .12米第8题图 第9题图9.(某某中考) △ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列四个选项中,错误的是(C )A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=110.(某某中考)如图,⊙O 是边长为2的等边△ABC 的内切圆,则⊙O 的半径为33.第10题图 第12题图11.(某某中考) △ABC 中,AB =12,AC =39,∠B=30°,则△ABC 的面积是213或153.12.(某某中考)如图,某城市的电视塔AB 坐落在湖边,数学老师带领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米到达湖边点N 处,测得塔尖点A 在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB 的高度为1002米.(结果保留根号)13.(某某中考)如图,一楼房AB 后有一座假山,其坡度为i =1∶3,山坡坡面上E 点处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)解:过点E 作EF⊥BC 的延长线于点F ,EH⊥AB 于点H , 在Rt△CEF 中,∵i =EFCF=13=tan∠ECF, ∴∠ECF =30°.∴EF =12CE =10米,CF =103米.∴BH =EF =10米,HE =BF =BC +CF =(25+103)米.在Rt△AHE 中,∵∠HAE =45°,∴AH =HE =(25+103)米. ∴AB =AH +HB =(35+103)米.答:楼房AB 的高为(35+103)米.14.(某某中考)今年,我国海关总署严厉打击“洋垃圾”某某行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)解:(1)过点B作BH⊥CA,交CA的延长线于点H.∵∠MBC=60°.∴∠CBA=30°.∵∠NAD=30°,∴∠BAC=120°.∴∠C=180°-∠BAC-∠CBA=30°.∴BH=BC·sin∠BCA=150×12=75海里.答:B点到直线CA的距离是75海里.(2)∵在Rt△BDH中,BD=752海里,BH=75海里,∴DH=BD2-BH2=75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan∠BAH=BHAH=3,∴AH=253海里.∴AD=DH-AH=(75-253)海里.答:执法船从A到D航行了(75-253)海里.。
精品解析:人教版九年级下册数学第28章锐角三角函数单元检测卷(解析版).docx
人教版九年级下册数学第28章锐角三角函数单元检测卷->选择题(每小题3分;共33分)1. 计算5sin30o+2cos245°-tan260°的值是()厂 1 1A. &B. -C.-—D.1v 2 2【答案】B【解析】试题分析:根据特殊角的锐角三角函数值计算即可得到结果.5sin30°+2cos245°-tan260°一丄十2x(2^':一"岳:-l-b2xl-3 -丄■ ■ ■ ■ ■故选B.考点:特殊角的锐角三角函数值点评:计算能力是学生必须具备的基本能力,中考中各种题型中均会涉及到计算问题,因而学生应该努力提升白己的计算能力.2. 如图,河堤横断面迎水坡AB的坡比是1:不,堤高BC=10m,则坡面AB的长度是()BA. 15mB. 20^3mC. 20mD. logm【答案】C【解析】试题分析:RtZ\ABC中,BC=10m, tanA=l:^3;AC=BC-rta nA=10^/3 m, ・・.AB二Jio' + UO 间2 = 20m. 故选:C 考点:解直角三角形 3.在RtAABC中,ZC=90°,当已知ZA和a时,求c,应选择的关系式是() a a aA. c = -------B. c = ----------------------------C. ata nAD. c = -------------------sinA cosA tanA【答案】A【解析】在RtAABC中,ZC=90°,. aAsinA=-,a/• c ——sinA故选A.【点睛】本题主要考查解三角形,解题的关键是熟练运用三角函数的定义求解.4. 在RtAABC 中,ZC=90^, c=5, a=4,则sinA 的值为( )3 4 3 4A. —B.—C. —D. -5 5 4 3【答案】BQ 4【解析】由锐角三角函数的定义,sin/! = - = -,所以选B学壬科¥网…学¥科¥网…学¥科¥网…学¥科c 5¥网…学¥科¥网…学¥科¥网…学¥科¥网…学¥科¥网…5. 在RtAABC 中,ZC=90°,下列等式:(1) sin A=sin B; (2) a=c sin B; (3) sin A=tan A cos A; (4) sin2A+cos2A =1.其中一定能成立的有( )A. 1个B. 2个C. 3个D. 4个【答案】B・・A計• n P人打 4 A甜• sinA= —, sinB= — , cosA= — , tanA二一, <•r r h.•.sinAHsinB,所以(1)错误;a=c-sinA,所以(2)错误;VtanA-cosA= —• — =sinA,所以(3)正确;h rsin2A+cos2A= ( — ) 2+ ( — ) 2= =1,所以(4)正确.故选B.6.如图,在边长为1的小正方形组成的网格中,点A、B、0为格点,贝ij tanZAOB=( )【答案】A【解析】过点A 作AD 丄0B 垂足为D, 如图,在直角AABD 屮,AD=1, 0D=2,则 tanZAOB —=-, OD 27.如图,在RtAABC 中,ZC=90°, AM 是BC 边上的中线,sinZCAM=-,则tanB 的值为(4 D. 3【答案】B设 CM=3x,则 AM=5x,根据勾股定理得:AC=^AM 2-CM 2^4x,又M 为BC 的中点,/. BC=2CM=6x,z z |AC 4x 2在 RtAABC 中,tanB=——=—=一,BC 6x 3 故选B.8.如图,一艘轮船在B 处观测灯塔A 位于南偏东50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28章 锐角三角函数 28.1 锐角三角函数 特殊角的三角函数值
1. -tan60°+2sin45°的值等于( )
A .1
B .
C -1
D −3
2. 计算cos 245°+sin 245°等于( ) A.12 B .1 C.14 D.22
3. 如果在△ABC 中,sinA =cosB =2
2,那么下列最确切的结论是( ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形 4. 用计算器计算cos44°的结果(精确到0.01)是( ) A .0.90 B .0.72 C .0.69 D .0.66
5. 用计算器求tanA =0.5234时的锐角A(精确到1°),按键的顺序正确的是( )
A .tan ,0,.,5,2,3,4,=
B .0,.,5,2,3,4,=2nd ,tan
C .2nd ,tan ,.,5,2,3,4
D .tan ,2nd ,.,5,2,3,4 6. 式子2cos30°-tan45°-(1-tan60°)2的值是( ) A .23-2 B .2 C .2 3 D .0 7. 若∠A 是锐角,且cosA =3
4,则( ) A .30°<∠A <45° B .0°<∠A <30° C .45°<∠A <60° D .60°<∠A <90°
8. 菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC =2,
则点B的坐标为( )
A.(2,1) B.(1,2) C.(2+1,1) D.(1,2+1)
,则下列最确切的结论是( )
9. 如果△ABC中,sinA=cosB=2
2
A.△ABC是直角三角形 B.△ABC是等腰三角形
C.△ABC是等腰直角三角形 D.△ABC是锐角三角形
3.如图,以O为圆心,任意长为半径画弧,与射线OM相交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )
B2 C3 D3
A.1
2
11. 当锐角A是30°,45°或60°的特殊角时,可以求得这些角的三角函数值;但如果不是这些特殊角时,一般借助______或锐角三角函数表来求三角函数值.12. 如图,⊙O与正方形ABCD的各边分别相切于点E,F,G,H,点P是弧HG上的一点,则tan∠EPF的值是________.
13. 6.△ABC 中,∠A 、∠B 都是锐角,若sinA=
,cosB= 1
2
,则∠C= _____.
14.已知2cos(α-10°),则锐角α的度数是 .
15.在Rt △ABC 中,∠C=90°,且sin30°=1
2
,sin45°=2
,sin60°cos30°
,cos45°cos60°=1
2
;观察上述等式,请你写出正弦函数值与余弦函数值之间的等量关系式___________________,因为∠A 与_________互余,所以请你写出正弦函数与余弦函数间的一般关系式_______________________. 16. 若∠A 是锐角,tanA =3
3,则∠A =________. 17. 已知α为锐角,且cos(90°-α)=1
2,则α=________.
18.已知α,β均为锐角,且满足|sin α-1
2|+(tan β-1)2=0,则α+β=_____. 19. 已知2-3是关于x 的方程x 2-4x +tan α=0的一个实数根,则锐角α的度数为________.
20.若a =3-tan60°,则(1-2a -1)÷a 2-6a +9a -1=________.
21.如果tan (2α+10°31′7″)=1.7515,那么α=____________.
22.已知一个等腰三角形,顶角的度数为150°,腰长为4cm ,则该等腰三角形的面积为________ cm 2. 23. 计算:
(1)计算:cos 2
45°+cos30°
2sin60°+1
-3·tan30°.
(2)计算:cos45°sin45°+2sin60°·tan60°-1
tan30°+tan45°
24. 已知锐角α,关于x 的一元二次方程x 2-2xsin α+3sin α-3
4=0有相等实数根,求α.
25. 利用下面的图形,我们可以求出tan 30°的值.如图,在Rt △ABC 中,∠C =90°,AB =2,AC =1,可求出∠B =30°,tan 30°=AC BC =13=33.
在此图的基础上,我们还可以添加适当的辅助线,求出tan 15°的值,请你动手试一试.
答案:
1---10 BBCBC DACCC
11. 计算器
12. 1
13. 60°
14.40°
;sin60°=cos30°cos45°=sin45°15. .sin30°=cos60°=1
2
∠B
sin ∠A=cos (90°-∠A ),cos ∠A=sin (90°-∠A ). 16. 30° 17. 30° 18. 75° 19. 45° 20. -33 21. 24°52′44″ 22. 4
23. (1) 原式=(22)2+322×32+1-3×33=12+3-3
4-1=1-34.
(2) 原式=1+2×32×3-1
33
+1=1+3-3+1=5- 3
24. 解:由题意得Δ=(2sin α)2
-4(3sin α-34)=0,解得sin α=3
2,∴α=
60°
25. 如图所示,在Rt △ABC 中,∠C =90°,∠ABC =30°,设AC =a ,那么由30°角的三角函数,可知BC =3a ,AB =2a ,延长CB 到D ,使BD =AB ,连接AD.因为∠ABC =∠1+∠2,又因为AB =BD ,所以∠ABC =2∠1=2∠2.所以∠1=∠2=15°.在Rt △ACD 中,∠C =90°,AC =a ,DC =DB +BC =AB +BC =2a +3a ,所以tan 15°=tan ∠ADC =AC DC =a
2a +3a
=2- 3。