高考数学专题精讲 (3)
高三数学 指数、对数方程,任意角的三角函数,三角函数的定义域和值域 知识精讲
高三数学 指数、对数方程,任意角的三角函数,三角函数的定义域和值域 知识精讲一. 指数、对数方程1. 指数方程和对数方程主要有以下三种基本类型 (1)基本型a b f x b f x a ()()log =⇔=; log ()()a b f x b f x a =⇔=(2)同底型a a f x g x f x g x f x g x f x g x a a ()()()()log ()log ()()()=⇔==⇔=>;(3)换元型f a x ()=0或f x a (log )=0(以上各式均为a >0且a ≠1)如A a B a C x x()()20++=可设t a x =转化为At Bt C 20++=,求出t 再用基本型的解法求解。
2. 求解指对方程应注意以下几点:(1)复习本节内容时需再重温一下指数和对数的性质和运算法则,因为任何一个指数和对数方程经过运算和化简,都会化到下列二种类型: <1>两边同底的形式a a f x g x f x g x a ()()log ()log ()==,4,然后利用指数、对数函数的单调性,去掉指数、对数函数符号,化成一般的代数方程;<2>化成关于某个函数的一元二次方程:p aq a r f x f x ()()()()20++=和p f x q f x r a a (log ())log ()20++=,可以通过换元法把它们化成一元二次方程。
(2)对于含参数的对数方程,在求解时,先将原方程等价转化成某个混合组,并注意在等价转化的原则下化简。
(3)具体解一个含有参数的方程,可从四个方面下手:<1>直接求出其解,再把解代入到不等式中去,从而得到参数的取值X 围; <2>将所讨论的方程转化为一元二次方程的根的分布问题;<3>数形结合法,把含参数的部分移到另一边,在同一坐标系里画出等式两边函数的图像,方程有解转化成两个图像有交点的问题; <4>分离参数法,从方程中把参数分离出来变成a f x =()的形式,只须研究f(x)有关的性质,即可得方程的解的情况。
2015届高考数学总复习第三章 第三节两角和与差及二倍角三角函数公式精讲课件 文
第三节 两角和与差及二倍角三角 函数公式
正用和、差及二倍角三角公式求值,逆用 和、差、倍角三角公式求值
【例1】 (1)若sin(α-β)sin β-cos(α-β)cos β= ,且α是第
二象限角,则tan
等于( )
A.7
B.-7 C.
D.-
(2)已知 cosα-π6+sin α=45 3,则sinα+76π 的值是(
与拆角的方法;(2)要注意和、差、倍角公式及平方关系的正
用、逆用.
解析:∵α∈ ∴sin= 故cos α=cos = = 答案:
点评:在解答有条件限制的求值问题时,要善于发现所 求的三角函数的角与已知条件的角的联系,一般方法是配角 与拆角,如
等.变角主要是将所求角转化为同角、特殊 角、已知角或它们的和、差、两倍、一半等.注意角的范围 对函数值的影响.
【例4】 (2013·深圳一模)已知函数f(x)=2sin π6x+π3 (0≤x≤5),点A、B分别是函数y=f(x)图象上的最高点和最低 点.
(1)求点A、B的坐标以及
的值;
(2)设点A、B分别在角α、β的终边上,求tan(α-2β)的值.
点评:在综合使用两角和与差、二倍角公式化简求值时, 要注意以下几点:
1.(1)(2013·揭阳一模)计算:log sin 15°+log cos 15°=
________.
(2)若α∈ ________.
,且sin 2α+cos 2α=
,则tan α的值等于
解析:(1)原式=log (sin 15°cos 15°)
=log
2=2.
(2)由二倍角公式可得sin2α+1-2 sin2α= ,即sin2α= ,
(2)应用两角和与差的正弦、余弦、正切公式求值,其关 键是熟练掌握公式的特点,准确使用公式;
【新高考】高三数学一轮复习知识点专题3-2 导数与函数的单调性、极值与最值
专题3.2 导数与函数的单调性、极值与最值(精讲)【考情分析】1.了解函数的单调性与导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间。
3.了解函数在某点取得极值的必要条件和充分条件;4.会用导数求函数的极大值、极小值;5.会求闭区间上函数的最大值、最小值。
【重点知识梳理】知识点一函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点二函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点三函数的极值与导数形如山峰形如山谷知识点四函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.【特别提醒】1.函数f (x )在区间(a ,b )上递增,则f ′(x )≥0,“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的充分不必要条件.2.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系. 【典型题分析】高频考点一求函数的单调区间例1.【2019·天津卷】设函数()e cos ,()xf x xg x =为()f x 的导函数,求()f x 的单调区间。
高考数学一轮复习专题3.1导数的概念及运算定积分知识点讲解理科版含解析
知识点 7.微积分基本定理
一般地,如果 f(x)是在区间[a,b]上的连续函数,且 F′(x)=f(x),那么 错误!f(x)dx=F(b)-F(a).
b
| 这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把 F(b)-F(a)记为 F(x) ,即 错误!f(x)dx a b
| =F(x) )=F(b)-F(a). a 【特别提醒】
于形如 y=f(ax+b)的复合函数)的导数;
5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;
6.了解微积分基本定理的含义。
【重点知识梳理】
知识点 1.导数的概念
(1)函数 y=f(x)在 x=x0 处的导数:函数 y=f(x)在 x=x0 处的瞬时变化率 liΔxm→0 Δy=liΔxm→0 Δx
x 【答案】e
【方法技巧】
1.求函数导数的总原则:先化简解析式,再求导.
2.常见形式及具体求导 6 种方法
连乘形式
先展开化为多项式形式,再求导
三角形式 先利用三角函数公式转化为和或差的形式,再求导
分式形式
先化为整式函数或较为简单的分式函数,再求导
根式形式
先化为分数指数幂的形式,再求导
对数形式
先化为和、差形式,再求导
n
n b-a
点ξi(i=1,2,…,n),作和式 ∑ f(ξi)Δx= ∑
f(ξi),当 n→∞时,上述和式无限接近于某个
i=1
i=1 n
常数,这个常数叫做函数 f(x)在区间[a,b]上的定积分,记作 错误!f(x误!f(x)dx 中,a,b 分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被
函数 f(x)在闭区间[-a,a]上连续,则有
第03讲 空间直线、平面的平行 (精讲)(原卷版)-2023年高考数学一轮复习
第03讲空间直线、平面的平行(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定角度2:直线与平面平行的性质题型二:平面与平面平行的判定与性质角度1:平面与平面平行的判定角度2:平面与平面平行的性质题型三:平行关系的综合应用第四部分:高考真题感悟第一部分:知识点精准记忆知识点一:直线与平面平行1、直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.2、直线与平面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行符号表述: a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭3、直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号表述:a α,a β⊂,b αβ=⇒a b知识点二:平面与平面平行1、平面与平面平行的定义两个平面没有公共点2、平面与平面平行的判定定理如果一个平面内的有两条相交直线平行于另一个平面,那么这两个平面平行.符号表述:βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂b a P b a b a3、平面与平面平行的性质定理3.1性质定理两个平行平面,如果另一个平面与这两个平面相交,那么两条交线平行.符号语言3.2性质 ////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭两个平面平行,则其中一个平面内的直线平行与另一平面符号语言:,a a αβαβ⊂⇒1.(2022·全国·高一课时练习)判断正误.(1)若平面//α平面β,l ⊂平面β,m ⊂平面α,则lm .( )(2)夹在两平行平面之间的平行线段相等.( )2.(2022·全国·高一课时练习)已知长方体ABCD A B C D ''''-,平面α平面ABCD EF =,平面α平面A B C D E F ''''''=,则EF 与E F ''的位置关系是( ) A .平行 B .相交 C .异面 D .不确定3.(2022·全国·高一课时练习)在正方体1111F EFG E G H H -中,下列四对截面彼此平行的一对是( )A .平面11E FG 与平面1EGHB .平面1FHG 与平面11F H GC .平面11F H H 与平面1FHED .平面11E HG 与平面1EH G4.(2022·全国·高一课时练习)若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是( )A .一定平行B .一定相交C .平行或相交D .以上判断都不对5.(2022·全国·高一课时练习)直线//a 平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( )A .至少有一条B .至多有一条C .有且只有一条D .没有6.(2022·全国·高二课时练习)若平面//α平面β,直线a α⊂,则a与β的位置关系是____________.题型一:直线与平面平行的判定与性质角度1:直线与平面平行的判定典型例题例题1.(2022·四川绵阳·高二期末(理))如图,三棱柱111ABC A B C -的侧棱与底面垂直,2AC =,3BC =4AB =,12AA =,点D 是AB 的中点(1)求证:1//AC 平面1CDB ;(2)求直线1AC 与直线1CB 所成角的余弦值.例题2.(2022·四川凉山·高一期末(文))已知直三棱柱ABC A B C '''-中,AA C C ''为正方形,P ,O 分别为AC ',BC 的中点.(1)证明:PO ∥平面ABB A '';(2)若ABC 是边长为2正三角形,求四面体B AOC '-的体积..题型归类练1.(2022·四川成都·高一期末(理))在四棱锥P -ABCD 中,四边形ABCD 为矩形,平面ABCD ⊥平面PAB ,点E ,F 分别在线段CB ,AP 上,且CE EB =,=AF FP .(1)求证://EF 平面PCD ;2.(2022·重庆市第七中学校高一期末)如图,正三棱柱111ABC A B C -的所有棱长均为2,E 为线段11B C 的中点,F 为正方形11ACC A 对角线的交点.(1)求证:EF ∥面1B AC ;(2)求三棱锥111C B A C -的体积.3.(2022·河北石家庄·高一期末)如图,在直三棱柱111ABC A B C -中,2AC BC ==90ACB ∠=︒.12AA =,D 为AB 的中点.(1)求证:1AC ∥平面1B CD ;(2)求异面直线1AC 与1B C 所成角的余弦值.4.(2022·四川南充·高二期末(文))如图,四棱锥P ABCD -的底面是正方形,PA ⊥平面ABCD ,E ,F 分别为AB ,PD 的中点,且2PA AD ==.(1)求证:AF ∥平面PEC ;(2)求三棱锥C PEF -的体积.角度2:直线与平面平行的性质典型例题例题1.(2022·山东·济南市章丘区第四中学高一阶段练习)如图,四边形ABCD 为长方形,PD ⊥平面ABCD ,2PD AB ==,4=AD ,点E 、F 分别为AD 、PC 的中点.设平面PDC 平面PBE l =.(1)证明://DF 平面PBE ;(2)证明://DF l ;(3)求三棱锥P BDE -的体积.例题2.(2022·吉林·双辽市第一中学高三期末(文))如图,三棱锥P ABC -中,AC ,BC ,PC 两两垂直,AC BC =,E ,F 分别是AC ,BC 的中点,ABC 的面积为8,四棱锥P ABFE -的体积为4.(1)若平面PEF 平面=PAB l ,求证://EF l ;(2)求三棱锥P ABC -的表面积.题型归类练 1.(2022·重庆巴蜀中学高二期末)如图所示,在四棱锥P ABCD -中,底面是直角梯形,AD BC ∥,90ADC ∠=︒,AC 和BD 相交于点N ,面PAC ⊥面ABCD ,22BC AD ==,1CD =,6PA PC ==.(1)在线段PD 上确定一点M ,使得PB ∥面ACM ,求此时PM MD的值;2.(2022·安徽池州·高一期末)在四棱锥V ABCD -中,底面ABCD 为平行四边形,BC ⊥平面VAB ,VA VB ⊥,设平面VAB 与平面VCD 的公共直线为l .(1)写出图中与l 平行的直线,并证明;3.(2022·全国·高三专题练习)刍(ch ú)甍(m éng )是几何体中的一种特殊的五面体.中国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.求积术日:倍下表,上袤从之,以广乘之,又以高乘之,六而一.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶”现有一个刍甍如图所示,四边形ABCD 为长方形,//EF 平面ABCD ,ADE 和BCF △是全等的等边三角形.求证:EF∥DC ;4.(2022·全国·模拟预测(理))如图1,在矩形ABCD 中,点E 在边CD 上,2BC DE EC ==,将DAE △沿AE 进行翻折,翻折后D 点到达P 点位置,且满足平面PAE ⊥平面ABCE ,如图2.(1)若点F 在棱PA 上,且EF ∥平面PBC ,求PF PA;5.(2022·全国·高三专题练习)如图,在四棱锥S -ABCD 中,底面ABCD 是菱形,60BAD ∠=︒,SAB △为等边三角形,G 是线段SB 上的一点,且//SD 平面GAC .求证:G 为SB 的中点题型二:平面与平面平行的判定与性质角度1:平面与平面平行的判定典型例题例题1.(2022·北京延庆·高一期末)如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是1,A D BD 的中点.(1)求证:平面1A BD平面11CB D ; (2)求证:EF 平面11DCC D ;(3)求三棱锥1A BDA -的体积.例题2.(2022·山东山东·高一期中)如图,在长方体1111ABCD A B C D -中,4AB =,12BC BB ==,点E ,F 分别为边1AA ,1DD 的中点.(1)求三棱锥1E A BC -的体积;(2)证明:平面1CFA ∥平面BDE .例题3.(2022·福建省福州第一中学高一期末)如图①,在棱长为2的正方体1111ABCD A B C D -木块中,E 是1CC 的中点.(1)求四棱锥11E ABC D -的体积;(2)要经过点A 将该木块锯开,使截面平行于平面1BD E ,在该木块的表面应该怎样画线?(请在图②中作图,并写出画法,不必说明理由).题型归类练1.(2022·甘肃武威·高一期末)如图,在三棱柱111ABC A B C -中,E ,F 分别为线段1AC ,11A C 的中点.(1)求证://EF 平面11BCC B .(2)在线段1BC 上是否存在一点G ,使平面//EFG 平面11?ABB A 请说明理由.2.(2022·河南·模拟预测(文))如图,在四棱柱1111ABCD A B C D -中,四边形ABCD 是正方形,E ,F ,G 分别是棱1BB ,11B C ,1CC 的中点.(1)证明:平面1//A EF 平面1AD G ;(2)若点1A 在底面ABCD 的投影是四边形ABCD 的中心,124A A AB ==,求三棱锥11A AD G -的体积.3.(2022·湖南衡阳·高一期末)如图:正方体ABCD -A 1B 1C 1D 1棱长为2,E ,F 分别为DD 1,BB 1的中点.(1)求证:CF //平面A 1EC 1;(2)过点D 做正方体截面使其与平面A 1EC 1平行,请给以证明并求出该截面的面积.角度2:平面与平面平行的性质典型例题例题1.(2022·全国·高三专题练习)在三棱柱111ABC A B C -中,(1)若,,,E F G H 分别是1111,,,AB AC A B A C 的中点,求证:平面1EFA //平面BCHG . (2)若点1,D D 分别是11,AC A C 上的点,且平面1//BC D 平面11AB D ,试求AD DC的值.例题2.(2022·辽宁锦州·高一期末)如图,已知四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,底面ABCD 为矩形,且4PA PB ==,2AB =,3AD =,O 为棱AB 的中点,点E 在棱AD上,且13AE AD =.(1)证明:CE PE ⊥;(2)在棱PB 上是否存在一点F 使OF ∥平面PEC ?若存在,请指出点F 的位置并证明;若不存在,请说明理由.题型归类练1.(2022·江苏·高一课时练习)在三棱柱111ABC A B C -中,点D 、1D 分别是AC 、11A C 上的点,且平面1//BC D 平面11AB D ,试求AD DC的值.2.(2022·河北省唐县第一中学高一阶段练习)如图,四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF //CE ,BF ⊥BC ,BF <CE ,BF =2,AB =1,AD 5(1)求证:BC ⊥AF ;(2)求证:AF //平面DCE ;3.(2022·全国·高三专题练习(文))如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,//AB DC ,2PA PD ==,4AB =,1DC =,22AD BC ==(1)求四棱锥P ABCD -的体积;(2)在线段PA 上是否存在点M ,使得∥DM 平面PBC ?若存在,求PM AM的值;若不存在,请说明理由.4.(2022·河北·张北县第一中学高一阶段练习)如图所示正四棱锥S ABCD -,2,2SA SB SC SD AB =====P 为侧棱SD 上的点.且3SP PD =,求:(1)正四棱锥S ABCD -的表面积;(2)侧棱SC 上是否存在一点E ,使得//BE 平面PAC .若存在,求SE EC的值;若不存在,试说明理由.题型三:平行关系的综合应用典型例题例题1.(2022·江苏·高一课时练习)下列四个正方体中,A 、B 、C 为所在棱的中点,则能得出平面//ABC 平面DEF 的是( )A .B .C .D .例题2.(2022·安徽师范大学附属中学高一期中)在棱长为4的正方体1111ABCD A B C D -中,点E F 、分别是棱1,BC CC 的中点,P 是侧面四边形11BCC B 内(不含边界)一点,若1//A P 平面AEF ,则线段1A P 长度的最小值是___________.例题3.(2022·江苏省姜堰第二中学高一阶段练习)正方体1111ABCD A B C D -的棱长为1,点M ,N 分别是棱BC ,1CC 的中点,动点P 在正方形11ADD A (包括边界)内运动,且//BP平面AMN ,则1PA 的长度范围为___.题型归类练1.(2022·安徽省宣城中学高二期末)已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A .2B 5C 6D .222.(2022·江苏·扬中市第二高级中学高二期末)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,N 为BC 的中点.当点M 在平面DCC 1D 1内运动时,有MN //平面A 1BD 则线段MN 的最小值为( )A .1B 6C 2D 33.(2022·湖南·株洲二中高一期末)在棱长为1的正方体1111ABCD A B C D -中,点M ,N 分别是棱BC ,1CC 的中点,动点P 在正方形11(BCC B 包括边界)内运动.若1PA ∥平面AMN ,则1PA 的最小值是( )A .1B 5C 32D 64.(2022·北京通州·高一期末)如图,在正方体1111ABCD A B C D -中,E 为BC 的中点,F 为正方体棱的中点,则满足条件直线//EF 平面1ACD 的点F 的个数是___________.5.(2022·贵州·遵义市第五中学高二期中(理))如图,已知四棱锥P -ABCD 的底面是平行四边形,E 为AD 的中点,F 在PA 上,AP =λAF ,若PC //平面BEF ,则λ的值为_________.6.(2022·甘肃·武威第六中学模拟预测(理))在正三棱柱111ABC A B C -中,D ,E ,F 分别为11A B ,11B C ,11C A 的中点,2AB =,M 为BD 的中点,则下列说法正确的是______.①AF ,BE 为异面直线;②EM ∥平面ADF ;③若BE CF ⊥,则12AA =④若60BEC ∠=︒,则直线1A C 与平面11BCC B 所成的角为45°.1.(2022·全国·模拟预测(理))已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A .26B .27C .42D .62.(2022·全国·高考真题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC⊥,E 是PB 的中点.OE平面PAC;(1)证明://3.(2022·全国·高考真题(文))小明同学参加综合实践活动,设计了一个封闭的包装盒,EAB FBC GCD HDA 包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,,,,均为正三角形,且它们所在的平面都与平面ABCD垂直.EF平面ABCD;(1)证明://(2)求该包装盒的容积(不计包装盒材料的厚度).4.(2022·宁夏中卫·三模(理))如图1,菱形ABCD 中,60A ∠=︒,4AB =,DE AB ⊥于E ,将AED 沿DE 翻折到A ED ',使A E BE '⊥,如图2.(1)求三棱锥C A BD -'的体积;(2)在线段A D '上是否存在一点F ,使EF ∥平面A BC '?若存在,求DFFA '的值;若不存在,说明理由.。
2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)
专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。
封闭的旋转面围成的几何体叫做旋转体。
这条定直线叫做旋转体的轴。
3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。
棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。
一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。
4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。
棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。
5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。
在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。
6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。
高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3
高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。
难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。
三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。
(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。
这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。
2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。
3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。
说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。
(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。
4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。
专题3 基本初等函数-1
高考数学题型归纳与精讲(文/理科)诸葛老师课堂基础+强化+冲刺高考数学题型归纳与精讲(文/理科)不择手段,得分才是硬道理专题三基本初等函数题型7 函数的概念及其表示题型8 求函数的定义域题型9 求函数的值域真题精讲答案详解真题精讲答案详解题型攻略易错指导真题精讲答案详解真题精讲答案详解题型攻略易错指导真题精讲答案详解真题精讲答案详解真题精讲答案详解真题精讲答案详解题型攻略易错指导精品课程上线安排课程编号课程目录课程内容大纲适用人群1高考数学一轮微专题系列①函数性质的综合应用②巧解零点问题③三角函数综合应用④平面向量的综合应用⑤数列及其综合应用⑥不等式与线性规划⑦导数及其综合应用●高中各阶段总结复习●高考数学一轮复习●高考数学二轮复习●高考强化阶段重点突破●高考冲刺阶段提分秘籍●高考数学成绩冲刺140+课程编号课程目录课程内容大纲适用人群2高考二轮重难点突破①三角函数与解三角形3大经典问题②立体几何与空间向量4大类经典问题③概率与统计3大经典问题④解析几何4大类经典问题⑤导数及其应用5大经典问题⑥极坐标与参数方程3大经典问题⑦不等式选讲3大经典问题●高考数学二轮复习●高考强化阶段重点突破●高考核心题型归纳●解答题冲刺60+课程编号课程目录课程内容大纲适用人群3高考冲刺大招须知①客观题得分技巧与策略②解答题答题模板归纳与应用③高考数学冲刺130+答题策略④高考数学常见误区与陷阱⑤高考数学试卷抢分秘籍●客观题得分率低●解答题得分率低●高分答题技巧欠缺●忽视常见命题陷阱●考前抢分策略薄弱预祝大家高考金榜题名!温馨提示:专题三基本初等函数2。
高考数学知识点精讲函数的奇偶性与周期性
高考数学知识点精讲函数的奇偶性与周期性高考数学知识点精讲:函数的奇偶性与周期性在高考数学中,函数的奇偶性与周期性是非常重要的知识点,理解并掌握它们对于解决函数相关问题具有关键作用。
接下来,咱们就一起来详细探讨一下这两个重要的概念。
一、函数的奇偶性1、奇函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做奇函数。
比如说,常见的奇函数有 y = sin x ,y = x 等。
我们以 y = x 为例来直观地理解一下奇函数的特点。
当 x 取某个值时,比如 x = 3 ,那么 f(3) = 3 ;而当 x 取-3 时,f(-3) =-3 ,也就是 f(-3) = f(3) ,这就体现了奇函数的性质。
奇函数的图象关于原点对称。
这意味着,如果我们知道了函数在原点一侧的图象,就可以通过原点对称的方式得到另一侧的图象。
2、偶函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做偶函数。
像 y = cos x ,y =|x| 等都是偶函数。
以 y =|x| 为例,当 x =3 时,f(3) = 3 ;当 x =-3 时,f(-3) = 3 ,即 f(-3) = f(3) ,这符合偶函数的定义。
偶函数的图象关于 y 轴对称。
同样,如果知道了函数在 y 轴一侧的图象,通过 y 轴对称就能得到另一侧的图象。
判断一个函数是奇函数还是偶函数,通常有以下几种方法:(1)定义法:就是根据奇函数和偶函数的定义,分别计算 f(x) 和f(x) 或者 f(x) ,看是否相等。
(2)图象法:通过观察函数的图象是否关于原点对称(奇函数)或者关于 y 轴对称(偶函数)来判断。
二、函数的周期性1、周期函数的定义对于函数 y = f(x) ,如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x) 都成立,那么就把函数 y = f(x) 叫做周期函数,周期为 T 。
高考数学知识点精讲常见随机变量的分布类型
高考数学知识点精讲常见随机变量的分布类型高考数学知识点精讲:常见随机变量的分布类型在高考数学中,随机变量的分布类型是一个重要的知识点,理解和掌握这些分布类型对于解决概率相关的问题至关重要。
下面我们就来详细讲解一下常见的随机变量分布类型。
首先,我们来认识一下什么是随机变量。
简单来说,随机变量就是把随机试验的结果用数字表示出来。
比如说掷骰子,我们可以定义随机变量 X 为骰子掷出的点数,那么 X 可能取值 1、2、3、4、5、6。
常见的随机变量分布类型主要有以下几种:一、离散型随机变量的分布1、两点分布两点分布是最简单的一种离散型随机变量分布。
比如抛一枚硬币,正面朝上记为1,反面朝上记为0,那么这个随机变量就服从两点分布。
其概率分布为 P(X = 1) = p,P(X = 0) = 1 p ,其中 0 < p < 1 。
2、二项分布二项分布在实际生活中有很多应用。
比如进行n 次独立重复的试验,每次试验只有两种结果(成功或失败),成功的概率为 p ,失败的概率为 1 p 。
那么成功的次数 X 就服从二项分布,记为 X ~ B(n, p) 。
二项分布的概率公式为:P(X = k) = C(n, k) p^k (1 p)^(n k) ,其中 C(n, k) 表示从 n 个元素中选出 k 个元素的组合数。
举个例子,假设一批产品的次品率为 02,从这批产品中随机抽取10 个,那么抽到次品个数 X 就服从二项分布 B(10, 02) 。
3、超几何分布超几何分布与二项分布有点类似,但适用的场景略有不同。
超几何分布是从有限 N 个物件(其中包含 M 个指定种类的物件)中抽出 n 个物件,成功抽出指定种类物件的次数 X 就是超几何分布。
超几何分布的概率公式为:P(X = k) = C(M, k) C(N M, n k) /C(N, n) 。
比如说在一个有 50 个球,其中 20 个红球,30 个白球的盒子中,随机抽取 10 个球,红球的个数 X 就服从超几何分布。
第03讲 基本不等式(解析版)备战2023年高考数学一轮复习精讲精练
第03讲基本不等式 (精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:利用基本不等式求最值①凑配法②“1”的代入法③二次与二次(一次)商式(换元法)④条件等式求最值高频考点二:利用基本不等式求参数值或取值范围高频考点三:利用基本不等式解决实际问题高频考点四:基本不等式等号不成立,优先对钩函数第五部分:高考真题感悟第六部分:第03讲基本不等式(精练)1、基本不等式(一正,二定,三相等,特别注意“一正”,“三相等”这两类陷阱)①如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立. ②a ,b 的几何平均数;2a b+叫做正数a ,b 的算数平均数. 2、两个重要的不等式①222a b ab +≥(,a b R ∈)当且仅当a b =时,等号成立. ②2()2a b ab +≤(,a b R ∈)当且仅当a b =时,等号成立. 3、利用基本不等式求最值①已知x ,y 是正数,如果积xy 等于定值P ,那么当且仅当x y =时,和x y +有最小值;②已知x ,y 是正数,如果和x y +等于定值S ,那么当且仅当x y =时,积xy 有最大值24S;4、常用技巧利用基本不等式求最值的变形技巧——凑、拆(分子次数高于分母次数)、除(分子次数低于分母次数))、代(1的代入)、解(整体解). ①凑:凑项,例:()1123x x a a a x a x a x a+=-++≥+=>--; 凑系数,例:()()2112121112212022282x x x x x x x +-⎛⎫⎛⎫-=⋅-≤⋅=<< ⎪ ⎪⎝⎭⎝⎭;②拆:例:()2244442244822223x x x x x x x x x -+==++=-++≥=>----;③除:例:()2221011x x x x x=≤>++; ④1的代入:例:已知0,0,1a b a b >>+=,求11a b+的最小值. 解析:1111()()24b aa b a b a b a b+=++=++≥. ⑤整体解:例:已知a ,b 是正数,且3ab a b =++,求a b +的最小值.解析:22,322a b a b ab a b ++⎛⎫⎛⎫≤∴≥++ ⎪ ⎪⎝⎭⎝⎭,即()()21304a b a b +-+-≥,解得()62a b a b +≥+≤-舍去.一、判断题1.(2022·江西·贵溪市实验中学高二期末)当0,2x π⎛⎤∈ ⎥⎝⎦时,4sin sin x x +的最小值为4 ( )【答案】错误解:由0,2x π⎛⎤∈ ⎥⎝⎦得到0sin 1x <≤, 令sin t x =,则4y t t =+,因为01t <≤,所以函数4y t t =+为减函数,当1t =时,min 145y =+=,故答案为:错误.2.(2021·江西·贵溪市实验中学高二阶段练习)已知102x <<,则()12x x -的最大值为18( ) 【答案】正确 ∵102x <<, ∴()()2112121122122228x x x x x x +-⎛⎫-=-≤=⎡⎤ ⎪⎣⎦⎝⎭, 当且仅当212x x =-,即14x =时,取等号, 故()12x x -的最大值为18.故答案为:正确 二、单选题1.(2022·江西·高一阶段练习)当0x >时,92x x+的最小值为( ) A .3 B .32C .D .【答案】D 由92x x +≥x = 可得当0x >时,92x x+的最小值为故选:D2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3 B .2 C .1 D .0【答案】D因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++, 当且仅当122x x +=+即1x =-时等号成立. 故选:D.3.(2022·湖南·高一阶段练习)已知0a >,0b >且2510a b +=,则ab 的最大值为( ) A .2 B .5C .32D .52【答案】D因为2510a b +=≥52ab ≤,当且仅当5,12a b ==时,等号成立. 所以ab 的最大值为52.故选:D4.(2022·新疆·乌苏市第一中学高一开学考试)下列函数,最小值为2的函数是( ) A .1y x x=+B .222y x x -=+C .3y x =+D .2y =【答案】D对A ,y 可取负数,故A 错误; 对B ,2(1)11y x =-+≥,故B 错误;对C ,21)23y =+≥,故C 错误;对D ,222y =≥,等号成立当且仅当0x =,故D 正确;故选:D高频考点一:利用基本不等式求最值①凑配法1.(2022·北京大兴·高一期末)当02x <<时,(2)x x -的最大值为( ) A .0 B .1 C .2 D .4【答案】B02x <<,20x ∴->,又(2)2x x +-=[]2(2)(2)14x x x x +-∴-≤=,当且仅当2x x =-,即1x =时等号成立,所以(2)x x -的最大值为1 故选:B2.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8 B .7 C .6 D .5【答案】D因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立, 故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5. 故选:D .3.(2022·安徽省蚌埠第三中学高一开学考试)已知x >3,则对于43y x x =+-,下列说法正确的是( ) A .y 有最大值7 B .y 有最小值7 C .y 有最小值4 D .y 有最大值4【答案】B解:因为3x >,所以30x ->,所以()44333733y x x x x =+=-++≥=--,当且仅当433x x -=-,即5x =时取等号,所以y 有最小值7; 故选:B4.(2022·江苏省天一中学高一期末)设实数x 满足1x >-,则函数41y x x =++的最小值为( ) A .3 B .4 C .5 D .6【答案】A 1x >-,∴函数(1)114441311y x x x x =+=++-≥=-=++,当且仅当411x x +=+,即1x =时取等号. 因此函数41y x x =++的最小值为3. 故选:A .5.(2022·上海虹口·高一期末)已知04x <<,则()4x x -的最大值为______. 【答案】4因04x <<,则40x ->,于是得2(4)(4)[]42x x x x +--≤=,当且仅当4x x =-,即2x =时取“=”, 所以()4x x -的最大值为4. 故答案为:4②“1”的代入法1.(2022·河南·夏邑第一高级中学高二期末(文))已知x ,y 均为正数,若261x y +=,则当3x y +取得最小值时,x y +的值为( ) A .16 B .4C .24D .12【答案】A因为261x y+=,所以()2618233661224x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当182x y y x =,即3y x =时取等号,又因为261x y+=,所以4x =,12y =, 所以16x y +=. 故选:A.2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .6【答案】C解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·四川·泸县五中高二开学考试(文))已知,x y 为正实数,且2x y +=,则212x y+的最小值为__________. 【答案】94##2.25()21121152222222y x x y x y x y x y ⎛⎫⎛⎫+=⨯+⨯+=⨯++ ⎪ ⎪⎝⎭⎝⎭159224⎛≥⨯+= ⎝, 当且仅当242,,233y x x y x y ===时等号成立. 故答案为:944.(2022·广西桂林·高一期末)已知0,0a b >>,若31a b +=,则31a b+的最小值是___________.【答案】16因为0,0a b >>,31a b +=所以313133()(3)101016b a a b a b a b a b +=++=++≥+ 当且仅当,3331b aab a b ⎧=⎪⎨⎪+=⎩,即14a b ==时,取“=”号, 所以31a b+的最小值为16.故答案为:165.(2022·天津·南开中学高一期末)已知110, 0, 4a b ab>>+=,则4a b +的最小值为_______________. 【答案】94##2.25解:因为110, 0, 4a b a b>>+=,所以()111141944554444b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当1144a b b a a b⎧+=⎪⎪⎨⎪=⎪⎩,即3438a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以4a b +的最小值为94.故答案为:94.③二次与二次(一次)商式1.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x -=-,即0x =时取“=”,所以当0x =时,22222x x y x -+=-有最大值1-.故选:A2.(2022·全国·高三专题练习)函数233(1)1x x y x x ++=<-+的最大值为( ) A .3 B .2 C .1 D .-1【答案】D2233(1)(1)111x x x x y x x ++++++==++ 1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D.3.(2022·江西南昌·高一期末)当2x >-时,函数2462++=+x x y x 的最小值为___________.【答案】因为2x >-,则20x +>,则()()22224622222x x x y x x x x ++++===+++++≥=当且仅当2x =时,等号成立,所以,当2x >-时,函数2462++=+xx y x 的最小值为故答案为:4.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----, 因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.5.(2021·江西·宁冈中学高一阶段练习(理))()21147x x x x ->-+的最大值为______.【答案】12令1x t -=,则1x t =+,0t >,所以222111447(1)4(1)72422x t t x x t t t t t t -===≤=-++-++-++-,当且仅当4t t =,即2t =时,等号成立. 所以()21147x x x x ->-+的最大值为12. 故答案为:12.6.(2022·全国·高三专题练习)求下列函数的最小值 (1)21(0)x x y x x ++=>; (2)226(1)1x x y x x ++=>-. 【答案】(1)3;(2)10. (1)2111x x y x x x++==++∵10,2x x x >∴+≥=(当且仅当1x x =,即x =1时取等号)∴21(0)x x y x x++=>的最小值为3;(2)令1(0)t x t =->,则1x t =+,22226(1)2(1)6499=44101x x t t t t y t x t t t ++++++++∴===++≥=-当且仅当9t t=即t =3时取等号 ∴y 的最小值为10④条件等式求最值1.(2022·陕西咸阳·高二期末(文))已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .14【答案】C因为0x >,0y >,由基本不等式得:2x y +≥所以8xy ≥解得:18xy ≥,当且仅当2x y =,即14x =,12y =时,等号成立 故选:C2.(2022·全国·高三专题练习)已知0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .4 B .8 C .7 D .6【答案】D 【详解】3,0,0a b b b a a >=++>,23()2a b a b +∴++≤,当且仅当a b =,即3a b ==时等号成立, 解得6a b +≥或2a b +≤-(舍去),a b ∴+的最小值为6故选:D3.(2022·江苏·高三专题练习)已知0a >,0b >且满足2a b ab +=,则2+a b 的最小值为( ) A .4 B .6 C .8 D .10【答案】C由2a b ab +=可得121b a+=,又因为0a >,0b >,所以()1242244448a b a b a b b a b a ⎛⎫+=++=++≥++= ⎪⎝⎭, 当且仅当42a bb a a b ab⎧=⎪⎨⎪+=⎩即42a b =⎧⎨=⎩时等号成立,所以2+a b 的最小值为8, 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.(2022·安徽芜湖·高一期末)已知正数x ,y 满足8xy x y =++,则x y +的最小值为_________ 【答案】8由题意,正实数,x y ,由()22224x y x y xy xy +=++≥(x y =时等号成立),所以()24x y xy +≤,所以()284x x y y y x =++≤+,即2()4()320x y x y +-+-≥,解得4x y +≤-(舍),8x y +≥,(4x y ==取最小值) 所以x y +的最小值为8.故答案为:85.(2022·全国·高三专题练习)已知2,1a b >>,且满足21ab a b =++,则2a b +的最小值为_______.【答案】5##5+∵2,1a b >>,且满足21ab a b =++, ∴13122a b a a +==+--, 2a b +=()33212255522a a a a ++=-++≥=--, 当且仅当32(2)2a a -=-时,2a b +的最小值为5. 故答案为:56.(2022·重庆·高一期末)已知0x >,0y >,24xy x y =++,则x y +的最小值为______. 【答案】4解:由题知0,0,x y >>由基本不等式得22x y xy +⎛⎫≤ ⎪⎝⎭,即2422x y x y +⎛⎫++≤⨯ ⎪⎝⎭,令t x y =+,0t >,则有2422t t ⎛⎫+≤⨯ ⎪⎝⎭,整理得2280t t --≥,解得2t ≤-(舍去)或4t ≥,即4x y +≥,当且仅当2x y ==时等号成立, 所以x y +的最小值为4. 故答案为:4.7.(2022·广东广州·高一期末)已知0a >,0b >,且3a b ab +=-,则a b +的最小值为______. 【答案】6由0a >,0b >,得a b +≥a b =时,等号成立), 又因3a b ab +=-,得3ab -≥,即)130≥,由0a >,0b >3,即9ab ≥,故3936a b ab +=-≥-=. 因此当3a b ==时,a b +取最小值6. 故答案为:6.高频考点二:利用基本不等式求参数值或取值范围1.(2022·全国·高三专题练习)当2x >时,不等式12+≥-x a x 恒成立,则实数a 的取值范围是( ) A .(],2-∞ B .[)2,+∞ C .[)4,+∞ D .(],4-∞【答案】D 当2x >时,11222422x x x x +=-++≥=--(当且仅当3x =时取等号),4a ∴≤,即a 的取值范围为(],4-∞. 故选:D.2.(2022·浙江·高三专题练习)若关于 x 的不等式220x ax -+>在区间[]1,5上恒成立,则a 的取值范围为() A .()+∞ B .(,-∞C .(),3-∞D .27,5⎛⎫-∞ ⎪⎝⎭【答案】B当[]1,5x ∈时,由220x ax -+>可得2a x x <+,则min 2a x x ⎛⎫<+ ⎪⎝⎭,由基本不等式可得2x x +≥x所以,a <故选:B.3.(2022·全国·高三专题练习)已知0a >,0b >,若不等式41m a b a b+≥+恒成立,则m 的最大值为( ) A .10 B .12 C .16 D .9【答案】D由已知0a >,0b >,若不等式41ma b a b+≥+恒成立, 所以41()m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,转化成求41()y a b a b ⎛⎫=++ ⎪⎝⎭的最小值,414()559b a y a b a b a b ⎛⎫=++=++≥+= ⎪⎝⎭,当且仅当4b aa b=时取等 所以9m ≤. 故选:D .4.(2022·全国·高三专题练习)已知x ,()0,y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围是( ) A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .()2,1-D .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】A因为x ,()0,y ∈+∞,且1x y +=,所以()222231124x y x y xy x y xy xy +⎛⎫++=+-=-≥-= ⎪⎝⎭,当且仅当12x y ==时,等号成立; 又不等式2221124x y xy m m ++>+恒成立, 所以只需2311424m m >+,即2230m m +-<,解得312m -<<. 故选:A.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 5.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( )A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C解:因为0x >,所以22221131x x x x x =≤=++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭;故选:C6.(2022·甘肃·无高二期末(文))已知正实数a ,b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥. 故选:D .7.(2022·全国·高三专题练习)若对任意0x >,231xa x x ≤++恒成立,则实数a 的取值范围是( )A .1,5⎡⎫+∞⎪⎢⎣⎭B .1,5⎛⎫+∞ ⎪⎝⎭C .1,5⎛⎫-∞ ⎪⎝⎭D .1,5⎛⎤-∞ ⎥⎝⎦【答案】A由题意,对任意0x >,则有221111313153x x x x x x x x ==≤=++++++, 当且仅当1x x =时,即1x =时,等号成立,即231xx x ++的最大值为15, 又由对任意0x >时,231x a x x ≤++恒成立,所以15a ≥,即a 的取值范围为1,5⎡⎫+∞⎪⎢⎣⎭.故选:A.高频考点三:利用基本不等式解决实际问题1.(2022·北京市十一学校高二期末)某公司要建造一个长方体状的无盖箱子,其容积为48m 3,高为3m ,如果箱底每1m 2的造价为15元,箱壁每1m 2造价为12元,则箱子的最低总造价为( ) A .72元 B .300元 C .512元 D .816元【答案】D设这个箱子的箱底的长为x m ,则宽为16xm , 设箱子总造价为f (x )元, ∴f (x )=15×16+12×3(2x 32x +)=72(x 16x +240=816, 当且仅当x 16x=,即x =4时,f (x )取最小值816元. 故选:D .2.(2022·河南开封·高一期末)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足14a b +=,6c =,则此三角形面积的最大值为( )A .6B .C.12D .【答案】B由题意得:10p =,S =101032a b-+-=⨯当且仅当1010a b -=-,即7a b ==时取等号, 故选:B .3.(2022·江苏常州·高一期末)2021年初,某地区甲、乙、丙三位经销商出售钢材的原价相同.受钢材进价普遍上涨的影响,甲、乙计划分两次提价,丙计划一次提价.设0p q <<,甲第一次提价%p ,第二次提价%q ;乙两次均提价%2p q+;丙一次性提价()%p q +.各经销商提价计划实施后,钢材售价由高到低的经销商依次为( ) A .乙、甲、丙 B .甲、乙、丙 C .乙、丙、甲 D .丙、甲、乙【答案】A设提价前价格为1,则甲提价后的价格为:(1%)(1%)1%%0.01%p q p q pq ++=+++,乙提价后价格为:21%1%1%%0.01%222p q p q p q p q +++⎛⎫⎛⎫⎛⎫++=+++⨯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,丙提价后价格为:()%11%%p q p q +=+++, 因为0p q <<,所以22p q pq +⎛⎫> ⎪⎝⎭,所以1%1%(1%)(1%)12(%2)p q p p q p q q ++⎛⎫⎛⎫++>++>+ ⎪⎪⎝⎭⎝⎭+,即乙>甲>丙. 故选:A4.(2022·全国·高三专题练习(文))已知k ∈R ,则“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A因为对任意,a b ∈R ,有222a b ab +≥,而对任意,a b ∈R ,22a b kab +≥, 所以22k -≤≤,因为[2,2]-是(,2]-∞的真子集,所以“对任意,a b ∈R ,22a b kab +≥”是“k 2≤”的充分不必要条件, 故选:A5.(2022·河南·模拟预测(理))一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为g m ,则( ) A .10m > B .10m =C .10m <D .以上都有可能【答案】A由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a b ,再设先称得黄金为g x ,后称得黄金为g y ,则5bx a =,5ay b =, 5a x b ∴=,5b y a=,555510a b a b x y b a b a ⎛⎫∴+=+=+≥⨯ ⎪⎝⎭, 当且仅当a bb a=,即a b =时等号成立,但a b ,等号不成立,即10x y +>.因此,顾客购得的黄金10m >. 故选:A.6.(2022·全国·高一)如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =米,3AD =米,当BM =_______时,矩形花坛AMPN 的面积最小.【答案】4设BM x =,则由//DC AM 得434ND ND x=++,解得12ND x =,∴矩形AMPN的面积为1248(4)(3)2432448S x x x x =++=++≥+=,当且仅当483x x =,即4x =时等号成立. 故答案为:4.高频考点四:基本不等式等号不成立,优先对钩函数1.(2022·重庆南开中学模拟预测)已知命题p :“21,4,402x x ax ⎡⎤∃∈-+>⎢⎥⎣⎦”为真命题,则实数a 的取值范围是( ) A .4a < B .172a <C .133a <D .5a >【答案】B命题p :“1,42x ⎡⎤∃∈⎢⎥⎣⎦,240x ax -+>”,即max 4a x x ⎛⎫<+ ⎪⎝⎭,设4()f x x x=+,对勾函数在2x =时取得最小值为4,在12x =时取得最大值为172,故172a <,故选:B .2.(2022·浙江·高三专题练习)若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的取值范围是( )A .0a ≥B .2a ≤-C .52a ≥-D .3a ≤-【答案】C若不等式210x ax ++≥对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则1a x x ⎛⎫≥-+ ⎪⎝⎭,即max 1a x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦,1y x x ⎛⎫=-+ ⎪⎝⎭在10,2⎛⎤ ⎥⎝⎦单调递增,max 52y =-,所以52a ≥-.故选:C3.(2022·全国·高三专题练习)函数2y =的最小值为( )A .2B .52C .1D .不存在【答案】B()2t t =≥,函数1y t t =+在()1,+∞上是增函数,1y t t∴=+在[)2,+∞上也是增函数.∴当2t =2,0x =时,min 52y =. 故选:B .4.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞【答案】A解:121,1,[2,3]2x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≤,等价于121,1,[2,3]2x x ⎡⎤∀∈∃∈⎢⎥⎣⎦, ()1max f x ()2max g x ≤,由对勾函数的单调性知4()f x x x =+在1,12⎡⎤⎢⎥⎣⎦上单调递减,所以max 117()22f x f ⎛⎫== ⎪⎝⎭, 又()2xg x a =+在[2,3]上单调递增,所以max 32(8)g x a a =+=+,所以1782a ≤+,解得12a ≥,所以实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.故选:A.5.(2022·全国·高二课时练习)函数()3421x xf x x x -=++在区间[]1,3上( )A0 B .有最大值为2491,最小值为0 CD .有最大值为2491,无最小值 【答案】A当0x ≠时,()3242221111113x x x x xx f x x x x x x x ---===++⎛⎫++-+ ⎪⎝⎭, 设1x t x -=,易知1t x x =-在[]1,3上单调递增,故80,3t ⎡⎤∈⎢⎥⎣⎦. ()23t g t t =+,()00g =,当0t >时,()2133t g t t t t==++,双勾函数3y x x =+在(上单调递减,在83⎤⎥⎦上单调递增,且0y >,故()max g t g==,()min 0g t >, 综上所述:()max g t =,()min 0g t =,即()max f x =()min 0f x =. 故选:A.1.(2021·江苏·高考真题)已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b ++的最小值是( ) A .23B .43C .2D .4【答案】B解:因为()()240f a f b +-=,所以(2)(4)f a f b =--, 因为奇函数()f x 是定义在R 上的单调函数, 所以(2)(4)(4)f a f b f b =--=-, 所以24a b =-,即24a b +=, 所以226a b ++=,即2(1)6a b ++=, 所以12112[2(1)]161a b a b a b ⎛⎫+=+++ ⎪++⎝⎭14(1)2261b a a b +⎡⎤=+++⎢⎥+⎣⎦14(1)461b a a b +⎡⎤=++⎢⎥+⎣⎦1144(44)663⎡⎤≥=+=⎢⎥⎣⎦, 当且仅当4(1)1b a a b+=+,即1,32a b ==时取等号,所以121a b ++的最小值是43. 故选:B2.(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+ D .4ln ln y x x=+【答案】C对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意; 对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .3.(2021·天津·高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________.【答案】0 , 0a b >>,212a b b a b b b ∴++≥=+≥当且仅当21a a b=且2b b =,即a b ==所以21ab ab ++的最小值为故答案为:4.(2021·江苏·高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.【答案】(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元. (1)2000245y x x x=+-,[60,110]x ∈2416≥= 当且仅当20005x x=时,即100x =取“=”,符合题意; ∴年产量为100吨时,平均成本最低为16万元.(2)()()2212424200012088055x L x x x x ⎛⎫=--+=--+ ⎪⎝⎭又60110x ≤≤,∴当110x =时,max ()860L x =. 答:年产量为110吨时,最大利润为860万元.一、单选题1.(2022·江西·赣州市赣县第三中学高一开学考试)下列说法正确的为( ) A .12x x+≥ B .函数224x y +=4C .若0,x >则(2)x x -最大值为1D .已知3a >时,43+≥-a a 43=-a a 即4a =时,43+-a a 取得最小值8【答案】C对于选项A ,只有当0x >时,才满足基本不等式的使用条件,则A 不正确; 对于选项B ,224x y +=2231x ++==(t t =≥,即(22y t t t =+≥在)+∞上单调递增,则最小值为min y ==, 则B 不正确;对于选项C ,()()22(2)211111x x x x x -=--++=--+≤,则C 正确;对于选项D ,当3a >时,44333733a a a a +=-++≥=--,当且仅当 433a a -=-时,即5a =,等号成立,则D 不正确. 故选:C .2.(2022·福建·莆田一中高一期末)函数2455()()22x x f x x x -+=≥-有( ) A .最大值52B .最小值52C .最大值2D .最小值2【答案】D(方法1)52x ,20x ∴->,则2245(2)11(2)222(2)x x x x x x x -+-+==-+---,当且仅当122x x -=-,即3x =时,等号成立.(方法2)令2x t -=,52x,12t ∴,2x t ∴=+. 将其代入,原函数可化为22(2)4(2)511122t t t y t t t t t t +-+++===+⋅=,当且仅当1t t =,即1t =时等号成立,此时3x =. 故选:D3.(2022·河南·郏县第一高级中学高二开学考试(理))正实数ab 满足121a b+=,则()()24a b ++的最小值为( ) A .16 B .24 C .32 D .40【答案】C正实数ab 满足121a b +=,所以18ab ≥≥当且仅当24b a ==时取等号,121a b +=化简得2ab a b =+,所以()()()228384322ab a b a a b b =+++=+≥++ 故选:C.4.(2022·江西抚州·高二期末(文))若命题“对任意(),0x ∈-∞,使得2240x ax -+≥成立”是真命题,则实数a 的取值范围是( ) A .[)2,-+∞ B .[)2,+∞ C .(],2-∞- D .(],2-∞【答案】A 解:由题得22x a x≥+对任意(),0x ∈-∞恒成立,22[()()]222x x x x +=--+-≤-- (当且仅当2x =-时等号成立) 所以2a ≥-. 故选:A5.(2022·河南·驻马店市基础教学研究室高二期末(理))中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为1V ,在逆水中的速度为()212V V V ≠,则游船此次行程的平均速度V 与122V V +的大小关系是( ) A .122V V V +<B .122V V V +≤C .122V V V +>D .122V V V +=【答案】A易知120,0V V >>,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为11V ,逆流而上的时间为21V ,则平均速度12211V V V =+,由基本不等式可得V ≤,而122V V +≥当12V V =时,两个不等式都取得“=”,而根据题意12V V ≠,于是122V V V +. 故选:A.6.(2022·浙江温州·二模)已知正数a ,b 和实数t 满足221a tab b ++=,若a b +存在最大值,则t 的取值范围是( ) A .(],2-∞ B .()2,-+∞ C .(]2,2- D .[)2,+∞【答案】C解:()()22212a a b t a tab b b =+++-+=,①当20t -=,即2t =时,1a b +=,则a b +的最大值为1,符合题意; ②当20t ->,即2t >时, 则()()()()()222222244t t a b t ab a b a b a b -+++-≤+++=+, 所以()2214t a b ++≥,所以a b +≥a b =时取等号, 此时a b +有最小值,无最大值,与题意矛盾; ③当20t -<,即2a <时, 则()()()22224t a b t ab a b +++-≥+, 当20t +=,即2a =-时,()22221a a ab b b +=-=-,所以1a b -=,不妨设a b >,则1a b -=,即1a b =+,故21a b b +=+,此时a b +无最大值,与题意矛盾; 当20t +>,即22t -<<时,()2214t a b ++≤,所以0a b <+≤a b =时取等号, 此时a b +有最大值,符合题意;当20t +<,即2t <-时,()2214t a b ++≤恒不成立,不符题意, 综上所述,若a b +存在最大值,(]2,2t ∈-. 故选:C.7.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米【答案】C由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 12896961x x x PMQ x x x x x -∠=-===≤=++⋅+βα,当且仅当96x x =,即x =10,所以BM 大约为10米. 故选:C.8.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m的取值范围是( ) A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞【答案】A解:设方程2320x x ab --=的两个异号的实根分别为1x ,2x ,则1203abx x =-<,0ab ∴>. 又211a b+=,0a ∴>,0b >,则()21422448a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4a =,2b =时取“=”), 由不等式222a b m m +>+恒成立,得228m m +<,解得42m -<<.∴实数m 的取值范围是()4,2-. 故选:A . 二、填空题9.(2022·陕西西安·高三阶段练习(文))已知0x >,0y >,334x y x y+--=.则x y +的取值范围为__________. 【答案】[6,)+∞ 因为334x y x y+--=,0,0x y >>, 所以23()3()1242x y x y x y xy x y x y +++-=≥=++⎛⎫⎪⎝⎭,当且仅当x y =时等号成立, 即2()4()120x y x y +-+-≥, 解得6x y +≥或2x y +≤-(舍去) 所以x y +的取值范围为[6,)+∞. 故答案为:[)6,+∞10.(2022·上海·二模)已知对()0,x ∀∈+∞,不等式1x m x>-恒成立,则实数m 的最大值是_________.【答案】不存在由已知可得()0,x ∀∈+∞,1m x x <+,由基本不等式可得12x x +≥=,当且仅当1x =时,等号成立,2m <∴,故实数m 的最大值不存在. 故答案为:不存在.11.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可. 在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =.在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.12.(2022·安徽合肥·高一期末)如图所示,某农科院有一块直角梯形试验田ABCD ,其中//,AB CD AD AB ⊥.某研究小组计则在该试验田中截取一块矩形区域AGEH 试种新品种的西红柿,点E 在边BC 上,则该矩形区域的面积最大值为___________.【答案】75设,615AG x x =≤<, 12124tan 15693B ===-, 15BG x =-,()()415tan 153EG x B x =-⨯=-, 所以矩形AGEH 的面积()244154225157533234x x x x -+⎛⎫-⋅≤⨯=⨯= ⎪⎝⎭, 当且仅当1515,2x x x -==时等号成立. 故选:75 三、解答题13.(2022·湖南·高一课时练习)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?【答案】(1)a =b =6时,它们的和最小,为12;(2)a =b =9时,它们的积最大,为81 设两个正数为a ,b(1)36ab =,则12a b +≥=,当且仅当6a b ==等号成立, 即a =b =6时,它们的和最小,为12.(2)18a b +=,则()2814a b ab +≤=当且仅当9a b ==等号成立即a =b =9时,它们的积最大,为81.14.(2022·辽宁朝阳·高一开学考试)如图,设矩形()ABCD AB AD >的周长为8cm ,将△ABC 沿AC 向△ADC 折叠,AB 折过去后交DC 于点P ,设AB xcm =,求ADP △面积的最大值及相应x 的值.【答案】x =(212cm -.由题意,矩形()ABCD AB AD >的周长为8cm ,且AB xcm =, ∴()4AD x cm =-,则4x x >-,∴24x <<, 又由AP AB PB AB DP x DP ''=-=-=-, 在Rt ADP △中,()()2224x DP x DP -+=-, 解得48x DP cm x -⎛⎫= ⎪⎝⎭,∴()1148422ADP x S AD DP x x-=⋅=-⋅△812212212x x ⎛⎫=-+≤-⨯- ⎪⎝⎭当且仅当8x x=,即x =∴ADP △面积的最大值为(212cm -,此时x =15.(2022·贵州·赫章县教育研究室高一期末)已知关于x 的不等式220ax ax ++>的解集为R ,记实数a 的所有取值构成的集合为M . (1)求M ;(2)若0t >,对a M ∀∈,有245321a t t a --≤+-+,求t 的最小值. 【答案】(1){08}aa ≤<∣(2)1 (1)当0a =时,20>满足题意;当0a ≠时,要使不等式220ax ax ++>的解集为R ,必须2080a a a >⎧⎨-<⎩,解得08a <<,综上可知08a ≤<,所以{08}M aa =≤<∣(2)∵08a ≤<,∴119a ≤+<, ∴441141311a a a a +=++-≥-=++,(当且仅当1a =时取“=”) ∴4521a a --≤+, ∵a M ∀∈,有245321a t t a --≤+-+,∴2322t t +-≥, ∴2340t t +-≥,∴1t ≥或4t ≤-, 又0t >,∴1t ≥,∴ t 的最小值为1.16.(2022·山西·怀仁市第一中学校高一期末)党中央国务院对节能减排高度重视,各地区认真贯彻党中央国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,新能源汽车环保节能以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本()C x 万元,且()210500,040,64009016300,40.x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(利润=售价-成本) (2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润. 【答案】(1)2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式为2104002500,040()100003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩(2)当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元. (1)当040x <<时,()229100105002500104002500L x x x x x =⨯---=-+-;当40x ≥时,()640064009100901630025003800L x x x x x x ⎛⎫=⨯--+-=-+ ⎪⎝⎭; 所以()2104002500,04064003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩ (2)当040x <<时,()()210201500L x x =--+, 当20x时,()max 1500L x =;当40x ≥时,()64003800380038001603640L x x x ⎛⎫=-+≤-=-= ⎪⎝⎭ (当且仅当6400x x=即80x =时,“=”成立) 因为36401500>所以,当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元. 答:(1)2022年的利润()L x (万元)关于年产量x (百辆)的函数关系式为2104002500,040()100003800,40x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当80x =时,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元.。
2015届高考数学(理)一轮讲义:第3讲 集合经典精讲 精品讲义
集合经典精讲主讲教师:王春辉 北京数学特级教师引入题一:已知集合A ⊂≠}3,2,1{,且A 的元素中至少含有一个奇数,则满足条件的集合A 共有( ).A .6个B .5个C .4个D .3个重难点突破题一:设函数()f x 在R 上存在导数'()f x ,对任意的x R ∈有2()(),f x f x x -+=且在(0,)+∞上'()f x x >.若(2)()22,f a f a a --≥-则实数a 的取值范围为( ). A .[1,)+∞ B .(,1]-∞ C .(,2]-∞ D .[2,)+∞金题精讲题一:U 为全集,321S S S 、、均为U 的非空子集,且123S S S U =,下面正确的是( ). A .123()S S S =∅ðU B .123()S S S ⊆痧U UC .1S ðU 23S S =∅痧U UD .123()S S S ⊆痧U U题二:已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( ).A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或题三:已知}0158{},0{22=+-==+-=x x x B b ax x x A ,且B A ⊆.(1)设{}A m =,求b a +的值;(2)求24a b -的取值范围.题四:集合2{|(2)10,}A x R x p x p R =∈+++=∈,且[0,)A +∞=∅,求实数p 的取值范围.题五:设集合{}1,2,3,4,5,6M =, 12,,,k S S S 都是M 的含有两个元素的子集,且满足:对任意的{},i i i S a b =、{},j j j S a b =({},,1,2,3,,i j i j k ≠∈)都有min ,min ,j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,({}min ,x y 表示两个数,x y 中的较小者),则k 的最大值是( ). A .10B .11C .12D .13题六:{1,2,,10}A =,非空子集记为121023,,,A A A ,记s i 为A i 中最大数与最小数的和,则1023=11023ii s=∑ .集合经典精讲引入题一:B重难点突破 题一:B 金题精讲题一:C 题二:C 题三:(1)15或35;(2){4}∞(-,0]题四:(4,)-+∞ 题五:B 题六:11。
2015年高考数学一轮复习热点难点精讲精析:选修系列(第3部分:几何证明选讲)
张喜林制[选取日期]2015年高考一轮复习热点难点精讲精析:选修系列(第3部分:几何证明选讲)一、相似三角形的判定及有关性质(一)平行线(等)分线段成比例定理的应用〖例〗如图,F 为ABCD 边上一点,连DF 交AC 于G ,延长DF 交CB 的延长线于E 。
求证:DG ·DE=DF ·EG思路解析:由于条件中有平行线,考虑平行线(等)分线段定理及推论,利用相等线段(平行四边形对边相等),经中间比代换,证明线段成比例,得出等积式。
解答:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥DC ,AD=BC ,∵AD ∥BC ,∴DG AD EG EC =, 又∵AB ∥DC ,∴,DF BC AD DE EC EC ==∴DG DF EG DE=,即DG ·DE=DF ·EG 。
(二)相似三角形判定定理的应用〖例〗如图,BD 、CE 是⊿ABC 的高,求证:⊿ADE ∽⊿ABC 。
解答:0AEC 90,,AEC ,,,AEC .BD CE ABC ADB AD AE A A ADB AB ACA A ABC ∴∠=∠=∠=∠∴∴=∠=∠、是的高,又∽又∽ (三)相似三角形性质定理的应用〖例〗⊿ABC 是一块锐角三角形余料,边BC=12cm ,高AD=8cm,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,求这个正方形的边长。
思路解析:利用相似三角形的性质定理找到所求正方形边长与已知条件的关系即可解得。
解答:设正方形PQMN 为加工成的正方形零件,边QM 在BC 上,顶点P 、N 分别在AB 、AC 上,⊿ABC 的高AD 与边PN 相交于点E ,设正方形的边长为xcm ,∵PN ∥BC ,∴⊿APN ∽⊿ABC 。
∴.AE PN AD BC =∴8812x x -=。
解得x=4.8(cm). 答:加工成的正方形零件的边长为4.8cm 。
第03讲 平面向量的数量积 (精讲)(含答案解析)
第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。
第03讲 等比数列及其前n项和 (精讲)(解析版)-2023年高考数学一轮复习
第03讲 等比数列及其前n 项和(精讲)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析 题型一:等比数列基本量的运算 题型二:等比数列的判断与证明 题型三:等比数列的性质及其综合应用角度1:等比数列的性质角度2:等比数列与等差数列的综合问题第四部分:高考真题感悟1.等比数列的概念 (1)等比数列的定义一般地,如果一个数列从2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0q ≠)表示.数学语言表达:1(2)nn a q n a -=≥,q 为常数,0q ≠. (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔2G ab =. 2.等比数列的有关公式(1)若等比数列{}n a 的首项为1a ,公比是q ,则其通项公式为11n n a a q -=;可推广为n m n m a a q -=.(2)等比数列的前n 项和公式:当1q =时,1n S na =;当1q ≠时,11(1)11n n n a a q a q S q q--==--.3.等比数列的性质设数列{}n a 是等比数列,n S 是其前n 项和.(1)若m n p q +=+,则m n p q a a a a =,其中,,,m n p q N *∈.特别地,若2m n p +=,则2m n p a a a =,其中,,m n p N *∈.(2)相隔等距离的项组成的数列仍是等比数列,即ka ,k ma +,2k ma +,…仍是等比数列,公比为mq(,k m N *∈).(3)若数列{}n a ,{}n b 是两个项数相同的等比数列,则数列{}n ba ,{}n n pa qb ⋅和{}nnpa qb (其中b ,p ,q 是非零常数)也是等比数列.1.(2022·宁夏·平罗中学高一期中(理))已知2、x 、8成等比数列,则x 的值为( ) A .4 B .4- C .4± D .5【答案】C解:因为2、x 、8成等比数列, 所以228x =⨯,解得4x =±; 故选:C2.(2022·辽宁·辽师大附中高二阶段练习)已知一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了4个伙伴;第2天,5只蜜蜂飞出去,各自找回了4个伙伴,……按照这个规律继续下去,第20天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( ) A .420只 B .520只C . 20554-只D . 21443-只【答案】B第一天一共有5只蜜蜂,第二天一共有2555⨯=只蜜蜂,……按照这个规律每天的蜜蜂数构成以为5首项,公比为5的等比数列则第n 天的蜜蜂数1555n nn a -=⨯=第20天蜜蜂都归巢后,蜂巢中共有蜜蜂数205 故选:B .3.(2022·北京·昌平一中高二期中)2与8的等比中项是( ) A .4 B .5 C .4± D .5±【答案】C设a 为2与8的等比中项,则22816a =⨯=,解得:4a =±. 故选:C.4.(2022·湖北·蕲春县实验高级中学高二期中)已知2是2m 与n 的等差中项,1是m 与2n 的等比中项,则12m n+=( ) A .2 B .4 C .6 D .8【答案】D由题可知24m n +=,21mn =,所以1228m n m n mn++==. 故选:D .5.(2022·全国·高二单元测试)在下列的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x y +的值为( ) 2 4 1 2 x yB .3C .4D .5【答案】A 由题意知表格为 2 4 6 12 3 12132故3222x y +=+=. 故选:A题型一:等比数列基本量的运算例题1.(2022·辽宁·沈阳市第八十三中学高二阶段练习)若等比数列{}n a 满足123a a +=,4581a a +=,则数列{}n a 的公比为( )A .﹣2B .2C .﹣3D .3【答案】D设等比数列{an }的公比为q ,由a 4+a 5=(a 1+a 3)q 3,得3q 3=81,解得q =3, 故选:D .例题2.(2022·江西·上饶市第一中学模拟预测(文))在正项等比数列{}n a 中,1236a a a a =,且416a =,则10a =( ) A .1024 B .960 C .768 D .512【答案】A解:依题意设公比为q ,且10a >、0q >,由1236a a a a =,则33511a q a q =,即221a q =,所以1a q =,因为416a =,所以34116a q q ==,所以2q,所以2n n a =,所以101021024a ==;故选:A例题3.(2022·辽宁·鞍山市华育高级中学高二期中)在等比数列{}n a 中,241a a +=,352a a +=,则公比q =( )A .12 B .2 C .1 D .2-【答案】B设等比数列{}n a 的公比为q ,由()2424351,2+=+=+=a a a a a a q ,解得2q .故选:B.例题4.(2022·全国·模拟预测)已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=. (1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.【答案】(1)3nn a =或9n a =;(2)答案见解析.(1)因为{}n a 为等比数列,所以213229a a a a ==,又0n a ≠,所以29a =.设{}n a 的公比为()0q q >,因为12312323aa a ++=, 所以12329993q q++=,化简得24309q q q-+=,解得3q =或1q =. 当3q =时,2933n nn a -=⨯=.当1q =时,9n a =.(2)当3q =时,()1113312n n n a q S q+--==-. 由1n n S na +≥,得23332n n n +-≥⋅,化简得()9233nn -⨯≥.易知,当5n ≥时,不等式显然不成立,检验可知,满足不等式的正整数n 的所有取值为1,2,3,4.当1q =时,9n S n =,由1n n S na +≥,得()919n n +≥,此时n 的取值为一切正整数. 例题5.(2022·北京二中高二学业考试)已知数列{}n a 是等比数列,142,16a a ==, (1)求数列{}n a 的通项公式及其前n 项和n S ;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,求数列{}n b 的通项公式及其前n 项和n T .【答案】(1)2n n a =,122n n S +=-.(2)1228n b n =-,2622n T n n =-.(1)设数列{}n a 的公比为q ,则41411682a qa -===,得2q ,所以111222n n nn a a q --==⨯=.11(1)2(12)22112n n n n a q S q +--===---.(2)设等差数列{}n b 的公差为d , 33328b a ===,555232b a ===,则5332812532b b d --===-, 所以3(3)812(3)1228n b b n d n n =+-=+-=-,2(161228)6222n n n T n n -+-==-. 方法总结解决等比数列基本量运算的思想方法(1)方程思想:等比数列的基本量为首项1a 和公比q ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等比数列中包含1a ,q ,n ,n a ,n S 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用1a ,q 表示,寻求两者间的联系,整体代换即可求解.(3)分类讨论思想:若题目中公比q 未知,则运用等比数列前n 项和公式时要对q 分1q =和1q ≠两种情况进行讨论.题型二:等比数列的判断与证明例题1.(2022·辽宁·抚顺一中高二阶段练习)已知数列{}n a 的前n 项和为n S ,且342n n S a =-. (1)求{}n a 的通项公式;【答案】(1)212n n a -=(1)当1n =时,1113423S a a =-=,解得12a =. 当2n ≥时,()113334242n n n n n a S S a a --=-=---, 整理得14n n a a -=,所以{}n a 是以2为首项,4为公比的等比数列,故121242n n n a --=⨯=.例题2.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式; 【答案】(1)13-=n n a(1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a .例题3.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N .(1)求{}n a 的通项公式;【答案】(1)3n n a =(1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去),令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3nn a =.证明{}n a 是等比数列 定义法1n na q a +=(n N *∈) (或者1(2)nn a q n a -=≥)等差中项法211(2)n n n a a a n -+=⋅≥判断{}n a 是等比数列{}n a 的通项关于n 的指数函数1n n a cq -=(0c ≠,0q ≠){}n a 的前n 项和 n n S kq k =-(0c ≠,0q ≠,1q ≠)题型三:等比数列的性质及其综合应用角度1:等比数列的性质例题1.(2022·宁夏·平罗中学高一期中(文))已知{}n a 是等比数列,若0n a >,且243546225a a a a a a ++=,则35a a +=( )A .10B .25C .5D .15【答案】C因为{}n a 是等比数列,243546225a a a a a a ++=,所以223355225a a a a ++=,即()23525a a +=,因为0n a >, 所以355a a +=. 故选:C例题2.(2022·江西·九江一中高二阶段练习(理))在正项等比数列{}n a 中,48128a a a =,则22214log log a a +=( ) A .2 B .1C .12D .14【答案】A由4812388a a a a ==,可得82a =则()222142214282228log log log log log log 2222a a a a a a ===+==故选:A例题3.(2022·辽宁沈阳·三模)在等比数列{}n a 中,28,a a 为方程240x x π-+=的两根,则357a a a 的值为( ) A .ππB .π-C .π±D .3π【答案】C解:在等比数列{}n a 中,因为28,a a 为方程240x x π-+=的两根,所以2258a a a π==,所以5a π=± 所以33575a a a a π==±故选:C.例题4.(2022·河南·高二阶段练习(文))在等比数列{}n a 中,2313a a =,则28a a =______.【答案】9设等比数列{}n a 的公比为q ,由2313a a =得:2211()3a q a =,则有4513a a q ==, 所以2285()9a a a ==.故答案为:9例题5.(2022·全国·高三专题练习)在正项等比数列{}n a 中,若484a a =,则22210log log a a +=______. 【答案】2()()2221022102482log log log log log 42a a a a a a +====.故答案为:2例题6.(2022·全国·高二单元测试)等比数列{}n a 中,0n a >且243546225a a a a a a ++=,则35a a +=_______ 【答案】52435462a a a a a a ++()222335535225a a a a a a =++=+=,又等比数列{}n a 中,0n a >, 355a a ∴+=,故答案为:5.角度2:等比数列与等差数列的综合问题例题1.(2022·浙江·杭师大附中模拟预测)数列{}n a 的前n 项和为n S ,数列{}n b 满足()N n n b na n *=∈,且数列{}n b 的前n 项和为(1)2n n S n -+.(1)求12,a a ,并求数列{}n a 的通项公式; 【答案】(1)12a =,24a =,2n n a =(2)证明见解析 (1)由题意得12323(1)2n n a a a na n S n ++++=-+,①当1n =时,12a =;当2n =时,1221222444a a S a a a +=+=++⇒=; 当2n ≥时,1231123(1)(2)2(1)n n a a a n a n S n --++++-=-+-,②①-②得,1(1)(2)2(2)222(2)n n n n n n n na n S n S S n a S a n -=---+=+-+⇒=-≥,当1n =时,12a =,也适合上式,所以()22N n n S a n *=-∈,所以1122n n S a --=-,两式相减得12(2)n n a a n -=≥,所以数列{}n a 是以2为首项,2为公比的等比数列,所以2n n a =.例题2.(2022·江西·南城县第二中学高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N .(1)求数列{}n a 的通项公式; 【答案】(1)13n na =(1)当1n =时,111221a S a =-=,解得:113a =;当2n ≥时,1122211n n n n n a S S a a --=-=--+,即113n n a a -=,∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. 例题3.(2022·青海·大通回族土族自治县教学研究室三模(理))若n S 为数列{}n a 的前n 项和,12a =,且()()*121n n S S n +=+∈N .(1)求数列{}n a 的通项公式; 【答案】(1)2n n a =(1)解:因为()121n n S S +=+①,*n ∈N , 当2n ≥时,()121n n S S -=+②,由①②可得()()112121n n n n S S S S +--=+-+, 即12(2)n n a a n +=≥.1n =时,122a a S +==112222S a +=+,又12a =,所以24a =, 所以()*12n n a a n +=∈N ,所以12n na a +=, 所以数列{}n a 是等比数列,且首项为2,公比为2. 所以2n n a =.例题4.(2022·四川·树德中学高一竞赛)已知数列{}n a 的前n 项和为n S ,且满足11a =,()*11n n S a n N +=-∈.(1)求数列{}n a 的通项公式; 【答案】(1)12n na(1)解:由题意,数列{}n a 的前n 项和为n S ,且满足11a =,11n n S a +=-, 当2n ≥时,可得11n n S a -=-,两式相减得1n n n a a a +=-,即12n n a a +=,即12(2,)n na n n N a ++=≥∈, 当1n =时,1211S a a =-=,可得22a =,可得212a a =, 所以数列{}n a 表示首项为11a =,公比为2q的等比数列,所以数列{}n a 的通项公式为1112n n n a a q --==.例题5.(2022·福建省福州格致中学模拟预测)在①()12n n n n a T T n ++=,②23n n n S a +=这两个条件中任选一个补充在下面问题中,并解答下列题目.设首项为2的数列{}n a 的前n 项和为n S ,前n 项积为n T ,且___________. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中是否存在连续三项构成等比数列,若存在,请举例说明,若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)()1n a n n =+(2)不存在,理由见解析 (1)选①:()12nn n n a T T n++=, 即()12nn n a a n++=.∴12n na a n n+=+ 即()()()1211n n a a n n n n +=+++,∴数列()1n a n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是常数列,∴()11211n a a n n =⨯+=,故()1n a n n =+选②:因为()32n n S n a =+,所以2n ≥时,()1131n n S n a --=+, 则()()1321n n n a n a n a -=+-+,即()()111n n n a n a --=+,即111n n a n a n -+=-, 所以()114311221n n n a a n n n n +=⋅⋅⋅⋅⋅⋅=+--, 当1n =时,12a =也满足,所以()1n a n n =+.(2)假设在数列中存在连续三项n a ,1n a +,2n a +成等比数列,那么有212n n n a a a ++=成立, 即()()()()()212123n n n n n n ⎡⎤++=+++⎣⎦成立. 即()()()123n n n n ++=+成立,即20=成立,此等式显然不成立,故原命题不成立,即不存在连续三项n a ,1n a +,2n a +成等比数列例题6.(2022·全国·高二单元测试)在①102nn a a ++=,②1661n n a a +=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.问题:设n S 是数列{}n a 的前n 项和,且14a =,______,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值;若不存在,说明理由.【答案】选①:312n n a -⎛⎫=- ⎪⎝⎭,存在,最大值4;选②:12566n a n =-+,存在,最大值50;选③:217242n n n a -+=,不存在,理由见解析.选①:因为102nn a a ++=,即112n n a a +=-,14a =, 所以数列{}n a 是首项为4、公比为12-的等比数列,1311422n n n a --⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭,当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为14S =; 当n 为偶数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+,且81814323n n S ⎛⎫=-<< ⎪⎝⎭,综上,n S 存在最大值,且最大值为4.选②:因为1661n n a a +=-,即116n n a a +-=-,14a =,所以{}n a 是首项为4、公差为16-的等差数列,()112541666n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭,125066n -+≥,解得25n ≤,240a >,250a =, 故n S 存在最大值,且最大值为25S 或24S ,25252414255026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,n S 的最大值为50. 选③:因为18n n a a n +=+-,所以18n n a a n +-=-, 所以217a a -=-,326a a -=-,…,19n n a a n --=-, 则()()()()()2111221791171622n n n n n n n n n a a a a a a a a ----+---+-=-+-+⋅⋅⋅+-==,因为14a =,所以217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.1.(2022·上海·高考真题)已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( ) A .若20222021S S >,则数列{}n a 单调递增 B .若20222021T T >,则数列{}n a 单调递增 C .若数列{}n S 单调递增,则20222021a a ≥ D .若数列{}n T 单调递增,则20222021a a ≥ 【答案】DA :由20222021S S >,得20220a >,即202110a q>,则1a 、q 取值同号, 若100a q <<,,则{}n a 不是递增数列,故A 错误;B :由20222021T T >,得20221a >,即202111a q >,则1a 、q 取值同号,若100a q <<,,则数列{}n a 不是递增数列,故B 错误;C :若等比数列11a =,公比12q =,则11()122(1)1212nn nS -==--, 所以数列{}n S 为递增数列,但20222021a a <,故C 错误;D :由数列{}n T 为递增数列,得1n n T T ->,所以1n a >, 即1q ≥,所以20222021a a ≥,故D 正确. 故选:D2.(2022·上海·高考真题)已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围. 【答案】(1)4;(2)[]0,1.(1)解:2123S a a =+=,则12a =,所以,等比数列{}n a 的公比为2112a q a ==, ()1114112n n n a q S q-⎡⎤⎛⎫∴==-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦,因此,()111lim lim lim 44412n nn n n n a q S q →∞→∞→∞-⎡⎤⎛⎫==-⋅=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦.(2)解:由已知可得()()12222122n n n n a a S n a a n -+==+≥,则2211n a a -+≥, 即()22231a n d +-≥,可得()231n d -≥-. 当1n =时,可得1d ≤;当2n ≥时,则231n -≥,所以,132d n≥-, 因为数列()1232n n ⎧⎫≥⎨⎬-⎩⎭为单调递增数列,而11032n -≤<-,故0d ≥. 综上所述,01d ≤≤.3.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933()3()444n n n a -∴=-⋅=-⋅;4.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式; 【答案】(1)11()3n n a -=,3n nn b =; (1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.。
新高考高中数学核心知识点全透视:函数(精讲精析篇)(附答案及解析)
专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.已知函数的具体解析式求定义域的方法(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.3.抽象函数的定义域的求法(1)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a≤g(x)≤b求出.(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.【典例1】(2019·江苏高考真题)函数2=+-_____.76y x x【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2B.1[1]3,C.[-15],D.无法确定【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______ 【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥; ②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞B.[1,)+∞C.[2,)+∞D.(,2]-∞【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法. (3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决.*(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式. (2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50-B.0C.2D.50【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<<D.{}10x x -剟2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x -D.34x -3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞UD.R5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .16.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1-B.1C.3-D.07.(2019·浙江学军中学高一期中)函数()f x = )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+f (2)= .10.(2019·上海闵行中学高一期中)已知21(1)()(1)(1)x x f x f x x -<⎧=⎨-≥⎩,则(3)f =________11.(2019·上海市第二中学高二期末)若函数()3f x x a =+为奇函数,则()1f =______.12.(2018·上海上外浦东附中高一月考)函数()21y k x b =++在R 上是增函数,则实数k 的取值范围是_________.13.(2018·上海上外浦东附中高一月考)已知函数2y x =,[]0,3x ∈,则函数的值域为__________.14.(2015·浙江高考真题(文))已知函数()2,1{ 66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ , ()f x 的最小值是 .15.(2019·上海市高桥中学高一期末)已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x -<,则x 的取值范围是_________.16.(2018·上海曹杨二中高一期末)设函数()1f x x =-,若0a b <<且()()f a f b =,则ab 的取值范围是_________;专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 2.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集. (2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 3.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【典例1】(2019·江苏高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】由已知得2760x x +-≥,即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2 B.1[1]3,C.[-15],D.无法确定【答案】C 【解析】由已知02x ≤≤,1315x ∴-≤-≤,即函数()f x 的定义域是[-15],, 故选:C .【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________.【答案】[]22-,【解析】由于函数()y f x =的定义域为[]3,3-,对于函数()21y f x =-,有2313x -≤-≤,即224x -≤≤,即24x ≤,解得22x -≤≤.因此,函数()21y f x =-的定义域为[]22-,. 故答案为:[]22-,. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【答案】-2,1【解析】()()32323232313133f x f a x x a a x x a a -=++---=+--,()()()()2322222x b x a x a b x a ab x a b --=-+++-,所以223223{20 3a b a ab a b a a --=+=-=--,解得2{ 1a b =-=. 【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【答案】2()1f x x =- 【解析】 令21x t +=,12t x -∴=,代入()22144f x x x +=+, ()22114()4122t t f t t --∴=+⋅=-,故答案为:2()1f x x =-.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【答案】()()31f x x x =+ 【解析】Q ()f x 是定义在R 上的函数,且对任意,x y ,()()()22343f y x f x y x y -=-+-+恒成立,∴令y x =,得()()()22343f x x f x x x x -=-+-+, 即()()()2333f x f x x x =-++,()()3333f x x x ∴=+, ()()31f x x x ∴=+.故答案为:()()31f x x x =+ 【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________. 【答案】【解析】 因为,所以.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【答案】D 【解析】作出()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,如下图(1)f x -的图象,由()f x 的图象向右平移一个单位,故A 正确;()f x -的图象,由()f x 的图象y 轴右侧的翻折到左侧,左侧翻折到右侧,故B 正确; (||)f x 的图象,由()f x 的图象右侧的保留不变,且把右边的翻折到左边,故C 正确;|()|f x 的图象,把x 轴下方的翻折到上方,图象与()f x 一样,故D 错误;故选:D【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【答案】(,2]-∞ 【解析】由题意,若2a >,则(2)2f =不合题意,因此2a ≤,此时[,)x a ∈+∞时,2()f x x =,满足(2)4f =.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________. 【答案】.【解析】 由,得或,得或,即得取值范围是,故答案为.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______【答案】a ≤【解析】由题意()()()202f a f a f a <⎧⎪⎨+≤⎪⎩或()()202f a f a ≥⎧⎪⎨-≤⎪⎩,解得()2f a ≥-,当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得,0a <或a ≤≤,故a ≤【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: ①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥;②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5 【答案】B【解析】由题意知函数()f x 的对称轴224b mx a =-==-,所以8m =-,所以(1)28313f =++=,故选B .【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞ B.[1,)+∞ C.[2,)+∞ D.(,2]-∞【答案】D 【解析】由题意,函数2()21f x x mx =-+,开口向上,其对称轴x m =,∵在[2,)+∞上是增函数,∴2m ≤,即实数m 的取值范围为(,2]-∞, 故选D.【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【答案】B 【解析】当1x ≥时,函数()1f x x=在()1,+∞单调递减,此时()f x 在1x =处取得最大值,最大值为()11f =; 当1x <时,函数()22f x x =-+在0x =处取得最大值,最大值为()02f =. 综上可得,()f x 的最大值为2.故选:B . 【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法.(3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决. *(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式.(2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50- B.0C.2D.50【答案】C 【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【答案】6 【解析】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+= ()16f =-=. 【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【答案】87a ≤- 【解析】∵()y f x =是定义在R 上的奇函数,∴当0x >时,2()()97a f x f x x x=--=+-,而229729767a a x x a x x+-≥⋅-=-,当些仅当3x a =时,“=”成立,∴当0x >时,要使()1f x a ≥+恒成立,只需86717a a a -≥+⇒≤-或85a ≥,又∵0x =时,(0)01f a =≥+,∴1a ≤-,综上,故实数a 的取值范围是8(,]7-∞-.【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<< D.{}10x x -剟【答案】C 【解析】依题有,2x x ⎧--≥⎪≠,解得10x -<<.故选:C .2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x - D.34x -【答案】D 【解析】令3x t +=,所以3x t =-,所以()()33534f t t t =-+=-,所以()34f x x =-, 故选:D.3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞U D.R【答案】C 【解析】幂函数的零次方底数不为0,即20x -≠ ,2x ≠;偶次方根被开方数大于等于零,分式分母不为零,即10x +>,1x >- 所以()()1,22,x ∈-+∞U . 故选:C5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .1【答案】D 【解析】(2)f x +是偶函数,则()f x 的图象关于直线2x =对称,又()f x 是奇函数,则(0)0f =,且()f x 是周期函数,且周期为4,所以(8)(9)(0)(1)1f f f f +=+=.故选D .6.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1- B.1C.3-D.0【答案】B 【解析】∵函数2()3f x ax bx =++是定义在[3,2]a a -的偶函数, ∴320a a -+=,解得1a =,由()()f x f x =-得0b =,即1a b +=, 故选:B.7.(2019·浙江学军中学高一期中)函数()249x x f x x+-=-的奇偶性为( )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【答案】B 【解析】 函数()249x x f x x +-=-,所以有290->x ,解得33x -<<, 所以()f x 定义域为()3,3- 此时40x -<恒成立, 所以()2224999x x f x x x x +-===---,()()()2299f x f x xx -===---,所以()f x 是偶函数, 故选:B8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________. 【答案】12 【解析】函数()f x 是定义在上的奇函数,()()f x f x -=-,则()()f x f x =--,()()()()322222212f f ⎡⎤=--=-⨯-+-=⎣⎦.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+。
新高考数学 专题 精讲3 立体几何
板块二 高考专项突破——解答题 命题区间精讲 精讲3 立体几何
数学
阅卷案例 (2020·全国卷Ⅰ,T18,12分)如图,D 为圆锥的顶点,O是圆锥底面的圆 心,AE为底面直径,AE=AD.
△ABC是底面的内接正三角形,P为
DO上一点,PO=
6 6 DO.
(1)证明:PA⊥平面PBC;
(2)求二面角B-PC-E的余弦值.
2.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC, AD⊥CD,BC=2,AD=CD=1,M是PB的中点.
(1)求证:AM∥平面PCD; (2)求证:平面ACM⊥平面PAB.
[证明] (1)如图,以C为坐标原点建立空间直角坐标系C-xyz, 则A(1,1,0),B(0,2,0),C(0,0,0),D(1,0,0), P(1,1,a)(a>0),M12,23,a2,C→P=(1,1,a),C→D=(1,0, 0),A→M=-12,12,2a,
2建立如图所示的空间直角坐标系,则有
B(
23,12,0),
←C(- 23Biblioteka 12,0),P(0,0,
22),
E0,1,0,6分
答题模板
标准解答
第3步:求向 量 求平面的法 向量或直线 的方向向量.
故B→C=-
→ 3,0,0,CE=
23,12,0,C→P=
23,-12,
22,7分
设平面PBC的法向量为m=x,y,z,则
DO= ←
DA2-OA2=
3,PO= 66DO= 22,
PA=PB=PC=
PO2+AO2= 26,
在△PAC中,PA2+PC2=AC2,故PA⊥PC,3分
同 故理PA可⊥得平P面A⊥PBPCB.5,分又PB∩PC=P,
2024年高考数学复习培优讲义专题3-原函数与导函数混合还原问题(含解析)
专题1-3 原函数与导函数混合还原问题常见函数的构造模型1.对于)()(x g x f '>',构造)()()(x g x f x h −=模型2.对于不等式()k x f >'()0≠k ,构造函数()()b kx x f x g +−=. 模型3.对于不等式()()0'>+x f x f ,构造函数())(x f e x g x = 拓展:对于不等式()()0'>+x kf x f ,构造函数())(x f e x g kx=模型4.对于不等式()()0'>−x f x f ,构造函数()x e)(x f x g =模型5.对于不等式()()0'>+x f x xf ,构造函数()()x xf x g = 拓展:对于不等式()()0'>+x nf x xf ,构造函数())(x f x x g n = 模型6.对于不等式()()0'>−x f x xf ,构造函数()()x x f x g =()0≠x 拓展:对于不等式()()0'>−x nf x xf ,构造函数()n xx f x g )(=模型7.对于0)()(>'x f x f ,分类讨论:(1)若0)(>x f ,则构造);(ln )(x f x h =(2)若0)(<x f ,则构造)](ln[)(x f x h −=模型8.对于()ln ()0(0)f x af x '+><,构造()()x h x a f x =. 模型9.对于()()ln 0(0)f x f x x x'+><,构造()()ln h x f x x =. 模型10.(1)对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '−><, 构造()()cos h x f x x =.对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x=. 模型11.(1)()sin ()cos [()sin ]f x x f x x f x x ''+= (2)2()sin ()cos ()[]sin sin f x x f x x f x x x'−'= 解题思路利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是: (1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别题型一 由导函数不等式构造函数解不等式2024届·重庆市第八中学高三上学期入学测试T81.若函数()f x 为定义在R 上的偶函数,当(),0x ∈−∞时,()2'>f x x ,则不等式 ()()()()3123331f x f x x −−>−+的解集为( )A .1,3⎛⎫−∞− ⎪⎝⎭B .()()1,1,3−∞−⋃+∞C .()1,+∞D .1,13⎛⎫− ⎪⎝⎭2023·南京二模T82.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若对任意x ∈R 有()1f x '>,()()110f x f x ++−=,且()02f =−,则不等式()11f x x −>−的解集为( )A .()0,∞+B .()1,+∞C .()2,+∞D .()3,+∞3.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()222log log 3f x x >−的解集是 .4.已知()f x 是定义在R 上的奇函数,其导函数为(),f x '且当0x >时,()()ln 0f x f x x x'⋅+>,则不等式()()210xf x −<的解集为( )A .()1,1-B .(),1()0,1∞⋃--C .,11,()()∞⋃∞--+D .1,0),()(1⋃∞-+5.已知函数()f x 的定义域为(),0∞−,其导函数()'f x 满足()()'20xf x f x −>,则不等式()()()22023202310f x x f +−+−<的解集为( )A .(2024,2023)−−B .(2024,0)−C .(,2023)−∞−D .(,2024)−∞−重点题型·归类精讲2023·广州2023届综合能力测试(一)T156.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',若()10xf x '−<.(e)2f =,则关于x 的不等式1)(e x f x <+的解集为__________.2023届广州大学附属中学高三上学期第一次月考T87.设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .()30,eD .3e ,e 3⎛⎫ ⎪⎝⎭2023届长郡中学月考(六)·118.设函数()f x 在R 上存在导函数()f x ',对任意的x ∈R 有2()()f x f x x +−=,且在[0,)+∞上()f x x '>,若(2)2()2f a a f a −+>+,则实数a 的可能取值为( ) A. 1− B. 0C. 1D. 2广州华南师大附中高三第一次月考·79.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f −=,当0x >时,()()0xf x f x '−>则使得()0f x >成立的x 的取值范围是().(,1)(1,0)A −∞−⋃−B.(0,1)∪(1,+∞) ().,1(0,1)C −∞−⋃D.(-1,0)∪(1,+∞)2022武汉高二下期中·710.定义在R 上的函数()f x 满足()()1f x f x '>−,()f x '是()f x 的导函数,且()06f =,则不等式()e 51x f x >+(其中e 为自然对数的底数)的解集为( ).A. ()(),01,−∞⋃+∞B. ()(),03,−∞+∞C. ()0,∞+D. ()3,+∞11.已知函数()f x 的导函数为()f x ',且满足()()0f x f x +'>在R 上恒成立,则不等式()2e 21xf x +>()2e 3x f x −−的解集是 .12.已知函数()f x 的定义域是(-5,5),其导函数为()f x ',且()()2f x xf x '+>,则不等式()()()()23231124x f x x f x x −−−−−>−的解集是 .安徽省蚌埠市2023届高三上学期第一次质检13.已知函数()f x 的定义域是11,22f ⎛⎫= ⎪⎝⎭R ,若对于任意的x ∈R 都有()40f x x '+<,则当[]0,2απ∈时,不等式()sin cos20f αα−<的解集为( )A .5,66ππ⎛⎫ ⎪⎝⎭B .5,33ππ⎛⎫ ⎪⎝⎭C .50,,266πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭ D .50,,233πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭14.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若()05f =,且()()2f x f x '−>,则使不等式()3e 2xf x ≤+成立的x 的值可能为( )A .-2B .-1C .12−D .2题型二 由导函数不等式构造函数比大小广东省四校2024届高三上学期10月联考(二)数学试题15.已知函数()f x 满足()()ln 0xf x x f x '+>(其中()f x '是()f x 的导数),若12e a f ⎛⎫= ⎪⎝⎭,()e b f =,()2e c f =,则下列选项中正确的是( ) A .42c b a << B .24b c a <<C .24a b c <<D .42a c b <<江苏南通市部分学校3月模拟·T816.已知()f x 是可导的函数,且()()2f x f x '≤,对于x R ∈恒成立,则下列不等关系正确的是( )A .()()()()2404001,12021e f f e f f >> B .()()()()2404001,12021e f f e f f <>C .()()()()2404001,12021e f f e f f >< D .()()()()2404001,12021e f f e f f <<2024届湖南师范大学附属中学月考(一)·T717.已知函数()f x 的定义域为R ,设()f x 的导数是()f x ',且()()sin 0f x f x x '⋅+>恒成立,则( )A .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭B .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭C .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭D .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭18.已知偶函数()f x 的定义域为R ,导函数为()f x ',若对任意[0,)x ∞∈+,都有()()20f x x xf '+>恒成立,则下列结论正确的是( ) A .()00f < B .()()931f f −< C .()42(1f f >−) D .()()12f f <19.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( )A .()()2130f f >>B .()()2130f f <<C .()()2310f f >>D .()()2310f f <<20.设()f x 是定义在R 上的函数,其导函数为()f x ',满足()()0f x xf x '−>,若()41a f =,()22b f =,()4c f =,则( )A .a b c >>B .c a b >>C .b c a >>D .c b a >>2023届菏泽市二模T821.已知定义在R 上的函数()f x 的导函数为()f x ',满足()()0,01f x f >=,且()()222e x f x f x ++=−,当1x >时,()()f x f x '>,则( )A .()11e f −−<B .e 11e e f ⎛⎫> ⎪⎝⎭C .()22e f > D .()ee ef >河南省洛阳市六校高三上10月联考·1022.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( ) A .()()2130f f >> B .()()2130f f << C .()()2310f f >> D .()()2310f f <<23.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ).A 3()2()43ππ>B .(1)2()sin16f f π<⋅C 2()()64f ππ>D 3()()63f ππ<2022湖北六校高二下期中·1124.(多选)已知函数f (x )的定义域是(0,+∞),其导函数是f '(x ),且满足1ln '( >)()0x f x f x x⋅+⋅,则下列说法正确的是( ) A .10f e ⎛⎫> ⎪⎝⎭B .10f e ⎛⎫< ⎪⎝⎭C .f (e )>0D .f (e )<025.已知定义在R 上的函数()(),f x g x 的导函数都存在,若()()()()10f x g x f x g x x <'+',且()()()()2211f g f g −为整数,则()()()()2211f g f g −的可能取值的最大值为 .题型三 由导函数不等式构造函数结合奇偶性解不等式经典例题26.设函数'f x ()是奇函数()()f x x ∈R 的导函数(1)0f −=,当x >0时,xf '(x )﹣f (x )<0,则使得f (x )<0成立的x 的取值范围为 .深圳第二高级中学高二下期中T1527.已知()f x 为定义在R 上的奇函数,且f (2)0=,当0x >时,()()0xf x f x '+>恒成立,不等式()0f x <的解集为_______________.28.已知函数()f x 是R 上的奇函数,()20f =,对()0,x ∀∈+∞,()()0f x xf x '+>成立,则()()10x f x −≥的解集为 .2023届广东佛山高三上学期期末T1629.已知()f x 是定义在(,0)(0,)−∞+∞上的奇函数,()f x '是()f x 的导函数,当0x >时,()2()0xf x f x '+>,若(2)0f =,则不等式2()0x f x >的解集是________.2023·湖北省·一模T1630.已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()()2,0f x f x x x =−−>时,()10f x '+>.若不等式()()ln ln f x a f x a +>−在[)2,−+∞上恒成立,则a 的取值范围是__________,2023淄博市二模T831.已知定义在()3,3−上的函数()f x 满足42()e ()0,(1)e ,()x f x f x f f x '+−==为()f x 的导函数,当[0,3)x ∈时,()2()f x f x '>,则不等式24e (2)e x f x −<的解集为( )A .(2,1)−B .(1,5)C .(1,)+∞D .(0,1)广东省梅州市2022-2023学年高二下学期期末32.已知()f x 是定义在R 上的偶函数,当0x >时,有()2()0xf x f x '+<恒成立,则( ) A .14(1)2f f ⎛⎫> ⎪⎝⎭B .(2)(3)94f f < C .119423f f⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭D .19(1)3f f ⎛⎫−<− ⎪⎝⎭2023届第七次百校大联考T833.已知定义在R 上的偶函数()y f x =的导函数为()y f x =',当0x >时,()()0xf x f x x'+>,且(2)1f =,则不等式2(21)21f x x −<−的解集为 ( ) A .13,,22⎛⎫⎛⎫−∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .1113,,2222⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭2023届梅州二模T834.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()22f x f x x −+=,且在()0,∞+上()2f x x '<.若(3)()96f a f a a −−≥−,则实数a 的取值范围为( )A. 3,2⎡⎫+∞⎪⎢⎣⎭B. 3,2⎛⎤−∞ ⎥⎝⎦C. 3,32⎡⎤⎢⎥⎣⎦D. [)3,+∞2023届湖南湘考王3月模拟T835.设定义在R 上的函数()f x 满足2()()f x f x x −+=,且当0x ≤时,'()f x x <,其中'()f x 为函数()f x 的导数,则不等式1()(1)2f x f x x −−≥−的解集是( )A .(1]−∞,B .[1)+∞,C .1[)2+∞,D .1(]2−∞,2023届邵阳三模T836.定义在R 上的可导函数f (x )满足()()()e e x xf x f x x −−−=+,且在()0,∞+上有()10e xx f x −'+<若实数a 满足()()222222e e2e 0a a a f a f a a a −−−−−−+−++≥,则a 的取值范围为( ) A .2,23⎡⎤−⎢⎥⎣⎦B .[)2,+∞C .[)2,2,3⎛⎤−∞−⋃+∞ ⎥⎝⎦D .(],2−∞2023届广东佛山·华南师大附中南海实验强化考(三)T837.设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()24f x x f x =−−,当(),0x ∈−∞时,()142f x x '+<.若()()142f m f m m +≤−++,则实数m 的取值范围是( ) A .1,2⎡⎫−+∞⎪⎢⎣⎭B .3,2⎡⎫−+∞⎪⎢⎣⎭C .[)1,−+∞D .[)2,−+∞,0)(0,)+∞上的奇函数,()0x f x ⋅>的解集为 .辽宁省名校联盟2023届高考模拟调研卷数学(三)T839.已知函数f (x )为定义在R 上的偶函数,当()0,x ∈+∞时,()2'>f x x ,()24f =,则不等式()2312xf x x x x −+>+的解集为( )A .()()103−⋃+∞,, B .()()1,13,−+∞C .()(),10,3−∞−D .()1,3−40.已知定义在R 上的连续偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x'+<,且(2)3f =−,则不等式6(21)21f x x −−<−的解集为( ) A .13,,22⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭B .13,22⎛⎫ ⎪⎝⎭C .3,2⎛⎫+∞ ⎪⎝⎭D .1113,,2222⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭题型四 由等式构造函数2024届山西大学附属中学10月月考T1141.(多选)已知函数()f x 的定义域为ππ,22⎛⎫− ⎪⎝⎭,其导函数为()f x '.若()()sin cos x f x x f x x '⎡⎤+=⎣⎦,且()00f =,则( )A .()f x 是增函数B .()f x 是减函数C .()f x 有最大值D .()f x 没有极值河北省石家庄市部分学校2023届高三联考(二)42.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2sin f x f x x −−=,且在[)0,∞+上()cos f x x '>.若()πcos sin 2f f t t t t ⎛⎫− ⎝−⎭−>⎪.则实数t 的取值范围为( )A .π,4⎛⎫−∞ ⎪⎝⎭ B .π,4⎛⎫+∞ ⎪⎝⎭ C .ππ,42⎛⎫⎪⎝⎭ D .π,2⎛⎫+∞ ⎪⎝⎭山东省德州市2022-2023学年高二下学期期末43.(多选)R 上的函数()f x 满足()()e xf x f x ='+,且()01f =,则下列说法正确的是( )A .()f x 在2x =−处取得极小值B .()f x 有两个零点C .若0x ∀>,()f x k >恒成立,则1k <D .若1x ∃,2R x ∈,12x x ≠,()()12f x f x =,则124x x +<−44.(多选)已知()f x '为函数()f x 的导函数,若()()2ln x f x xf x x '+=,()112f =,则下列结论错误的是 A .()xf x 在()0,∞+上单调递增 B .()xf x 在()0,∞+上单调递减 C .()xf x 在()0,∞+上有极大值12D .()xf x 在()0,∞+上有极小值12专题1-3 原函数与导函数混合还原问题常见函数的构造模型1.对于)()(x g x f '>',构造)()()(x g x f x h −=模型2.对于不等式()k x f >'()0≠k ,构造函数()()b kx x f x g +−=. 模型3.对于不等式()()0'>+x f x f ,构造函数())(x f e x g x = 拓展:对于不等式()()0'>+x kf x f ,构造函数())(x f e x g kx = 模型4.对于不等式()()0'>−x f x f ,构造函数()xe )(x f x g =模型5.对于不等式()()0'>+x f x xf ,构造函数()()x xf x g =拓展:对于不等式()()0'>+x nf x xf ,构造函数())(x f x x g n=模型6.对于不等式()()0'>−x f x xf ,构造函数()()x x f x g =()0≠x 拓展:对于不等式()()0'>−x nf x xf ,构造函数()nx x f x g )(=模型7.对于0)()(>'x f x f ,分类讨论:(1)若0)(>x f ,则构造);(ln )(x f x h =(2)若0)(<x f ,则构造)](ln[)(x f x h −=模型8.对于()ln ()0(0)f x af x '+><,构造()()x h x a f x =. 模型9.对于()()ln 0(0)f x f x x x'+><,构造()()ln h x f x x =. 模型10.(1)对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '−><, 构造()()cos h x f x x =.对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x=. 模型11.(1)()sin ()cos [()sin ]f x x f x x f x x ''+= (2)2()sin ()cos ()[]sin sin f x x f x x f x x x'−'= 解题思路利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是: (1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别题型一 由导函数不等式构造函数解不等式2024届·重庆市第八中学高三上学期入学测试T81.若函数()f x 为定义在R 上的偶函数,当(),0x ∈−∞时,()2'>f x x ,则不等式 ()()()()3123331f x f x x −−>−+的解集为( )A .1,3⎛⎫−∞− ⎪⎝⎭B .()()1,1,3−∞−⋃+∞C .()1,+∞D .1,13⎛⎫− ⎪⎝⎭【答案】D重点题型·归类精讲【分析】根据不等式的结构,构造函数()()2g x f x x =−,判断其奇偶性及单调性,解不等式即可. 【详解】令()()2g x f x x =−,因为()f x 为偶函数,即()()f x f x −=,故()()g x g x −=,()g x 为偶函数,当(),0x ∈−∞时,()2'>f x x ,则()()()20,g x f x x g x =−>''在(),0∞−上单调递增,因为()()()()3123331f x f x x −−>−+,即()()2231(31)22f x x f −−−>−,所以()()312g x g −>,故312x −<,解113−<<x ,所以不等式的解集为1,13⎛⎫− ⎪⎝⎭.2023·南京二模T82.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若对任意x ∈R 有()1f x '>,()()110f x f x ++−=,且()02f =−,则不等式()11f x x −>−的解集为( )A .()0,∞+B .()1,+∞C .()2,+∞D .()3,+∞【答案】D【分析】构造()()g x f x x =−,确定函数单调递增,计算()22f =,()20g =,转化得到()()12g x g −>,根据单调性得到答案.【详解】设()()g x f x x =−,则()()10g x f x ''=−>恒成立,故函数在R 上单调递增.()()110f x f x ++−=,则()()200f f +=,即()22f =,故()()2220=−=g f .()11f x x −>−,即()10g x −>,即()()12g x g −>,故12x −>,解得3x >.3.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()222log log 3f x x >−的解集是 .【答案】()1,16【分析】构造函数()()23g x f x x =−+,由导数确定其单调性,题设不等式化为2(log )(4)g x g >,再利用单调性变形求解.【详解】令()()23g x f x x =−+,则()()20g x f x ''=−<, ∴()g x 在(0,)+∞上是减函数, (4)(4)830g f =−+=,不等式()222log log 3f x x >−化为22(log )2log 3f x x >−,即22(log )2log 30f x x −+>,也即为2(log )(4)g x g >, 所以20log 4x <<,116x <<. 故答案为:(1,16),4.已知()f x 是定义在R 上的奇函数,其导函数为(),f x '且当0x >时,()()ln 0f x f x x x'⋅+>,则不等式()()210xf x −<的解集为( )A .()1,1-B .(),1()0,1∞⋃--C .,11,()()∞⋃∞--+D .1,0),()(1⋃∞-+【答案】B【分析】构造新函数()()ln g x f x x =,利用导数确定()g x 的单调性,从而可得0x >时()f x 的正负,利用奇函数性质得出0x <时()f x 的正负,然后分类讨论解不等式. 【详解】设()()ln g x f x x =,则()()()ln 0f x g x f x x x''=+>,所以()g x 在(0,)+∞上递增, 又(1)0g =,所以1x >时,()()ln (1)0g x f x x g =>=,此时ln 0x >,所以()0f x >,01x <<时,()()ln (1)0g x f x x g =<=,此时,ln 0x <,所以()0f x >,所以(0,1)(1,)x ∈+∞时,()0f x >,因为()f x 是奇函数,所以(,1)(1,0)x ∈−∞−−时,()0f x <,由2(1)()0x f x −<得210()0x f x ⎧−>⎨<⎩或210()0x f x ⎧−<⎨>⎩,所以1x <−或01x <<.关键点点睛:本题考查用导数解不等式,关键是构造新函数()()ln g x f x x =,利用导数确定单调性后,得出()0f x >的解.5.已知函数()f x 的定义域为(),0∞−,其导函数()'f x 满足()()'20xf x f x −>,则不等式()()()22023202310f x x f +−+−<的解集为( )A .(2024,2023)−−B .(2024,0)−C .(,2023)−∞−D .(,2024)−∞−【答案】A【分析】由题可得当(),0x ∈−∞时,()()20xf x f x −>,构造函数2()()f x g x x =,可判断()g x 在(,0)−∞上的单调性,进而可将不等式转化为(2023)(1)g x g +<−,利用()g x 的单调性,可求出不等式的解集. 【详解】由题意知,当(,0)x ∈−∞时,'()2()0xf x f x −>, 设2()()f x g x x =, 则2'''43()2()()2()()0x f x xf x xf x f x g x x x −−==<,所以()g x 在(,0)−∞上单调递减,不等式2(2023)(2023)(1)0f x x f +−+−<等价于()22(2023)(1)(2023)1f x f x +−<+−,即为(2023)(1)g x g +<−,所以2023120230x x +>−⎧⎨+<⎩,解得20242023x −<<−. 故选:A.2023·广州2023届综合能力测试(一)T156.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',若()10xf x '−<.(e)2f =,则关于x 的不等式1)(e x f x <+的解集为__________.【答案】(1,)+∞【解析】令函数()()ln ,0g x f x x x =−>,则1()1()()0xf x g x f x x x'−''=−=<,因此函数()g x 在(0,)+∞上单调递减,(e)(e)ln e 1g f =−=,因此1))))(e 1(e (e (e x x x f x g f x g −<+<⇔<⇔,即e e x >,解得1x >,所以不等式1)(e x f x <+的解集为(1,)+∞.2023届广州大学附属中学高三上学期第一次月考T87.设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .()30,eD .3e ,e 3⎛⎫ ⎪⎝⎭【分析】构造函数()()3exf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解.【详解】解:令()()3e xf xg x =,则()()()33exf x f xg x '−'=, 因为()()()3R f x f x x '>∈, 所以()()()330e xf x f xg x '−'=>,所以函数()g x 在R 上为增函数,不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭,所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,即1ln 3x <,解得30e x <<, 所以不等式()3ln f x x <的解集为(3e .2023届长郡中学月考(六)·118.设函数()f x 在R 上存在导函数()f x ',对任意的x ∈R 有2()()f x f x x +−=,且在[0,)+∞上()f x x '>,若(2)2()2f a a f a −+>+,则实数a 的可能取值为( ) A. 1− B. 0C. 1D. 2【答案】AB 【解析】【分析】构建2()()2x g x f x =−,根据题意分析可得:()g x 为奇函数,在R 上单调递增,利用单调性解不等式即可得结果.【详解】222()()()()()022x x f x f x x f x f x −+−=⇔−+−−=令2()()2x g x f x =−,即()()0g x g x +−=,则()g x 为奇函数,当0x ≥时,()()0g x f x x ''=−>,则()g x 在区间[0,)+∞上单调递增, 故()g x 在区间(],0−∞上单调递增,则()g x 在R 上单调递增,∵(2)2()2f a a f a −+>+⇔22(2)(2)()22a af a f a −−−>−,即()(2)g a g a −>,∴2a a −>,解得1a <, 故A 、B 正确,C 、D 错误.广州华南师大附中高三第一次月考·79.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f −=,当0x >时,()()0xf x f x '−>则使得()0f x >成立的x 的取值范围是().(,1)(1,0)A −∞−⋃−B.(0,1)∪(1,+∞) ().,1(0,1)C −∞−⋃D.(-1,0)∪(1,+∞)【答案】 D2022武汉高二下期中·710.定义在R 上的函数()f x 满足()()1f x f x '>−,()f x '是()f x 的导函数,且()06f =,则不等式()e 51x f x >+(其中e 为自然对数的底数)的解集为( ).A. ()(),01,−∞⋃+∞B. ()(),03,−∞+∞C. ()0,∞+D. ()3,+∞【答案】C 【解析】【分析】构造函数()1()exf xg x −=,(R)x ∈,研究()g x 的单调性,结合原函数的性质和函数值,即可求解. 【详解】设()1()exf xg x −=,(R)x ∈,则2e ()e ()(()11()e [)]e x x x xf x f x f x f xg x −''−−+'==, ()()1f x f x '>−, ()()10f x f x '∴−+>,()0g x '∴>,()y g x ∴=在定义域R 上单调递增,()5e 1x f x >+,()06f =,即()1(0)15e e x f x f −−>=, ()(0)g x g ∴>,0x ∴>,∴不等式的解集为(0,)+∞11.已知函数()f x 的导函数为()f x ',且满足()()0f x f x +'>在R 上恒成立,则不等式()2e 21xf x +>()2e 3x f x −−的解集是 .【答案】2,3⎛⎫+∞ ⎪⎝⎭【分析】构造函数()()e x g x f x =,再将()2e 21x f x +>()2e 3xf x −−转化为()()213g x g x +>−,进而根据()g x 的单调性求解即可.【详解】令()()e x g x f x =,则()()()e 0x g x f x f x ''+>⎡⎤⎣⎦=,所以()g x 在R 上单调递增, 由()2e 21x f x +>()2e 3x f x −−,得()()213e 21e 3x xf x f x +−+>−,即()()213g x g x +>−,所以213x x +>−,解得23x >. 所以不等式()2e 21x f x +>()2e 3xf x −−的解集是2,3⎛⎫+∞ ⎪⎝⎭.12.已知函数()f x 的定义域是(-5,5),其导函数为()f x ',且()()2f x xf x '+>,则不等式()()()()23231124x f x x f x x −−−−−>−的解集是 .【答案】()2,4【分析】设()()2g x xf x x =−,根据()()2f x xf x '+>,得到()0g x '>,从而()g x 是()5,5−上的增函数,将不等式()()()()23231124x f x x f x x −−−−−>−转化为()()()()()()23232231121x f x x x f x x −−−−>−−−−,即()()231g x g x −>−求解.【详解】解:设()()2g x xf x x =−, 则()()()2g x f x xf x =+'−'. 因为()()2f x xf x '+>, 所以()0g x '>,则()g x 是()5,5−上的增函数.不等式()()()()23231124x f x x f x x −−−−−>−等价于,()()()()()()23232231121x f x x x f x x −−−−>−−−−,即()()231g x g x −>−,则5235,515,231,x x x x −<−<⎧⎪−<−<⎨⎪−>−⎩解得24x <<. 故答案为:()2,4安徽省蚌埠市2023届高三上学期第一次质检13.已知函数()f x 的定义域是11,22f ⎛⎫= ⎪⎝⎭R ,若对于任意的x ∈R 都有()40f x x '+<,则当[]0,2απ∈时,不等式()sin cos20f αα−<的解集为( )A .5,66ππ⎛⎫ ⎪⎝⎭B .5,33ππ⎛⎫ ⎪⎝⎭C .50,,266πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭D .50,,233πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭【分析】构造函数()()221g x f x x =+−,求导得()g x 在R 上是减函数,由题知()1sin 2g g α⎛⎫< ⎪⎝⎭,所以1sin 2α>,计算得解.【详解】令()()221g x f x x =+−,则()()()40,g x f x x g x =+<''在R 上是减函数.2111210222g f ⎛⎫⎛⎫⎛⎫=+⨯−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()()()2sin sin 2sin 1sin cos20g f f ααααα=+−=−<得1sin 2α>,又[]0,2απ∈,所以5,66αππ⎛⎫⎪⎝⎭∈. 14.已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若()05f =,且()()2f x f x '−>,则使不等式()3e 2xf x ≤+成立的x 的值可能为( )A .-2B .-1C .12−D .2【分析】根据已知条件构造函数()()2exf x F x −=,要求解的不等式可化为()()0F x F ≤,判断F (x )单调性即可求解.【详解】设()()2e xf x F x −=,则()()()2exf x f x F x '−+'=, ∵()()2f x f x '−>,∴()()20f x f x '−+<, ∴()0F x '<,即()F x 在定义域R 上单调递减. ∵()05f =,∴()03F =,∴不等式()3e 2xf x ≤+等价于()23exf x −≤,即()()0F x F ≤,解得0x ≥,结合选项可知,只有D 符合题意.题型二 由导函数不等式构造函数比大小广东省四校2024届高三上学期10月联考(二)数学试题15.已知函数()f x 满足()()ln 0xf x x f x '+>(其中()f x '是()f x 的导数),若12e a f ⎛⎫= ⎪⎝⎭,()e b f =,()2e c f =,则下列选项中正确的是( ) A .42c b a << B .24b c a << C .24a b c << D .42a c b <<【答案】C【分析】构造函数()()ln (0)g x f x x x =>,由题意可得(0,)∀∈+∞x ,()0g x '>,所以()g x 在(0,)+∞上递增,然后由1220e e e <<<可得答案.【详解】因为()()ln 0xf x x f x '+>(0x >), 所以()()1ln 0f x x f x x'+>,所以[()ln ]0f x x '>, 令()()ln (0)g x f x x x =>,则(0,)∀∈+∞x ,()0g x '>, 所以()g x 在(0,)+∞上递增,因为1220e e e <<<, 所以122(e )(e)(e )g g g <<,所以112222(e )ln e (e)ln e (e )ln e f f f <<,所以1221(e )(e)2(e )2f f f <<,所以122a b c <<,所以24a b c <<江苏南通市部分学校3月模拟·T816.已知()f x 是可导的函数,且()()2f x f x '≤,对于x R ∈恒成立,则下列不等关系正确的是( )A .()()()()2404001,12021e f f e f f >>B .()()()()2404001,12021e f f e f f <>C .()()()()2404001,12021e f f e f f >< D .()()()()2404001,12021e f f e f f <<【答案】A 【解析】令()()2xf xg x e =,则()()()()()()2222222x x xxf x e e f x f x f xg x e e ''⋅−⋅−'==,()()2f x f x '≤,20x e >,()0g x '∴≤,()g x ∴在R 上单调递减, ()()01g g ∴>,()()12021g g >,即()()0201f f e e >,()()2404212021f f e e >,()()201e f f ∴>,()()404012021e f f >.17.已知函数()f x 的定义域为R ,设()f x 的导数是()f x ',且()()sin 0f x f x x '⋅+>恒成立,则( )A .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭B .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭C .ππ22f f ⎛⎫⎛⎫<− ⎪ ⎪⎝⎭⎝⎭D .ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭【分析】设()()22cos g x f x x =−,得到()0g x '>,得到()g x 为增函数,得到22ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭,即可求解.【详解】设()()22cos g x f x x =−,则()()()22sin 0g x f x f x x ''=⋅+>,故()y g x =在定义域R 上是增函数,所以ππ22g g ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭,即22ππ22f f ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭,所以22f f ππ⎛⎫⎛⎫>− ⎪ ⎪⎝⎭⎝⎭.18.已知偶函数()f x 的定义域为R ,导函数为()f x ',若对任意[0,)x ∞∈+,都有()()20f x x xf '+>恒成立,则下列结论正确的是( ) A .()00f < B .()()931f f −<C .()42(1f f >−)D .()()12f f <【答案】C【详解】令0x =,则2(0)00,(0)0f f +>∴>,则A 错误; 令2()()g x x f x =,则2()2()()g x xf x x f x ''=+, 当0x >时,由()()20f x xf x '+>,22()()0xf x x f x '∴+>,则()g x 在(0,)+∞上单调递增, 又因为偶函数()f x 的定义域为R ,∴2()()g x x f x =为偶函数,()g x 在(0,)+∞上单调递增, ()(3)3(1)g g g ∴−=>,9(3)(1)f f −>,故B 错误;(2)(1)g g ∴>−,4(2)(1)f f >−,故C 正确;由题意,不妨假设()0f x c =>(c 为常数)符合题意,此时()()12f f c ==,故D 错误.19.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( )A .()()2130f f >>B .()()2130f f <<C .()()2310f f >>D .()()2310f f <<【答案】B【分析】构造函数ln(1)()()x g x f x +=,根据题意可得()0g x '<,从而根据单调性可得0(1)(3)g g >>,进而得出结果.【详解】由题意,在[)0,∞+上的函数()0f x ≠恒成立,构造函数ln(1)()()x g x f x +=,则()()2()ln(1)1()f x f x x xg x f x '−++'=,∵[)0,∞+上()()()()()1ln ()ln(1)0111f x x f x x f x f x x x x −+'−+'+=<++,即()0g x '<, ∴()g x 在[)0,∞+上单调递减,而(0)0g =,故0(1)(3)g g >> ∴ln 2ln 42ln 20(1)(3)(3)f f f >>=,可得2(1)(3)0f f <<.20.设()f x 是定义在R 上的函数,其导函数为()f x ',满足()()0f x xf x '−>,若()41a f =,()22b f =,()4c f =,则( )A .a b c >>B .c a b >>C .b c a >>D .c b a >>【答案】A【分析】依题意令()()f x g x x=,进而根据题意得()g x 在R 上单调递减,故()()()24124f f f >>,进而得答案.【详解】解:因为()f x 满足()()0f x xf x '−<,令()()f x g x x=,则()()()20xf x f x g x x'−'=<,所以()g x 在R 上单调递减,所以()()()124g g g >>,即()()()24124f f f >>,所以()()()41224f f f >>.所以c b a <<.2023届菏泽市二模T821.已知定义在R 上的函数()f x 的导函数为()f x ',满足()()0,01f x f >=,且()()222e x f x f x ++=−,当1x >时,()()f x f x '>,则( )A .()11e f −−<B .e 11e e f ⎛⎫> ⎪⎝⎭C .()22e f > D .()ee ef >【答案】D【分析】设()()xf xg x =e ,由1x >时,()()f x f x '>可得()g x 在()1,+∞上单调递增,由()()222e x f x f x ++=−,可得()()2g x g x +=−.A 选项,比较()1g −与()2g 大小即可判断选项正误;B 选项,比较1e g ⎛⎫⎪⎝⎭与()2g 大小即可判断选项正误;C 选项,比较1与()2g 大小即可判断选项正误;D 选项,比较()e g 与()2g 大小即可判断选项正误;【详解】因()()f x f x '>,则()()()()()200e e e e e x x xxx f x f x f x f x f x '⎡⎤''−−>⇒=>⎢⎥⎢⎥⎣⎦, 则函数()()xf xg x =e 在()1,+∞上单调递增;因()()()()()()22222e 2e e x xx f x f x g x g x f x f x ++−+−⇒=⇒++=−−=,则()()()00201ef g g ===.A 选项,()()()()()111132111e e f g g g f −−−−=>=⇒>⇒−>,故A 错误;B 选项,注意到11221e e <<−<,则()11221e e g g g ⎛⎫⎛⎫=−<= ⎪ ⎪⎝⎭⎝⎭11111e ee e e ef f ⎛⎫⎪⎛⎫⎝⎭⇒<⇒< ⎪⎝⎭,故B 错误; C 选项,()()()2222112e ef g f =⇒=⇒=,故C 错误; D 选项,()()()()211e ee e e e ef g g f >=⇒>⇒>,故D 正确.河南省洛阳市六校高三上10月联考·1022.设定义在[)0,∞+上的函数()0f x ≠恒成立,其导函数为()f x ',若()()()()1ln 10f x x f x x '−++<,则( ) A .()()2130f f >> B .()()2130f f << C .()()2310f f >> D .()()2310f f <<【答案】B【解析】由题意,在[)0,∞+上的函数()0f x ≠恒成立,构造函数ln(1)()()x g x f x +=,则()()2()ln(1)1()f x f x x xg x f x '−++'=,∵[)0,∞+上()()()()()1ln ()ln(1)0111f x x f x x f x f x x x x −+'−+'+=<++,即()0g x '<, ∴()g x 在[)0,∞+上单调递减,而(0)0g =,故0(1)(3)g g >> ∴ln 2ln 42ln 20(1)(3)(3)f f f >>=,可得2(1)(3)0f f <<. 23.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ). A 3()2()43ππ>B .(1)2()sin16f f π<⋅C 2()()64f ππ>D 3()()63f ππ<【答案】D【分析】由已知条件构造函数()()sin f x g x x =,求导后结合已知可得()g x 在(0,)2π上为增函数,从而可比较出大小【详解】()cos ()sin f x x f x x '⋅<⋅,()cos ()sin 0f x x f x x '⋅−⋅<, 设()()sin f x g x x =,则2()sin ()cos ()0sin f x x f x x g x x'⋅−⋅'=>, 则()g x 在(0,)2π上为增函数,对于A ,因为0432πππ<<<,所以()()43g g ππ<,即()()34sin sin43f f ππππ<3()2()43ππ,所以A 错误,对于B 因为0162ππ<<<,所以()(1)6g g π<,即()(1)6sin1sin 6f f ππ<,得(1)2()sin16f f π>⋅,所以B 错误, 对于C ,因为0642πππ<<<,所以()()64g g ππ<,即()()64sin sin 64f f ππππ<2()()64f ππ<,所以C 错误, 对于D ,因为0632πππ<<<,所以()()63g g ππ<,即()()63sin sin 63f f ππππ<3()()63f ππ<,所以D 正确, 2022湖北六校高二下期中·1124.(多选)已知函数f (x )的定义域是(0,+∞),其导函数是f '(x ),且满足1ln '( >)()0x f x f x x⋅+⋅,则下列说法正确的是( ) A .10f e ⎛⎫> ⎪⎝⎭B .10f e ⎛⎫< ⎪⎝⎭C .f (e )>0D .f (e )<0【解答】解:令g (x )=f (x )lnx (x >0), 则g ′(x )=1ln ()()0x f x f x x'⋅+⋅>, ∴g (x )在区间(0,+∞)上单调递增,又g (1)=f (1)ln 1=0, ∴当0<x <1时,g (x )<0,当x >1时,g (x )>0, 而1e∈(0,1),e ∈(0,+∞),因此111()()ln0 <g f e e e=,g (e )=f (e )lne >0, ∴>1()0 f e,f (e )>0,故AC 正确,BD 错误;故选:AC .25.已知定义在R 上的函数()(),f x g x 的导函数都存在,若()()()()10f x g x f x g x x <'+',且()()()()2211f g f g −为整数,则()()()()2211f g f g −的可能取值的最大值为 .【答案】14【分析】构建()()()25h x f x g x x =−,根据题意利用导数可得()h x 在R 上单调递减,由()()12h h >,结合题意分析求解.【详解】因为()()()()10f x g x f x g x x <'+',设函数()()()25h x f x g x x =−,则()()()()()100h x f x g x f x g x x '=+''−<,所以()h x 在R 上单调递减,则()()12h h >,即()()()()2211512252f g f g −⨯>−⨯,整理得()()()()221115f g f g −<, 又因为()()()()2211f g f g −为整数,所以()()()()2211f g f g −的可能取值的最大值为14. 故答案为:14.题型三 由导函数不等式构造函数结合奇偶性解不等式经典例题26.设函数'f x ()是奇函数()()f x x ∈R 的导函数(1)0f −=,当x >0时,xf '(x )﹣f (x )<0,则使得f (x )<0成立的x 的取值范围为 .【解答】解:令g (x )=()f x x(x >0), 因为x >0时,xf '(x )﹣f (x )<0,所以g ′(x )=2()()f x x f x x '−<0,故g (x )在(0,+∞)上单调递减, 因为f (x )为奇函数,所以g (x )为偶函数,根据偶函数对称性可知,g (x )在(﹣∞,0)上单调递减, 由g (﹣1)=﹣f (﹣1)=0,g (1)=f (1)=﹣f (﹣1)=0, 因为f (x )<0, 所以xg (x )<0,可转化为0 >0()x g x ⎧⎨<⎩或,0 <0()x g x ⎧⎨>⎩ 解得x >1或﹣1<x <0,故答案为:(﹣1,0)∪(1,+∞)。
高三数学三角函数的最值习题精选精讲
三角函数的值域或最值常见的三角函数最值的基本类型有: (1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
(2)y=asinx+bcosx 型,引入辅助角ϕ,化为y=22b a +sin (x+ϕ),利用函数()1s i n≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。
(4)Y=d x c b x a ++sin sin (或y=d x bx a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。
(5)y=d x c b x a ++cos sin (y=dx c b x a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。
(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx 转化为t 的函数关系式,从而化为二次函数的最值问题。
一、利用三角函数的有界性.求解这类问题,首先利用有关三角函数公式化为sin()y A x kωϕ=++的形式.在化简过程中常常用到公式:sin cos ),tan ,b a x b x x aϕϕϕ+=+=其中由及点(a,b)的位置确定.例1 、(2000年高考)已知:212cos 1siny x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合.解:∵212cos 1siny x x x =⋅+1cos 21521sin(2)4264x x x π+=+=++,∴当sin(2)16x π+=时,max 157244y =+= .此时,2262x k πππ+=+,即6x k ππ=+. 所以y 的最大值为74,此时x 的集合为{|}6x x k k Z ππ=+∈,.例2、求函数1cos 3cos xy x-=+的值域.解:1cos 3cos xy x-=+⇒(1)cos 2y x +=-⇒2cos 1x y =-+,由|cos |1x ≤得2||11y -≤+, |1|2y +≥即,解得31y y ≤-≥或,所以函数1cos 3cos xy x-=+的值域是3][1-∞-∞(,,+)二、利用二次函数最值性质求解这类问题,首先利用有关三角函数公式化为2sin sin y x b x c a =++的形式.例3、求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域. 解:278cos 2sin y x x =--=278cos 2(1)cos x x ---=223,(cos 2)x --∵[,]63x ππ∈-,∴1cos [1]2x ∈,,∴3[1]2y ∈-,.例4、(90年高考)求函数sin cos sin cos y x x x x =++的最小值.解:设sin cos x x t +=,[]t ∈则21sin cos 2x x t-=,所以()y f t ==211,2(1)t ⋅-+([t ∈,当1[]t =-∈时,y 有最小值1-.三、利用均值不等式*利用均值不等式求三角函数时,一定要注意均值不等式中的使用条件:一正、二定、三相等. 例6、当0x π<<时,求sin 2cos xy x=+的最大值.解:设22tan0,(0),233x t t x y tπ=><<=≤=+则(当且仅当tan 2x t ==时取等号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二三角函数、解三角形与平面向量第1讲三角函数的图象与性质「考情研析」 1.以图象为载体,考查三角函数的最值、单调性、对称性、周期性. 2.考查三角函数式的化简、三角函数的图象和性质、角的求值,重点考查分析、处理问题的能力,是高考的必考点.核心知识回顾1.同角关系式与诱导公式(1)同角三角函数的基本关系:□01sin2α+cos2α=1,□02sinαcosα=tanα.(2)诱导公式:在kπ2+α,k∈Z的诱导公式中“□03奇变偶不变,符号看象限”.2.三种三角函数的性质3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤热点考向探究考向1 同角三角关系式、诱导公式例1 (1)(2019·临川第一中学等九校高三3月联考)已知α∈(0,π),且cos α=-1517,则sin ⎝ ⎛⎭⎪⎫π2+αtan(π+α)=( )A .-1517B .1517C .-817D .817答案 D解析 sin ⎝ ⎛⎭⎪⎫π2+αtan(π+α)=cos αtan α=sin α,因为α∈(0,π),且cos α=-1517,所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-15172=817.故选D. (2)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C .22 D .1答案 A解析 因为sin α-cos α=2,所以(sin α-cos α)2=2,所以sin2α=-1.因为α∈(0,π),2α∈(0,2π),所以2α=3π2,即α=3π4,故tan α=-1.(3)已知α为锐角,且有2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( )A.355 B .377 C .31010 D .-353答案 C解析 由已知可得, -2tan α+3sin β+5=0, ① tan α-6sin β-1=0, ②①×2+②得tan α=3.∵α为锐角,∴sin α=31010.故选C.(1)利用诱导公式化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐,特别注意函数名称和符号的确定.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)关于sin α,cos α的齐次式,往往转化为关于tan α的式子求解.1.(2019·内江市高三第三次模拟)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A .7B .17C .-7D .-17答案 D解析 ∵α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,∴cos α=-35,∴tan α=-43.∴tan ⎝ ⎛⎭⎪⎫α+π4=-43+11-⎝ ⎛⎭⎪⎫-43×1=-17.故选D. 2.已知sin2α=34,则tan α+1tan α等于( ) A.83 B .103 C .113 D .4答案 A解析 由sin2α=2sin αcos α=34,可得sin αcos α=38,所以tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=83.故选A.3.如果f (tan x )=sin 2x -5sin x cos x ,那么f (2)=________. 答案 -65解析 ∵f (tan x )=sin 2x -5sin x cos x =sin 2x -5sin x cos x sin 2x +cos 2x =tan 2x -5tan xtan 2x +1,∴f (x )=x 2-5x x 2+1,则f (2)=-65.考向2 三角函数的图象及应用例2 (1)(2019·永州市高三第三次模拟)将函数f (x )=sin2x +3cos2x 图象上各点的横坐标伸长到原来的2倍,所得函数的一个对称中心可以是( )A.⎝ ⎛⎭⎪⎫-π3,0 B .(0,0) C.⎝ ⎛⎭⎪⎫π6,0 D .⎝ ⎛⎭⎪⎫π3,0答案 A解析 f (x )=sin2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,将横坐标伸长到原来的2倍,所得函数为g (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,令x +π3=k π(k ∈Z )⇒x =k π-π3(k ∈Z ),则对称中心为⎝ ⎛⎭⎪⎫k π-π3,0,k ∈Z ,令k =0,则其中一个对称中心为⎝ ⎛⎭⎪⎫-π3,0.故选A.(2)函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0)的部分图象如图所示,则f (x )的单调递增区间为________.答案 ⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z解析 由函数的图象可得A =2,14T =7π12-π3=14·2πω,解得ω=2.再根据五点作图法可知2×π3+φ=π,φ=π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ),可得-5π12+k π≤x ≤π12+k π(k ∈Z ).1.解析式y =A sin(ωx +φ)+B 的确定方法 (1)A ,B 由最值确定,即A =最大值-最小值2,B =最大值+最小值2.(2)ω由函数周期确定,相邻两对称轴(或两对称中心)之间的距离为T2,对称轴与相邻对称中心之间的距离为T4.(3)φ由图象上的特殊点确定,利用五点作图的五个特殊点直接确定. 2.三角函数图象平移问题处理策略(1)看平移要求:首先要看题目要求由哪个函数平移得到哪个函数,这是判断移动方向的关键点.(2)看移动方向:移动的方向一般记为“正向左,负向右”,看y =A sin(ωx +φ)中φ的正负和它的平移要求.(3)看移动单位:在函数y =A sin(ωx +φ)中,周期变换和相位变换都是沿x 轴方向的,所以ω和φ之间有一定的关系,φ是初相,再经过ω的压缩,最后移动的单位是⎪⎪⎪⎪⎪⎪φω.1.(2019·唐山市高三第二次模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π3(ω>0)的最小正周期为π,把f (x )的图象向左平移π3个单位后,所得函数图象的一条对称轴为( )A .x =0B .x =π12 C .x =π8 D .x =π3答案 B解析 ∵函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π3(ω>0)的最小正周期为2π2ω=π,∴ω=1,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.若将函数f (x )的图象向左平移π3个单位,可得y =sin ⎝ ⎛⎭⎪⎫2x +2π3-π3=sin ⎝ ⎛⎭⎪⎫2x +π3的图象,令2x +π3=k π+π2,k ∈Z ,求得x =k π2+π12,令k =0,可得所得函数图象的一条对称轴为x =π12.故选B.2.(2019·丹东市高三总复习质量测试(一))设函数f (x )=sin ωx (ω>0),已知对于⎣⎢⎡⎦⎥⎤0,2π3内的任意x 1,总存在⎣⎢⎡⎦⎥⎤0,2π3内的x 2,使得f (x 1)+f (x 2)=0,则ω的( ) A .最大值为3 B .最小值为3 C .最大值为94 D .最小值为94 答案 D解析 因为要满足对任意的x 1∈⎣⎢⎡⎦⎥⎤0,2π3,总存在x 2∈⎣⎢⎡⎦⎥⎤0,2π3,使得f (x 1)+f (x 2)=0,对于f (x )=sin ωx (ω>0),则在⎣⎢⎡⎦⎥⎤0,2π3上的函数值有正值,即f (x 1)可以有正值,要存在x 2使得f (x 1)+f (x 2)=0,则f (x 2)需要有负值.又f (x 1)可以取到最大值1,要存在f (x 2),使得f (x 1)+f (x 2)=0,则f (x 2)要可以取到最小值-1,说明f (x )在x >0上取得第一个最小值的点应在2π3的左侧或者恰好落在2π3处,所以34T ≤2π3,即34·2πω≤2π3,解得ω≥94.故选D.考向3 三角函数的性质例3 (1)(2019·天津九校高三联考)已知函数f (x )=sin ωx -3cos ωx (ω>0)的图象与x 轴的两个相邻交点的距离等于π2,若将函数y =f (x )的图象向左平移π6个单位得到函数y =g (x )的图象,则y =g (x )是减函数的区间为( )A.⎝ ⎛⎭⎪⎫-π3,0 B .⎝ ⎛⎭⎪⎫0,π3C.⎝ ⎛⎭⎪⎫-π4,π2 D .⎝ ⎛⎭⎪⎫π4,π3答案 D解析 f (x )=sin ωx -3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π3,因为图象与x 轴的两个相邻交点的距离等于T 2=π2,所以T =π,ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3.所以g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6-π3=2sin2x .由π2+2k π≤2x ≤3π2+2k π(k ∈Z ),得π4+k π≤x ≤3π4+k π,所以y =g (x )是减函数的区间为⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).分析选项只有D 符合.故选D.(2)若将函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12 B .π6 C .π4 D .π3 答案 B解析 平移后所得的函数图象对应的解析式是y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -m +π6,如果该函数的图象关于直线x =π4对称,则2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z ),所以m =-k π2+π6(k ∈Z ),又m >0,故当k =0时,m 最小,此时m =π6.(3)已知函数f (x )=|sin x |·cos x ,则下列说法正确的是( ) A .f (x )的图象关于直线x =π2对称B .f (x )的周期为πC .若|f (x 1)|=|f (x 2)|,则x 1=x 2+2k π(k ∈Z )D .f (x )在区间⎣⎢⎡⎦⎥⎤π4,3π4上单调递减答案 D解析 因为f (x )=|sin x |·cos x ,所以函数f (x )在区间[0,2π]上的解析式为f (x )=⎩⎪⎨⎪⎧12sin2x ,0≤x ≤π,-12sin2x ,π<x ≤2π,且 f (x )是偶函数,画出f (x )的大致图象(图略)可知D 选项正确.故选D.求解函数y =A sin(ωx +φ)的性质问题的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式.(2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.①令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程. ②令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标.③将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. (3)讨论意识:当A 为参数时,求最值应分情况讨论A >0,A <0.1.已知函数f (x )=sin(ωx +φ)(0<ω<1,|φ|<π).若对任意x ∈R ,f (1)≤f (x )≤f (6),则( )A .f (1016)-f (1017)>0B .f (1016)-f (1017)=0C .f (1016)+f (1017)<0D .f (1016)+f (1017)=0 答案 A解析 ∵0<ω<1,∴函数f (x )的最小正周期T >2π.∵对任意x ∈R ,f (1)≤f (x )≤f (6),∴f (1)=-1,f (6)=1,函数f (x )在区间[1,6]上单调递增,∴T 2=6-1=5,即T =10.∴f (1016)=f (6),f (1017)=f (7).又∵函数f (x )的图象关于直线x =6对称,∴f (1017)=f (7)=f (5).∵函数f (x )在区间[1,6]上单调递增,∴f (5)<f (6),即f (1016)>f (1017),∴f (1016)-f (1017)>0.故选A.2.(2019·宁夏银川高三下学期质检)将函数f (x )=sin2x +cos2x 的图象向左平移π8个单位得到g (x )的图象,则g (x )在下列哪个区间上单调递减( )A.⎣⎢⎡⎦⎥⎤-π2,0 B .⎣⎢⎡⎦⎥⎤π16,9π16C.⎣⎢⎡⎦⎥⎤0,π2 D .⎣⎢⎡⎦⎥⎤π2,π答案 C解析 将函数f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4的图象向左平移π8个单位得到g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+π4=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos2x ,在区间⎣⎢⎡⎦⎥⎤-π2,0上,则2x∈[-π,0],g (x )单调递增,故A 不满足条件;在区间⎣⎢⎡⎦⎥⎤π16,9π16上,则2x ∈⎣⎢⎡⎦⎥⎤π8,9π8,g (x )不单调,故B 不满足条件;在区间⎣⎢⎡⎦⎥⎤0,π2上,则2x ∈[0,π],g (x )单调递减,故C 满足条件;在区间⎣⎢⎡⎦⎥⎤π2,π上,则2x ∈[π,2π],g (x )单调递增,故D 不满足条件.故选C.3.(2019·新疆乌鲁木齐高三第二次质量检测)若关于x 的方程(sin x +cos x )2+cos2x =m 在区间[0,π)上有两个根x 1,x 2,且|x 1-x 2|≥π4,则实数m 的取值范围是( )A .[0,2)B .[0,2]C .[1,2+1]D .[1,2+1) 答案 B解析 关于x 的方程(sin x +cos x )2+cos2x =m 在区间[0,π)上有两个根x 1,x 2,方程即sin2x +cos2x =m -1,即sin ⎝ ⎛⎭⎪⎫2x +π4=m -12,∴sin ⎝ ⎛⎭⎪⎫2x +π4=m -12在区间[0,π)上有两个根x 1,x 2,且|x 1-x 2|≥π4.∵x ∈[0,π),∴2x +π4∈⎣⎢⎡⎦⎥⎤3π4,5π4∪⎣⎢⎡⎭⎪⎫7π4,9π4∪⎩⎨⎧⎭⎬⎫π4,∴-22≤m -12≤22,求得0≤m ≤2.故选B.真题押题『真题模拟』1.(2019·新乡市二模)已知sin 2θ+2cos θ=-2,那么cos 2θ-2sin θ=( ) A .1 B .-2 C .-1 D .2答案 A解析 因为sin 2θ+2cos θ+2=0,所以cos 2θ-2cos θ-3=0,解得cos θ=-1或cos θ=3(舍去),所以sin θ=0,所以cos 2θ-2sin θ=1.故选A.2.(2019·天津高考)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A .-2B .- 2C . 2D .2 答案 C解析 因为f (x )是奇函数(显然定义域为R ),所以f (0)=A sin φ=0,所以sin φ=0.又|φ|<π,所以φ=0.由题意得g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )的最小正周期为2π,所以12ω=1,即ω=2.所以g (x )=A sin x ,所以g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2.所以f (x )=2sin2x ,所以f ⎝ ⎛⎭⎪⎫3π8= 2.故选C.3. (2019·汉中市高三教学质量第二次检测)函数f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-11π12+2k π,π12+2k π(k ∈Z ) B.⎣⎢⎡⎦⎥⎤-11π12+k π,π12+k π(k ∈Z ) C.⎣⎢⎡⎦⎥⎤-5π12+2k π,π12+2k π(k ∈Z )D.⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π(k ∈Z ) 答案 D解析 由图可知,图象过⎝ ⎛⎭⎪⎫π12,1,⎝ ⎛⎭⎪⎫π3,0⇒T 4=π3-π12⇒T =π,∵T =2π|ω|,ω>0,∴ω=2;图象过⎝ ⎛⎭⎪⎫π3,0,∴cos ⎝ ⎛⎭⎪⎫2×π3+φ=0,根据题中图象可得2×π3+φ=2m π+π2(m ∈Z ),即φ=2m π-π6.因为|φ|<π2,所以φ=-π6,所以f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6,当2k π-π≤2x -π6≤2k π(k ∈Z )时,函数单调递增,化简得k π-5π12≤x ≤k π+π12(k ∈Z ).故选D.4.(2019·温州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )答案 C解析 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除A ,B ,又当x →π2时,y <0,排除D.故选C.5.(2019·全国卷Ⅲ)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点; ②f (x )在(0,2π)有且仅有2个极小值点; ③f (x )在⎝ ⎛⎭⎪⎫0,π10单调递增;④ ω的取值范围是⎣⎢⎡⎭⎪⎫125,2910.其中所有正确结论的编号是( ) A .①④ B .②③ C .①②③ D .①③④答案D解析 已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π5(ω>0)在[0,2π]有且仅有5个零点,如图,其图象的右端点的横坐标在[a ,b )上,此时f (x )在(0,2π)有且仅有3个极大值点,但f (x )在(0,2π)可能有2或3个极小值点,所以①正确,②不正确;当x ∈[0,2π]时,ωx +π5∈⎣⎢⎡⎦⎥⎤π5,2πω+π5,由f (x )在[0,2π]有且仅有5个零点可得5π≤2πω+π5<6π,得ω的取值范围是⎣⎢⎡⎭⎪⎫125,2910,所以④正确;当x ∈⎝ ⎛⎭⎪⎫0,π10时,π5<ωx +π5<πω10+π5<49π100<π2,所以f (x )在⎝ ⎛⎭⎪⎫0,π10单调递增,所以③正确.故选D.6.(2018·全国卷Ⅱ)已知tan ⎝ ⎛⎭⎪⎫α-5π4=15,则tan α=________.答案 32解析 tan ⎝ ⎛⎭⎪⎫α-5π4=tan α-tan 5π41+tan α·tan 5π4=tan α-11+tan α=15,解方程得tan α=32.『金版押题』7.若将函数f (x )=sin x cos x +3cos 2x -32的图象向右平移φ(φ>0)个单位,所得图象关于y 轴对称,则φ的最小值是( )A.π12 B .π4 C .3π8 D .5π12答案 D解析 ∵f (x )=sin x cos x +3cos 2x -32=12sin2x +3(1+cos2x )2-32=12sin2x+32cos2x =sin ⎝ ⎛⎭⎪⎫2x +π3,函数f (x )的图象向右平移φ个单位可得y =sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π3=sin ⎝ ⎛⎭⎪⎫2x -2φ+π3,所得图象关于y 轴对称,根据三角函数的对称性,可得此函数在y 轴处取得函数的最值,即sin ⎝ ⎛⎭⎪⎫-2φ+π3=±1,解得-2φ+π3=π2+k π,k ∈Z , 所以φ=-π12-k π2,k ∈Z ,且φ>0,令k =-1,得φ的最小值为5π12.故选D. 8.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π8=-2,则f (x )的一个单调递减区间是( )A.⎣⎢⎡⎦⎥⎤-π8,3π8 B .⎣⎢⎡⎦⎥⎤π8,9π8C.⎣⎢⎡⎦⎥⎤-3π8,π8 D .⎣⎢⎡⎦⎥⎤π8,5π8答案 C解析 由f ⎝ ⎛⎭⎪⎫π8=-2,得f ⎝ ⎛⎭⎪⎫π8=-2sin ⎝ ⎛⎭⎪⎫2×π8+φ=-2sin ⎝ ⎛⎭⎪⎫π4+φ=-2,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8.故选C.配套作业一、选择题1.已知α为锐角,且sin α=45,则cos(π+α)=( ) A .-35 B .35 C .-45 D .45 答案 A解析 因为α为锐角,且sin α=45,所以cos α=35.所以cos(π+α)=-cos α=-35.2.函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π6,k π+5π12(k ∈Z ) 答案 B解析 当k π-π2<2x -π3<k π+π2(k ∈Z )时,函数y =tan ⎝ ⎛⎭⎪⎫2x -π3单调递增,解得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数y =tan⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. 3.(2019·太原市高三模拟)已知tan α=2,α∈(0,π),则sin2αcos ⎝ ⎛⎭⎪⎫π2+α=( ) A .-255 B .255 C .-455 D .455答案 A解析 sin2αcos ⎝ ⎛⎭⎪⎫π2+α=2sin αcos α-sin α=-2cos α,又tan α=2=sin αcos α,sin 2α+cos 2α=1,解得cos α=±55,又α∈(0,π),tan α>0,故α∈⎝ ⎛⎭⎪⎫0,π2,故cos α=55,所以sin2αcos ⎝ ⎛⎭⎪⎫π2+α=-255.4.如果存在正整数ω和实数φ使得函数f (x )=sin 2(ωx +φ)的图象如图所示(图象经过点(1,0)),那么ω的值为( )A .1B .2C .3D .4答案 B解析 因为f (x )=sin 2(ωx +φ)=12-12cos[2(ωx +φ)],所以函数f (x )的最小正周期T =2π2ω=πω,由题图知T 2<1,且3T 4>1,即43<T <2,又ω为正整数,所以ω的值为2,故选B.5.函数f (x )=x +cos xx 的图象为()答案 A解析 函数f (x )的定义域为(-∞,0)∪(0,+∞),故排除D ;因为f (-x )=(-x )+cos (-x )-x =-⎝ ⎛⎭⎪⎫x +cos x x =-f (x ),所以函数f (x )为奇函数,故排除B ;又f ⎝ ⎛⎭⎪⎫π2=π2+cos π2π2=π2>0,故排除C ,故选A.6.(2019·毛坦厂中学高三校区联考)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象与y 轴交于点M ⎝ ⎛⎭⎪⎫0,32,距离y 轴最近的最大值点为N ⎝ ⎛⎭⎪⎫π9,3,若x 1,x 2∈(-a ,a ),且x 1≠x 2,恒有f (x 1)≠f (x 2),则实数a 的最大值为( )A.π3 B .π6 C .π9 D .2π9答案 C解析 由题意,得A =3,3sin φ=32,|φ|<π2,∴φ=π6,由五点作图法知π9×ω+π6=π2,解得ω=3,∴f (x )=3sin⎝ ⎛⎭⎪⎫3x +π6,令2k π-π2≤3x +π6≤2k π+π2,k ∈Z .解得2k π3-2π9≤x ≤2k π3+π9,k ∈Z .∴(-a ,a )⊆⎝ ⎛⎭⎪⎫-2π9,π9,∴0<a ≤π9,实数a 的最大值为π9.故选C.7.如图,函数f (x )=A sin(2x +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2的图象过点(0,3),则f (x )的函数解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6D .f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6答案 B解析 由题意知,A =2,函数f (x )的图象过点(0,3),所以f (0)=2sin φ=3,由|φ|<π2,得φ=π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.故选B.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos2x 的图象( )A .向右平移π6个单位长度 B .向右平移π3个单位长度 C .向左平移π6个单位长度D .向左平移π3个单位长度 答案 B解析 ∵y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3,∴将函数y =cos2x 的图象向右平移π3个单位长度,故选B.9.(2019·南昌市外国语学校高三高考适应性测试)将函数f (x )=sin ωx (ω>0)的图象向左平移π4ω个单位得到函数g (x )的图象,若函数g (x )的图象关于直线x =ω对称且在区间(-ω,ω)内单调递增,则ω的值为( )A.π2 B .3π2 C .π4 D .3π2答案 A解析 由题意得g (x )=sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π4ω=sin ⎝ ⎛⎭⎪⎫ωx +π4,因为函数g (x )的图象关于直线x =ω对称且在区间(-ω,ω)内单调递增,所以ω2+π4=π2+k π(k ∈Z ),-π2+2m π≤-ω2+π4,ω2+π4≤π2+2m π(m ∈Z ),因此k ≥0,k π≤π2-2m π,k π≤2m π,从而0≤π2-2m π,0≤2m π,即0≤m ≤14,所以m =0,k =0,ω=π2,故选A.10.(2019·广元市高三第二次高考适应性统考)函数f (x )=sin2x -3(cos 2x -sin 2x )的图象为C ,给出如下四个结论:①f (x )的最小正周期为π;②对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x +π6+f ⎝ ⎛⎭⎪⎫π6-x =0;③f (x )在⎝ ⎛⎭⎪⎫-π12,5π12上是增函数;④由y =2sin2x 的图象向右平移π3个单位长度可以得到图象C . 其中所有正确结论的编号是( ) A .①② B .③④ C .①②③ D .①②③④答案 C解析 f (x )=sin2x -3(cos 2x -sin 2x )=sin2x -3cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,f (x )的最小正周期为2π2=π,故①正确;f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6-π3=2sin0=0,即函数图象关于点⎝ ⎛⎭⎪⎫π6,0对称,即对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x +π6+f ⎝ ⎛⎭⎪⎫π6-x =0成立,故②正确;若x ∈⎝ ⎛⎭⎪⎫-π12,5π12,则2x ∈⎝ ⎛⎭⎪⎫-π6,5π6,2x -π3∈⎝ ⎛⎭⎪⎫-π2,π2,此时函数f (x )为增函数,即f (x )在⎝ ⎛⎭⎪⎫-π12,5π12上是增函数,故③正确;由y =2sin2x 的图象向右平移π3个单位长度得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3=2sin ⎝ ⎛⎭⎪⎫2x -2π3,故④错误,故正确的是①②③,故选C.11.将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到g (x )的图象,若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的最大值为( )A.25π6 B .49π12 C .35π6 D .17π4答案 B解析 由题意可得,g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1,所以g (x )max =3,又g (x 1)g (x 2)=9,所以g (x 1)=g (x 2)=3,由g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1=3,得2x +π3=π2+2k π(k ∈Z ),即x =π12+k π(k ∈Z ),因为x 1,x 2∈[-2π,2π],所以(2x 1-x 2)max =2×⎝ ⎛⎭⎪⎫π12+π-⎝ ⎛⎭⎪⎫π12-2π=49π12,故选B. 二、填空题12.(2019·南宁市高三模拟)已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.答案 25解析 由已知可得sin α+3cos α=5(3cos α-sin α),即sin α=2cos α,所以tan α=sin αcos α=2,从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.13.(2019·云南省高中毕业生统一检测)已知函数f (x )=3sin x +cos x 在[-m ,m ]上是单调递增函数,则f (2m )的取值范围为________.答案 [1,2]解析 函数f (x )=3sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π6,由2k π-π2≤x +π6≤2k π+π2,k ∈Z ⇒2k π-2π3≤x ≤2k π+π3,k ∈Z ,故f (x )在区间⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z )上单调递增,当k =0,f (x )在区间⎣⎢⎡⎦⎥⎤-2π3,π3上是单调递增函数,则[-m ,m ]⊆⎣⎢⎡⎦⎥⎤-2π3,π3,∴⎩⎪⎨⎪⎧m ≤π3,-m ≥-2π3,⇒0<m ≤π3,m >0f (2m )=2sin ⎝ ⎛⎭⎪⎫2m +π6,而π6<2m +π6≤5π6,所以12≤sin ⎝ ⎛⎭⎪⎫2m +π6≤1,所以f (2m )∈[1,2].14.若函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上是单调递减函数,且函数值从1减小到-1,则f ⎝ ⎛⎭⎪⎫π4=________.答案 32解析 由题意可得,函数的周期为2×⎝ ⎛⎭⎪⎫2π3-π6=π,即2πω=π,∴ω=2,∴f (x )=sin(2x +φ).由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2可得φ=π6,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+π6=cos π6=32. 15.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则g (π)=________,函数y =g (x )在区间⎣⎢⎡⎦⎥⎤π2,5π2上的最大值为________.答案 0322解析 由题图可知函数y =f (x )的周期为4π,∴ω=12.又∵点⎝ ⎛⎭⎪⎫π3,0,⎝ ⎛⎭⎪⎫0,-32在函数y =f (x )的图象上,∴⎩⎪⎨⎪⎧A sin ⎝ ⎛⎭⎪⎫π6+φ=0,A sin φ=-32,且|φ|<π2,∴φ=-π6,A =3,则f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π6.∴g (x )=3sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x +4π3-π6=3cos x 2,g (π)=0.由x ∈⎣⎢⎡⎦⎥⎤π2,5π2,可得x 2∈⎣⎢⎡⎦⎥⎤π4,5π4,则3cos x 2∈⎣⎢⎡⎦⎥⎤-3,322,即g (x )的最大值为322.。