离心泵叶轮水力设计 共64页

合集下载

离心泵的水力设计讲解

离心泵的水力设计讲解

离心泵的水力设计讲解离心泵的水力设计步骤如下:1.根据设计参数计算比转速ns;2.确定进出口直径;3.进行汽蚀计算;4.确定效率;5.确定功率;6.选择叶片数和进出口安放角;7.计算叶轮直径D2;8.计算叶片出口宽度b2;9.精算叶轮外径D2以满足要求;10.绘制模具图。

在设计离心泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。

下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵的进口直径时,应考虑泵吸入口的流速,一般取为3m/s左右。

大型泵的流速可以取大些,以减小泵的体积,提高过流能力;而对于高汽蚀性能要求的泵,应减小吸入流速。

本设计例题追求高效率,取Vs=2.2m/s,Ds=80.对于低扬程泵,出口直径可取与吸入口径相同。

高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。

本设计例题中,取Dd=0.81Ds=65.泵进出口直径都取了标准值,速度有所变化,需要重新计算。

本设计例题中,进口速度为Vs=2.05,出口速度为3.10.汽蚀是水力机械特有的一种现象,当流道中局部液流压力降低到接近某极限值时,液流中就开始发生空泡。

在确定泵转速时,需要考虑汽蚀条件的限制,选择C值,按给定的装置汽蚀余量和安装高度确定转速。

转速增大,过流不见磨损快,易产生振动和噪声。

汽蚀是液流中空泡发生、扩大、溃灭过程中涉及的物理、化学现象,会导致噪音、振动、甚至对流道材料产生侵蚀作用。

这些现象统称为汽蚀现象,一直是流体机械研究的热点和难点。

为了避免汽蚀带来的负面影响,需要计算汽蚀条件下允许的转速,并采用小于该转速的转速。

在计算汽蚀条件下的转速时,需要先计算汽蚀余量NPSHa,而NPSHa的计算需要知道泵的安装高度和设计要求中的数值。

例如,设计要求中给出的安装高度为3.3m,那么计算得到NPSHa为6.29m。

同时,还需要计算NPSHr,可以通过NPSHa除以1.3得到,例如计算得到NPSHr为2.54m。

比转速是一个综合性参数,它说明着流量、扬程、转数之间的相互关系。

课程设计指导书-离心泵叶轮水力设计

课程设计指导书-离心泵叶轮水力设计

1离心泵叶轮的水力设计叶轮是泵的核心部分,泵的性能、效率、抗汽蚀性能、特性曲线的形状均与叶轮的水力设计有重要关系。

因此,叶轮水力设计的质量决定着所设计出来的泵的质量。

整个设计的设计流程图如下图 1所示图1 设计流程图1泵主要设计参数和结构方案的确定本设计给定的设计参数为:流量Q=3363m h =0.09333m s ,扬程H=55m ,装置汽蚀余量 3.3a NPSH m =。

2确定泵的总体结构形式和泵进出口直径泵吸入口直径 泵的吸入口直径由合理的进口流速确定,而泵的入口流速一般为3m s 。

暂取2.7m s泵的吸入口直径按下式确定440.09332092.7 3.14s s QD mm υπ⨯===⨯取标准值210mm泵的排出口直径为0.8168t s D D mm == (因设计的泵扬程较低) t D —泵吸入口直径s D —泵排出口直径2将选定的标准值210t D mm =代入上式,得泵的进出口流速为2.69m s 。

3泵转速的确定考虑到泵的转速越高,泵的体积越小,重量越轻,理应选择较高的转速,但又因为转速和比转速有关,而比转速有和效率有关,综合考虑各方面因素,取n=2900 minr4汽蚀计算a 泵的安装高度a v g c a p ph h NPSH g gρρ=---=10.33-0.5-0.24-3.3=6.29m 常温清水vp gρ=0.24m b 泵的汽蚀余量r a NPSH NPSH k =-=3.3-0.5=2.8mc 泵的汽蚀比转速C ==345.6229002.8⨯=11505确定比转速s n 和泵的水力方案根据比转速公式s n =根据以往的运行经验,当s n 在120~210的区间时,泵的效率最高。

依算得的s n =160,宜采用单级单吸的水力结构方案。

6估算泵的效率和功率查《泵的理论和设计》手册,根据经验公式得a 水力效率计算1h η=+10.0835lg + 取h η=0.87 b 容积效率323110.68v s n η-=+=23110.68160-+⨯=0.977 取v η=0.97c 圆盘损失效率 76110.07()100m s n η=-=76110.07160()100m η=-=0.88d 机械效率假定轴承填料损失约为2% ,则m η=0.88×0.98=0.86 f 总效率m v h ηηηη= =0.86×0.97×9.87=0.73 g 轴功率 1000rQH N η==9.8110000.09335510000.73⨯⨯⨯⨯=68.7KW h 计算配套功率'N =KN=1.2×68.7=82.5KW K 取1.27叶轮主要参数的选择和计算叶轮主要几何参数有叶轮进口直径0D 、叶片进口直径1D 、叶轮轮毂直径h d 、叶片进口角1β、叶轮出口直径2D 、叶轮出口宽度2b 、叶片出口角2β和叶片数Z 。

叶轮的水力设计..

叶轮的水力设计..

第三章 离心泵和混流泵叶轮的水力设计泵是一种应用广泛的通用机械,著名的数学家欧拉在一些假设条件下,推出了叶片泵的Euler 方程,该方程建立了泵的理论扬程与叶轮进出口运动速度间的定量关系。

近300年来,以致使叶片泵设计的理论基础。

所以,Euler 方程也被称为叶片泵的基本方程。

在叶片泵内流体在叶轮中的流动都是三维空间的流动,为了简化计算,早期的研究把流体在叶轮内的流动看作是流体微团沿着叶轮流道中心线的运动。

根据这一假设,建立了叶片泵一维流动理论,也称微元流束理论。

根据这一设计理论建立的设计方法称为一元设计方法。

后来人们在轴对称流动理论的基础上提出了叶片式机械的二元流动理论。

二元流动理论认为,叶轮内的流动是轴对称的,叶轮内的轴面速度沿过水断面是不均匀的,即轴面液流速为二元流动。

二元流动较一元更为科学,更接近真实的流动状况,但二元理论在实际上应用并不多,仅适合于高比速混流泵的设计。

第一节 泵的主要设计参数和结构方案的确定 一、设计参数和要求流量、扬程、转速(或由设计者确定)、装置汽蚀余量(或给出装置的使用条件)、效率(要求保证的效率)、介质的性质(温度、重度、含杂质情况、腐蚀性等)、对特性曲线的要求(平坦、陡降、是否允许有驼峰等)。

二、确定泵的总体结构形式和泵的进出口直径 1. 进口直径选取原则:经济流速;汽蚀要求。

泵的进口流速一般取3m/s 左右。

ss v Q4D π=2.泵出口直径s d D )7.0~1(D =三、泵转速的确定确定泵转速应考虑下面几个因素: (1)泵转速越高,泵的体积越小;(2)确定转速应考虑原动机的种类和传动装置;(3)提高转速受汽蚀条件的限制,从汽蚀比转数公式:4/3rNPSH Qn 62.5C =四、计算比转数n s ,确定水力方案4/3s H Qn 65.3n =在确定比转数时应考虑下列因素:(1) n s =120~210的区间,泵的效率最高,n s 〈60的效率显著下降; (2) 可以采用单吸或双吸的结构形式来改变比转数的大小; (3) 可以采用单级或多级的结构形式来改变比转数的大小; (4) 泵特性曲线的形状与比转数的大小有关。

离心泵的水力设计讲解

离心泵的水力设计讲解

离心泵的水力设计离心泵叶轮设计步骤第一步:根据设计参数,计算比转速ns第二步:确定进出口直径第三步:汽蚀计算第四步:确定效率第五步:确定功率第六步:选择叶片数和进、出口安放角第七步:计算叶轮直径D2第八步:计算叶片出口宽度b2第九步:精算叶轮外径D2到满足要求第十步:绘制模具图离心泵设计参数作为一名设计人员,在设计一台泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。

下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵进出口直径右图为一台ISO单级单吸悬臂式离心泵的实物图和装配图。

对于新入门的学习者,请注意泵的进出口位置,很多人会混淆。

确定泵的进口直径泵吸入口的流速一般取为3m/s左右。

从制造方便考虑,大型泵的流速取大些,以减小泵的体积,提高过流能力。

而从提高泵的抗汽蚀性能考虑,应减小吸入流速;对于高汽蚀性能要求的泵,进口流速可以取到1.0-2.2m/s。

进口直径计算公式此处下标s表示的是suction(吸入)的意思本设计例题追求高效率,取Vs=2.2m/sDs=77,取整数80确定泵的出口直径对于低扬程泵,出口直径可取与吸入口径相同。

高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。

一般的计算公式为:D d=(0.7-1.0)D s此处下标d表示的是discharge(排出)的意思本设计例题中,取D d = 0.81D s = 65泵进口速度进出口直径都取了标准值,和都有所变化,需要重新计算。

Vs = 2.05 泵出口速度同理,计算出口速度= 3.10汽蚀计算泵转速的确定泵的转速越高,泵的体积越小,重量越清。

舰艇和军工装备用泵一般都为高速泵,其具有转速高、体积小的特点。

转速与比转速有关,比转速与效率有关,所以选取转速时需和比转速相结合。

转速增大、过流不见磨损快,易产生振动和噪声。

提高泵的转速受到汽蚀条件的限制。

从汽蚀比转数公式可知,转速n和汽蚀基本参数和C有确定的关系。

按汽蚀条件确定泵转速的方法,是选择C值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件允许的转速,所采用的转速应小于汽蚀条件允许的转速。

离心混流泵水力设计

离心混流泵水力设计

离心混流泵水力设计离心/混流泵是水泵的常见形式,广泛应用于工业、农业等各个领域。

本文以一个离心式水泵为例,简要介绍相关过流部件的水力设计过程。

叶轮是泵的最核心过流部件,泵的流量、扬程、效率、抗汽蚀性能和特性曲线的形状与叶轮的水力设计密切相关,叶轮设计需要经过三方面的主要步骤。

主要参数和结构方案确定首先根据设计要求,如流量、扬程、转速、汽蚀余量等参数,对泵的主要参数和结构方案进行确定。

泵进口直径Ds指的是泵吸入法兰处管的直径。

泵出口直径Dd是泵排出法兰处管的内径。

按照经验公式进行计算。

其中,转速的确定需要考虑几个因素:转速越高,体积越小、重量越轻à高转速转速和比转速有关,比转速和效率有关à转速和比转速协同确定转速考虑原动机的类型和传动装置à同步转速3000、1500、1000、750、600、500(rpm),滑差转速提高,过流部件的磨损加块,机组的振动、噪声变大à转速有上限转速提高,更容易发生空化à转速有上限之后根据公式计算比转速:比转速应当兼顾一下几个因素:120~210之间效率高,小于60,效率显著下降单吸式、双吸式相互转换,调整ns特性曲线形状与ns大小有关多级泵的比转速按照单级叶轮计算至此,泵进出口直径、转速、比转速等参数就已经确定了。

结构形式是单级/多级、单吸/双吸也已经确定了。

值得注意的是,各个参数之间具有一定的关联性,也会受到实际因素,如尺寸标准化、同步异步转速等的制约。

因此,主要参数和结构方案的确定过程有可能是一个反复尝试的过程。

最终确定后,可参照同类产品或经验公式近似估算效率、轴功率等参数,具体计算此处不再赘述。

叶轮主要尺寸初步计算叶轮的尺寸较多,按照位置,大致上可以分为进口尺寸和出口尺寸两类。

其中叶轮进口尺寸影响汽蚀性能;出口尺寸影响扬程、流量;进出口尺寸共同影响效率。

初始设计时,最小轴径(通常是联轴器处的轴径),按扭矩确定。

离心泵叶轮的水力设计

离心泵叶轮的水力设计

泵与风机课程设计******单位:动力与机械学院学号:************指导老师:朱劲木副教授设计时间:两周目录一、课程设计简介二、叶轮水力设计内容和步骤1、泵主要参数和结构方案的确定1.1.泵的设计参数1.2.确定泵的进出口直径1.3.泵转数的确定1.4.计算比转数,确定泵的水力方案1.5.效率的估算1.6.确定泵轴的最小直径2、叶轮进口直径2.1.叶轮出口直径2.3.确定叶片厚度2.4.确定叶片包角2.5.计算和确定进出口安放角3、叶轮设计计算程序见表2-44、叶轮水力设计绘图4.1.绘制叶轮轴面流道投影图4.2.绘制轴面液流的流线4.3.确定叶片入口遍位置4.4.叶片绘型4.5.叶片绘型质量检查三、设计成果参考文献一、课程设计简介设计课题离心泵叶轮的水力设计设计目的掌握离心式叶轮水力设计的基本原理和基本方法,加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。

工作条件抽送常温清水配用动力用电动机作为工作动力设计内容离心泵结构方案的确定;离心泵叶轮主要几何参数选择和计算;叶轮轴面投影图的绘制及叶片绘型。

设计要求用速度系数法和解析计算法进行离心叶轮水力设计;用保角变换绘制叶轮木模图;编写设计计算说明书。

使用工具AutoCAD2007版成果要求设计说明书应做到字迹工整、书面整洁、层次分明、文理通顺。

文中所引用的重要公式、论点及结论均应交待依据;设计说明书应包括计算、表格和插图(图表统一编号),配以目录和参考文献目录等内容,统一装订成册;设计图纸用ACAD绘制,图面布置要合理。

二、叶轮水力设计内容和步骤叶轮是泵的核心部分。

泵的流量、扬程、效率、抗汽蚀性能和特性曲线的形状等均与叶轮的水力设计有重要关系。

根据一元理论,设计过程可以分为两大部分:叶轮集合尺寸计算(表4)和叶片绘型。

1、泵主要参数和结构方案的确定1.1泵的设计参数流量Q=144m3/h ;扬程H=50m ;效率η=80%;汽蚀比转数c=10001.2确定泵进出口直径泵进口至直径也叫泵吸入口径,是指泵吸入法兰处管的内径。

离心泵水力设计

离心泵水力设计

离心泵水力设计课程设计及指导书(一)离心泵水力设计任务书1 设计目的掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。

2 设计参数及有关资料(1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)1.m h rpm n m H h m Q a 3.3,2900,60,/373=∆=== 2.m h rpm n m H h m Q a 44.5,1450,16,/903=∆=== 3.900,1430,24,/663====C rpm n m H h m Q 4.900%,80,2900,48,/1453=====C rpm n m H h m Q η 5.m 5,2970,5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6.m h rpm n m H s l Q r 13.2,2870,10,/3.2=∆=== 7.m rpm n m H h m Q 6.2h ,1450,5.32,/170r 3=∆=== 8. %60,2h ,2900,20,/20r 3==∆===ηm rpm n m H h m Q(2)工作条件:抽送常温清水。

(3)配用动力:用电动机作为工作动力。

3 设计内容及要求(1)设计内容。

包括以下几个方面:l )、离心泵结构方案的确定。

2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。

3)、叶轮轴面投影图的绘制。

4)、螺旋形压水室水力设计。

(2)要求。

包括以下几个方面:l )、用速度系数法和解析计算法进行离心泵水力设计。

2)、绘出压水室设计图。

3)、编写设计计算说明书。

4 设计成果要求(1)计算说明书应做到字迹工整、书面整洁、层次分明、文理通顺。

文中所引用的重要公式、论点及结论均应交待依据。

离心泵的水力设计讲解

离心泵的水力设计讲解

离心泵的水力设计离心泵叶轮设计步骤第一步:根据设计参数,计算比转速ns第二步:确定进出口直径第三步:汽蚀计算第四步:确定效率第五步:确定功率第六步:选择叶片数和进、出口安放角第七步:计算叶轮直径D2第八步:计算叶片出口宽度b2第九步:精算叶轮外径D2到满足要求第十步:绘制模具图离心泵设计参数作为一名设计人员,在设计一台泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。

下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵进出口直径右图为一台ISO单级单吸悬臂式离心泵的实物图和装配图。

对于新入门的学习者,请注意泵的进出口位置,很多人会混淆。

确定泵的进口直径泵吸入口的流速一般取为3m/s左右。

从制造方便考虑,大型泵的流速取大些,以减小泵的体积,提高过流能力。

而从提高泵的抗汽蚀性能考虑,应减小吸入流速;对于高汽蚀性能要求的泵,进口流速可以取到1.0-2.2m/s。

进口直径计算公式此处下标s表示的是suction(吸入)的意思本设计例题追求高效率,取Vs=2.2m/sDs=77,取整数80确定泵的出口直径对于低扬程泵,出口直径可取与吸入口径相同。

高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。

一般的计算公式为:D d=(0.7-1.0)D s此处下标d表示的是discharge(排出)的意思本设计例题中,取D d = 0.81D s = 65泵进口速度进出口直径都取了标准值,和都有所变化,需要重新计算。

Vs = 2.05 泵出口速度同理,计算出口速度= 3.10汽蚀计算泵转速的确定泵的转速越高,泵的体积越小,重量越清。

舰艇和军工装备用泵一般都为高速泵,其具有转速高、体积小的特点。

转速与比转速有关,比转速与效率有关,所以选取转速时需和比转速相结合。

转速增大、过流不见磨损快,易产生振动和噪声。

提高泵的转速受到汽蚀条件的限制。

从汽蚀比转数公式可知,转速n和汽蚀基本参数和C有确定的关系。

按汽蚀条件确定泵转速的方法,是选择C值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件允许的转速,所采用的转速应小于汽蚀条件允许的转速。

离心泵水力设计

离心泵水力设计

离心泵水力设计课程设计及指导书(一)离心泵水力设计任务书1 设计目的掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。

2 设计参数及有关资料(1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)1.m h rpm n m H h m Q a 3.3,2900,60,/373=∆=== 2.m h rpm n m H h m Q a 44.5,1450,16,/903=∆=== 3.900,1430,24,/663====C rpm n m H h m Q 4.900%,80,2900,48,/1453=====C rpm n m H h m Q η 5.m 5,2970,5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6.m h rpm n m H s l Q r 13.2,2870,10,/3.2=∆=== 7.m rpm n m H h m Q 6.2h ,1450,5.32,/170r 3=∆=== 8. %60,2h ,2900,20,/20r 3==∆===ηm rpm n m H h m Q(2)工作条件:抽送常温清水。

(3)配用动力:用电动机作为工作动力。

3 设计内容及要求(1)设计内容。

包括以下几个方面:l )、离心泵结构方案的确定。

2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。

3)、叶轮轴面投影图的绘制。

4)、螺旋形压水室水力设计。

(2)要求。

包括以下几个方面:l )、用速度系数法和解析计算法进行离心泵水力设计。

2)、绘出压水室设计图。

3)、编写设计计算说明书。

4 设计成果要求(1)计算说明书应做到字迹工整、书面整洁、层次分明、文理通顺。

文中所引用的重要公式、论点及结论均应交待依据。

毕业设计离心泵的水力设计

毕业设计离心泵的水力设计

Abstract摘要把液体提升、运送液体或者是增加液体的压力是泵的主要作用,泵可以把原动机的机械能转变成为液体的能量。

在当今年代里,工业迅速的发展,使得具有多种优点的离心泵在国民经济快速发展中获得了极为广泛的应用。

离心泵的优点包括:可在多种场合使用、本身的体积小、结构简单、操作方便、流量均匀、不易发生故障、使用寿命长、购买费与操作费用低等。

在各个方面都会涉及到离心泵的使用,例如在能源、工业、农业,甚至在当今的军事领域很多都利用了离心泵的基本原理。

关键词:叶轮,密封,装配,泵体,吸水室,压水室AbstractEnhance the liquid, a liquid or a transporting fluid pressure increase is the main action of the pump, the pump of the prime mover can be transformed into mechanical energy in the energy of the liquid. In today's era, the rapid development of industry, making the centrifugal pump has many advantages gained an extremely wide range of applications in the rapid development of the national economy. Advantages of centrifugal pumps include: available in a variety of occasions, their small size, simple structure, easy operation, flow uniformity, less prone to failure, long life, low purchase costs and operating expenses. Will be involved in all aspects of the use of centrifugal pumps, for example in the energy, industry, agriculture, and even in many1Abstractof today's military field use of the basic principle of centrifugal pump.2目录目录摘要 (1)Abstract (1)目录 (3)引言 (6)第1章离心泵的概述 (7)1.1 离心泵的基本结构 (7)1.2 离心泵的工作原理 (8)1.3离心泵的拆装与装配 (9)第2章离心泵的水力设计 (11)2.1 泵的基本设计参数 (11)2.2 泵的比转速计算 (12)2.3 泵进口及出口直径的计算 (12)2.4轴的最小直径 (12)2.5 轮毂直径的计算 (13)第3章叶轮的水力设计 (13)3.1 确定叶轮进口速度 (14)3.2 确定叶片厚度 (14)3.3 叶片数Z的选择 (14)3.4叶轮进出口直径的计算 (15)3目录3.5 叶轮出口宽度 (15)3.6 出口直径与安放角的计算 (16)3.7叶片绘型 (17)第4章径向力轴向力及其平衡 (18)4.1 径向力及平衡 (18)4.2 径向力的计算 (18)4.3 轴向力及平衡及计算 (19)4.4 轴向力的平衡 (20)第5章泵零件选择及强度计算 (22)5.1 叶轮轮毂的强度计算 (22)5.2 轮毂热装温度计算 (22)5.3轴的强度校核 (23)5.4 键的强度计算 (24)5.5 工作面上的挤压应力 (25)5.6 切应力 (26)5.7 轴承联轴器的选择 (26)第6章泵体的厚度计算 (29)6.1 蜗壳厚度的计算 (29)6.2 中段壁厚的计算 (29)第七章吸水室与压水室的设计 (30)7.1 吸水室尺寸确定 (30)4目录7.2 压水室的作用 (30)7.3 蜗型体的计算 (31)7.4隔舌起始角 (32)7.5 蜗形体各断面面积的计算 (32)7.6 扩散管的计算 (33)第8章泵的轴封 (34)8.1常用的轴封种类及设计要求 (34)8.2 传统填料密封的不足 (34)8.3 填料密封的结构改造 (34)结论 (36)参考文献 (37)致谢 (38)5引言引言作为一种给流体提供能量的通用机械泵在各种场合都得到应用,其中离心泵的应用最为广泛。

离心泵叶轮课程设计

离心泵叶轮课程设计

离心泵叶轮的水力计算第一章 离心泵叶轮的水力计算1.1设计离心泵性能参数及要求1.2 叶轮设计水力计算1.2.1 泵的进口直径进口直径由泵吸入口流速确定,泵吸入口流速一般为3m/s 左右。

常用的泵吸入口径、流量和流速关系见《泵的理论与设计》表8-1:由流量选择泵的吸入口流速2V =2.1 m/s ;故泵的进口直径:D s =, 取65 mm 。

1.2.2 泵出口直径对于低扬程泵,排出口径可与吸入口径相同;对于高扬程泵,为减小泵的体积和排出管路直径,可取排出口径小于吸入口径,一般取d D (1~0.7)s D =。

故泵出口直径:s D 7.0D d ==0.7*65=45.5mm ,取 50 mm 。

1.2.3 泵进、出口速度由于进口直径都取了标准值,所以s V 、V d 都有变化,需要重新计算。

进口速度:2s 4V s D Q π==24*0.007*0.065π=2.109 m/s , 取2.1 m/s 。

出口速度: 2d 4V d D Q π==24*0.007*0.05π=3.565 m/s , 取3.5 m/s 。

1.2.4 比转数的计算4/365.3n HQ n s ==3/452=91.47 1.2.5 结构型式的选择由于计算所得的s n 在30—280之间,且泵的使用条件为高转速,小流量,小体积,因此选择所设计的泵为卧式单级单吸式离心泵。

1.2.6 效率计算(1)水力效率:h 110.835η=+=+= (2)容积效率: 2/32/3110.9710.6810.68*(91.47)v s n η--===++取平衡盘泄露量与理论流量之比为0.03,故v η= 0.97-0.03=0.94。

(3)机械效率:m 7/6110.07(/100)s n η≈-7/6110.07(91.47/100)=-=0.922(4) 泵的总效率:0.8350.940.9220.724h v m ηηηη=⋅⋅=⨯⨯=1.2.7确定轴功率(1)轴功率:ηρ10281.9g N ⨯=QH 10*1200*0.007*529.81102*0.724=⨯=5.82 kw 。

(优选)离心泵叶轮水力设计

(优选)离心泵叶轮水力设计
Nc 1.2N
离心泵设计
七.轴径和轮毂直径的确定
泵轴直径的确定应按强度、刚度和临界 转速等情况确定。由于扭矩是泵主要的 载荷,开始设计时首先按扭矩来确定泵 轴的最小直径,最小直径一般位于联轴 节处。
d 3 Mn 0.2[]
Mn
9.55 103
Nc n
N构工艺要求,确定 叶轮处的轴径dB和轮毂直径dh。 一般
Q n
离心泵设计
容积效率
v
1
1
0.68
n
2 s
/
3
离心泵设计
该容积效率为只考虑叶轮前密封环 的泄漏,对于有平衡孔、级间泄漏 和平衡盘泄漏的情况,容积效率还 要相应降低
机械效率
m
1 0.07 (
1 ns )7/6
100
泵的总效率
hvm
离心泵设计
离心泵设计
六、轴功率和原动机功率
N gQH 102
式中
D2
KD2 3
Q n
K D2
9.35( n s )1/ 2 100
离心泵设计
三、叶轮出口宽度b2的计算 和选择
式中
b2
Kb2 3
Q n
K b2
0.64( n s )5 / 6 100
离心泵设计
四、叶片数的计算和选择
叶片数对泵的扬程、效率、汽蚀 性能都有一定的影响。选择叶片数, 一方面考虑尽量减小叶片的排挤和表 面的摩擦,另一方面又使叶道有足够 的长度,以保证液流的稳定性和叶片 对液体的充分作用。
离心泵设计
三、相似设计法应注意的问题
• 关于性能和效率问题 • 关于结构形式的影响 • 关于修改模型问题 • 汽蚀相似问题
离心泵设计
第三节 速度系数设计法

离心泵水力设计(进口边的确定)

离心泵水力设计(进口边的确定)

大的曲率半径。
2、轴面流道过水断面面积变化情况检查 ◆检查方法:通常均匀地在流道上取5~10个过水断面,作出
过水断面面积沿流道中线的变化曲线 。
◆过流断面面积计算
F 2Rcb
以过水断面形成线为母线 绕转轴一周形成过水断面
A
Rc—形心处的半径 b—过水断面形成线AEB的长度, AEB与各轴面流线相垂直。
0 流道中线 D E B 过水断面 形成线AEB C
过水断面形成线作法
◆过水断面面积沿流道中线的变化曲线 按照上述方法依次计算各个过水断面面积F,然后拟合出其沿 流道中线变化的曲线。
要求:该曲线应为平直或光滑的线,否则必须修改 轴面投影形状,反复多次,直到满足要求为止。

第三节
离心泵叶片的水力设计
首页
叶片设计目的:设计的叶片空间形状符合叶轮内液体质点的 相对运动规律,叶片表面实质是相对流线。 几个假设: 1)假设叶轮中的流体从叶轮前盖至后盖分成若干层,每层为 一旋转流面。流体只沿每层流动,互不混杂—把叶轮中的流 动问题简化为流面上的流动问题。 2)假设叶片无穷多,流面上流体的相对流动的轨迹是相同的, 并与叶片面一致。 求出每个流面上相对流动的流线后,叠加在一起就形成了叶 片表面,加厚就形成了叶片的工作面和背面。 叶片型线的设计转化成画出各回转流面上的相对流线。 3)叶轮中的流动是轴对称的,同一过水断面Vm均匀分布, Vm沿轴面流线一个坐标变化—一元设计理论 。
分流线的原则: 按各小流道通过相等 的流量来分。 总过流面积
F 2Rcb
Fi 2ri bi
小流道面积
同一过水断面 ri bi const
轴面流线
① △β>0 ,能增大β1A→减小叶片弯曲→过流面积增加→

离心泵叶轮水力设计

离心泵叶轮水力设计

离心泵叶轮水力设计0.98根据上述三种效率计算得到总效率为:hvm0.880.960.890.98=0.73根据公式,计算泵的功率:P=QH/=10000.171.5/0.73=.86W≈10.4kW因此,选用11kW的电机作为泵的动力源。

三、叶轮叶片的绘型1.掌握方格网绘型的过程方格网绘图法是一种快速、简便的绘图方法,适用于各种形状的叶轮叶片的绘制。

具体步骤如下:1)在方格纸上按比例放大叶片木模图;2)将叶片木模图的每一个关键点的坐标标在方格纸上;3)用直尺将每个关键点连接起来,形成叶片的外形;4)用曲线连接相邻的直线段,形成光滑的曲线。

2.掌握叶片木模图绘制过程叶片木模图是叶片外形的模型图,是绘制方格网图的基础。

其绘制过程如下:1)确定叶片的进口和出口圆直径;2)确定叶片的最大厚度和最大弦长;3)在方格纸上按比例画出进口和出口圆的圆弧;4)在进口圆弧上划分出若干等分点,根据叶片的包角和进口流角确定各等分点的位置;5)根据叶片的最大厚度和最大弦长,在进口圆弧上确定叶片的最大厚度点和最大弦长点;6)连接最大厚度点和最大弦长点,形成叶片的中心线;7)在最大厚度点和最大弦长点上分别确定叶片的前缘和后缘线;8)根据叶片的包角和出口流角,在出口圆弧上确定各等分点的位置;9)用曲线连接相邻的等分点和前后缘线,形成叶片的外形。

3.绘制木模图根据已知的设计参数和叶轮的水力方案,确定叶轮的进口和出口直径,最大厚度和最大弦长。

然后,按照叶片木模图的绘制过程,在方格纸上绘制出叶片的中心线、前后缘线和外形曲线。

最后,检查叶片的包角、出口流角和叶片的流线等重要参数是否符合设计要求。

叶片外径D2和叶片出口角β2等出口几何参数是影响泵扬程的最重要因素。

另外影响泵扬程的有限叶片数的修正系数也与D2和β2及叶片等参数有关。

可见,D2的精确与否,间接影响着泵的性能。

根据经验公式D2=K3Q1,取K=11.333,Q1=168.07,可得D2=465 mm(初步计算值)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵设计
在确定比转数时应考虑下列因素 • ns=120~210的区间,泵的效率 最高,ns〈60的效率显著下降 • 可以采用单吸或双吸的结构形 式来改变比转数的大小
离心泵设计
• 可以采用单级或多级的结构形 式来改变比转数的大小 • 泵特性曲线的形状与比转数 的大小有关
五、估算泵的效率
水力效率
现离心泵设计
• 效率(要求保证的效率) • 介质的性质(温度、重度、含 杂质情况、腐蚀性等) • 对特性曲线的要求(平坦、陡 降、是否允许有驼峰等)
离心泵设计
二、确定泵的总体结构形式和泵 的进出口直径
1. 进口直径 选取原则:经D济s 流 速4;vQ汽s 蚀要求 2.泵出口直径
Dd(1~0.7)Ds
Nc KN
离心泵设计
根据轴各段的结构工艺要求,确定 叶轮处的轴径dB和轮毂直径dh。 一般
dh(1.2~1.4)dB
离心泵设计
画草图时应注意以下几点: •各轴段应采用标准直径 •轴上的螺纹一般采用标准细牙螺 纹,其内径应等于或大于螺纹前 轴段的直径 •轴定位凸肩一般为1~2毫米
离心泵设计
第二节 相似设计法
离心泵设计
一、相似设计法的导出
如果两台泵相似,比转速必然 相等,在相似工况下,两台泵 的流量、扬程和功率应满足公 式:
Qp (DP )3 np Qm DM nm
Hp (DP )2(np )2 Hm DM nm
离心泵设计
两台相似泵的尺寸比例可以从上 式求得:
Q3
nmQp npQm
Hn nm p
h
10.083l5g3
Q n
离心泵设计
容积效率
v

1
10.68ns2/3
离心泵设计
该容积效率为只考虑叶轮前密封环 的泄漏,对于有平衡孔、级间泄漏 和平衡盘泄漏的情况,容积效率还 要相应降低
机械效率
1
m
10.07 ( ns
)7/ 6
100
泵的总效率
离心泵设计
hvm
离心泵设计
离心泵设计
Z13rmsin12 e2
对于低比数离心叶轮
Z6.5r2r1sin12
r2r1
2
离心泵设计
叶片数也可按比转数选择
ns
30~45
45~60
60~120 120~300
Z
六、轴功率和原动机功率
N gQH 102
Nc 1.2N
离心泵设计
七.轴径和轮毂直径的确定
泵轴直径的确定应按强度、刚度和临界 转速等情况确定。由于扭矩是泵主要的 载荷,开始设计时首先按扭矩来确定泵 轴的最小直径,最小直径一般位于联轴 节处。
d 3 Mn 0.2[]
Mn
9.55103 Nc n
102N p
离心泵设计
6.绘制实型泵图纸
实型泵过流部件所有角度与 模型相等,所有尺寸按计算出的 λ值放大或缩小。但应考虑到制 造的可能性和结构的合理性(如 叶片和导叶厚度不能太厚或太薄) 可作适当的修改。
离心泵设计
三、相似设计法应注意的问题
• 关于性能和效率问题 • 关于结构形式的影响 • 关于修改模型问题 • 汽蚀相似问题
• 主要考虑泵的效率时 K0=3.5~4.0 • 兼顾效率和汽蚀时 K0=4.0~5.0 • 主要考虑汽蚀时 K0=5.0~5.5
离心泵设计
二、叶轮出口直径D2的初步计算
叶轮外径D2和叶片出口β2等出口几何参 数,是影响泵杨程的最重要的因素。
式中
D2
KD2 3
Q n
KD2
9度系数设计法
比转数相等的泵的速度系数是相等 的。不同的比转速就有不同的速度系数。 我们以现有性能比较好的产品为基础, 统计出离心泵的速度系数曲线,设计时 按nS选取速度系数,作为计算叶轮尺 寸的依据,这样的设计方法就叫做速度 系数设计法。
离心泵设计
叶轮主要几何参数有:
• 叶轮进口直径D0 • 叶片进口直径D1 • 叶轮轮毂直径dh • 叶片进口角β1
Hp Hm
在实际计算时,λQ和λH往往并不相 等,在两者差值不大时,一般取较大 的值。
离心泵设计
二、 相似设计法的步骤
1.根据给定的参数,计算比 转数ns 2.根据ns选择模型泵。
离心泵设计
选择模型泵时应该注意以下几点: • 流量-扬程曲线要平坦 • 泵效率要高,高效率区要宽 • 汽蚀性能好 3.根据已选定的模型和给定的 参数,计算放大或缩小系数λ
离心泵设计
三、叶轮出口宽度b2的计算 和选择
式中
b2
Kb2 3
Q n
Kb2
0.64(ns )5/6 100
离心泵设计
四、叶片数的计算和选择
叶片数对泵的扬程、效率、汽蚀 性能都有一定的影响。选择叶片数, 一方面考虑尽量减小叶片的排挤和表 面的摩擦,另一方面又使叶道有足够 的长度,以保证液流的稳定性和叶片 对液体的充分作用。
离心泵设计
三、泵转速的确定
确定泵转速应考虑下面几个因素 • 泵转速越高,泵的体积越小 • 确定转速应考虑原动机的种类 和传动装置 • 提高转速受汽蚀条件的限制
可根据汽蚀比转数选取
5.62n Q C
NPSH3r / 4
离心泵设计
离心泵设计
四、计算比转数ns,确定 水力方案
3.65n Q ns H3/ 4
离心泵设计
4.根据λ确定过流部件的尺寸
D2p D2m b2p b2m
D1p D1m b1p b1m
离心泵设计
5.根据模型泵性能曲线换算 出是型泵性能曲线的数据
Qp
3
np nm
Qm
Hp

2
(np nm
)2
Hm
Np 5(nnm p)3Nmm p
p

Qp H p p
• 叶轮出口直径D2 • 叶轮出口宽度b2 • 叶片出口角β2 • 叶片数z
• 叶片包角φ。
离心泵设计
离心泵设计
一、叶轮进口直径D0的确定
因为有的叶轮有轮毂,有的叶轮没 有轮毂,为了研究问题方便,引入 当量直径De以排除轮毂的影响。
De2 D02 d2h
De
K03
Q n
离心泵设计
对于双吸泵取Q/2
离心泵设计
第三章 离心泵和混流泵叶轮的水力设计
离心泵设计
离心泵水力设计的方法 • 模型换算法(相似换算法) • 速度系数法 • 面积比原理
离心泵设计
第一节 泵的主要设计参数和结构方案的确定
现离心泵设计
一、设计参数和要求
• 流量 • 扬程 • 转速(或由设计者确定) • 装置汽蚀余量(或给出装置的使 用条件)
相关文档
最新文档